
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

Progressive Point Cloud Denoising with Cross-Stage Cross-Coder
Adaptive Edge Graph Convolution Network

Anonymous Authors

ABSTRACT
Due to the limitation of collection device and unstable scanning
process, point cloud data is usually noisy. Those noise deforms
the underlying structures of point clouds and inevitably affects
downstream tasks such as rendering, reconstruction and analysis.
In this paper, we propose a Cross-stage Cross-coder Adaptive Edge
Graph Convolution Network (C2AENet) to denoise point clouds.
Our network uses multiple stages to progressively and iteratively
denoise points. To improve the effectiveness, we add connections
between two stages and between the encoder and decoder, leading
to the cross-stage cross-coder architecture. Additionally, existing
graph-based point cloud learning methods tend to capture local
structure. They typically construct a semantic graph based on se-
mantic distance, which may ignore Euclidean neighbors and lead to
insufficient geometry perception. Therefore, we introduce a geomet-
ric graph and adaptively calculate edge attention based on the local
and global structural information of the points. This results in a
novel graph convolution module that allows the network to capture
richer contextual information and focus on more important parts.
Extensive experiments demonstrate that the proposed method is
competitive compared with other state-of-the-art methods. The
code will be made publicly available.

CCS CONCEPTS
• Computing methodologies→ Computer vision tasks.

KEYWORDS
Point cloud denoising, Graph convolution network

1 INTRODUCTION
As 3D sensing technology advances swiftly, point clouds are in-
creasingly becoming a preferred format for representing 3D data,
resulting in extensive applications in various 3D vision fields like
autonomous driving [5, 20], augmented reality [29, 38] and 3D
action recognition [8, 9, 45]. Nonetheless, the acquisition process
introduces noise into point clouds due to inherent hardware er-
rors, as well as interference from human, environmental, and other
factors. This noise presents substantial challenges for subsequent
tasks like surface reconstruction [2, 18] and semantic segmenta-
tion [36, 46]. Hence, addressing the issue of point cloud denoising

Unpublished working draft. Not for distribution.Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ACM MM, 2024, Melbourne, Australia
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM
https://doi.org/10.1145/nnnnnnn.nnnnnnn

Geometric
Distance

Semantic
Distance

Patch

Global Information

Centroid

Aggregate

Aggregate

Edge Attention Weight

(a) Graph construction in our proposed method

0.78 0.61 0.55 0.84 0.71 0.66

(b) Overview of adaptive edge attention

Edge Points

Interior Points

Local Information

Graph

Patch

Figure 1: (a) Illustration of graph construction in the pro-
posed method. The patch is extracted from the noisy point
cloud. Color indicates point semantic distance. Simultane-
ously considering geometric and semantic distances allows
the aggregated graph structure capture more comprehensive
contextual information. (b) Illustration of adaptive edge at-
tention. To better learn the structural information of point
clouds, we adaptively compute edge attention based on local
and global information.

becomes crucial in ensuring the accuracy and reliability of down-
stream applications.

Traditional methods for point cloud denoising have demon-
strated certain success [7, 13, 14, 17, 21, 23, 31, 40, 44, 47]. However,
these approaches often rely on geometric prior knowledge and lack
robustness when dealing with point clouds containing high-level
noise or non-uniform sampling. A recent trend, fueled by the suc-
cess of network architectures tailored for point clouds [32], has
given rise to deep learning-based denoising methods. Despite their
effectiveness, these data-driven methods face challenges in terms of
generalization, such as Convolutional Neural Network (CNN). To
improve generalization, CNN-based methods in high-level visual
tasks typically emphasize multi-stage networks. Similarly, when
confronted with point clouds contaminated by unknown high-level
noise, these methods tend to iteratively denoise the point clouds

1

https://doi.org/10.1145/nnnnnnn.nnnnnnn

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

ACM MM, 2024, Melbourne, Australia Anonymous Authors

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

Stage
� − 1

Stage
�

（a）No interaction

Encoder Decoder

Encoder Decoder Stage
� − 1

Stage
�

（b）Cross-stage interaction

Encoder Decoder

Encoder Decoder

Stage
� − 1

Stage
�

（c）Cross-coder interaction

Encoder Decoder

Encoder Decoder Stage
� − 1

Stage
�

（d）Cross-stage cross-coder

Encoder Decoder

Encoder Decoder

Figure 2: Illustration of different multi-stage frameworks. (a)
Vanilla multi-stage: the decoder output of the previous stage
is input to the next stage (black line). (b) Cross-stage interac-
tion: the intermediate results of encoder and decoder flow to
the next stage (orange line and yellow line). (c) Cross-coder in-
teraction: the intermediate results of encoder are integrated
into decoder (green line). (d) Cross-stage cross-coder inter-
action: the intermediate results flow across adjacent stages
and across encoder and decoder.

during testing to mitigate generalization issues [4, 19]. Neverthe-
less, they do not incorporate additional operations during training
to account for differences in residual noise across various stages
[26, 33, 43]. This oversight can lead to either excessive or insuf-
ficient denoising. At present, RePCN-Net [3] addresses this con-
cern by employing a recurrent network architecture for iterative
denoising. But it utilizes a single network, limiting its ability to
accurately identify noise levels across different stages. By contrast,
IterativePFN [6] adopts network stacking, allowing the network to
learn denoising at multiple stages with varying noise levels. This
approach enhances the model’s capability to handle complex noise
scenarios in point clouds.

Despite the success of the above methods, a few issues persist.
Firstly, they tend to concentrate on learning local structures based
on semantic graphs, which results in a deficiency in geometric
perception capabilities. To address this limitation, we introduce ad-
ditional geometric graphs and obtain a graph structure with a larger
receptive field. This method can harness the unique advantages of
different graph structures to capture more contextual information,
as illustrated in Figure 1. On one hand, the importance of different
neighbors to the centroid is different in the graph. On the other
hand, interior points with more complete neighborhood informa-
tion have more effective structural information compared to edge
points. Therefore, we construct an adaptive edge attention (AEA)
module that considers both local and global structural information
of points to adaptively learn the weights of the graph structure.

Based on this strategy, we propose an Adaptive Edge Graph Con-
volution (AEConv) module which provides a more comprehensive
model for complex data. Secondly, existing methods often overlook
interactions between multiple denoising stages, which may lead to
incomplete information transfer or information loss. To tackle this
issue, we propose the incorporation of a cross-stage cross-coder ar-
chitecture, ensuring that the information from the previous stage is
fully propagated and utilized in the subsequent stages, as depicted in
Figure 2. Based on AEConv module and cross-stage cross-coder ar-
chitecture, we present a Cross-stage Cross-coder Adaptive Edge
Graph Convolution Network (C2AENet), which effectively pro-
motes efficient information flow across different denoising stages
while enhancing the performance of graph convolution. The main
contributions of this work are as follows:

• We propose a cross-stage cross-coder framework, incor-
porating a multi-stage information transfer mechanism to
ensure that the valuable information of the previous stage
is fully utilized.

• Wepropose anAdaptive Edge Graph Convolution (AEConv)
module that leverages local and global structural informa-
tion to adaptively learn edge attention, effectively capturing
the local structures of point clouds.

• Extensive experiments aswell as the ablation studies demon-
strate the effectiveness and the contribution of each key
component involved in the proposed method.

2 RELATEDWORK
2.1 Traditional Denoising Methods
Traditional point cloud denoising can be generally classified into
filter-based methods and optimization-based methods.
Filter-based methods. Inspired by bilateral filtering, Fleishman et
al. [11] used bilateral filtering to denoise 3D mesh models. Digne et
al. [7] proposed a bilateral filter for point clouds based on the work
of Fleishman et al., taking into account both the geometric and
normal distances of points. Zhang et al. [44] proposed a point cloud
denoising method based on the principal component analysis (PCA)
and bilateral filter. Bilateral filtering-based methods can yield the
expected results, but they may exhibit poor denoising effects near
sharp edges and require higher computational time. In addition to
bilateral filtering, guided filtering is also an effective method. Han et
al. [13] adopted the point position as the guidance information and
proposed a point position guided filtering method. Subsequently,
iterative normal guided filtering [14], anisotropic point set denois-
ing algorithm [40], and point cloud denoising method based on
multi-normal strategies [23, 47] have been gradually proposed.
Optimization-basedmethods.Optimization-based denoisingmeth-
ods typically treat the denoising process as an optimization prob-
lem constrained by geometric priors. They are mainly divided into
Moving Least Squares (MLS)-based and Locally Optimal Projection
(LOP)-based. Inspired by the MLS method, Alexa et al. [1] defined
a smooth manifold surface at a set of points close to the original
surface. Subsequently, MLS-based methods have been gradually
proposed, such as Robust MLS (RMLS) [10] and Robust Implicit
MLS (RIMLS) [28]. Although MLS-based methods can reconstruct
smooth surfaces, they are constrained by the parameters of local
surfaces, resulting in a relatively poor description of details in

2

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

Progressive Point Cloud Denoising with Cross-Stage Cross-Coder Adaptive Edge Graph Convolution Network ACM MM, 2024, Melbourne, Australia

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

AEConv
Layer1

AEConv
Layer2

AEConv
Layer3 C

Multi-scale Feature

FC
-1

FC
-2

FC
-3

FC
-4

FC
-5 Δ +

100

0

CSCC-E
Layer1

CSCC-E
Layer2

CSCC-E
Layer3

AEConv
Layer1

AEConv
Layer2

AEConv
Layer3 C

Multi-scale Feature

FC
-1

FC
-2

FC
-3

FC
-4

FC
-5 Δ +

100

0

Encoder Feature Decoder Feature

FC FC

ReLU ReLU

+

View

CSCC-E Feature

+

CSCC-D
Layer

Cross-Stage
Cross-Coder

Module

+ Addition ConcatenationC Δ Predicted Noise

+ +

Early Decoder
Feature

FC

ReLU

C

 Subsequent
Decoder Feature

FC

ReLUCSCC-D Feature

Encoder Skip Connection
Decoder Skip Connection

Encoder Decoder

CSCC-E
Feature1

CSCC-E
Feature2

CSCC-E
Feature3 CSCC-D Feature

Figure 3: Framework of the proposed point cloud denoising method. Here, the working principles of the (𝑁 − 1)-th stage and
the 𝑁 -th stage are presented. The network structure is the same for each stage, where the encoder consists of three dynamic
AEConv modules, and the decoder is composed of multi-layer perceptron (MLP). The color of each point in the point cloud
represents its P2M value, ranging from 0 to 100.

sharp features. To alleviate this problem, Lipman et al. [22] first
proposed applying the LOP method to surface approximation of
point sets. Afterward, more and more methods have been proposed,
such as weighted LOP (WLOP) [16], edge-aware resampling (EAR)
[17], feature-preserving LOP operator (FLOP) [21], and continuous
weighted LOP (CLOP) [31]. The LOP-based methods have certain
generality, but they also have the problem of over-smoothing.

2.2 Deep Learning-based Denoising Methods
In recent years, with the success of deep learning in the field of
computer vision, deep learning-based methods have been widely
applied to point cloud denoising. Yu et al. proposed an Edge-aware
Point Set Consolidation Network (ECNet) [41], leveraging edge-
aware techniques to facilitate the consolidation of point clouds.
PointProNet [34] utilized CNNs to filter noisy 2D height maps and
then reproject them into 3D space. Similarly, Li et al. [24] employed
2D height maps to estimate normals, thereby achieving point posi-
tion updates. Rakotosaona et al. proposed a two-stage denoising
network based on PCPNet [12], called PointCleanNet [33], to re-
move outliers and reduce noise in unordered point clouds. Pistilli
et al. [30] proposed a graph convolutional layer based denoising
network called GPDNet. The Pointfilter proposed by Zhang et al.
[43] used the autoencoder architecture for point cloud denoising.
Additionally, Luo et al. [26] employed neural networks to estimate
distribution scores and denoised the point cloud through gradi-
ent ascent. Mao et al. [27] utilized normalizing flows and noise
disentanglement techniques to predict the displacement vectors
of noise. Chen et al. [3] proposed a recurrent network architec-
ture called RePCD-Net. To ensure fast convergence of points to
the clean surface, IterativePFN [6] modeled the iterative filtering

process within the network. In addition to supervised denoising
methods, unsupervised denoising methods also play a crucial role,
such as TotalDenoising [15] and DMRDenoise [25].

3 PROPOSED METHOD
3.1 Overview
In this paper, we construct a C2AENet based on an encoder-decoder
architecture to extract rich feature representations for point cloud
denoising. The encoder consists of three dynamic AEConv modules,
aiming at effectively extracting feature information at different
scales. The decoder employs a multi-layer perceptron (MLP), taking
multi-scale features as input, to predict noise for input points. This
method follows a multi-stage framework. We show two adjacent
stages of the framework in Figure 3.

Specifically, the (𝑁 − 1)-th stage and the 𝑁 -th stage respectively
learn to predict the residual noise of different stages. To improve
effectiveness, we introduce a cross-stage cross-coder architecture
to propagate important information learned from the (𝑁 − 1)-th
stage to the 𝑁 -th stage. These early-stage information will effec-
tively promote the learning and optimization in the subsequent
stage, reducing errors and biases of the model in complex tasks. Fi-
nally, the noise predicted at multiple stages is aggregated and apply
them to the noisy point cloud for denoising. We detail the adaptive
edge graph convolution network and the cross-stage cross-coder
architecture below.

3.2 Adaptive Edge Graph Convolution Network
We denote the ground-truth point cloud as �̃� = {�̃�𝑖 }𝑁𝑖=1 ∈ R𝑁×3

and the noise as 𝑼 = {𝒖𝑖 }𝑁𝑖=1 ∈ R𝑁×3, where 𝑁 is the number of
3

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

ACM MM, 2024, Melbourne, Australia Anonymous Authors

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

�
×

3
�

×
� �

�

Graph Construction
Graph
Feature

-
C

- Ed
ge

 F
ea

tu
re

× +

Edge Attention Weight

C

Weighted
Edge Feature

Centroid Feature

Centroid Feature
Adaptive Edge

Attention Module

Weighted
Graph Feature

Edge Graph
Convolution

……

�
×

� �
��FC Layer

Neighbor InteractionFeature Aggregation

BatchNorm

ReLU MaxPooling

Centroid

Graph Convolutional Layers

�

Geometric
Distance

Semantic
Distance Centroid

Centroid

Concatenation+ Addition C

Figure 4: AEConv mainly consists of a graph construction module, an adaptive edge attention module, and an edge graph
convolution module. The graph construction module generates the corresponding graph structure for 𝑁 input points based on
geometric distance and semantic distance. The graph structure includes centroid features and neighbor features, where edge
features are obtained by subtracting centroid features from neighbor features. The adaptive edge attention module calculates
the edge attention weight based on local edge features and global structural information. Finally, the output feature map is
obtained through the edge graph convolution module.

points. The input noisy point cloud is generated as follows:

𝑷 = �̃� + 𝑼 . (1)

The goal of point cloud denoising is to predict noise 𝑼 for recovering
the original point cloud �̃� .
Graph Construction Module. Graph Convolutional Networks
(GCN) is able to effectively handle non-Euclidean data and achieves
excellent performance on a range of applications[39]. However,
conventional GCN typically focuses on learning high-level feature
knowledge but neglects the original geometry structure[37]. To
improve efficiency, the network denoises multiple points simultane-
ously, making the construction of the graph structure particularly
crucial. To improve this problem, we propose an AEConv module
that is able to simultaneously consider the geometric distance and
hierarchical distance between points to construct different graphs,
and adaptively learns the edge attention weights of the graph struc-
ture based on local and global structural information. Therefore,
AEConv can learn more comprehensive intrinsic correlations and
global correlations of point clouds. Its structure is shown in Figure 4.

We take each point in the noisy patch as a centroid and con-
nect it to its neighbors to construct a graph G = (V, E), where
V = {1, . . . , 𝑁 } is a vertex set and E ⊆ V × V is the edge set.
In implementation, we construct the graph using the 𝑘-nearest
neighbors (𝑘𝑁𝑁) of each point without self-loop, and the number
of neighbors in each graph is set to 16. We define 𝒑𝑖 as the cen-
troid of a graph, and J (𝑖) = { 𝑗 | (𝑖, 𝑗) ∈ E} as the set of points in
its neighborhood. Based on two different-level features, we cap-
ture the geometric and semantic relationships between pairs of
points, generating geometric graphs G𝑔 and semantic graphs G𝑠

with different neighborhood information,

G𝑖
𝑔 =kNN𝑗=1,· · · ,𝑁 (| |𝒑𝑖 − 𝒑 𝑗 | |2),

G𝑖
𝑠 =kNN𝑗=1,· · · ,𝑁 (| |𝒇𝑖 − 𝒇𝑗 | |2).

(2)

where 𝒇𝑖 and 𝒇𝑗 represent the feature vectors of the 𝑖-th and 𝑗-
th points and are initialized as the point coordinates 𝒑𝑖 and 𝒑 𝑗 ,
respectively.
Adaptive Edge AttentionModule. To enhance the representation
capability of the graph structure, we construct an AEA module to
adaptively learn the edge attention weights of the graph structure.
First, we aggregate the different neighborhoods of the two graph
structures as follows:

G𝑓 = G𝑔 ∪ G𝑠 . (3)

We define the edge feature 𝒆𝑖 𝑗 ∈ R𝐶𝑖𝑛 as the relative feature vector
between the centroid 𝒑𝑖 and the neighboring point 𝒑 𝑗 :

𝒆𝑖 𝑗 = 𝒇𝑖 − 𝒇𝑗 , (4)

where 𝐶𝑖𝑛 is the input dimension of the point features. The local
edge features help to understand the intrinsic correlations of the
graph, and interior points with more complete neighborhood infor-
mation can capture more effective structural information compared
to edge points. Therefore, we simultaneously compute the edge
attention for the graph structures of 𝑁 points, enabling the net-
work to focus on the more crucial points in the global structure
and the more significant vertices in the graph. We define the atten-
tion weight of an edge in the aggregated graph G𝑓 as 𝒂𝑖 𝑗 , which
represents the importance of the edge feature 𝒆𝑖 𝑗 for the current
centroid 𝒑𝑖 . It can be formulated as:

𝒂𝑖 𝑗 = 𝜎 (Φ(𝒆𝑖 𝑗)), (5)

where Φ is a non-linear function used for local channel context
aggregation, and 𝜎 represents the Sigmoid non-linear activation
function. The heatmap visualization of edge attention is shown
in Figure 5. We separately visualize the edge attention weights of
the graph structures for edge points and interior points. As can be
seen from the figure, the graph constructed from interior points
as centroids obtains larger weights compared to the edge points.

4

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

Progressive Point Cloud Denoising with Cross-Stage Cross-Coder Adaptive Edge Graph Convolution Network ACM MM, 2024, Melbourne, Australia

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

Interior Points

Edge Points

Figure 5: Given a patch of noisy point cloud (left), the
heatmap visualization of edge attention is computed and
shown (right). The horizontal axis represents the vertices
in the graph, and the vertical axis represents the points in
the patch. The color bar provides a mapping from attention
weights to the color space. In the heatmap, red color indi-
cates higher edge attention weights, while blue indicates
lower weights.

This further demonstrates that interior points with more complete
neighborhood information can capture more effective structural
information. Based on this weight, AEConv adaptively learns the
importance of neighbors to better capture the graph structural
information.

Then, we integrate the weighted edge features 𝒆𝑖 𝑗 with centroid
features 𝒇𝑖 to combine global shape information and local neigh-
borhood information,

¯𝒆𝑖 𝑗 = 𝒂𝑖 𝑗 · 𝒆𝑖 𝑗 , 𝒉𝑖 𝑗 = (𝒇𝑖 ∥ ¯𝒆𝑖 𝑗), (6)

where · denotes vector dot product, (·∥·) denotes concatenation,
and 𝒉𝑖 𝑗 represents weighted graph features.
Edge Graph Convolution Module. In the edge graph convolu-
tion operation, we update vertex features based on neighborhood
information to capture the local features of the weighted graph,
which can be formulated as follows:

𝒇 ′𝑖 = 𝑔
(𝑙)
Θ (Σ 𝑗 :(𝑖, 𝑗) ∈E𝒉𝑖 𝑗), (7)

where 𝑔 (𝑙)Θ : R𝐹𝑙 × R𝐹𝑙 → R𝐹𝑙+1 represents the 𝑙-th graph convo-
lutional layer, Θ is the set of learnable parameters, and 𝐹𝑙 is the
feature dimension at 𝑙-th layer. To better capture the non-linear
relationships between vertices in the edge-fusion graph, we imple-
ment 𝑔 (𝑙)Θ by MLPs. Subsequently, we utilize symmetric functions
for feature aggregation, capturing local geometric structure while
maintaining permutation invariance. Due to the dynamic changes
in feature representation, the static graph may become ineffective.
Therefore, we dynamically update the graph structure during the
learning process.

3.3 Cross-stage Cross-coder Architecture
In multi-stage networks, the encoder-decoder architectures of dif-
ferent stages are independent of each other. Despite its success,
it overlooks the interactions between multiple stages. This could
lead to incomplete information transfer or information loss. To

efficiently leverage the valuable information from previous stages,
we facilitate information transfer between stages.

Specifically, we construct a cross-stage cross-coder architecture.
For the encoder, we first apply linear mapping to the features of
the corresponding layers of the encoder and decoder at the current
stage. This makes the features more suitable for the learning and op-
timization of the next stage network. Then cross-coder is achieved
by feature addition to supplement the lost context information.
Finally, it is connected to the corresponding layer in the encoder
of the next stage. For the decoder, we fuse multi-scale features
from the decoders of two stages, enabling the model to obtain more
comprehensive information. In the end, our architecture achieves
extensive information propagation between multi-stage networks,
effectively alleviating the issues of incomplete information transfer
or information loss.

3.4 Training Setup
Due to the significant increase in computational and time complex-
ity caused by large-scale point clouds, we treat it as a local problem.
During the training process, the patches randomly obtained through
the 𝑘𝑁𝑁 algorithm are fed into the network. To improve efficiency,
denoising is simultaneously applied to all points on the patches.
During the testing process, multiple patches are extracted from a
point cloud for denoising. Subsequently, the best denoised point
cloud is obtained by utilizing a patch stitching mechanism [6] to
combine different patches.

The loss function used to optimize the network L is defined as:

L =
1
𝑇

𝑇∑︁
𝑖=0

∥Δ𝑖 − 𝒖𝑖 ∥2
2, (8)

where 𝑖 represents the current number of stages, 𝑇 represents the
total number of denoising stages, Δ represents the predicted noise,
and 𝒖 represents the real noise. Therefore, the final loss is the sum
of the losses from different stages of the network.

4 EXPERIMENTAL RESULTS
4.1 Dataset and Implementation Details
To evaluate the effectiveness of the proposed method, we conduct
experiments on the synthetic PUNet dataset [42]. The training set
consists of 120 point clouds sampled using Poisson disk sampling
from 40 meshes, with resolutions of 10K, 30K, and 50K points. Then,
Gaussian noises with standard deviations ranging from 0.5% to 2%
of the bounding sphere’s radius are added to the point clouds. The
testing set consists of 40 point clouds sampled using Poisson disk
sampling from 20 meshes, with resolutions of 10K and 50K points.
For the testing point clouds, we add Gaussian noise with standard
deviations of 1%, 2%, and 2.5% of the bounding sphere’s radius. In
addition to the synthetic datasets, we also conduct experiments on
the real-world Kinect v1 and Kinect v2 datasets [35] which
consists of 73 and 72 real-world scans acquired by Microsoft Kinect
v1 and Kinect v2 cameras.

Two commonly-used metrics including the Chamfer Distance
(CD) and the Point2Mesh distance (P2M) are used as the criteria for
performance evaluation. Specifically, lower values of CD and P2M
indicate better point cloud denoising performance. During training,
the network parameters are optimized using the Adam optimizer

5

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

ACM MM, 2024, Melbourne, Australia Anonymous Authors

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

Table 1: Comparison results on the PUNet dataset. CD is multiplied by 105, P2M is multiplied by 105. The best results are marked
in BOLD.

Point Cloud Denoising Models Publication

10K points 50K points

1% noise 2% noise 2.5% noise 1% noise 2% noise 2.5% noise
CD↓ P2M↓ CD↓ P2M↓ CD↓ P2M↓ CD↓ P2M↓ CD↓ P2M↓ CD↓ P2M↓

PointCleanNet [33] CGF 2020 36.86 15.99 79.26 47.59 104.86 69.87 11.03 6.46 19.78 13.70 32.03 24.86
GPDNet [30] ECCV 2020 23.10 7.14 42.84 18.55 58.37 30.66 10.49 6.35 32.88 25.03 50.85 41.34

DMRDenoise [25] ACM MM 2020 47.12 21.96 50.85 25.23 52.77 26.69 12.05 7.62 14.43 9.70 16.96 11.90
PDFlow [27] ECCV 2022 21.26 6.74 32.46 13.24 36.27 17.02 6.51 4.16 12.70 9.21 18.74 14.26

ScoreDenoise [26] ICCV 2021 25.22 7.54 36.83 13.80 42.32 19.04 7.16 4.00 12.89 8.33 14.45 9.58
Pointfilter [43] TVCG 2020 24.61 7.30 35.34 11.55 40.99 15.05 7.58 4.32 9.07 5.07 10.99 6.29
IterativePFN [6] CVPR 2023 20.56 5.01 30.43 8.45 33.52 10.45 6.05 3.02 8.03 4.36 10.15 5.88

C2AENet (Ours) - 19.60 4.59 30.09 8.00 32.68 9.74 5.81 2.83 7.58 4.05 9.89 5.66

for 100 epochs, with a batch size of 4, and an initial learning rate
of 1e-4. The learning rate is scaled to 0.5 times when the network
parameters are not updated for 10 consecutive epochs.

4.2 Performance Comparison on PUNet
We compare our method with state-of-the-art point cloud denoising
methods, including PointCleanNet [33], GPDNet [30], DMRDenoise
[25], PDFlow [27], ScoreDenoise [26], Pointfilter [43], IterativePFN
[6]. The performance comparison results are shown in Table 1.
From the results, we can draw the following conclusions:

• Our method consistently outperforms the competing meth-
ods across all three noise levels. Notably, while methods
such as GPDNet, ScoreDenoise, and Pointfilter showpromis-
ing results on low noise levels, they face significant chal-
lengeswhen confrontedwith samples with high noise levels.
By contrast, our method exhibit excellent performance on
both low and high noise levels. This highlights the stability
and effectiveness of our method, making it a more reliable
choice for denoising tasks across various noise conditions.

• The performance difference among different methods is
more pronounced at low resolution compared to high res-
olution. Consequently, excelling at both low and high res-
olutions proves to be challenging. Our method not only
performs well at high resolution samples but also demon-
strates superiority at low resolution samples.

For a more intuitive comparison, we present the visual results
of denoised point clouds generated by different methods, as shown
in Figure 6. In general, it can be observed that ScoreDenoise and
PDFlow exhibit poor preservation of shape structure in the detailed
regions. Additionally, PDFlow shows the weakest performance in
global point cloud denoising, marked by extensive blue regions. Our
method demonstrates better visual results in terms of denoising
and preservation of shape structure. For a more comprehensive
evaluation, additional visual and experimental results on the PUNet
dataset are included in the supplementary material. Specifically, it
includes more visual comparison results on the PUNet dataset, run-
time comparisons of different denoising methods, and performance
comparisons on higher noise levels.

Table 2: Comparison results on the Kinect v1 and Kinect v2
datasets. CD is multiplied by 105, P2M is multiplied by 105.
The first, second, and third of the two indicators are marked
in red, blue and green, respectively.

Method
Kinect v1 Kinect v2

CD↓ P2M↓ CD↓ P2M↓

PointCleanNet [33] 13.73 8.75 22.48 13.29
GPDNet [30] 14.83 8.69 23.09 11.78

DMRDenoise [25] 22.78 12.89 \ \
PDFlow [27] 14.01 9.14 20.83 12.13

ScoreDenoise [26] 13.22 8.18 19.66 11.08
Pointfilter [43] 13.77 7.91 18.85 10.29
IterativePFN [6] 13.20 8.43 18.69 10.92

C2AENet (Ours) 13.09 8.29 18.92 10.83

4.3 Visual Results on Real-world Scanned Data
The noise in real-world scanned data is unknown and complex. In
addition to the synthetic PUNet dataset, we also conduct experi-
ments on real-world scanned data from the Kinect v1 and Kinect v2
datasets. The specific results are shown in Table 2. Specifically, our
method achieves the best results on the CD metric of the Kinect v1
dataset and the top-3 performances on the other metrics. Therefore,
our method not only performs best on synthetic datasets, but also
proves effective on real-world datasets. For a more comprehensive
understanding, the supplementary materials include visualizations
of the denoising results on real-world scanned data.

4.4 Ablation Study
To demonstrate the effectiveness of the cross-stage cross-coder
architecture, AEConv module and multi-stage denoising scheme,
we performed the following ablation studies:
Contribution of the cross-stage cross-coder architecture. To
demonstrate the contribution of our cross-stage cross-coder ar-
chitecture, we compare the performance obtained by using five

6

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

Progressive Point Cloud Denoising with Cross-Stage Cross-Coder Adaptive Edge Graph Convolution Network ACM MM, 2024, Melbourne, Australia

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

C
am

el

Noisy PC ScoreDenoise PDFlow IterativePFN Ours

C
ha

ir
H

or
se

0

P2M
(× 105)

C
as

tin
g

El
k

100

Figure 6: Visualization of denoised point clouds obtained by four denoising methods, where the color of each point represents
its P2M value. Specifically, we visualize the denoising results of Camel, Casting, Chair, Elk, and House selected from the PUNet
dataset. The noisy point cloud contains Gaussian noise with standard deviation of 2% of the bounding sphere’s radius, and it
has a resolution of 50K points. The red box displays the denoising results of different methods in the detailed areas.

different connection architectures. We consider the 4-stage net-
work without interaction as our baseline. The experimental results
are shown in Table 3. From the table, we can observe that adding
cross-stage connections of encoder and decoder separately or simul-
taneously to the baseline model can slightly improve the denoising
performance on low noise levels. However, there is no significant
improvement observed on high noise levels. On this basis, the linear
mapping of cross-stage features integrates the feature information
of the previous stage to make the transfer information more suitable
for the learning of the next stage. Therefore, this architecture effec-
tively enhances the denoising ability of the network, particularly
when addressing high levels of noise.

Contribution of the AEConv module. To demonstrate the effec-
tiveness of the AEConv module, we conduct ablation studies. The
experiment mainly compare the performance contributions of the
EdgeConv [37] baseline, multi-level graph structure, and the AEA
module. The results are shown in Table 4. In the table, we use GS
to represent multi-level graph structures. From the table, it can be
observed that the combination of geometric and semantic informa-
tion enables the network to capture richer contextual information.
The AEA module adaptively learns edge attention based on local
and global structural information, which makes the network focus
on more important regions. This effectively enhances the learning
ability and denoising performance of the network.

7

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

ACM MM, 2024, Melbourne, Australia Anonymous Authors

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

Table 3: Experimental results of five different connection architectures on the PUNet database. CD is multiplied by 105, P2M is
multiplied by 105. The best results are indicated in BOLD.

Method

10K points 50K points

1% noise 2% noise 2.5% noise 1% noise 2% noise 2.5% noise
CD↓ P2M↓ CD↓ P2M↓ CD↓ P2M↓ CD↓ P2M↓ CD↓ P2M↓ CD↓ P2M↓

Base 19.70 4.83 30.40 8.37 33.77 10.51 6.05 3.02 7.98 4.31 11.01 6.44
Base+Cross-Stage (Encoder) 19.72 4.70 30.26 8.17 33.68 10.39 5.89 2.89 7.94 4.27 11.76 7.02
Base+Cross-Stage (Decoder) 19.72 4.77 30.20 8.15 33.84 10.52 5.95 2.94 7.80 4.19 10.86 6.36

Base+Cross-Stage Cross-Coder 19.66 4.63 30.11 8.00 33.81 10.42 5.89 2.89 7.85 4.22 11.67 6.92
Base+Cross-Stage Cross-Coder (FC) 19.60 4.59 30.09 8.00 32.68 9.74 5.81 2.83 7.58 4.05 9.89 5.66

Table 4: Ablation results of the AEConv module on the PUNet database. CD is multiplied by 105, P2M is multiplied by 105. The
best results are indicated in BOLD.

Method

10K points 50K points

1% noise 2% noise 2.5% noise 1% noise 2% noise 2.5% noise
CD↓ P2M↓ CD↓ P2M↓ CD↓ P2M↓ CD↓ P2M↓ CD↓ P2M↓ CD↓ P2M↓

EdgeConv 21.85 4.97 30.49 8.40 33.55 10.48 5.95 2.93 7.97 4.29 10.58 6.15
EdgeConv + GS 21.71 4.91 30.32 8.22 33.00 10.07 5.85 2.87 7.79 4.18 10.15 5.85

EdgeConv + GS + AEA 19.60 4.59 30.09 8.00 32.68 9.74 5.81 2.83 7.58 4.05 9.89 5.66

Table 5: Experimental results of different number of stages on the PUNet database. CD is multiplied by 105, P2M is multiplied
by 105. The best results are indicated in BOLD.

Method

10K points 50K points

1% noise 2% noise 2.5% noise 1% noise 2% noise 2.5% noise
CD↓ P2M↓ CD↓ P2M↓ CD↓ P2M↓ CD↓ P2M↓ CD↓ P2M↓ CD↓ P2M↓

Our network with 1 stage 21.72 5.42 32.74 9.90 38.84 14.09 6.35 3.21 10.12 5.79 16.00 10.27
Our network with 2 stages 20.71 4.86 30.96 8.60 34.25 10.76 5.91 2.90 8.63 4.71 14.73 9.23
Our network with 4 stages 19.60 4.59 30.09 8.00 32.68 9.74 5.81 2.83 7.58 4.05 9.89 5.66
Our network with 8 stages 19.15 4.62 30.31 8.18 33.73 10.73 6.05 3.02 7.96 4.22 10.78 6.17

Comparison of the number of stages. To substantiate the effec-
tiveness of multi-stage denoising scheme, we conduct comparative
experiments on the number of stages. We use C2AENet as the base-
line and only vary the number of stages in the network architecture
here. The experiment evaluates networks with 1, 2, 4, and 8 stages,
and the comparative results are presented in Table 5. The results
reveal that the performance gains achieved by the multi-stage de-
noising scheme tend to be stagnant when the number of stages
reaches to 4. At this time, increasing the number of stages does not
further improve performance. Consequently, we set the network
architecture with 4 stages as default.

To more fully demonstrate the contribution of the key compo-
nents of our approach, we also add ablation experiments in the
supplementary material. They include experimental results of the
cross-stage cross-coder architecture, the AEConv module, and the
multi-stage denoising scheme on higher noise levels.

5 CONCLUSION
In this paper, we present a Cross-stage Cross-coder Adaptive Edge
Graph Convolution Network (C2AENet) for point cloud denoising.
We introduce a cross-stage cross-coder architecture to alleviate
the issues of incomplete information transfer or information loss
through efficient information flow across different denoising stages.
In addition, it simultaneously utilizes the effective geometric in-
formation and semantic information to capture richer contextual
information, and employs adaptive edge attention to focus the
network on more important parts. Extensive experiments on the
PUNet dataset as well as the ablation studies demonstrate the ef-
fectiveness and the contribution of each key component involved
in the proposed method. Furthermore, the edge attention heatmap
and denoising visual results provide a direct explanation for our
method.

8

929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

Progressive Point Cloud Denoising with Cross-Stage Cross-Coder Adaptive Edge Graph Convolution Network ACM MM, 2024, Melbourne, Australia

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

REFERENCES
[1] M. Alexa, J. Behr, D. Cohen-Or, S. Fleishman, D. Levin, and C.T. Silva. 2003.

Computing and rendering point set surfaces. IEEE Transactions on Visualization
and Computer Graphics 9, 1 (2003), 3–15. https://doi.org/10.1109/TVCG.2003.
1175093

[2] Matthew Berger, Andrea Tagliasacchi, Lee M Seversky, Pierre Alliez, Joshua A
Levine, Andrei Sharf, and Claudio T Silva. 2014. State of the art in surface
reconstruction from point clouds. In 35th Annual Conference of the European
Association for Computer Graphics, Eurographics 2014-State of the Art Reports. The
Eurographics Association.

[3] Honghua Chen, Zeyong Wei, Xianzhi Li, Yabin Xu, Mingqiang Wei, and Jun
Wang. 2022. RePCD-Net: Feature-aware recurrent point cloud denoising network.
International Journal of Computer Vision 130, 3 (2022), 615–629.

[4] Yilun Chen, Zhicheng Wang, Yuxiang Peng, Zhiqiang Zhang, Gang Yu, and Jian
Sun. 2018. Cascaded pyramid network for multi-person pose estimation. In
Proceedings of the IEEE conference on computer vision and pattern recognition.
7103–7112.

[5] Yaodong Cui, Ren Chen, Wenbo Chu, Long Chen, Daxin Tian, Ying Li, and
Dongpu Cao. 2022. Deep Learning for Image and Point Cloud Fusion in Au-
tonomous Driving: A Review. IEEE Transactions on Intelligent Transportation
Systems 23, 2 (2022), 722–739. https://doi.org/10.1109/TITS.2020.3023541

[6] Dasith de Silva Edirimuni, Xuequan Lu, Zhiwen Shao, Gang Li, Antonio Robles-
Kelly, and Ying He. 2023. IterativePFN: True Iterative Point Cloud Filtering. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recogni-
tion. 13530–13539.

[7] Julie Digne and Carlo De Franchis. 2017. The bilateral filter for point clouds.
Image Processing On Line 7 (2017), 278–287.

[8] Hehe Fan, Yi Yang, and Mohan S. Kankanhalli. 2023. Point Spatio-Temporal
Transformer Networks for Point Cloud Video Modeling. IEEE Trans. Pattern Anal.
Mach. Intell. 45, 2 (2023), 2181–2192. https://doi.org/10.1109/TPAMI.2022.3161735

[9] Hehe Fan, Xin Yu, Yi Yang, and Mohan S. Kankanhalli. 2022. Deep Hierarchical
Representation of Point Cloud Videos via Spatio-Temporal Decomposition. IEEE
Trans. Pattern Anal. Mach. Intell. 44, 12 (2022), 9918–9930. https://doi.org/10.
1109/TPAMI.2021.3135117

[10] Shachar Fleishman, Daniel Cohen-Or, and Cláudio T Silva. 2005. Robust moving
least-squares fitting with sharp features. ACM transactions on graphics (TOG) 24,
3 (2005), 544–552.

[11] Shachar Fleishman, Iddo Drori, and Daniel Cohen-Or. 2003. Bilateral mesh
denoising. In ACM SIGGRAPH 2003 Papers. 950–953.

[12] Paul Guerrero, Yanir Kleiman, Maks Ovsjanikov, and Niloy JMitra. 2018. PCPNET
learning local shape properties from raw point clouds. In Computer graphics
forum, Vol. 37. Wiley Online Library, 75–85.

[13] Xian-Feng Han, Jesse S Jin, Ming-Jie Wang, and Wei Jiang. 2018. Guided 3D
point cloud filtering. Multimedia Tools and Applications 77 (2018), 17397–17411.

[14] Xian-Feng Han, Jesse S Jin, Ming-Jie Wang, and Wei Jiang. 2018. Iterative
guidance normal filter for point cloud. Multimedia Tools and Applications 77
(2018), 16887–16902.

[15] Pedro Hermosilla, Tobias Ritschel, and Timo Ropinski. 2019. Total Denoising:
Unsupervised learning of 3D point cloud cleaning. In Proceedings of the IEEE/CVF
international conference on computer vision. 52–60.

[16] Hui Huang, Dan Li, Hao Zhang, Uri Ascher, and Daniel Cohen-Or. 2009. Consoli-
dation of unorganized point clouds for surface reconstruction. ACM transactions
on graphics (TOG) 28, 5 (2009), 1–7.

[17] Hui Huang, Shihao Wu, Minglun Gong, Daniel Cohen-Or, Uri Ascher, and Hao
Zhang. 2013. Edge-aware point set resampling. ACM transactions on graphics
(TOG) 32, 1 (2013), 1–12.

[18] Ruihui Li, Xianzhi Li, Chi-Wing Fu, Daniel Cohen-Or, and Pheng-Ann Heng. 2019.
PU-GAN: A Point Cloud Upsampling Adversarial Network. In 2019 IEEE/CVF
International Conference on Computer Vision (ICCV). 7202–7211. https://doi.org/
10.1109/ICCV.2019.00730

[19] Shi-Jie Li, Yazan AbuFarha, Yun Liu, Ming-Ming Cheng, and Juergen Gall. 2020.
MS-TCN++: Multi-stage temporal convolutional network for action segmenta-
tion. IEEE transactions on pattern analysis and machine intelligence (2020).

[20] Ying Li, Lingfei Ma, Zilong Zhong, Fei Liu, Michael A. Chapman, Dongpu Cao,
and Jonathan Li. 2021. Deep Learning for LiDAR Point Clouds in Autonomous
Driving: A Review. IEEE Transactions on Neural Networks and Learning Systems
32, 8 (2021), 3412–3432. https://doi.org/10.1109/TNNLS.2020.3015992

[21] Bin Liao, Chunxia Xiao, Liqiang Jin, and Hongbo Fu. 2013. Efficient feature-
preserving local projection operator for geometry reconstruction. Computer-
Aided Design 45, 5 (2013), 861–874.

[22] Yaron Lipman, Daniel Cohen-Or, David Levin, and Hillel Tal-Ezer. 2007.
Parameterization-free projection for geometry reconstruction. ACM Transactions
on Graphics (TOG) 26, 3 (2007), 22–es.

[23] Zheng Liu, Xiaowen Xiao, Saishang Zhong, Weina Wang, Yanlei Li, Ling Zhang,
and Zhong Xie. 2020. A feature-preserving framework for point cloud denoising.
Computer-Aided Design 127 (2020), 102857.

[24] Dening Lu, Xuequan Lu, Yangxing Sun, and Jun Wang. 2020. Deep feature-
preserving normal estimation for point cloud filtering. Computer-Aided Design
125 (2020), 102860.

[25] Shitong Luo and Wei Hu. 2020. Differentiable manifold reconstruction for point
cloud denoising. In Proceedings of the 28th ACM international conference on
multimedia. 1330–1338.

[26] Shitong Luo andWei Hu. 2021. Score-based point cloud denoising. In Proceedings
of the IEEE/CVF International Conference on Computer Vision. 4583–4592.

[27] AihuaMao, Zihui Du, Yu-HuiWen, Jun Xuan, and Yong-Jin Liu. 2022. PD-Flow: A
point cloud denoising framework with normalizing flows. In European Conference
on Computer Vision. Springer, 398–415.

[28] A Cengiz Öztireli, Gael Guennebaud, andMarkus Gross. 2009. Feature preserving
point set surfaces based on non-linear kernel regression. In Computer graphics
forum, Vol. 28. Wiley Online Library, 493–501.

[29] Youngmin Park, Vincent Lepetit, and Woontack Woo. 2008. Multiple 3D Object
tracking for augmented reality. In 2008 7th IEEE/ACM International Symposium
on Mixed and Augmented Reality. 117–120. https://doi.org/10.1109/ISMAR.2008.
4637336

[30] Francesca Pistilli, Giulia Fracastoro, Diego Valsesia, and Enrico Magli. 2020.
Learning graph-convolutional representations for point cloud denoising. In
European conference on computer vision. Springer, 103–118.

[31] Reinhold Preiner, Oliver Mattausch, Murat Arikan, Renato Pajarola, and Michael
Wimmer. 2014. Continuous projection for fast L1 reconstruction. ACM Trans.
Graph. 33, 4 (2014), 47–1.

[32] Charles Ruizhongtai Qi, Li Yi, Hao Su, and Leonidas J Guibas. 2017. PointNet++:
Deep hierarchical feature learning on point sets in a metric space. Advances in
neural information processing systems 30 (2017).

[33] Marie-Julie Rakotosaona, Vittorio La Barbera, Paul Guerrero, Niloy J Mitra, and
Maks Ovsjanikov. 2020. PointCleanNet: Learning to denoise and remove outliers
from dense point clouds. In Computer graphics forum, Vol. 39. Wiley Online
Library, 185–203.

[34] Riccardo Roveri, A Cengiz Öztireli, Ioana Pandele, and Markus Gross. 2018.
PointProNets: Consolidation of point clouds with convolutional neural networks.
In Computer Graphics Forum, Vol. 37. Wiley Online Library, 87–99.

[35] Peng-Shuai Wang, Yang Liu, and Xin Tong. 2016. Mesh denoising via cascaded
normal regression. ACM Trans. Graph. 35, 6 (2016), 232–1.

[36] Xu Wang, Jingming He, and Lin Ma. 2019. Exploiting local and global structure
for point cloud semantic segmentation with contextual point representations.
Advances in Neural Information Processing Systems 32 (2019).

[37] Yue Wang, Yongbin Sun, Ziwei Liu, Sanjay E Sarma, Michael M Bronstein, and
Justin M Solomon. 2019. Dynamic graph cnn for learning on point clouds. ACM
Transactions on Graphics (tog) 38, 5 (2019), 1–12.

[38] YueWang, Shusheng Zhang, BileWan,WeipingHe, andXiaoliang Bai. 2018. Point
cloud and visual feature-based tracking method for an augmented reality-aided
mechanical assembly system. The International Journal of Advanced Manufactur-
ing Technology 99 (2018), 2341–2352.

[39] Zonghan Wu, Shirui Pan, Fengwen Chen, Guodong Long, Chengqi Zhang, and
S Yu Philip. 2021. A comprehensive survey on graph neural networks. IEEE
Transactions on Neural Networks and Learning Systems 32, 1 (2021), 4–24.

[40] Sunil Kumar Yadav, Ulrich Reitebuch, Martin Skrodzki, Eric Zimmermann, and
Konrad Polthier. 2018. Constraint-based point set denoising using normal voting
tensor and restricted quadratic error metrics. Computers & Graphics 74 (2018),
234–243.

[41] Lequan Yu, Xianzhi Li, Chi-Wing Fu, Daniel Cohen-Or, and Pheng-Ann Heng.
2018. EC-Net: an edge-aware point set consolidation network. In Proceedings of
the European conference on computer vision (ECCV). 386–402.

[42] Lequan Yu, Xianzhi Li, Chi-Wing Fu, Daniel Cohen-Or, and Pheng-Ann Heng.
2018. PU-Net: Point Cloud Upsampling Network. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition (CVPR).

[43] Dongbo Zhang, Xuequan Lu, Hong Qin, and Ying He. 2020. Pointfilter: Point
cloud filtering via encoder-decoder modeling. IEEE Transactions on Visualization
and Computer Graphics 27, 3 (2020), 2015–2027.

[44] Feng Zhang, Chao Zhang, Huamin Yang, and Lin Zhao. 2019. Point Cloud
Denoising With Principal Component Analysis and a Novel Bilateral Filter.
Traitement du signal 36, 5 (2019).

[45] Yue Zhang, Hehe Fan, Yi Yang, and Mohan S. Kankanhalli. 2023. DPMix: Mixture
of Depth and Point Cloud Video Experts for 4D Action Segmentation. arXiv
abs/2307.16803 (2023). https://doi.org/10.48550/arXiv.2307.16803

[46] Ziyu Zhao, Zhenyao Wu, Xinyi Wu, Canyu Zhang, and Song Wang. 2022. Cross-
modal few-shot 3d point cloud semantic segmentation. In Proceedings of the 30th
ACM international conference on multimedia. 4760–4768.

[47] Yinglong Zheng, Guiqing Li, Xuemiao Xu, Shihao Wu, and Yongwei Nie. 2018.
Rolling normal filtering for point clouds. Computer Aided Geometric Design 62
(2018), 16–28.

9

https://doi.org/10.1109/TVCG.2003.1175093
https://doi.org/10.1109/TVCG.2003.1175093
https://doi.org/10.1109/TITS.2020.3023541
https://doi.org/10.1109/TPAMI.2022.3161735
https://doi.org/10.1109/TPAMI.2021.3135117
https://doi.org/10.1109/TPAMI.2021.3135117
https://doi.org/10.1109/ICCV.2019.00730
https://doi.org/10.1109/ICCV.2019.00730
https://doi.org/10.1109/TNNLS.2020.3015992
https://doi.org/10.1109/ISMAR.2008.4637336
https://doi.org/10.1109/ISMAR.2008.4637336
https://doi.org/10.48550/arXiv.2307.16803

	Abstract
	1 Introduction
	2 Related Work
	2.1 Traditional Denoising Methods
	2.2 Deep Learning-based Denoising Methods

	3 Proposed Method
	3.1 Overview
	3.2 Adaptive Edge Graph Convolution Network
	3.3 Cross-stage Cross-coder Architecture
	3.4 Training Setup

	4 Experimental Results
	4.1 Dataset and Implementation Details
	4.2 Performance Comparison on PUNet
	4.3 Visual Results on Real-world Scanned Data
	4.4 Ablation Study

	5 Conclusion
	References

