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Progressive Point Cloud Denoising with Cross-Stage Cross-Coder
Adaptive Edge Graph Convolution Network

Anonymous Authors

ABSTRACT
Due to the limitation of collection device and unstable scanning
process, point cloud data is usually noisy. Those noise deforms
the underlying structures of point clouds and inevitably affects
downstream tasks such as rendering, reconstruction and analysis.
In this paper, we propose a Cross-stage Cross-coder Adaptive Edge
Graph Convolution Network (C2AENet) to denoise point clouds.
Our network uses multiple stages to progressively and iteratively
denoise points. To improve the effectiveness, we add connections
between two stages and between the encoder and decoder, leading
to the cross-stage cross-coder architecture. Additionally, existing
graph-based point cloud learning methods tend to capture local
structure. They typically construct a semantic graph based on se-
mantic distance, which may ignore Euclidean neighbors and lead to
insufficient geometry perception. Therefore, we introduce a geomet-
ric graph and adaptively calculate edge attention based on the local
and global structural information of the points. This results in a
novel graph convolution module that allows the network to capture
richer contextual information and focus on more important parts.
Extensive experiments demonstrate that the proposed method is
competitive compared with other state-of-the-art methods. The
code will be made publicly available.

CCS CONCEPTS
• Computing methodologies→ Computer vision tasks.

KEYWORDS
Point cloud denoising, Graph convolution network

1 INTRODUCTION
As 3D sensing technology advances swiftly, point clouds are in-
creasingly becoming a preferred format for representing 3D data,
resulting in extensive applications in various 3D vision fields like
autonomous driving [5, 20], augmented reality [29, 38] and 3D
action recognition [8, 9, 45]. Nonetheless, the acquisition process
introduces noise into point clouds due to inherent hardware er-
rors, as well as interference from human, environmental, and other
factors. This noise presents substantial challenges for subsequent
tasks like surface reconstruction [2, 18] and semantic segmenta-
tion [36, 46]. Hence, addressing the issue of point cloud denoising
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Figure 1: (a) Illustration of graph construction in the pro-
posed method. The patch is extracted from the noisy point
cloud. Color indicates point semantic distance. Simultane-
ously considering geometric and semantic distances allows
the aggregated graph structure capture more comprehensive
contextual information. (b) Illustration of adaptive edge at-
tention. To better learn the structural information of point
clouds, we adaptively compute edge attention based on local
and global information.

becomes crucial in ensuring the accuracy and reliability of down-
stream applications.

Traditional methods for point cloud denoising have demon-
strated certain success [7, 13, 14, 17, 21, 23, 31, 40, 44, 47]. However,
these approaches often rely on geometric prior knowledge and lack
robustness when dealing with point clouds containing high-level
noise or non-uniform sampling. A recent trend, fueled by the suc-
cess of network architectures tailored for point clouds [32], has
given rise to deep learning-based denoising methods. Despite their
effectiveness, these data-driven methods face challenges in terms of
generalization, such as Convolutional Neural Network (CNN). To
improve generalization, CNN-based methods in high-level visual
tasks typically emphasize multi-stage networks. Similarly, when
confronted with point clouds contaminated by unknown high-level
noise, these methods tend to iteratively denoise the point clouds
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Figure 2: Illustration of different multi-stage frameworks. (a)
Vanilla multi-stage: the decoder output of the previous stage
is input to the next stage (black line). (b) Cross-stage interac-
tion: the intermediate results of encoder and decoder flow to
the next stage (orange line and yellow line). (c) Cross-coder in-
teraction: the intermediate results of encoder are integrated
into decoder (green line). (d) Cross-stage cross-coder inter-
action: the intermediate results flow across adjacent stages
and across encoder and decoder.

during testing to mitigate generalization issues [4, 19]. Neverthe-
less, they do not incorporate additional operations during training
to account for differences in residual noise across various stages
[26, 33, 43]. This oversight can lead to either excessive or insuf-
ficient denoising. At present, RePCN-Net [3] addresses this con-
cern by employing a recurrent network architecture for iterative
denoising. But it utilizes a single network, limiting its ability to
accurately identify noise levels across different stages. By contrast,
IterativePFN [6] adopts network stacking, allowing the network to
learn denoising at multiple stages with varying noise levels. This
approach enhances the model’s capability to handle complex noise
scenarios in point clouds.

Despite the success of the above methods, a few issues persist.
Firstly, they tend to concentrate on learning local structures based
on semantic graphs, which results in a deficiency in geometric
perception capabilities. To address this limitation, we introduce ad-
ditional geometric graphs and obtain a graph structure with a larger
receptive field. This method can harness the unique advantages of
different graph structures to capture more contextual information,
as illustrated in Figure 1. On one hand, the importance of different
neighbors to the centroid is different in the graph. On the other
hand, interior points with more complete neighborhood informa-
tion have more effective structural information compared to edge
points. Therefore, we construct an adaptive edge attention (AEA)
module that considers both local and global structural information
of points to adaptively learn the weights of the graph structure.

Based on this strategy, we propose an Adaptive Edge Graph Con-
volution (AEConv) module which provides a more comprehensive
model for complex data. Secondly, existing methods often overlook
interactions between multiple denoising stages, which may lead to
incomplete information transfer or information loss. To tackle this
issue, we propose the incorporation of a cross-stage cross-coder ar-
chitecture, ensuring that the information from the previous stage is
fully propagated and utilized in the subsequent stages, as depicted in
Figure 2. Based on AEConv module and cross-stage cross-coder ar-
chitecture, we present a Cross-stage Cross-coder Adaptive Edge
Graph Convolution Network (C2AENet), which effectively pro-
motes efficient information flow across different denoising stages
while enhancing the performance of graph convolution. The main
contributions of this work are as follows:

• We propose a cross-stage cross-coder framework, incor-
porating a multi-stage information transfer mechanism to
ensure that the valuable information of the previous stage
is fully utilized.

• Wepropose anAdaptive Edge Graph Convolution (AEConv)
module that leverages local and global structural informa-
tion to adaptively learn edge attention, effectively capturing
the local structures of point clouds.

• Extensive experiments aswell as the ablation studies demon-
strate the effectiveness and the contribution of each key
component involved in the proposed method.

2 RELATEDWORK
2.1 Traditional Denoising Methods
Traditional point cloud denoising can be generally classified into
filter-based methods and optimization-based methods.
Filter-based methods. Inspired by bilateral filtering, Fleishman et
al. [11] used bilateral filtering to denoise 3D mesh models. Digne et
al. [7] proposed a bilateral filter for point clouds based on the work
of Fleishman et al., taking into account both the geometric and
normal distances of points. Zhang et al. [44] proposed a point cloud
denoising method based on the principal component analysis (PCA)
and bilateral filter. Bilateral filtering-based methods can yield the
expected results, but they may exhibit poor denoising effects near
sharp edges and require higher computational time. In addition to
bilateral filtering, guided filtering is also an effective method. Han et
al. [13] adopted the point position as the guidance information and
proposed a point position guided filtering method. Subsequently,
iterative normal guided filtering [14], anisotropic point set denois-
ing algorithm [40], and point cloud denoising method based on
multi-normal strategies [23, 47] have been gradually proposed.
Optimization-basedmethods.Optimization-based denoisingmeth-
ods typically treat the denoising process as an optimization prob-
lem constrained by geometric priors. They are mainly divided into
Moving Least Squares (MLS)-based and Locally Optimal Projection
(LOP)-based. Inspired by the MLS method, Alexa et al. [1] defined
a smooth manifold surface at a set of points close to the original
surface. Subsequently, MLS-based methods have been gradually
proposed, such as Robust MLS (RMLS) [10] and Robust Implicit
MLS (RIMLS) [28]. Although MLS-based methods can reconstruct
smooth surfaces, they are constrained by the parameters of local
surfaces, resulting in a relatively poor description of details in

2



233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

Progressive Point Cloud Denoising with Cross-Stage Cross-Coder Adaptive Edge Graph Convolution Network ACM MM, 2024, Melbourne, Australia

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

AEConv
Layer1

AEConv
Layer2

AEConv
Layer3 C

Multi-scale Feature

FC
-1

FC
-2

FC
-3

FC
-4

FC
-5 Δ +

100

0

CSCC-E
Layer1

CSCC-E
Layer2

CSCC-E
Layer3

AEConv
Layer1

AEConv
Layer2

AEConv
Layer3 C

Multi-scale Feature

FC
-1

FC
-2

FC
-3

FC
-4

FC
-5 Δ +

100

0

Encoder Feature Decoder Feature

FC FC

ReLU ReLU

+

View

CSCC-E Feature

+

CSCC-D
Layer

Cross-Stage 
Cross-Coder 

Module

+ Addition ConcatenationC Δ Predicted Noise

+ +

Early Decoder 
Feature

FC

ReLU

C

  Subsequent 
Decoder Feature

FC

ReLUCSCC-D Feature

Encoder Skip Connection
Decoder Skip Connection

Encoder Decoder

CSCC-E 
Feature1

CSCC-E 
Feature2

CSCC-E 
Feature3 CSCC-D Feature

Figure 3: Framework of the proposed point cloud denoising method. Here, the working principles of the (𝑁 − 1)-th stage and
the 𝑁 -th stage are presented. The network structure is the same for each stage, where the encoder consists of three dynamic
AEConv modules, and the decoder is composed of multi-layer perceptron (MLP). The color of each point in the point cloud
represents its P2M value, ranging from 0 to 100.

sharp features. To alleviate this problem, Lipman et al. [22] first
proposed applying the LOP method to surface approximation of
point sets. Afterward, more and more methods have been proposed,
such as weighted LOP (WLOP) [16], edge-aware resampling (EAR)
[17], feature-preserving LOP operator (FLOP) [21], and continuous
weighted LOP (CLOP) [31]. The LOP-based methods have certain
generality, but they also have the problem of over-smoothing.

2.2 Deep Learning-based Denoising Methods
In recent years, with the success of deep learning in the field of
computer vision, deep learning-based methods have been widely
applied to point cloud denoising. Yu et al. proposed an Edge-aware
Point Set Consolidation Network (ECNet) [41], leveraging edge-
aware techniques to facilitate the consolidation of point clouds.
PointProNet [34] utilized CNNs to filter noisy 2D height maps and
then reproject them into 3D space. Similarly, Li et al. [24] employed
2D height maps to estimate normals, thereby achieving point posi-
tion updates. Rakotosaona et al. proposed a two-stage denoising
network based on PCPNet [12], called PointCleanNet [33], to re-
move outliers and reduce noise in unordered point clouds. Pistilli
et al. [30] proposed a graph convolutional layer based denoising
network called GPDNet. The Pointfilter proposed by Zhang et al.
[43] used the autoencoder architecture for point cloud denoising.
Additionally, Luo et al. [26] employed neural networks to estimate
distribution scores and denoised the point cloud through gradi-
ent ascent. Mao et al. [27] utilized normalizing flows and noise
disentanglement techniques to predict the displacement vectors
of noise. Chen et al. [3] proposed a recurrent network architec-
ture called RePCD-Net. To ensure fast convergence of points to
the clean surface, IterativePFN [6] modeled the iterative filtering

process within the network. In addition to supervised denoising
methods, unsupervised denoising methods also play a crucial role,
such as TotalDenoising [15] and DMRDenoise [25].

3 PROPOSED METHOD
3.1 Overview
In this paper, we construct a C2AENet based on an encoder-decoder
architecture to extract rich feature representations for point cloud
denoising. The encoder consists of three dynamic AEConv modules,
aiming at effectively extracting feature information at different
scales. The decoder employs a multi-layer perceptron (MLP), taking
multi-scale features as input, to predict noise for input points. This
method follows a multi-stage framework. We show two adjacent
stages of the framework in Figure 3.

Specifically, the (𝑁 − 1)-th stage and the 𝑁 -th stage respectively
learn to predict the residual noise of different stages. To improve
effectiveness, we introduce a cross-stage cross-coder architecture
to propagate important information learned from the (𝑁 − 1)-th
stage to the 𝑁 -th stage. These early-stage information will effec-
tively promote the learning and optimization in the subsequent
stage, reducing errors and biases of the model in complex tasks. Fi-
nally, the noise predicted at multiple stages is aggregated and apply
them to the noisy point cloud for denoising. We detail the adaptive
edge graph convolution network and the cross-stage cross-coder
architecture below.

3.2 Adaptive Edge Graph Convolution Network
We denote the ground-truth point cloud as �̃� = {�̃�𝑖 }𝑁𝑖=1 ∈ R𝑁×3

and the noise as 𝑼 = {𝒖𝑖 }𝑁𝑖=1 ∈ R𝑁×3, where 𝑁 is the number of
3
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Figure 4: AEConv mainly consists of a graph construction module, an adaptive edge attention module, and an edge graph
convolution module. The graph construction module generates the corresponding graph structure for 𝑁 input points based on
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obtained through the edge graph convolution module.

points. The input noisy point cloud is generated as follows:

𝑷 = �̃� + 𝑼 . (1)

The goal of point cloud denoising is to predict noise 𝑼 for recovering
the original point cloud �̃� .
Graph Construction Module. Graph Convolutional Networks
(GCN) is able to effectively handle non-Euclidean data and achieves
excellent performance on a range of applications[39]. However,
conventional GCN typically focuses on learning high-level feature
knowledge but neglects the original geometry structure[37]. To
improve efficiency, the network denoises multiple points simultane-
ously, making the construction of the graph structure particularly
crucial. To improve this problem, we propose an AEConv module
that is able to simultaneously consider the geometric distance and
hierarchical distance between points to construct different graphs,
and adaptively learns the edge attention weights of the graph struc-
ture based on local and global structural information. Therefore,
AEConv can learn more comprehensive intrinsic correlations and
global correlations of point clouds. Its structure is shown in Figure 4.

We take each point in the noisy patch as a centroid and con-
nect it to its neighbors to construct a graph G = (V, E), where
V = {1, . . . , 𝑁 } is a vertex set and E ⊆ V × V is the edge set.
In implementation, we construct the graph using the 𝑘-nearest
neighbors (𝑘𝑁𝑁 ) of each point without self-loop, and the number
of neighbors in each graph is set to 16. We define 𝒑𝑖 as the cen-
troid of a graph, and J (𝑖) = { 𝑗 | (𝑖, 𝑗) ∈ E} as the set of points in
its neighborhood. Based on two different-level features, we cap-
ture the geometric and semantic relationships between pairs of
points, generating geometric graphs G𝑔 and semantic graphs G𝑠

with different neighborhood information,

G𝑖
𝑔 =kNN𝑗=1,· · · ,𝑁 ( | |𝒑𝑖 − 𝒑 𝑗 | |2),

G𝑖
𝑠 =kNN𝑗=1,· · · ,𝑁 ( | |𝒇𝑖 − 𝒇𝑗 | |2).

(2)

where 𝒇𝑖 and 𝒇𝑗 represent the feature vectors of the 𝑖-th and 𝑗-
th points and are initialized as the point coordinates 𝒑𝑖 and 𝒑 𝑗 ,
respectively.
Adaptive Edge AttentionModule. To enhance the representation
capability of the graph structure, we construct an AEA module to
adaptively learn the edge attention weights of the graph structure.
First, we aggregate the different neighborhoods of the two graph
structures as follows:

G𝑓 = G𝑔 ∪ G𝑠 . (3)

We define the edge feature 𝒆𝑖 𝑗 ∈ R𝐶𝑖𝑛 as the relative feature vector
between the centroid 𝒑𝑖 and the neighboring point 𝒑 𝑗 :

𝒆𝑖 𝑗 = 𝒇𝑖 − 𝒇𝑗 , (4)

where 𝐶𝑖𝑛 is the input dimension of the point features. The local
edge features help to understand the intrinsic correlations of the
graph, and interior points with more complete neighborhood infor-
mation can capture more effective structural information compared
to edge points. Therefore, we simultaneously compute the edge
attention for the graph structures of 𝑁 points, enabling the net-
work to focus on the more crucial points in the global structure
and the more significant vertices in the graph. We define the atten-
tion weight of an edge in the aggregated graph G𝑓 as 𝒂𝑖 𝑗 , which
represents the importance of the edge feature 𝒆𝑖 𝑗 for the current
centroid 𝒑𝑖 . It can be formulated as:

𝒂𝑖 𝑗 = 𝜎 (Φ(𝒆𝑖 𝑗 )), (5)

where Φ is a non-linear function used for local channel context
aggregation, and 𝜎 represents the Sigmoid non-linear activation
function. The heatmap visualization of edge attention is shown
in Figure 5. We separately visualize the edge attention weights of
the graph structures for edge points and interior points. As can be
seen from the figure, the graph constructed from interior points
as centroids obtains larger weights compared to the edge points.

4
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This further demonstrates that interior points with more complete
neighborhood information can capture more effective structural
information. Based on this weight, AEConv adaptively learns the
importance of neighbors to better capture the graph structural
information.

Then, we integrate the weighted edge features 𝒆𝑖 𝑗 with centroid
features 𝒇𝑖 to combine global shape information and local neigh-
borhood information,

¯𝒆𝑖 𝑗 = 𝒂𝑖 𝑗 · 𝒆𝑖 𝑗 , 𝒉𝑖 𝑗 = (𝒇𝑖 ∥ ¯𝒆𝑖 𝑗 ), (6)

where · denotes vector dot product, (·∥·) denotes concatenation,
and 𝒉𝑖 𝑗 represents weighted graph features.
Edge Graph Convolution Module. In the edge graph convolu-
tion operation, we update vertex features based on neighborhood
information to capture the local features of the weighted graph,
which can be formulated as follows:

𝒇 ′𝑖 = 𝑔
(𝑙 )
Θ (Σ 𝑗 :(𝑖, 𝑗 ) ∈E𝒉𝑖 𝑗 ), (7)

where 𝑔 (𝑙 )Θ : R𝐹𝑙 × R𝐹𝑙 → R𝐹𝑙+1 represents the 𝑙-th graph convo-
lutional layer, Θ is the set of learnable parameters, and 𝐹𝑙 is the
feature dimension at 𝑙-th layer. To better capture the non-linear
relationships between vertices in the edge-fusion graph, we imple-
ment 𝑔 (𝑙 )Θ by MLPs. Subsequently, we utilize symmetric functions
for feature aggregation, capturing local geometric structure while
maintaining permutation invariance. Due to the dynamic changes
in feature representation, the static graph may become ineffective.
Therefore, we dynamically update the graph structure during the
learning process.

3.3 Cross-stage Cross-coder Architecture
In multi-stage networks, the encoder-decoder architectures of dif-
ferent stages are independent of each other. Despite its success,
it overlooks the interactions between multiple stages. This could
lead to incomplete information transfer or information loss. To

efficiently leverage the valuable information from previous stages,
we facilitate information transfer between stages.

Specifically, we construct a cross-stage cross-coder architecture.
For the encoder, we first apply linear mapping to the features of
the corresponding layers of the encoder and decoder at the current
stage. This makes the features more suitable for the learning and op-
timization of the next stage network. Then cross-coder is achieved
by feature addition to supplement the lost context information.
Finally, it is connected to the corresponding layer in the encoder
of the next stage. For the decoder, we fuse multi-scale features
from the decoders of two stages, enabling the model to obtain more
comprehensive information. In the end, our architecture achieves
extensive information propagation between multi-stage networks,
effectively alleviating the issues of incomplete information transfer
or information loss.

3.4 Training Setup
Due to the significant increase in computational and time complex-
ity caused by large-scale point clouds, we treat it as a local problem.
During the training process, the patches randomly obtained through
the 𝑘𝑁𝑁 algorithm are fed into the network. To improve efficiency,
denoising is simultaneously applied to all points on the patches.
During the testing process, multiple patches are extracted from a
point cloud for denoising. Subsequently, the best denoised point
cloud is obtained by utilizing a patch stitching mechanism [6] to
combine different patches.

The loss function used to optimize the network L is defined as:

L =
1
𝑇

𝑇∑︁
𝑖=0

∥Δ𝑖 − 𝒖𝑖 ∥2
2, (8)

where 𝑖 represents the current number of stages, 𝑇 represents the
total number of denoising stages, Δ represents the predicted noise,
and 𝒖 represents the real noise. Therefore, the final loss is the sum
of the losses from different stages of the network.

4 EXPERIMENTAL RESULTS
4.1 Dataset and Implementation Details
To evaluate the effectiveness of the proposed method, we conduct
experiments on the synthetic PUNet dataset [42]. The training set
consists of 120 point clouds sampled using Poisson disk sampling
from 40 meshes, with resolutions of 10K, 30K, and 50K points. Then,
Gaussian noises with standard deviations ranging from 0.5% to 2%
of the bounding sphere’s radius are added to the point clouds. The
testing set consists of 40 point clouds sampled using Poisson disk
sampling from 20 meshes, with resolutions of 10K and 50K points.
For the testing point clouds, we add Gaussian noise with standard
deviations of 1%, 2%, and 2.5% of the bounding sphere’s radius. In
addition to the synthetic datasets, we also conduct experiments on
the real-world Kinect v1 and Kinect v2 datasets [35] which
consists of 73 and 72 real-world scans acquired by Microsoft Kinect
v1 and Kinect v2 cameras.

Two commonly-used metrics including the Chamfer Distance
(CD) and the Point2Mesh distance (P2M) are used as the criteria for
performance evaluation. Specifically, lower values of CD and P2M
indicate better point cloud denoising performance. During training,
the network parameters are optimized using the Adam optimizer
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Table 1: Comparison results on the PUNet dataset. CD is multiplied by 105, P2M is multiplied by 105. The best results are marked
in BOLD.

Point Cloud Denoising Models Publication

10K points 50K points

1% noise 2% noise 2.5% noise 1% noise 2% noise 2.5% noise
CD↓ P2M↓ CD↓ P2M↓ CD↓ P2M↓ CD↓ P2M↓ CD↓ P2M↓ CD↓ P2M↓

PointCleanNet [33] CGF 2020 36.86 15.99 79.26 47.59 104.86 69.87 11.03 6.46 19.78 13.70 32.03 24.86
GPDNet [30] ECCV 2020 23.10 7.14 42.84 18.55 58.37 30.66 10.49 6.35 32.88 25.03 50.85 41.34

DMRDenoise [25] ACM MM 2020 47.12 21.96 50.85 25.23 52.77 26.69 12.05 7.62 14.43 9.70 16.96 11.90
PDFlow [27] ECCV 2022 21.26 6.74 32.46 13.24 36.27 17.02 6.51 4.16 12.70 9.21 18.74 14.26

ScoreDenoise [26] ICCV 2021 25.22 7.54 36.83 13.80 42.32 19.04 7.16 4.00 12.89 8.33 14.45 9.58
Pointfilter [43] TVCG 2020 24.61 7.30 35.34 11.55 40.99 15.05 7.58 4.32 9.07 5.07 10.99 6.29
IterativePFN [6] CVPR 2023 20.56 5.01 30.43 8.45 33.52 10.45 6.05 3.02 8.03 4.36 10.15 5.88

C2AENet (Ours) - 19.60 4.59 30.09 8.00 32.68 9.74 5.81 2.83 7.58 4.05 9.89 5.66

for 100 epochs, with a batch size of 4, and an initial learning rate
of 1e-4. The learning rate is scaled to 0.5 times when the network
parameters are not updated for 10 consecutive epochs.

4.2 Performance Comparison on PUNet
We compare our method with state-of-the-art point cloud denoising
methods, including PointCleanNet [33], GPDNet [30], DMRDenoise
[25], PDFlow [27], ScoreDenoise [26], Pointfilter [43], IterativePFN
[6]. The performance comparison results are shown in Table 1.
From the results, we can draw the following conclusions:

• Our method consistently outperforms the competing meth-
ods across all three noise levels. Notably, while methods
such as GPDNet, ScoreDenoise, and Pointfilter showpromis-
ing results on low noise levels, they face significant chal-
lengeswhen confrontedwith samples with high noise levels.
By contrast, our method exhibit excellent performance on
both low and high noise levels. This highlights the stability
and effectiveness of our method, making it a more reliable
choice for denoising tasks across various noise conditions.

• The performance difference among different methods is
more pronounced at low resolution compared to high res-
olution. Consequently, excelling at both low and high res-
olutions proves to be challenging. Our method not only
performs well at high resolution samples but also demon-
strates superiority at low resolution samples.

For a more intuitive comparison, we present the visual results
of denoised point clouds generated by different methods, as shown
in Figure 6. In general, it can be observed that ScoreDenoise and
PDFlow exhibit poor preservation of shape structure in the detailed
regions. Additionally, PDFlow shows the weakest performance in
global point cloud denoising, marked by extensive blue regions. Our
method demonstrates better visual results in terms of denoising
and preservation of shape structure. For a more comprehensive
evaluation, additional visual and experimental results on the PUNet
dataset are included in the supplementary material. Specifically, it
includes more visual comparison results on the PUNet dataset, run-
time comparisons of different denoising methods, and performance
comparisons on higher noise levels.

Table 2: Comparison results on the Kinect v1 and Kinect v2
datasets. CD is multiplied by 105, P2M is multiplied by 105.
The first, second, and third of the two indicators are marked
in red, blue and green, respectively.

Method
Kinect v1 Kinect v2

CD↓ P2M↓ CD↓ P2M↓

PointCleanNet [33] 13.73 8.75 22.48 13.29
GPDNet [30] 14.83 8.69 23.09 11.78

DMRDenoise [25] 22.78 12.89 \ \
PDFlow [27] 14.01 9.14 20.83 12.13

ScoreDenoise [26] 13.22 8.18 19.66 11.08
Pointfilter [43] 13.77 7.91 18.85 10.29
IterativePFN [6] 13.20 8.43 18.69 10.92

C2AENet (Ours) 13.09 8.29 18.92 10.83

4.3 Visual Results on Real-world Scanned Data
The noise in real-world scanned data is unknown and complex. In
addition to the synthetic PUNet dataset, we also conduct experi-
ments on real-world scanned data from the Kinect v1 and Kinect v2
datasets. The specific results are shown in Table 2. Specifically, our
method achieves the best results on the CD metric of the Kinect v1
dataset and the top-3 performances on the other metrics. Therefore,
our method not only performs best on synthetic datasets, but also
proves effective on real-world datasets. For a more comprehensive
understanding, the supplementary materials include visualizations
of the denoising results on real-world scanned data.

4.4 Ablation Study
To demonstrate the effectiveness of the cross-stage cross-coder
architecture, AEConv module and multi-stage denoising scheme,
we performed the following ablation studies:
Contribution of the cross-stage cross-coder architecture. To
demonstrate the contribution of our cross-stage cross-coder ar-
chitecture, we compare the performance obtained by using five
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Figure 6: Visualization of denoised point clouds obtained by four denoising methods, where the color of each point represents
its P2M value. Specifically, we visualize the denoising results of Camel, Casting, Chair, Elk, and House selected from the PUNet
dataset. The noisy point cloud contains Gaussian noise with standard deviation of 2% of the bounding sphere’s radius, and it
has a resolution of 50K points. The red box displays the denoising results of different methods in the detailed areas.

different connection architectures. We consider the 4-stage net-
work without interaction as our baseline. The experimental results
are shown in Table 3. From the table, we can observe that adding
cross-stage connections of encoder and decoder separately or simul-
taneously to the baseline model can slightly improve the denoising
performance on low noise levels. However, there is no significant
improvement observed on high noise levels. On this basis, the linear
mapping of cross-stage features integrates the feature information
of the previous stage to make the transfer information more suitable
for the learning of the next stage. Therefore, this architecture effec-
tively enhances the denoising ability of the network, particularly
when addressing high levels of noise.

Contribution of the AEConv module. To demonstrate the effec-
tiveness of the AEConv module, we conduct ablation studies. The
experiment mainly compare the performance contributions of the
EdgeConv [37] baseline, multi-level graph structure, and the AEA
module. The results are shown in Table 4. In the table, we use GS
to represent multi-level graph structures. From the table, it can be
observed that the combination of geometric and semantic informa-
tion enables the network to capture richer contextual information.
The AEA module adaptively learns edge attention based on local
and global structural information, which makes the network focus
on more important regions. This effectively enhances the learning
ability and denoising performance of the network.
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Table 3: Experimental results of five different connection architectures on the PUNet database. CD is multiplied by 105, P2M is
multiplied by 105. The best results are indicated in BOLD.

Method

10K points 50K points

1% noise 2% noise 2.5% noise 1% noise 2% noise 2.5% noise
CD↓ P2M↓ CD↓ P2M↓ CD↓ P2M↓ CD↓ P2M↓ CD↓ P2M↓ CD↓ P2M↓

Base 19.70 4.83 30.40 8.37 33.77 10.51 6.05 3.02 7.98 4.31 11.01 6.44
Base+Cross-Stage (Encoder) 19.72 4.70 30.26 8.17 33.68 10.39 5.89 2.89 7.94 4.27 11.76 7.02
Base+Cross-Stage (Decoder) 19.72 4.77 30.20 8.15 33.84 10.52 5.95 2.94 7.80 4.19 10.86 6.36

Base+Cross-Stage Cross-Coder 19.66 4.63 30.11 8.00 33.81 10.42 5.89 2.89 7.85 4.22 11.67 6.92
Base+Cross-Stage Cross-Coder (FC) 19.60 4.59 30.09 8.00 32.68 9.74 5.81 2.83 7.58 4.05 9.89 5.66

Table 4: Ablation results of the AEConv module on the PUNet database. CD is multiplied by 105, P2M is multiplied by 105. The
best results are indicated in BOLD.

Method

10K points 50K points

1% noise 2% noise 2.5% noise 1% noise 2% noise 2.5% noise
CD↓ P2M↓ CD↓ P2M↓ CD↓ P2M↓ CD↓ P2M↓ CD↓ P2M↓ CD↓ P2M↓

EdgeConv 21.85 4.97 30.49 8.40 33.55 10.48 5.95 2.93 7.97 4.29 10.58 6.15
EdgeConv + GS 21.71 4.91 30.32 8.22 33.00 10.07 5.85 2.87 7.79 4.18 10.15 5.85

EdgeConv + GS + AEA 19.60 4.59 30.09 8.00 32.68 9.74 5.81 2.83 7.58 4.05 9.89 5.66

Table 5: Experimental results of different number of stages on the PUNet database. CD is multiplied by 105, P2M is multiplied
by 105. The best results are indicated in BOLD.

Method

10K points 50K points

1% noise 2% noise 2.5% noise 1% noise 2% noise 2.5% noise
CD↓ P2M↓ CD↓ P2M↓ CD↓ P2M↓ CD↓ P2M↓ CD↓ P2M↓ CD↓ P2M↓

Our network with 1 stage 21.72 5.42 32.74 9.90 38.84 14.09 6.35 3.21 10.12 5.79 16.00 10.27
Our network with 2 stages 20.71 4.86 30.96 8.60 34.25 10.76 5.91 2.90 8.63 4.71 14.73 9.23
Our network with 4 stages 19.60 4.59 30.09 8.00 32.68 9.74 5.81 2.83 7.58 4.05 9.89 5.66
Our network with 8 stages 19.15 4.62 30.31 8.18 33.73 10.73 6.05 3.02 7.96 4.22 10.78 6.17

Comparison of the number of stages. To substantiate the effec-
tiveness of multi-stage denoising scheme, we conduct comparative
experiments on the number of stages. We use C2AENet as the base-
line and only vary the number of stages in the network architecture
here. The experiment evaluates networks with 1, 2, 4, and 8 stages,
and the comparative results are presented in Table 5. The results
reveal that the performance gains achieved by the multi-stage de-
noising scheme tend to be stagnant when the number of stages
reaches to 4. At this time, increasing the number of stages does not
further improve performance. Consequently, we set the network
architecture with 4 stages as default.

To more fully demonstrate the contribution of the key compo-
nents of our approach, we also add ablation experiments in the
supplementary material. They include experimental results of the
cross-stage cross-coder architecture, the AEConv module, and the
multi-stage denoising scheme on higher noise levels.

5 CONCLUSION
In this paper, we present a Cross-stage Cross-coder Adaptive Edge
Graph Convolution Network (C2AENet) for point cloud denoising.
We introduce a cross-stage cross-coder architecture to alleviate
the issues of incomplete information transfer or information loss
through efficient information flow across different denoising stages.
In addition, it simultaneously utilizes the effective geometric in-
formation and semantic information to capture richer contextual
information, and employs adaptive edge attention to focus the
network on more important parts. Extensive experiments on the
PUNet dataset as well as the ablation studies demonstrate the ef-
fectiveness and the contribution of each key component involved
in the proposed method. Furthermore, the edge attention heatmap
and denoising visual results provide a direct explanation for our
method.
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