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Abstract

Large vision-language models (VLMs) achieve strong performance but still depend1

on supervised fine-tuning (SFT) with massive annotated datasets, which are both2

costly and inherently noisy due to human annotation, especially when human un-3

certainty exists. We find that the degree of human uncertainty affects the reliability4

of a sample, thereby casting doubt on its suitability for SFT. It is still unknown how5

to use human uncertainty for training when such imperfect data exists. Moreover,6

current mainstream SFT method simply requires annotation for the full dataset,7

causing unnecessary annotation overhead. In this work, we revisit Visual Ques-8

tion Answering (VQA), one of the most important and commonly studied task9

for VLMs. We study data reliability and label efficiency based on VQA. To this10

end, we propose a human uncertainty-aware reliable data selection and efficient11

label annotation method (HURA). HURA’s advantages are twofold: firstly, it filters12

harmful samples and prioritizes more reliable samples that indeed improving model13

performances (both accuracy and human alignment), reducing computational costs.14

Secondly, it does not require huge amount of human annotation on overall dataset,15

reducing human annotation costs and avoiding potential manual noise. We find that16

training with only a small random subset (~10%) of data already recovers most17

of the full-data performance (~90%), while not all samples are equally reliable to18

improve model performances: high human uncertainty samples contribute little19

or even do harm to training, while medium- and low- human uncertainty samples20

provide more improvements. We also find that models are able to proceed self-21

training with a provided seed set, thereby reducing both annotation reliance and22

cost. Our experimental results demonstrated that HURA is effective for recent23

state-of-the-art VQA models on VQAv2 dataset. HURA highlights an important24

direction for learning reliably from imperfect data: understanding and leveraging25

uncertainty, rather than simply scaling up the size of training data. Future code and26

data link will be here.127

1 Introduction28

Visual Question Answering (VQA) [5] is a widely studied task for evaluating large vision-language29

models (VLMs) [3, 14, 18, 8, 11, 12]. Its task formulation—requiring models to jointly reason30

over visual content and natural language questions, making it a strong indicator of vision-language31

understanding and generation capabilities.32

1Our code and data are well prepared and will be public available after anonymous period.
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Question： 
How many people are playing the 
game? (Ground Truth: 5)

R: 3, C: maybe R: 4, C: maybe

R: 5, C: no

human confidence score: 0.5(a) (c)

(d)

human confidence score: 0.5

human confidence score: 0.01

After SFT,  
model response:  3  

Figure 1: Different human annotators have different answers without clear certainty. ‘R’ indicates
human response while ‘C’ is the confidence annotation. The ground truth is added as an indicator
only in the Figure but it is not available in the dataset or training. For samples with mixed annotations,
models may not learn correct answers and yield wrong predictions.

However, despite the performances of current state-of-the-art (SOTA) models [3, 14, 19], we observe33

that current models suffer from several sources of unreliability, such as high human uncertainty in34

training data, fine-tuning strategies, and the evaluation metric. Firstly, as illustrated in Figure 1,35

we observe many VQA samples exhibit substantial human uncertainty, where multiple annotators36

provide different yet low-confidence answers. Such uncertainty casts doubt on whether these samples37

should be treated as equally effective training data. Two previous work has illustrated the problem38

of not all samples are suitable for VQA training, but neither of them studied large VLMs or human39

uncertainty [17, 9]. Secondly, fine-tuning methods for VLMs on VQA predominantly rely on40

simple supervised fine-tuning (SFT) [4, 16]. While straightforward, this approach requires massive41

human annotation, significantly increasing both labeling and computational costs. More importantly,42

such “full dataset” training may fail to fully exploit the value of individual samples: prioritizing43

more informative examples can potentially enable models to achieve comparable or even superior44

performance with fewer data. Thirdly, evaluation metric VQA-Accuracy [1] commonly used in VQA45

research also exhibit unreliability. The dominant VQA accuracy metric, simply and only based on46

frequency matching of annotator responses, is prone to misrepresenting model quality, especially47

on high-uncertainty samples. Recent work [11] has shown that SOTA VLMs struggle to align with48

human confidence levels , which challenges their reliability, as a reliable model should ‘know what it49

knows’ [2, 15, 6]. However, Lan et al. [11] has not proposed new training methods to address the50

problems revealed. Developing more reliable VQA models still remains a challenge.51

In this work, we adopt the recently proposed human uncertainty-aware evaluation metric HUD [11],52

replacing the traditional VQA accuracy with HUD score for a more accurate evaluation. Unlike53

frequency-based metrics, HUD explicitly accounts for human disagreement and uncertainty in54

annotations, enabling a more comprehensive and faithful evaluation. Based on HUD, we evaluate how55

samples with different uncertainty levels influence SFT. Following prior work [11, 17], we categorize56

samples into three levels of uncertainty: high, medium, and low. Our analysis reveals that medium-57

and low-uncertainty samples are far more beneficial for training, whereas high-uncertainty samples58

contribute little and may even degrade performance. To the best of our knowledge, this is the first59

work to reveal the differential impact of human uncertainty levels on VQA training, which we believe60

offers valuable guidance for future research on data-efficient multi-modal learning. Additionally,61

our results show that training on only (~10%) of data achieves (~90%) of the full-data performance.62

Our insight is that a more efficient and reliable training pipeline is needed. Therefore, we propose63

HURA (Human Uncertainty-aware Reliable data selection and efficient Annotation), a method that64

filters harmful samples, prioritizes reliable ones, and enables self-training from a small seed set. We65

validate HURA on the widely used VQA dataset, VQAv2 [5], and demonstrate HURA’s effectiveness66

on different SOTA models.67

Our main contributions are as follows: 1) To the best of our knowledge, we are the first work to reveal68

how samples with different levels of human uncertainty affect VQA SFT. 2) We propose HURA, a69

novel data selection and training strategy, with practical gains in efficiency and reliability: HURA70

achieves competitive performance while reducing annotation and computational costs. HURA’s71

confidence distribution also aligns better with human uncertainty distribution, indicating HURA helps72

in achieving more reliable VLMs.73
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2 Background74

Human Uncertainty and HUD score in VQA. Given an image-question-answer triplet t = (i, q,A),75

where i is an image, q is a question, and A is an answer set, A consists of 10 independent humans’76

annotations. In each annotation hn, n = 1, . . . , 10, every annotator gives response rn and confidence77

level cn. The level cn belongs to one of the three pre-defined categories < ‘yes’, ‘no’, ‘maybe’ >,78

indicating whether an annotator is confident in their answer. To quantify human uncertainty, HUD79

assigns different human confidence scores, quantifying every ‘yes’ as 0.99, ‘no’ as 0.01, and ‘maybe’80

as 0.5 respectively. The HUD score is then determined by averaging these human confidence scores81

across responses to the same question, and a human distribution H = [h1, h2, ..., hm]is quantified,82

where m is the number of different responses. High HUD scores indicate low human uncertainty.83

In this work, we map samples scores between [0,0.33) as high uncertainty, [0.33,0.66) as medium84

uncertainty, and [0.66, 0.99] as low uncertainty, evenly dividing the overall distribution into three85

parts. Due to the page limit, more details can be found in the original work [12].86

Model Confidence Distribution and Evaluation Methods. Given a sample x, the prediction87

distribution of a modelM, denoted asM(x), corresponds to the probabilities PY (Y = y|X = x)88

the model assigns to each class y. Given a human distribution H = [h1, h2, ..., hm], the model89

probability distribution over multiple classes is denoted as: MY = softmax([l1, l2, ..., lm]), where90

li is the logits of a label in the last hidden layer. Traditionally, the model is evaluated over VQA-91

AccuracyZ [1], where Acc(ans) = min
{

#humans that said ans
3 , 1

}
. It is maximized (1.0), if at least 392

raters gave the exact answer. The number 3 is a manually fixed parameter in the original work [1].93

Previous work also use KL-divergence (KL Kullback and Leibler [10]) to measure how the model94

probability distribution diverges from human’s, denoted as KL(Human||Model).95

3 HURA pipeline96

The pipeline of HURA is presented in Algorithm 1. Let S denote a small seed set with human97

annotations, M a pre-trained VLM without SFT, and R a large remaining dataset without annotations.98

HURA aims to fine-tune from M to MT by pseudo-labeling samples from R. HURA first removes99

high human-uncertainty samples from S, obtaining a filtered subset Sfilt. The base model M is100

fine-tuned on Sfilt to obtain an updated model M1. On the held-out portion of S, we compute KL101

divergences between M1’s predictions and human distributions for three uncertainty levels (high,102

medium, low), the mean value denoted as K1,K2,K3. We also compute a threshold distribution τ ,103

defined as the mean human distribution over low-uncertainty samples. We iterate over samples r ∈ R104

in small batches (e.g., 1% of R at a time). For each r, we use the current model Mi to compute the105

predictive distribution pMi
(r) and its KL divergence to τ . If this KL divergence lies in the interval106

[K1,K2], the sample is retained and assigned a pseudo-label ŷr = argmax pMi
(r); otherwise, it is107

discarded. The retained samples are then used to fine-tune Mi to Mi+1. This process repeats until a108

predefined number of iterations T is reached.109

4 Experiments and Results110

baselines and evaluation metrics. We evaluate three open-sourced recent SOTA VLMs: LLaVA-1.5-111

7B [13], Qwen2-VL-7B [18], and BEiT3 [19]. Unlike previous works, we do not use VQA-Accuracy112

due to the mentioned shortcomings in this paper, but replace the frequency with the HUD score of113

each different response, we denote this evaluation as HUD-acc. We evaluate on the validation set114

because the test set is not public available. The reason to start only on VQAv2 is similar to previous115

work [11], but we expect to expand to other dataset like VizWiz [7] in the future.116

Results and Discussion. In Table 1, we find that even though simply training on the overall set still117

achieves the best performances, HURA reaches very similar performances on all three models, with118

only 20 percent of training data. This indicates that HURA successfully reduces the reliance on both119

annotation and computation. Moreover, HURA reaches a more reliable confidence distribution with120

humans with lower KL scores. This indicates that simply training on large amount of data may ruin121

model’s confidence level, while HURA aligns better with humans.122

It is also clearly observed that for BEiT3, simply training on randomly selected ~10% samples results123

in ~90% performances compared with training on all set. On models like LLaVA and Qwen which124
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Algorithm 1: HURA: Human Uncertainty-aware Reliable Data Selection and Self-Training
Input: Seed set S; pre-trained VLM M (no SFT); unlabeled pool R; max iterations T .
Output: Fine-tuned model MT .

1 Step 1: Seed fine-tuning with uncertainty filtering;
2 Sfilt ← S \ Shigh ; // remove high human-uncertainty samples
3 Fine-tune M on Sfilt to obtain M1;
4 Step 2: Calculating KL thresholds;
5 Compute K1,K2,K3 as the (mean) KL divergences between M1 predictions and human

distributions on {high, medium, low} subsets from the held-out part of S;
6 Compute threshold distribution τ as the mean human distribution on the low-uncertainty subset;
7 Step 3: Iterative selection & self-training;
8 for i← 1 to T do
9 Sample a mini-batch B ⊂ R (e.g., 1% of R);

10 Ssel ← ∅;
11 foreach r ∈ B do
12 p← pMi(r) ; // model predictive distribution on r
13 d← KL(p ∥ τ);
14 if K1 ≤ d ≤ K2 then
15 ŷr ← argmax p;
16 Ssel ← Ssel ∪ {(r, ŷr)};

17 Fine-tune Mi on Ssel to obtain Mi+1;

Model Set split or method HUD-Acc ↑ KL(H∥M) ↓

BEiT3

All (SFT) 72.41 1.8221
10% Low+Med (SFT) 65.25 1.6496
High (SFT) 2.74 -
HURA (ours, T=10) 72.81 1.3269

LLaVA-1.5

zero-shot 73.01 0.6953
All (SFT) 76.41 0.6010
10% Low+Med (SFT) 74.73 0.5235
High (SFT) 72.50 0.6863
HURA (ours, T=10) 76.38 0.4973

Qwen2VL

zero-shot 74.01 0.6879
All (SFT) 76.15 0.5612
10% Low+Med (SFT) 75.51 0.5331
High (SFT) 73.73 0.6674
HURA (ours, T=10) 76.08 0.4903

Table 1: Model performances on HUD-Accuracy (best results and HURA are highlighted in bold.) and
KL divergence (best results are highlighted in bold. Due to space constraints and more experiments
are still ongoing, we only present and discuss the results in Table 1 in this submission.

has zero-shot capability, the performances are even higher with limited data. On the contrary, it is125

also shown that high human uncertainty samples do harm to training, where it reaches lower accuracy126

compared with the zero-shot performances. Particularly, on BEiT 3, since it does not have zero-shot127

ability, simply training on high uncertainty samples totally make the training fails.128

5 Conclusion, limitation, and future work129

In this work, we revisit VQA and proposed a method HURA to study how use human uncertainty130

information more efficiently and also more accurately so that we can reach a more reliable model.131

We evaluate HURA on VQAv2 and demonstrate its effectiveness from both accuracy and confidence132

distribution perspective. We will not limit to this mainstream dataset but expand to more datasets133

such as VizWiz in the future. For the more ongoing experiments, we are expecting to find out exact134

reasons why high-human uncertainty fails to help training, and how the other remaining samples135

work to help model. We also expect to come up with more experimental results indicating the how136

different turns of iterations of HURA helps training. These are already ongoing experiments and we137

expect to expand them to become a solid future work. Due to the 4-page limitation, more details of138

clarity (e.g., the method part) will also be expanded in the future publication.139
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