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Abstract

Large vision-language models (VLMs) achieve strong performance but still depend

]
2 on supervised fine-tuning (SFT) with massive annotated datasets, which are both
3 costly and inherently noisy due to human annotation, especially when human un-
4 certainty exists. We find that the degree of human uncertainty affects the reliability
5 of a sample, thereby casting doubt on its suitability for SFT. It is still unknown how
6 to use human uncertainty for training when such imperfect data exists. Moreover,
7 current mainstream SFT method simply requires annotation for the full dataset,
8 causing unnecessary annotation overhead. In this work, we revisit Visual Ques-
9 tion Answering (VQA), one of the most important and commonly studied task

10 for VLMs. We study data reliability and label efficiency based on VQA. To this

11 end, we propose a human uncertainty-aware reliable data selection and efficient

12 label annotation method (HURA). HURA’s advantages are twofold: firstly, it filters

13 harmful samples and prioritizes more reliable samples that indeed improving model

14 performances (both accuracy and human alignment), reducing computational costs.

15 Secondly, it does not require huge amount of human annotation on overall dataset,

16 reducing human annotation costs and avoiding potential manual noise. We find that

17 training with only a small random subset (~10%) of data already recovers most

18 of the full-data performance (~90%), while not all samples are equally reliable to

19 improve model performances: high human uncertainty samples contribute little

20 or even do harm to training, while medium- and low- human uncertainty samples

21 provide more improvements. We also find that models are able to proceed self-

22 training with a provided seed set, thereby reducing both annotation reliance and

23 cost. Our experimental results demonstrated that HURA is effective for recent

24 state-of-the-art VQA models on VQAv2 dataset. HURA highlights an important

25 direction for learning reliably from imperfect data: understanding and leveraging

26 uncertainty, rather than simply scaling up the size of training data. Future code and

27 data link will be here[]

s 1 Introduction

29 Visual Question Answering (VQA) [5] is a widely studied task for evaluating large vision-language
30 models (VLMs) [3} 14, [18} |8, [11} [12]]. Its task formulation—requiring models to jointly reason
31 over visual content and natural language questions, making it a strong indicator of vision-language
s2 understanding and generation capabilities.

'Our code and data are well prepared and will be public available after anonymous period.
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Question:
How many people are playing the
game? (Ground Truth: 5)

Figure 1: Different human annotators have different answers without clear certainty. ‘R’ indicates
human response while ‘C’ is the confidence annotation. The ground truth is added as an indicator
only in the Figure but it is not available in the dataset or training. For samples with mixed annotations,
models may not learn correct answers and yield wrong predictions.

However, despite the performances of current state-of-the-art (SOTA) models [3} 14} 119], we observe
that current models suffer from several sources of unreliability, such as high human uncertainty in
training data, fine-tuning strategies, and the evaluation metric. Firstly, as illustrated in Figure [T}
we observe many VQA samples exhibit substantial human uncertainty, where multiple annotators
provide different yet low-confidence answers. Such uncertainty casts doubt on whether these samples
should be treated as equally effective training data. Two previous work has illustrated the problem
of not all samples are suitable for VQA training, but neither of them studied large VLMs or human
uncertainty [[17, 9]. Secondly, fine-tuning methods for VLMs on VQA predominantly rely on
simple supervised fine-tuning (SFT) [4, [16]]. While straightforward, this approach requires massive
human annotation, significantly increasing both labeling and computational costs. More importantly,
such “full dataset” training may fail to fully exploit the value of individual samples: prioritizing
more informative examples can potentially enable models to achieve comparable or even superior
performance with fewer data. Thirdly, evaluation metric VQA-Accuracy [1] commonly used in VQA
research also exhibit unreliability. The dominant VQA accuracy metric, simply and only based on
frequency matching of annotator responses, is prone to misrepresenting model quality, especially
on high-uncertainty samples. Recent work [[11] has shown that SOTA VLMs struggle to align with
human confidence levels , which challenges their reliability, as a reliable model should ‘know what it
knows’ [2, 15, 16]. However, Lan et al. [[11] has not proposed new training methods to address the
problems revealed. Developing more reliable VQA models still remains a challenge.

In this work, we adopt the recently proposed human uncertainty-aware evaluation metric HUD [[11],
replacing the traditional VQA accuracy with HUD score for a more accurate evaluation. Unlike
frequency-based metrics, HUD explicitly accounts for human disagreement and uncertainty in
annotations, enabling a more comprehensive and faithful evaluation. Based on HUD, we evaluate how
samples with different uncertainty levels influence SFT. Following prior work [1L1}17], we categorize
samples into three levels of uncertainty: high, medium, and low. Our analysis reveals that medium-
and low-uncertainty samples are far more beneficial for training, whereas high-uncertainty samples
contribute little and may even degrade performance. To the best of our knowledge, this is the first
work to reveal the differential impact of human uncertainty levels on VQA training, which we believe
offers valuable guidance for future research on data-efficient multi-modal learning. Additionally,
our results show that training on only (~10%) of data achieves (~90%) of the full-data performance.
Our insight is that a more efficient and reliable training pipeline is needed. Therefore, we propose
HURA (Human Uncertainty-aware Reliable data selection and efficient Annotation), a method that
filters harmful samples, prioritizes reliable ones, and enables self-training from a small seed set. We
validate HURA on the widely used VQA dataset, VQAv2 [5], and demonstrate HURA’s effectiveness
on different SOTA models.

Our main contributions are as follows: 1) To the best of our knowledge, we are the first work to reveal
how samples with different levels of human uncertainty affect VQA SFT. 2) We propose HURA, a
novel data selection and training strategy, with practical gains in efficiency and reliability: HURA
achieves competitive performance while reducing annotation and computational costs. HURA’s
confidence distribution also aligns better with human uncertainty distribution, indicating HURA helps
in achieving more reliable VLMs.
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2 Background

Human Uncertainty and HUD score in VQA. Given an image-question-answer triplet t = (4, ¢,.A),
where i is an image, ¢ is a question, and A is an answer set, A consists of 10 independent humans’
annotations. In each annotation h,, n = 1, ..., 10, every annotator gives response 7, and confidence
level ¢,,. The level ¢,, belongs to one of the three pre-defined categories < ‘yes’, ‘no’, ‘maybe’ >,
indicating whether an annotator is confident in their answer. To quantify human uncertainty, HUD
assigns different human confidence scores, quantifying every ‘yes’ as 0.99, ‘no’ as 0.01, and ‘maybe’
as 0.5 respectively. The HUD score is then determined by averaging these human confidence scores
across responses to the same question, and a human distribution H = [hq, ha, ..., hy,]is quantified,
where m is the number of different responses. High HUD scores indicate low human uncertainty.
In this work, we map samples scores between [0,0.33) as high uncertainty, [0.33,0.66) as medium
uncertainty, and [0.66, 0.99] as low uncertainty, evenly dividing the overall distribution into three
parts. Due to the page limit, more details can be found in the original work [[12].

Model Confidence Distribution and Evaluation Methods. Given a sample z, the prediction
distribution of a model M, denoted as M (z), corresponds to the probabilities Py (Y = y|X = x)
the model assigns to each class y. Given a human distribution H = [hq, ha, ..., h,,], the model
probability distribution over multiple classes is denoted as: My = softmax([l1,l2, ..., ]), where
l; is the logits of a label in the last hidden layer. Traditionally, the model is evaluated over VQA-

F£humans that said ans
3 ’ 1

raters gave the exact answer. The number 3 is a manually fixed parameter in the original work [1]].
Previous work also use KL-divergence (KL Kullback and Leibler [10]) to measure how the model
probability distribution diverges from human’s, denoted as KL(Human||Model).

AccuracyZ [1l], where Acc(ans) = min { . It is maximized (1.0), if at least 3

3 HURA pipeline

The pipeline of HURA is presented in Algorithm [I] Let S denote a small seed ser with human
annotations, M a pre-trained VLM without SFT, and R a large remaining dataset without annotations.
HURA aims to fine-tune from M to Mp by pseudo-labeling samples from R. HURA first removes
high human-uncertainty samples from .S, obtaining a filtered subset Sg);. The base model M is
fine-tuned on Sg); to obtain an updated model M;. On the held-out portion of S, we compute KL
divergences between M ’s predictions and human distributions for three uncertainty levels (high,
medium, low), the mean value denoted as K1, Ko, K3. We also compute a threshold distribution T,
defined as the mean human distribution over low-uncertainty samples. We iterate over samples € R
in small batches (e.g., 1% of R at a time). For each r, we use the current model M; to compute the
predictive distribution pyy, () and its KL divergence to 7. If this KL divergence lies in the interval
[K1, K], the sample is retained and assigned a pseudo-label §J,, = arg max pyy, (r); otherwise, it is
discarded. The retained samples are then used to fine-tune M; to M, 1. This process repeats until a
predefined number of iterations 7" is reached.

4 Experiments and Results

baselines and evaluation metrics. We evaluate three open-sourced recent SOTA VLMs: LLaVA-1.5-
7B [13], Qwen2-VL-7B [18]], and BEiT3 [19]. Unlike previous works, we do not use VQA-Accuracy
due to the mentioned shortcomings in this paper, but replace the frequency with the HUD score of
each different response, we denote this evaluation as HUD-acc. We evaluate on the validation set
because the test set is not public available. The reason to start only on VQAV2 is similar to previous
work [[1L1]], but we expect to expand to other dataset like VizWiz [7] in the future.

Results and Discussion. In Table I} we find that even though simply training on the overall set still
achieves the best performances, HURA reaches very similar performances on all three models, with
only 20 percent of training data. This indicates that HURA successfully reduces the reliance on both
annotation and computation. Moreover, HURA reaches a more reliable confidence distribution with
humans with lower KL scores. This indicates that simply training on large amount of data may ruin
model’s confidence level, while HURA aligns better with humans.

It is also clearly observed that for BEiT3, simply training on randomly selected ~10% samples results
in ~90% performances compared with training on all set. On models like LLaVA and Qwen which
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Algorithm 1: HURA: Human Uncertainty-aware Reliable Data Selection and Self-Training

Input: Seed set S; pre-trained VLM M (no SFT); unlabeled pool R; max iterations 7'
Output: Fine-tuned model M.

1 Step 1: Seed fine-tuning with uncertainty filtering;

2 Sgie < S\ Shigh ; // remove high human-uncertainty samples

3 Fine-tune M on Sgy; to obtain My;

4 Step 2: Calculating KL thresholds;

5 Compute K7, Ko, K3 as the (mean) KL divergences between M predictions and human

distributions on {high, medium, low} subsets from the held-out part of .S;

6 Compute threshold distribution 7 as the mean human distribution on the low-uncertainty subset;

7 Step 3: Iterative selection & self-training;

8 for i < 1to7T do

9 Sample a mini-batch B C R (e.g., 1% of R);

10 Ssel @;

11 foreach r € B do

12 P (1) 5 // model predictive distribution on 7
13 d + KL(p|| 7);

14 if K1 <d < K, then

15 U — arg maxp;

16 Ssel  Ssel U {(7‘7 !)7)},

17 | Fine-tune M; on Ssel to obtain M, 1;

Model Set split or method | HUD-Acct  KL(H||M) |
All (SFT) 72.41 1.8221
. 10% Low+Med (SFT) 65.25 1.6496
BEIT3 High (SFT) 274 -
HURA (ours, T=10) 72.81 1.3269
zero-shot 73.01 0.6953
All (SFT) 76.41 0.6010
LLaVA-L5 60, Low-+Med (SFT) 74.73 0.5235
High (SFT) 72.50 0.6863
HURA (ours, T=10) 76.38 0.4973
zero-shot 74.01 0.6879
All (SFT) 76.15 0.5612
Qwen2VL 60, Low+Med (SFT) | 75.51 05331
High (SFT) 73.73 0.6674
HURA (ours, T=10) 76.08 0.4903

Table 1: Model performances on HUD-Accuracy (best results and HURA are highlighted in bold.) and
KL divergence (best results are highlighted in bold. Due to space constraints and more experiments
are still ongoing, we only present and discuss the results in Table 1 in this submission.

has zero-shot capability, the performances are even higher with limited data. On the contrary, it is
also shown that high human uncertainty samples do harm to training, where it reaches lower accuracy
compared with the zero-shot performances. Particularly, on BEiT 3, since it does not have zero-shot
ability, simply training on high uncertainty samples totally make the training fails.

5 Conclusion, limitation, and future work

In this work, we revisit VQA and proposed a method HURA to study how use human uncertainty
information more efficiently and also more accurately so that we can reach a more reliable model.
We evaluate HURA on VQAV2 and demonstrate its effectiveness from both accuracy and confidence
distribution perspective. We will not limit to this mainstream dataset but expand to more datasets
such as VizWiz in the future. For the more ongoing experiments, we are expecting to find out exact
reasons why high-human uncertainty fails to help training, and how the other remaining samples
work to help model. We also expect to come up with more experimental results indicating the how
different turns of iterations of HURA helps training. These are already ongoing experiments and we
expect to expand them to become a solid future work. Due to the 4-page limitation, more details of
clarity (e.g., the method part) will also be expanded in the future publication.
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