

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 PPLLAVA: VARIED VIDEO SEQUENCE UNDERSTANDING WITH PROMPT GUIDANCE

Anonymous authors

Paper under double-blind review

ABSTRACT

In the past year, video-based large language models (Video LLMs) have achieved impressive progress, particularly in their ability to process long videos through extremely extended context lengths. However, this comes at the cost of significantly increased computational overhead due to the massive number of visual tokens, making efficiency a major bottleneck. In this paper, we identify the root of this inefficiency as the high redundancy in video content. To address this, we propose a novel pooling strategy that enables aggressive token compression while retaining instruction-relevant visual semantics. Our model, Prompt-guided Pooling LLaVA (PPLLaVA), introduces three key components: a CLIP-based visual-prompt alignment module that identifies regions of interest based on user instructions, a prompt-guided pooling mechanism that adaptively compresses the visual sequence using convolution-style pooling, and a clip context extension module tailored for processing long and complex prompts in visual dialogues. With up to 18 \times token reduction, PPLLaVA maintains strong performance across tasks, achieving state-of-the-art results on diverse video understanding benchmarks—ranging from image-to-video tasks such as captioning and QA to long-form video reasoning—while significantly improving inference throughput.

1 INTRODUCTION

Recent advances in Multimodal Large Language Models (MLLMs), such as the LLaVA series Liu et al. (2024b); Li et al. (2024a), Qwen-VL series Yang et al. (2024); Bai et al. (2025), and InternVL series Chen et al. (2024a); Zhu et al. (2025), have led to unified models capable of handling both images and videos. A prevalent approach to modeling videos is to directly feed all frame-wise visual tokens into the LLM. Thanks to the extended context lengths supported by advanced MLLMs, they can effectively capture temporal dependencies over long video sequences, making them effective for long video understanding. However, this strategy also introduces substantial computational overhead due to the massive number of video tokens, posing a major challenge for real-time or resource-constrained applications.

To address this, various token reduction strategies have been explored. Early methods employed temporal average pooling to compress frame sequences (Li et al., 2023b; Maaz et al., 2023; Luo et al., 2023; Liu et al., 2024d), but at the cost of losing temporal dynamics. More recent efforts for long video modeling introduce specialized structures like visual memory (Ren et al., 2024; Zhang et al., 2024a; Zhou et al., 2024) or adaptive keyframe selection Wang et al. (2024b;c); Shen et al. (2024), which improve long video handling but often lack flexibility for short videos. In contrast, conditional token pooling or aggregation (Li et al., 2023d; Xu et al., 2024a; Jin et al., 2023) offers a more general solution, enabling substantial token compression while preserving spatiotemporal structure, and is thus increasingly favored in recent baseline MLLM designs Zhang et al. (2024c); Bai et al. (2025).

However, pooling inevitably leads to performance degradation compared to using the full set of visual tokens. As a result, most existing models adopt conservative pooling scales, typically reducing the sequence length by only a factor of 4, to strike a balance between efficiency and performance. But is it possible to further reduce token length without sacrificing modeling capabilities? We believe the key lies in the intrinsic redundancy of videos. As shown in prior work (Han et al., 2022; Liu et al., 2023a; Ma et al., 2022), key visual information is often concentrated in a few frames—especially in

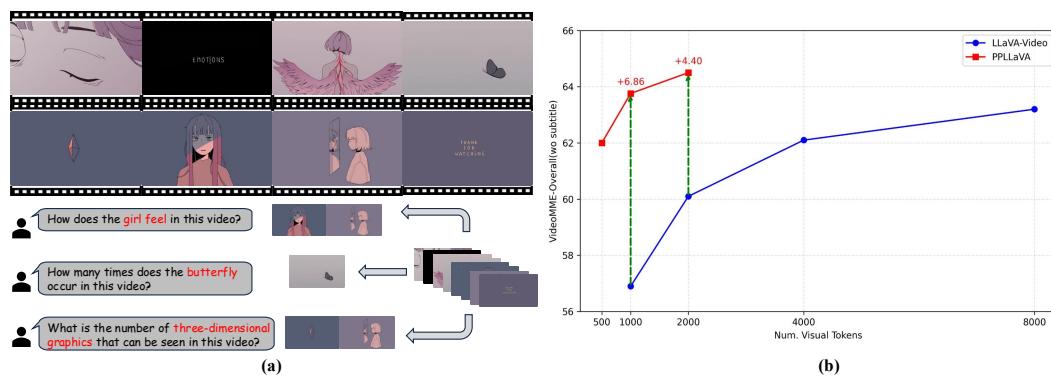


Figure 1: (a) An instance from VideoMME (Fu et al., 2024). The crucial information pertains to only a small portion of the video for different questions. (b) Performance comparison of PPLLaVA-LLaVA-Video with LLaVA-Video baseline on VideoMME-Overall (wo subtitles), which shows the number of visual tokens input to the LLM and the corresponding model performance.

long videos. For video LLMs, this is even more evident: as illustrated in Fig. 1(a), user instructions may only pertain to a small portion of the video, rendering much of the remaining content irrelevant. If we can effectively extract instruction-relevant visual features while compressing the token length, we may maintain or even enhance performance. In this context, the design of vision-language mapping modules becomes critical. Models using Q-Formers Li et al. (2023a); Dai et al. (2023) perform token compression by converting rich visual inputs into a small set of query tokens while enabling interaction with the instruction text. However, modern MLLMs such as LLaVA series Li et al. (2024a), Qwen-VL series Bai et al. (2025), and InternVL Chen et al. (2024a) series have moved away from Q-Formers in favor of simpler architectures like linear projections or MLPs, which are easier to train and more efficient in inference. This raises an important question: Can we develop a pooling strategy that achieves the token efficiency and instruction alignment of Q-Formers, while retaining the simplicity and scalability of current mainstream models?

To this end, we propose Prompt-guided Pooling LLaVA (PPLLaVA), a novel method that combines visual token pooling with instruction-aware visual feature extraction. Specifically, PPLLaVA first identifies prompt-relevant visual representations through fine-grained vision-prompt alignment. It then uses the resulting prompt-vision relevance map as a 3D convolutional kernel to compress visual tokens into any desired three-dimensional size, based on a specified output resolution or stride. In addition, recognizing that CLIP pretraining imposes a limited text context length—and that training video LLMs, especially for multi-turn dialogues, demands extended textual input—PPLLaVA incorporates asymmetric positional embedding extensions to enhance the model’s text encoding capacity. As a result, PPLLaVA effectively extracts instruction-relevant visual features from both long-form and short-form textual prompts while significantly reducing the visual token length. It achieves over 90% token compression, supports ultra-long video inputs, and simultaneously enhances performance on short-video tasks.

Experiments on the latest multimodal LLM benchmarks have validated the superiority of our method: PPLLaVA has achieved top results across a wide range of test sets, including NextQA Xiao et al. (2021a), EgoSchema, ActivityNet (Caba Heilbron et al., 2015), VCG Bench (Maaz et al., 2023), MVBench (Li et al., 2023c), LongVideoBench (Wu et al., 2024), and Video-MME (Fu et al., 2024). These benchmarks encompass tasks such as video question answering, detailed video captioning, and video multiple-choice questions, with video lengths ranging from seconds to hours. We conducted post-training with the integration of PPLLaVA on different VLM base models, including LLaVA-Next, LLaVA-Video, and InternVL3. These VLMs vary in terms of training token scales and visual encoders, yet PPLLaVA consistently yields further improvements, demonstrating the generalization capability of our model. More importantly, PPLLaVA significantly improves efficiency while achieving better performance. As shown in Fig. 1(b), compared to the baseline LLaVA-Video, PPLLaVA achieves superior performance with only one-quarter of the token count. When the number of tokens is aligned, the advantage of PPLLaVA becomes even more pronounced, outperforming by 6.86% and 4.4% at 1000 and 2000 tokens, respectively. It is worth noting that the performance of PPLLaVA does not solely rely on the semantic alignment provided by CLIP. On the contrary,

108 CLIP-based encoders offer strong initialization, while the model learns during subsequent training
 109 how to adaptively extract critical visual information. As a result, PPPLaVA still achieves outstanding
 110 performance even on VideoChatGPT-Bench, where summarization and caption-style problems
 111 are prevalent without informative user questions.

112

113

114

2 RELATED WORK

115

116

117

Multimodal Large Language Models. Image-domain pretrained models have long served as the foundation for video understanding (Carreira & Zisserman, 2017; Luo et al., 2022; Liu et al., 2023b). This is partly due to the inherent similarities between image and video modalities and partly because image pretraining datasets offer a level of quality, quantity, and diversity that video datasets often lack. Early MLLMs, such as the LLaVA Liu et al. (2024a;b) and BLIP series Li et al. (2023a); Dai et al. (2023), were typically trained with images during SFT, thus requiring additional investigation into how to transfer them to the video domain. In contrast, the latest open-source MLLMs—such as LLaVA-OneVision Li et al. (2024a), Qwen2.5-VL Bai et al. (2025), and InternVL3 Zhu et al. (2025), have already integrated image, multi-image, and video training. Thanks to their support for extremely long contexts (often exceeding 16k tokens), inputting long videos is no longer a challenge. However, the overhead introduced by accommodating long videos through extremely long contexts not only demands substantial computational resources but also hinders lightweight video understanding and deployment on resource-constrained devices.

118

119

120

121

122

123

124

125

126

127

128

Video LLMs. In the past year, Video LLMs have experienced rapid development. Early Video LLMs (Li et al., 2023b; Zhang et al., 2023; Luo et al., 2023; Maaz et al., 2023; Liu et al., 2024d) typically used average pooling to process video sequences with Image LLMs while employing modality perceivers to model temporal sequences. However, this approach significantly limited the model’s ability to fully understand video sequences. Alternatively, some models (Liu et al., 2024e;b) rely on the LLM itself to model video sequences, achieving good video understanding results. Nonetheless, this method is limited to handling a small number of frames and does not support the comprehension of long videos. Understanding long videos is also a hot topic in video LLMs Jin et al. (2023); Li et al. (2023d); Zhang et al. (2024b); Shen et al. (2024); Liu et al. (2024c); Xu et al. (2024b;a); Zohar et al. (2024); Liu et al. (2024f); Shu et al. (2025); Zhang et al. (2025). MovieChat (Song et al., 2024) and Flash-VStream (Zhang et al., 2024a) use memory structures to process streaming videos, while LongVA Zhang et al. (2024b) and Kangaroo Liu et al. (2024c) extend the LLM’s context length to accommodate more frames. Video-XL Shu et al. (2025) leverages MLLMs’ inherent KV sparsification capacity to condense the visual input. Most similar to our work, PLLaVA (Xu et al., 2024a), as well as LLaVA-Video and Qwen2.5-VL, employs the non-parametric AdaptiveAvgPool function to compress visual tokens. In contrast, our method supports not only token compression but also the extraction of visual features pertinent to user prompts. This enables our model to perform more aggressive compression while preserving performance, making it suitable for both short and long video inputs. Furthermore, our convolution-style pooling method enables flexible output sizes.

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

Key Content Extraction. Extracting key video content is also a common research topic, and these models also tend to leverage CLIP to extract semantic priors Shen et al. (2024); Wang et al. (2024b;c); Park et al. (2024). For example, VideoAgent Wang et al. (2024b) iteratively searches for key frames relevant to user instructions by utilizing both generated dense captions and CLIP similarity. In comparison, these methods resemble frame selection strategies, whereas PPPLaVA represents a complete model framework. Additionally, these models typically scale up runtime, as searching frame by frame is computationally expensive. In contrast, a major advantage of PPPLaVA is its ability to significantly enhance the efficiency of Video LLMs.

147

148

149

150

151

152

153

154

In fact, PPPLaVA functions more similarly to a Q-Former within LLaVA, but it offers several advantages over directly training a Q-Former: (1) PPPLaVA introduces far fewer additional parameters and computational overhead, amounting to less than one-tenth of a Q-Former. (2) While a Q-Former requires a three-stage pretraining process—contrastive learning, alignment training, and instruction tuning—PPPLaVA can be utilized solely during instruction tuning, allowing for seamless transfer from the most advanced MLLMs. (3) PPPLaVA supports flexible output sizes for different modalities, whereas the number of queries in a Q-Former is fixed once set. As a result, different Q-Formers typically need to be trained separately for images and videos (Zhang et al., 2023; Li et al., 2023c).

162

3 APPROACH

163

3.1 MOTIVATION AND ANALYSIS

164
 165
 166
 167 In the previous section, we discussed that the videos are redundant in both length and content.
 168 Vista-LLaMA (Ma et al., 2024) demonstrated that the extensive number of tokens in long videos
 169 makes it difficult for LLMs to capture video content. In this section, we further examine whether
 170 redundant video content impacts the performance of video LLMs and whether extracting key video
 171 content can enhance performance. Inspired by EgoSchema (Mangalam et al., 2024), we adopt the
 172 certificate length to measure the redundancy. The certificate length of a video-QA pair is determined
 173 by the shortest video sub-clip that can answer the question. Instead of using manual annotation, we
 174 employed an automated method to determine the certificate. Specifically, frames are sampled at 2
 175 fps, and then the similarity between each frame and the question-answer text is calculated using
 176 CLIP-L-336 (Radford et al., 2021). If the similarity exceeds 0.5, the frame is considered relevant to
 177 the text. Finally, the proportion of relevant frames to the entire video is calculated as the certificate.

178 Based on the Video-MME
 179 dataset, we selected the 100
 180 video-QA pairs with the
 181 shortest certificate lengths
 182 termed Video-MME-redund.
 183 We then evaluated the per-
 184 formance of various models
 185 on both the full Video-MME
 186 dataset and these selected
 187 samples. Additionally, for
 188 these 100 samples, we man-
 189 ually selected the frames most

190 relevant to the questions, alongside the default frame sampling method. This approach was used
 191 to test whether extracting key information enhances video understanding. As shown in Table 1,
 192 all models experienced a decline in performance on high-redundancy videos. As an earlier model,
 193 InstructBLIP performed as expected, not matching the overall performance of the more advanced
 194 LLaVA-Next. However, on high-redundancy videos, InstructBLIP, which has instruction-aware
 195 video feature extraction capabilities, declined slower than LLaVA-Next. Furthermore, when
 196 manually selected frames were used, all models showed significant performance improvements,
 197 highlighting the importance of extracting key video information for enhancing video understanding.
 198 Additionally, we clearly observed the importance of including more frames for long videos, such
 199 as those in the Video-MME dataset. These findings motivated us to explore token compression to
 200 accommodate more video frames while effectively extracting key information.

201

3.2 PPPLAVA

202 As shown in Fig. 2, PPPLAVA, like most video LLMs, includes a vision encoder, a mapping layer,
 203 and a LLM. It also features an additional text encoder paired with the visual encoder. Given a
 204 T -frame video, we first pass it through the CLIP-ViT visual encoder, obtaining the visual feature
 205 $V \in \mathbb{R}^{T \times W \times H \times D}$. This feature is then fed into the Prompt-guided Pooling module, where it is
 206 compressed by over 90%, resulting in $V' \in \mathbb{R}^{T' \times W' \times H' \times D}$. V' is fed into the MLP mapping
 207 layer as the final visual input. Importantly, V' not only contains significantly fewer tokens but also
 208 condenses information more relevant to the user’s instructions. This ensures improved performance
 209 while efficiently processing the video input. Note that more advanced MLLMs in recent years
 210 often adopt more powerful visual encoders, such as SigLIP. However, in our model, they can be
 211 seamlessly switched. Without loss of generality, we will still refer to the visual encoder as CLIP in
 212 the following. Next, we will detail how V' is obtained.

213 **Fine-grained Vision-Prompt Alignment.** To extract video features relevant to the prompt, we
 214 first utilize the original CLIP dual encoders to identify which video features are related to the text.
 215 Specifically, we input the user’s question into the CLIP text encoder to obtain the text feature $c \in \mathbb{R}^D$. Following the CLIP training pipeline, we only use the CLS token of the text. The attention

Table 1: The study on the impact of video redundancy, we used the Vicuna-7B version for all models. "Average" and "Manual" refer to the default average sampling and manual selection, respectively.

Model	Frames&Tokens	full	redund	
		average	average	manual
InstructBLIP	32&1024	39.2	36.1	39.5
LLaVA-Next	32&4608	41.1	36.9	42.0
LLaVA-Next-Video	8&1152	42.9	39.0	43.5
LLaVA-Next-Video	32&4608	45.0	41.5	46.1
PPPLAVA (ours)	32&1024	49.8	47.6	50.5

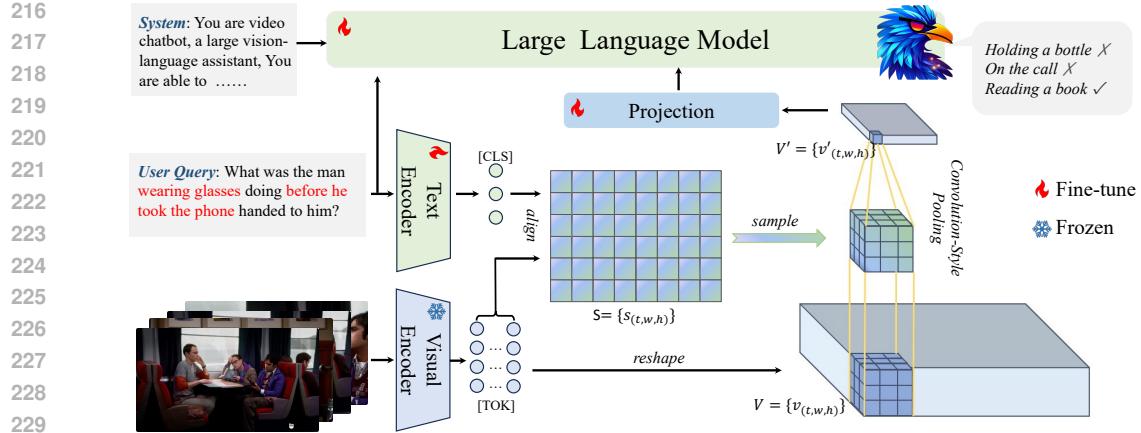


Figure 2: The overview of PPPLaVA for compressing the video based on user prompts and generating responses.

score of the (t^{th}, w^{th}, h^{th}) video token relative to the text feature is then calculated as:

$$s_{(t,w,h)} = \frac{\exp(\tau c \cdot f_{clipv}(v_{(t,w,h)}))}{\sum_{t=1}^T \sum_{w=1}^W \sum_{h=1}^H \exp(\tau c \cdot f_{clipv}(v_{(t,w,h)}))}, \quad (1)$$

where $v_{(t,w,h)}$ represents the token at the (t, w, h) position in V , τ is the CLIP temperature scale, and f_{clipv} is the CLIP visual projection, which is typically not used in multimodal LLMs. Note that $v_{(t,w,h)}$ typically refers to the patch token from the penultimate layer of CLIP, rather than the CLS token from the final layer used during CLIP training. However, since the spatial representations in CLIP's final layers are similar, applying f_{clipv} still allows the patch tokens to be mapped into the interaction space with the text.

Prompt-Guided Pooling. In the previous section, we obtained token-level weights corresponding to the user's prompt, which we use as guidance for pooling the video. Unlike traditional tasks that require only a 1D-dimensional feature for contrastive learning (Ma et al., 2022; Wang et al., 2022), our approach aims to preserve a certain 3-dimensional structure to enable the LLM to perform temporal modeling. To achieve this, we perform pooling with $S = \{s_{(t,w,h)}\}$ in a manner similar to 3D convolution. Specifically, we define the spatiotemporal 3D convolution kernel and stride as (k_t, k_w, k_h) and (d_t, d_w, d_h) , respectively. The output dimension of V' can then be expressed as:

$$\begin{aligned} T' &= \left(\frac{T - k_t}{d_t}\right) + 1, \\ W' &= \left(\frac{W - k_w}{d_w}\right) + 1, \\ H' &= \left(\frac{H - k_h}{d_h}\right) + 1. \end{aligned} \quad (2)$$

Unlike conventional convolution kernels, our kernel parameters are derived from S . Moreover, the parameters of the kernel are dynamic; as the kernel slides over different positions in V , its parameters are taken from the corresponding positions in S . Finally, the feature at position (t, w, h) in the output V' is calculated as:

$$v'_{(t,w,h)} = \sum_{i=0}^{k_t-1} \sum_{j=0}^{k_w-1} \sum_{k=0}^{k_h-1} v_{(t*d_t+i, w*d_w+j, h*d_h+k)} \cdot s_{(t*d_t+i, w*d_w+j, h*d_h+k)}. \quad (3)$$

By flexibly adjusting stride and kernel size, we can control the output dimensions. This approach allows us to better accommodate videos of varying lengths and facilitates joint training with images, compared to fixed-output methods.

CLIP Context Extension. In our method, CLIP-text is the only additional parameter used. Despite having significantly fewer parameters than Qformer, it achieves better performance. However,

CLIP-text has a major limitation: its context length is too short (77 for CLIP and 64 for SigLIP). While this length is sufficient for objects or simple descriptions, it is inadequate for long prompts or multi-turn dialogues in multimodal LLMs. To address this performance bottleneck, we propose extending the context length of CLIP-text using asymmetric positional embedding extensions. In most cases, extending the positional embedding involves randomly initializing new embeddings at the end. A more theoretically sound approach is to perform linear interpolation on the original positional embedding at a rate of r . Assuming the original and target positional embeddings are P and P' , respectively, the i^{th} position of P' is:

$$P'_i = P_{\lfloor j \rfloor} + (j - \lfloor j \rfloor) \cdot (P_{\lfloor j \rfloor + 1} - P_{\lfloor j \rfloor}), \quad j = i \cdot r, \quad (4)$$

where $\lfloor j \rfloor$ means taking the floor of j . However, we found linear interpolation yielded inferior results to randomly initializing embeddings at the end. We believe this is because CLIP’s positional embeddings are well-trained, and globally averaged interpolation disrupts the well-pre-trained information. Given that short sentences dominate CLIP’s training data, the earlier parts of positional embeddings are more thoroughly trained. Hence, we adopted asymmetric interpolation, applying different interpolation rates at different positions. In the early part of the new positional embedding, we use a large r value to shorten the interpolation distance, while in the later part, we use a smaller r value to extend the interpolation distance. This asymmetric approach allows us to effectively extend the context length of CLIP-text while preserving as much pre-trained information as possible.

3.3 TRAINING

PPLLaVA enables plug-and-play transfer of either image-domain LLMs or image-video unified MLLMs. As a result, initialized from well-pretrained MLLMs, we can bypass expensive contrastive or alignment pretraining and proceed directly to instruction tuning. In this stage, we fully fine-tune the LLM, the projection MLP, and the CLIP text encoder. Our instruction datasets include multi-turn and single-turn conversations presented in a conversational format, along with various forms of visual input such as images, videos, and multiple images. For different types of data, we employed an interleaving training approach. Rather than using batches composed of a single data type, we mixed various data types within the same batch. This training method enables the model to simultaneously process both long videos with many frames and single-frame images, greatly enhancing its adaptability to visual sequences of varying lengths.

4 EXPERIMENT

In this section, we have performed comprehensive evaluations of PPLLaVA, covering settings, comparisons, and ablations, while visualizations and limitations analysis can be found in the appendix.

4.1 EXPERIMENT SETUP

Implementation Details. To verify the effectiveness of PPLLaVA across different model domains and to ensure fair comparisons with models from different periods, we implemented PPLLaVA on three separate models: the image-domain model LLaVA-Next Liu et al. (2024b), the video-domain model LLaVA-Video Zhang et al. (2024c), and general-domain VLM model InternVL3-8B (Zhu et al., 2025). Moreover, these models employ different visual encoders—CLIP, SigLIP Zhai et al. (2023), and InternViT Chen et al. (2024b), respectively—which further validates the generalization ability of PPLLaVA across diverse visual features. For image and multiple-image inputs, the pooling kernel and strides are set to $(1, 3, 3)$. For video inputs, we uniformly sample 32 frames and set the pooling kernel and strides to $(2, 3, 3)$, compressing the video tokens by 18 times — a much more aggressive compression compared to the $4\times$ reduction used in Qwen-VL or LLaVA-Video. For CLIP context extension, when $i < 20$, r is set to 1, and when $i \geq 20$, r is set to 0.25. We train for one epoch using a learning rate of $2e - 5$ and a batch size of 256. Since InternVL3-8B employs InternViT-300M, which undergoes extensive post-training after the initial contrastive pre-training, we re-conducted contrastive pre-training to ensure alignment between the visual and text encoders. Specifically, we used CLIP-L14-text (with InternViT-300M initialized from CLIP-L14) together with the frozen InternViT-300M, trained on 10M image–text pairs sampled from LAION Schuhmann et al. (2021) and Wukong Gu et al. (2022). The post-training aligned CLIP-L14-text was then adopted as the initialization of PPLLaVA-InternVL3. The full training takes 36 hours on 16 A100 GPUs or 32 910B NPUs.

324 Table 2: PPLLaVA performance on 7 video benchmarks, including NextQA, EgoSchema, ActivityNet,
 325 VideoChatGPT-Bench, MVBench, LongVideoBench, and VideoMME. All results are re-
 326 ported as 0-shot accuracy on 7B or 8B size model.

328 Models	329 NextQA	EgoSchema	A-Net	VCG-Bench	MVBench	L-V-Bench	330 VideoMME
							331 Long
							332 Overall
<i>Open-Source Video MLLMs</i>							
Video-ChatGPT (Maaz et al., 2023)	-	-	35.2	2.42	32.7	39.1	-
LLaMA-VID (Li et al., 2023d)	-	38.5	47.4	2.89	-	-	-
ChatUniVi (Jin et al., 2023)	-	-	45.8	2.99	-	-	35.8 40.6
LLaVA-NeXT-Video (Liu et al., 2024b)	70.2	43.9	53.5	3.26	-	50.5	- 46.5
VideoAgent Wang et al. (2024b)	71.3	54.1	-	-	-	-	-
VideoTree Wang et al. (2024c)	75.6	61.1	-	-	-	-	-
LVNet Park et al. (2024)	72.9	61.1	-	-	-	-	-
STLLM (Liu et al., 2024e)	-	-	50.9	3.15	54.9	-	31.3 37.9
VideoLLaMA2 (Cheng et al., 2024)	75.6	51.7	53.0	3.12	57.3	-	43.8 46.6
LongVA (Zhang et al., 2024b)	69.3	-	-	3.19	-	-	46.2 52.6
VideoChat2 (Li et al., 2023c)	-	54.4	49.1	2.98	51.1	36.0	33.2 39.5
PLLaVA (Xu et al., 2024a)	-	-	56.3	3.12	46.6	-	-
LLaVA-OneVision (Li et al., 2024a)	79.4	60.1	56.6	3.49	56.7	56.4	46.7 58.2
Video-XL (Shu et al., 2025)	-	-	-	3.17	55.3	-	- 55.5
LLaVA-Video (Zhang et al., 2024c)	82.2	57.3	56.5	3.52	58.4	58.2	50.6 63.2
Apollo (Zohar et al., 2024)	-	-	-	-	-	58.5	- 61.3
Oryx-1.5 (Liu et al., 2024f)	81.8	-	-	3.62	57.6	-	- 58.8
InternVL3 (Zhu et al., 2025)	-	-	-	-	75.4	58.8	- 66.2
VideoLLaMA3 (Zhang et al., 2025)	84.5	63.3	61.3	-	69.7	59.8	- 66.3
PPLLaVA (LLaVA-Next)	74.9	60.1	56.1	3.32	59.2	53.6	47.4 53.6
PPLLaVA (LLaVA-Video)	84.1	61.6	59.7	3.66	58.8	60.4	54.3 64.5
PPLLaVA (InternVL3)	86.8	63.9	60.3	3.61	75.6	60.3	56.6 67.1

349 **Data Details.** The instruction tuning data includes diverse modalities and sources. We randomly
 350 sampled 300k image data from the LLaVA-1.5 training set (Liu et al., 2024a) and used 594k
 351 multiple-image data from LLaVA-Interleave (Li et al., 2024b). The video data includes Kinetics
 352 (Kay et al., 2017), SthSth-V2 (Goyal et al., 2017), Next-QA (Xiao et al., 2021b), CLEVRER (Yi
 353 et al., 2019), and LLaVA-Video-300k, resulting in a total of 1.16M multimodal training samples.

354 We evaluate our model on 7 video LLM benchmarks, categorized into two types based on the eval-
 355 uation method: GPT-based evaluation and multiple-choice questions. The GPT evaluation mainly
 356 involves open-ended QA, including the VCG Bench (Maaz et al., 2023) and ActivityQA (Caba Heil-
 357 bron et al., 2015). Consistent with most models, we used the GPT-3.5-turbo-0613 version for testing.
 358 The multiple-choice question benchmarks include NextQA Xiao et al. (2021a), EgoSchema Man-
 359 galam et al. (2024), MVBench (Li et al., 2023c), LongVideoBench (Wu et al., 2024) and Video-
 360 MME (Fu et al., 2024). For medium-to-long videos in Video-MME and LongVideoBench, we sam-
 361 pled 64 frames instead of the 32 frames used in other datasets. Our test corpus encompasses videos
 362 of various genres and lengths, offering a comprehensive evaluation of PPLLaVA’s performance.

363 4.2 MAIN RESULT

364 Table 2 provides a quantitative comparison across several video understanding benchmarks. The
 365 results indicate that PPLLaVA consistently surpasses previous state-of-the-art models on eval-
 366 uated datasets. For example, compared with LLaVA-OneVision, PPLLaVA-LLaVAVideo achieves
 367 performance gains of 4.7%, 1.5%, 3.1%, 4%, and 6.3% on NextQA, EgoSchema, ActivityNet,
 368 LongVideoBench, and VideoMME, respectively. Importantly, PPLLaVA excels in handling long
 369 video content. Under similar frame sampling settings but with significantly fewer tokens, it out-
 370 performs LLaVA-Video and LLaVA-OneVision by 3.7% and 7.6%, respectively, on VideoMME
 371 videos longer than 30 minutes. Compared with InternVL3, PPLLaVA also achieves a 1.6% im-
 372 provement on LongVideoBench. This underscores PPLLaVA’s strength in efficiently extracting
 373 essential information from highly redundant video streams within a limited context window. On
 374 benchmarks focused on reasoning, such as NextQA and EgoSchema—where the videos are rel-
 375 atively short—PPLLaVA still delivers strong results. This suggests that the model’s ability to identify
 376 and utilize key information plays a crucial role in enhancing video reasoning capabilities. Even on
 377 VCG-Bench, where summarization and caption-type questions dominate, PPLLaVA still achieves

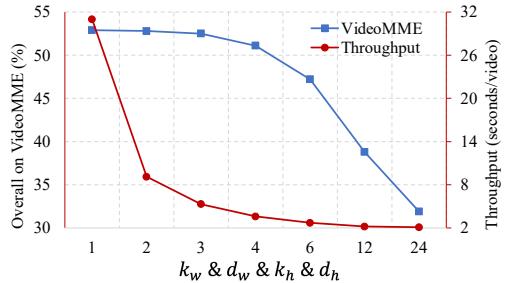
378

Table 3: The ablation study on model components. TP means throughput (seconds/video).

379

Model	Context Length	VCG Bench						Video-MME (w/ subs)				TP	
		CI	DO	CU	TU	CO	Avg	TP	Short	Medium	Long	Overall	
LLaVA-Next (Average Pooling)	576	3.05	3.07	3.71	2.62	3.01	3.09	2.9	53.1	41.3	36.0	43.4	3.1
LLaVA-Next (w/o Pooling)	4608	3.23	3.08	3.82	2.75	3.11	3.20	15.0	58.4	45.1	38.8	47.4	15.2
+Prompt-guided Pooling	1024	3.21	3.15	3.80	2.88	3.02	3.21	4.6	59.0	45.6	42.2	48.9	5.3
+CLIP Context Extension	1024	3.32	3.20	3.88	3.00	3.20	3.32	4.6	59.7	48.6	44.0	50.0	5.3

384



385

386

387

388

389

390

391

392

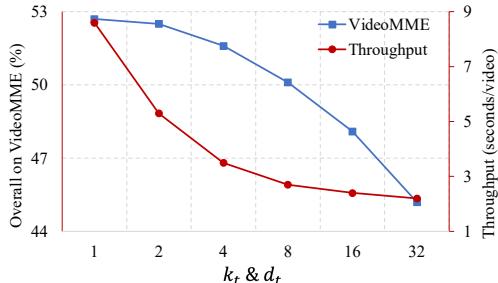
393

394

395

396

397

Figure 3: Spatial pooling effects. We set $T = 16$ and $k_t = d_t = 1$, varying the spatial kernel size and stride.Figure 4: Temporal pooling effects. We set $T = 32$ and $k_w = d_w = k_h = d_h = 3$, varying the temporal kernel size and stride.

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

leading results. This indicates that the improvements of PPLLaVA are not merely attributable to the semantic alignment provided by CLIP-like encoders; rather, the model has learned to adaptively extract critical video features, enabling it to perform well even when user queries contain limited information. Moreover, when compared to other models designed for key content extraction, including VideoAgent, VideoTree, and LVNet, PPLLaVA continues to maintain a clear performance lead. This demonstrates the effectiveness of incorporating motion priors in improving video understanding across a range of benchmarks. Finally, whether based on an image model (LLaVA-Next), a video model (LLaVA-Video), or a general-domain model(InternVL), PPLLaVA consistently outperforms its competitors under a similar baseline, especially considering that it also reduces the visual token length by several times. This demonstrates the generalizability of the PPLLaVA architecture, which can be seamlessly integrated into various types of VLMs.

415

416

417

418

419

420

421

4.3 ABLATIONS AND ANALYSIS

Unless otherwise stated, in the ablation studies, for efficiency, PPLLaVA is uniformly based on the LLaVA-Next version, and the training data includes all video data, with single-image and multi-image data excluded.

422

423

424

425

426

427

428

429

430

431

Model Components. The core of PPLLaVA is its prompt-guided token compression. To assess the impact of this feature, we conducted ablation experiments on overall components. As shown in Table 3, while the LLaVA-Next Baseline’s direct averaging method is the most efficient, its performance is subpar. Directly feeding all tokens into the LLM yields reasonable results but suffers from low throughput. Our Pooling module substantially improves both efficiency and performance. Extending the CLIP context further enhances results, particularly in long video understanding. The improvement in both efficiency and effectiveness underscores the superiority of our model.

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

Pooling Size. PPLLaVA can flexibly implement pooling at any scale. However, as the pooling kernel and stride increase, while efficiency improves, there will inevitably be performance degradation. Therefore, it’s crucial to find balances on efficiency and performance. As illustrated in Fig. 3, we first explore the impact of pooling in the spatial dimension. It is evident that when the pooling kernel and stride are small, increasing them significantly improves efficiency, and thanks to the prompt-guided approach, the performance remains almost unaffected. In contrast, as shown in Fig. 4, pooling in the temporal dimension yields smaller efficiency gains compared to spatial scaling, with more noticeable performance degradation as the kernel and stride sizes increase. When the pooling kernel and stride are large, the efficiency gains tend to plateau, but the decline in effectiveness becomes significantly pronounced. Considering all factors, for video input, we ultimately selected a pooling kernel and stride of (2, 3, 3) to ensure a substantial improvement in efficiency while maintaining stable performance.

432
433 Table 4: The image results. * means self-implementation.
434

Model	Resolution	MMMU(val)	MathVista	MMB-ENG	MMB-CN	MM-Vet	SEED-IMG	MME	POPE
LLaVA-1.5-13B	336*336	36.4	27.6	67.8	63.3	36.3	68.2	1531/295	85.93
LLaVA-Next-7B	672*672	35.8	34.6	67.4	60.6	43.9	70.2	1519/332	86.53
VideoLLaVA	336*336	-	-	60.9	-	32.0	-	-	84.40
Chat-Univ-1.5	336*336	-	-	62.7	-	28.3	-	-	85.40
LLaVA-Next-Video *	336*336	34.2	28.9	64.7	56.7	44.0	64.6	1501/ 351	83.10
PPLLaVA	336*336	37.9	34.6	68.9	62.0	44.7	70.7	1539/277	88.46

435
436
437
438
439
440 **Image Performance.** The PPLLaVA method can also be seamlessly applied to images. Although
441 images do not have the same need for token compression as videos, the guidance from user prompts
442 can still similarly enhance performance. In Table 4, we present PPLLaVA’s results on various popular
443 image LLM benchmarks. Since PPLLaVA was trained on LLaVA-1.5 image data based on
444 LLaVA-Next, we compared the results of these two models. We also compare the image performance
445 with LLaVA-Next-Video and other image-video unified models. As shown, PPLLaVA shows
446 a significant advantage in image performance compared to video models, indicating that PPLLaVA
447 has effectively retained pre-trained knowledge. Compared to image models, PPLLaVA, as a video
448 model, still achieved better results on most benchmarks. Notably, our pooling method reduced
449 the visual tokens to one-ninth of the original count at the same resolution. This demonstrates that
450 PPLLaVA can achieve both performance and efficiency improvements even on image-based tasks,
451 highlighting its potential for lightweight multimodal LLM.

452 **Pooling Approach.** Beyond the
453 weighted average pooling detailed in the
454 main text, we experimented with sev-
455 eral alternative pooling methods guided
456 by the prompt. First, we applied sepa-
457 rate spatiotemporal pooling, conducting
458 pooling operations independently on the
459 temporal and spatial dimensions before
460 concatenation. We also explored com-
461 binations of different pooling sizes to
462 assess their impact. Lastly, we imple-
463 mented max pooling using weights de-
464 rived from the prompt as guidance. As shown in Table 5, spatiotemporal separate pooling demon-
465 strates the worst performance, underscoring the importance of maintaining the 3-dimensional spa-
466 tiotemporal structure during pooling. Max pooling, though slightly better, still falls short, suggesting
467 that a few prominent features are insufficient to represent the entirety of the video. The combina-
468 tion of various pooling kernels performs similarly to direct weighted averaging when the context length
469 is comparable. Furthermore, we experimented with a TOME-like (Bolya et al., 2022) token merging
470 approach, which adaptively fuses visual tokens based on their $N \times N$ similarity. However, as shown
471 at the bottom of Table 5, TOME not only achieves a lower compression ratio compared to PPLLaVA
472 but also performs worse in terms of effectiveness. Consequently, we opted for weighted averaging
473 PPLLaVA, as it provides optimal results while maintaining a simpler structure.

474 5 CONCLUSION

475
476 In this paper, we propose Prompt-guided Pooling LLaVA (PPLLaVA), a novel pooling method
477 that simultaneously achieves token compression and prompt-aware feature extraction. While re-
478 cent video LLMs can handle long video inputs via extended context lengths, they often suffer from
479 excessive visual tokens, resulting in high computational costs and limited scalability. To address
480 this efficiency bottleneck, our model introduces three key components: Fine-grained Vision-Prompt
481 Alignment, Prompt-Guided Convolution-Style Pooling, and CLIP Context Extension. These mod-
482 ules enable aggressive reduction of visual context while preserving instruction-relevant infor-
483 mation. Extensive experiments demonstrate the effectiveness of PPLLaVA across a wide range of
484 tasks and video lengths, achieving state-of-the-art performance with significantly improved effi-
485 ciency—particularly excelling in long video understanding while maintaining strong results on short
486 video and image tasks.

450 Table 5: The ablation study on the Pooling Approach. We
451 report the overall performance of VideoMME (w/ subs).

Pooling Method	kernel1	kernel2	tokens	Overall
weighted average	(2,3,3)	-	1024	53.6
separate S-T	-	-	608	44.1
max pooling	(2,3,3)	-	1024	52.0
multiple	(1,6,6)	(8,2,2)	1088	52.8
multiple	(4,3,3)	(2,4,4)	1088	53.2
Token Merging	-	-	2048	51.9

486 REFERENCES
487

488 Shuai Bai, Keqin Chen, Xuejing Liu, Jialin Wang, Wenbin Ge, Sibo Song, Kai Dang, Peng Wang,
489 Shijie Wang, Jun Tang, et al. Qwen2. 5-vl technical report. *arXiv preprint arXiv:2502.13923*,
490 2025.

491 Daniel Bolya, Cheng-Yang Fu, Xiaoliang Dai, Peizhao Zhang, Christoph Feichtenhofer, and Judy
492 Hoffman. Token merging: Your vit but faster. *arXiv preprint arXiv:2210.09461*, 2022.

493 Fabian Caba Heilbron, Victor Escorcia, Bernard Ghanem, and Juan Carlos Niebles. Activitynet:
494 A large-scale video benchmark for human activity understanding. In *Proceedings of the ieee
495 conference on computer vision and pattern recognition*, pp. 961–970, 2015.

496 Joao Carreira and Andrew Zisserman. Quo vadis, action recognition? a new model and the kinetics
497 dataset. In *proceedings of the IEEE Conference on Computer Vision and Pattern Recognition*, pp.
498 6299–6308, 2017.

499 Zhe Chen, Weiyun Wang, Yue Cao, Yangzhou Liu, Zhangwei Gao, Erfei Cui, Jinguo Zhu, Shen-
500 glong Ye, Hao Tian, Zhaoyang Liu, et al. Expanding performance boundaries of open-source
501 multimodal models with model, data, and test-time scaling. *arXiv preprint arXiv:2412.05271*,
502 2024a.

503 Zhe Chen, Jiannan Wu, Wenhui Wang, Weijie Su, Guo Chen, Sen Xing, Muyan Zhong, Qinglong
504 Zhang, Xizhou Zhu, Lewei Lu, et al. Internvl: Scaling up vision foundation models and aligning
505 for generic visual-linguistic tasks. In *Proceedings of the IEEE/CVF conference on computer
506 vision and pattern recognition*, pp. 24185–24198, 2024b.

507 Zesen Cheng, Sicong Leng, Hang Zhang, Yifei Xin, Xin Li, Guanzheng Chen, Yongxin Zhu, Wenqi
508 Zhang, Ziyang Luo, Deli Zhao, et al. Videollama 2: Advancing spatial-temporal modeling and
509 audio understanding in video-lmms. *arXiv preprint arXiv:2406.07476*, 2024.

510 W Dai, J Li, D Li, AMH Tiong, J Zhao, W Wang, B Li, P Fung, and S Hoi. Instructblip: towards
511 general-purpose vision-language models with instruction tuning. arxiv. *Preprint posted online on
512 June, 15:2023*, 2023.

513 Chaoyou Fu, Yuhan Dai, Yondong Luo, Lei Li, Shuhuai Ren, Renrui Zhang, Zihan Wang, Chenyu
514 Zhou, Yunhang Shen, Mengdan Zhang, et al. Video-mme: The first-ever comprehensive evalua-
515 tion benchmark of multi-modal lmms in video analysis. *arXiv preprint arXiv:2405.21075*, 2024.

516 Raghad Goyal, Samira Ebrahimi Kahou, Vincent Michalski, Joanna Materzynska, Susanne West-
517 phal, Heuna Kim, Valentin Haenel, Ingo Fruend, Peter Yianilos, Moritz Mueller-Freitag, et al.
518 The “something something” video database for learning and evaluating visual common sense. In
519 *Proceedings of the IEEE international conference on computer vision*, pp. 5842–5850, 2017.

520 Jiaxi Gu, Xiaojun Meng, Guansong Lu, Lu Hou, Niu Minzhe, Xiaodan Liang, Lewei Yao, Runhui
521 Huang, Wei Zhang, Xin Jiang, et al. Wukong: A 100 million large-scale chinese cross-modal
522 pre-training benchmark. *Advances in Neural Information Processing Systems*, 35:26418–26431,
523 2022.

524 Tengda Han, Weidi Xie, and Andrew Zisserman. Temporal alignment networks for long-term video.
525 In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp.
526 2906–2916, 2022.

527 Peng Jin, Ryuichi Takanobu, Caiwan Zhang, Xiaochun Cao, and Li Yuan. Chat-univ: Unified vi-
528 sual representation empowers large language models with image and video understanding. *arXiv
529 preprint arXiv:2311.08046*, 2023.

530 Will Kay, Joao Carreira, Karen Simonyan, Brian Zhang, Chloe Hillier, Sudheendra Vijaya-
531 narasimhan, Fabio Viola, Tim Green, Trevor Back, Paul Natsev, et al. The kinetics human action
532 video dataset. *arXiv preprint arXiv:1705.06950*, 2017.

533 Bo Li, Yuanhan Zhang, Dong Guo, Renrui Zhang, Feng Li, Hao Zhang, Kaichen Zhang, Peiyuan
534 Zhang, Yanwei Li, Ziwei Liu, et al. Llava-onevision: Easy visual task transfer. *arXiv preprint
535 arXiv:2408.03326*, 2024a.

540 Feng Li, Renrui Zhang, Hao Zhang, Yuanhan Zhang, Bo Li, Wei Li, Zejun Ma, and Chunyuan Li.
 541 Llava-next-interleave: Tackling multi-image, video, and 3d in large multimodal models. *arXiv*
 542 *preprint arXiv:2407.07895*, 2024b.

543 Junnan Li, Dongxu Li, Silvio Savarese, and Steven Hoi. Blip-2: Bootstrapping language-
 544 image pre-training with frozen image encoders and large language models. *arXiv preprint*
 545 *arXiv:2301.12597*, 2023a.

546 KunChang Li, Yinan He, Yi Wang, Yizhuo Li, Wenhui Wang, Ping Luo, Yali Wang, Limin Wang,
 547 and Yu Qiao. Videochat: Chat-centric video understanding. *arXiv preprint arXiv:2305.06355*,
 548 2023b.

549 Kunchang Li, Yali Wang, Yinan He, Yizhuo Li, Yi Wang, Yi Liu, Zun Wang, Jilan Xu, Guo Chen,
 550 Ping Luo, et al. Mvbench: A comprehensive multi-modal video understanding benchmark. *arXiv*
 551 *preprint arXiv:2311.17005*, 2023c.

552 Yanwei Li, Chengyao Wang, and Jiaya Jia. Llama-vid: An image is worth 2 tokens in large language
 553 models. *arXiv preprint arXiv:2311.17043*, 2023d.

554 Haotian Liu, Chunyuan Li, Yuheng Li, and Yong Jae Lee. Improved baselines with visual instruction
 555 tuning. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recog-
 556 nition*, pp. 26296–26306, 2024a.

557 Haotian Liu, Chunyuan Li, Yuheng Li, Bo Li, Yuanhan Zhang, Sheng Shen, and Yong Jae Lee.
 558 Llava-next: Improved reasoning, ocr, and world knowledge, 2024b.

559 Jiajun Liu, Yibing Wang, Hanghang Ma, Xiaoping Wu, Xiaoqi Ma, Xiaoming Wei, Jianbin Jiao,
 560 Enhua Wu, and Jie Hu. Kangaroo: A powerful video-language model supporting long-context
 561 video input. *arXiv preprint arXiv:2408.15542*, 2024c.

562 Ruyang Liu, Jingjia Huang, Wei Gao, Thomas H Li, and Ge Li. Mug-stan: Adapting image-language
 563 pretrained models for general video understanding. *arXiv preprint arXiv:2311.15075*, 2023a.

564 Ruyang Liu, Jingjia Huang, Ge Li, Jiashi Feng, Xinglong Wu, and Thomas H Li. Revisiting temporal
 565 modeling for clip-based image-to-video knowledge transferring. In *Proceedings of the IEEE/CVF
 566 Conference on Computer Vision and Pattern Recognition*, pp. 6555–6564, 2023b.

567 Ruyang Liu, Chen Li, Yixiao Ge, Thomas H Li, Ying Shan, and Ge Li. Bt-adapter: Video conver-
 568 sation is feasible without video instruction tuning. In *Proceedings of the IEEE/CVF Conference
 569 on Computer Vision and Pattern Recognition*, pp. 13658–13667, 2024d.

570 Ruyang Liu, Chen Li, Haoran Tang, Yixiao Ge, Ying Shan, and Ge Li. St-llm: Large language
 571 models are effective temporal learners. *arXiv preprint arXiv:2404.00308*, 2024e.

572 Zuyan Liu, Yuhao Dong, Ziwei Liu, Winston Hu, Jiwen Lu, and Yongming Rao. Oryx mllm: On-
 573 demand spatial-temporal understanding at arbitrary resolution. *arXiv preprint arXiv:2409.12961*,
 574 2024f.

575 Huaishao Luo, Lei Ji, Ming Zhong, Yang Chen, Wen Lei, Nan Duan, and Tianrui Li. Clip4clip: An
 576 empirical study of clip for end to end video clip retrieval and captioning. *Neurocomputing*, 508:
 577 293–304, 2022.

578 Ruipu Luo, Ziwang Zhao, Min Yang, Junwei Dong, Minghui Qiu, Pengcheng Lu, Tao Wang, and
 579 Zhongyu Wei. Valley: Video assistant with large language model enhanced ability. *arXiv preprint*
 580 *arXiv:2306.07207*, 2023.

581 Fan Ma, Xiaojie Jin, Heng Wang, Yuchen Xian, Jiashi Feng, and Yi Yang. Vista-llama: Reducing
 582 hallucination in video language models via equal distance to visual tokens. In *Proceedings of the
 583 IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 13151–13160, 2024.

584 Yiwei Ma, Guohai Xu, Xiaoshuai Sun, Ming Yan, Ji Zhang, and Rongrong Ji. X-clip: End-to-
 585 end multi-grained contrastive learning for video-text retrieval. In *Proceedings of the 30th ACM
 586 International Conference on Multimedia*, pp. 638–647, 2022.

594 Muhammad Maaz, Hanoona Rasheed, Salman Khan, and Fahad Shahbaz Khan. Video-chatgpt:
 595 Towards detailed video understanding via large vision and language models. *arXiv preprint*
 596 *arXiv:2306.05424*, 2023.

597

598 Kartikeya Mangalam, Raiymbek Akshulakov, and Jitendra Malik. Egoschema: A diagnostic bench-
 599 mark for very long-form video language understanding. *Advances in Neural Information Process-
 600 ing Systems*, 36, 2024.

601 Jongwoo Park, Kanchana Ranasinghe, Kumara Kahatapitiya, Wonjeong Ryoo, Donghyun Kim, and
 602 Michael S Ryoo. Too many frames, not all useful: Efficient strategies for long-form video qa.
 603 *arXiv preprint arXiv:2406.09396*, 2024.

604

605 Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
 606 Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
 607 models from natural language supervision. In *International conference on machine learning*, pp.
 608 8748–8763. PMLR, 2021.

609

610 Shuhuai Ren, Linli Yao, Shicheng Li, Xu Sun, and Lu Hou. Timechat: A time-sensitive multimodal
 611 large language model for long video understanding. In *Proceedings of the IEEE/CVF Conference
 612 on Computer Vision and Pattern Recognition*, pp. 14313–14323, 2024.

613

614 Christoph Schuhmann, Richard Vencu, Romain Beaumont, Robert Kaczmarczyk, Clayton Mullis,
 615 Aarush Katta, Theo Coombes, Jenia Jitsev, and Aran Komatsuzaki. Laion-400m: Open dataset of
 616 clip-filtered 400 million image-text pairs. *arXiv preprint arXiv:2111.02114*, 2021.

617

618 Xiaoqian Shen, Yunyang Xiong, Changsheng Zhao, Lemeng Wu, Jun Chen, Chenchen Zhu, Zechun
 619 Liu, Fanyi Xiao, Balakrishnan Varadarajan, Florian Bordes, et al. Longvu: Spatiotemporal adap-
 620 tive compression for long video-language understanding. *arXiv preprint arXiv:2410.17434*, 2024.

621

622 Yan Shu, Zheng Liu, Peitian Zhang, Minghao Qin, Junjie Zhou, Zhengyang Liang, Tiejun Huang,
 623 and Bo Zhao. Video-xl: Extra-long vision language model for hour-scale video understanding.
 624 In *Proceedings of the Computer Vision and Pattern Recognition Conference*, pp. 26160–26169,
 625 2025.

626

627 Enxin Song, Wenhao Chai, Guanhong Wang, Yucheng Zhang, Haoyang Zhou, Feiyang Wu, Haozhe
 628 Chi, Xun Guo, Tian Ye, Yanting Zhang, et al. Moviechat: From dense token to sparse memory
 629 for long video understanding. In *Proceedings of the IEEE/CVF Conference on Computer Vision
 630 and Pattern Recognition*, pp. 18221–18232, 2024.

631

632 Qiang Wang, Yanhao Zhang, Yun Zheng, Pan Pan, and Xian-Sheng Hua. Disentangled representa-
 633 tion learning for text-video retrieval. *arXiv preprint arXiv:2203.07111*, 2022.

634

635 Xiao Wang, Qingyi Si, Jianlong Wu, Shiyu Zhu, Li Cao, and Liqiang Nie. Retake: Reducing tempo-
 636 ral and knowledge redundancy for long video understanding. *arXiv preprint arXiv:2412.20504*,
 637 2024a.

638

639 Xiaohan Wang, Yuhui Zhang, Orr Zohar, and Serena Yeung-Levy. Videoagent: Long-form video
 640 understanding with large language model as agent. In *European Conference on Computer Vision*,
 641 pp. 58–76. Springer, 2024b.

642

643 Ziyang Wang, Shoubin Yu, Elias Stengel-Eskin, Jaehong Yoon, Feng Cheng, Gedas Bertasius, and
 644 Mohit Bansal. Videotree: Adaptive tree-based video representation for llm reasoning on long
 645 videos. *arXiv preprint arXiv:2405.19209*, 2024c.

646

647 Haoning Wu, Dongxu Li, Bei Chen, and Junnan Li. Longvideobench: A benchmark for long-context
 648 interleaved video-language understanding. *Advances in Neural Information Processing Systems*,
 649 37:28828–28857, 2024.

650

651 Junbin Xiao, Xindi Shang, Angela Yao, and Tat-Seng Chua. Next-qa: Next phase of question-
 652 answering to explaining temporal actions. In *Proceedings of the IEEE/CVF conference on com-
 653 puter vision and pattern recognition*, pp. 9777–9786, 2021a.

648 Junbin Xiao, Xindi Shang, Angela Yao, and Tat-Seng Chua. Next-qa: Next phase of question-
 649 answering to explaining temporal actions. In *Proceedings of the IEEE/CVF conference on com-*
 650 *puter vision and pattern recognition*, pp. 9777–9786, 2021b.

651

652 Lin Xu, Yilin Zhao, Daquan Zhou, Zhijie Lin, See Kiong Ng, and Jiashi Feng. Pllava:
 653 Parameter-free llava extension from images to videos for video dense captioning. *arXiv preprint*
 654 *arXiv:2404.16994*, 2024a.

655

656 Mingze Xu, Mingfei Gao, Zhe Gan, Hong-You Chen, Zhengfeng Lai, Haiming Gang, Kai Kang,
 657 and Afshin Dehghan. Slowfast-llava: A strong training-free baseline for video large language
 658 models. *arXiv preprint arXiv:2407.15841*, 2024b.

659

660 An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan Li,
 661 Dayiheng Liu, Fei Huang, Haoran Wei, et al. Qwen2. 5 technical report. *arXiv preprint*
 662 *arXiv:2412.15115*, 2024.

663

664 Kexin Yi, Chuang Gan, Yunzhu Li, Pushmeet Kohli, Jiajun Wu, Antonio Torralba, and Joshua B
 665 Tenenbaum. Clevrer: Collision events for video representation and reasoning. *arXiv preprint*
 666 *arXiv:1910.01442*, 2019.

667

668 Xiaohua Zhai, Basil Mustafa, Alexander Kolesnikov, and Lucas Beyer. Sigmoid loss for language
 669 image pre-training. In *Proceedings of the IEEE/CVF international conference on computer vision*,
 670 pp. 11975–11986, 2023.

671

672 Boqiang Zhang, Kehan Li, Zesen Cheng, Zhiqiang Hu, Yuqian Yuan, Guanzheng Chen, Sicong
 673 Leng, Yuming Jiang, Hang Zhang, Xin Li, et al. Videollama 3: Frontier multimodal foundation
 674 models for image and video understanding. *arXiv preprint arXiv:2501.13106*, 2025.

675

676 Hang Zhang, Xin Li, and Lidong Bing. Video-llama: An instruction-tuned audio-visual language
 677 model for video understanding. *arXiv preprint arXiv:2306.02858*, 2023.

678

679 Haoji Zhang, Yiqin Wang, Yansong Tang, Yong Liu, Jiashi Feng, Jifeng Dai, and Xiaojie Jin.
 680 Flash-vstream: Memory-based real-time understanding for long video streams. *arXiv preprint*
 681 *arXiv:2406.08085*, 2024a.

682

683 Peiyuan Zhang, Kaichen Zhang, Bo Li, Guangtao Zeng, Jingkang Yang, Yuanhan Zhang, Ziyue
 684 Wang, Haoran Tan, Chunyuan Li, and Ziwei Liu. Long context transfer from language to vision.
 685 *arXiv preprint arXiv:2406.16852*, 2024b.

686

687 Yuanhan Zhang, Jinming Wu, Wei Li, Bo Li, Zejun Ma, Ziwei Liu, and Chunyuan Li. Video
 688 instruction tuning with synthetic data. *arXiv preprint arXiv:2410.02713*, 2024c.

689

690 Xingyi Zhou, Anurag Arnab, Shyamal Buch, Shen Yan, Austin Myers, Xuehan Xiong, Arsha Na-
 691 grani, and Cordelia Schmid. Streaming dense video captioning. In *Proceedings of the IEEE/CVF*
 692 *Conference on Computer Vision and Pattern Recognition*, pp. 18243–18252, 2024.

693

694 Jinguo Zhu, Weiyun Wang, Zhe Chen, Zhaoyang Liu, Shenglong Ye, Lixin Gu, Hao Tian, Yuchen
 695 Duan, Weijie Su, Jie Shao, et al. Internvl3: Exploring advanced training and test-time recipes for
 696 open-source multimodal models. *arXiv preprint arXiv:2504.10479*, 2025.

697

698 Orr Zohar, Xiaohan Wang, Yann Dubois, Nikhil Mehta, Tong Xiao, Philippe Hansen-Estruch,
 699 Licheng Yu, Xiaofang Wang, Felix Juefei-Xu, Ning Zhang, et al. Apollo: An exploration of
 700 video understanding in large multimodal models. *arXiv preprint arXiv:2412.10360*, 2024.

701

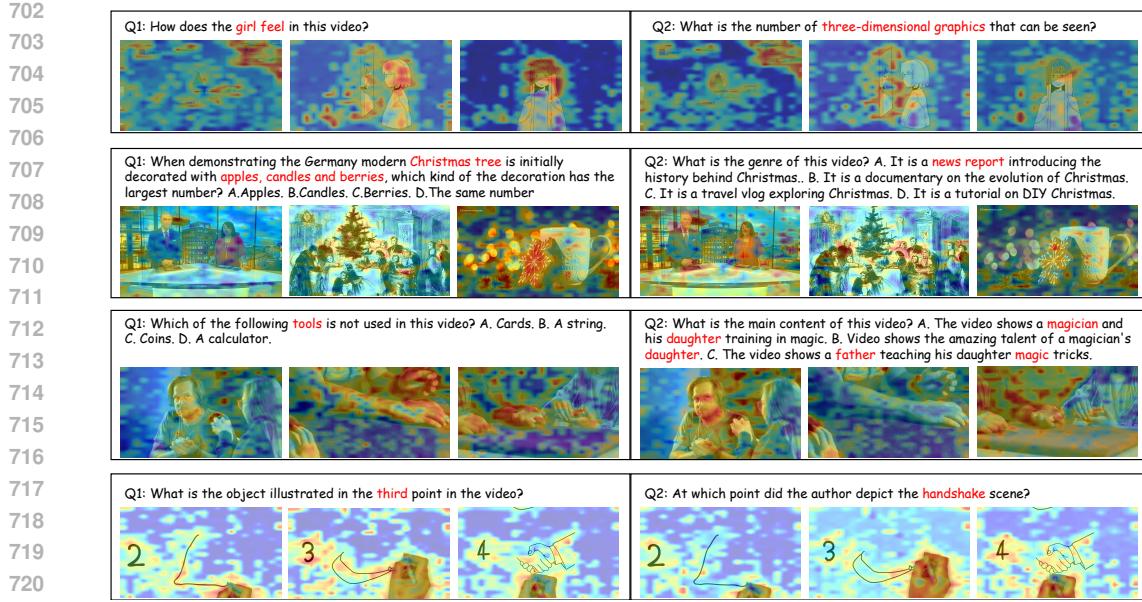


Figure 5: The visualization of the attention weights used to guide video pooling.

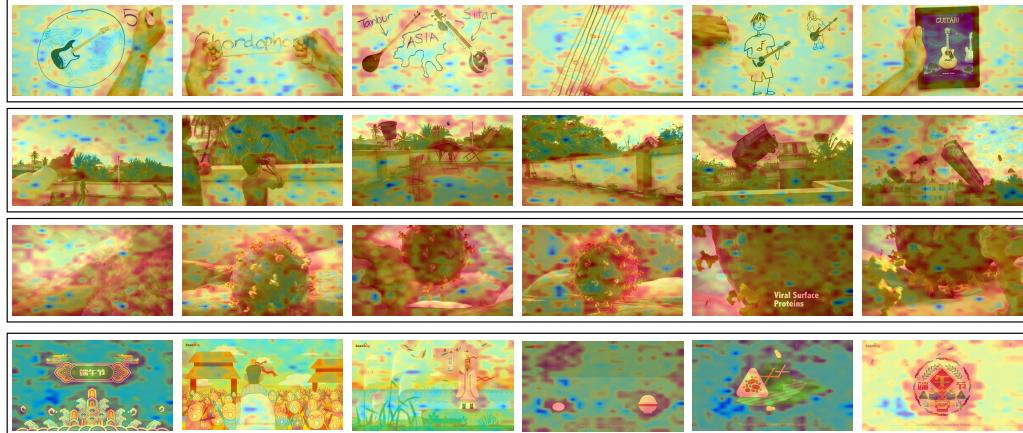


Figure 6: The visualization of the attention weights used to guide video pooling. The prompts for all videos are “Describe this video.”

A QUALITATIVE RESULTS

747
748
749
750
751
752
753
754
755

In Fig. 5, we visualize the attention weights used to guide video pooling based on the user prompts. For the same video, we tried different questions. It can be clearly observed that the model’s attention shifts noticeably depending on the question. For example, when the user asks about the girl’s feelings, the attention is significantly focused on her face. Conversely, when asked about the number of 3D objects in the video, the attention shifts more toward the 3D objects. These visualizations demonstrate that while reducing the visual context, PPPLaVA effectively captures the key information in the video. In Fig. 6, we additionally illustrate the attention weights for captioning-related questions, as these questions theoretically provide less informational content. As shown in the figure, prompts like “Describe this video,” which lack specific references, result in attention weights being evenly distributed across the foreground. This indicates that our model still plays a significant

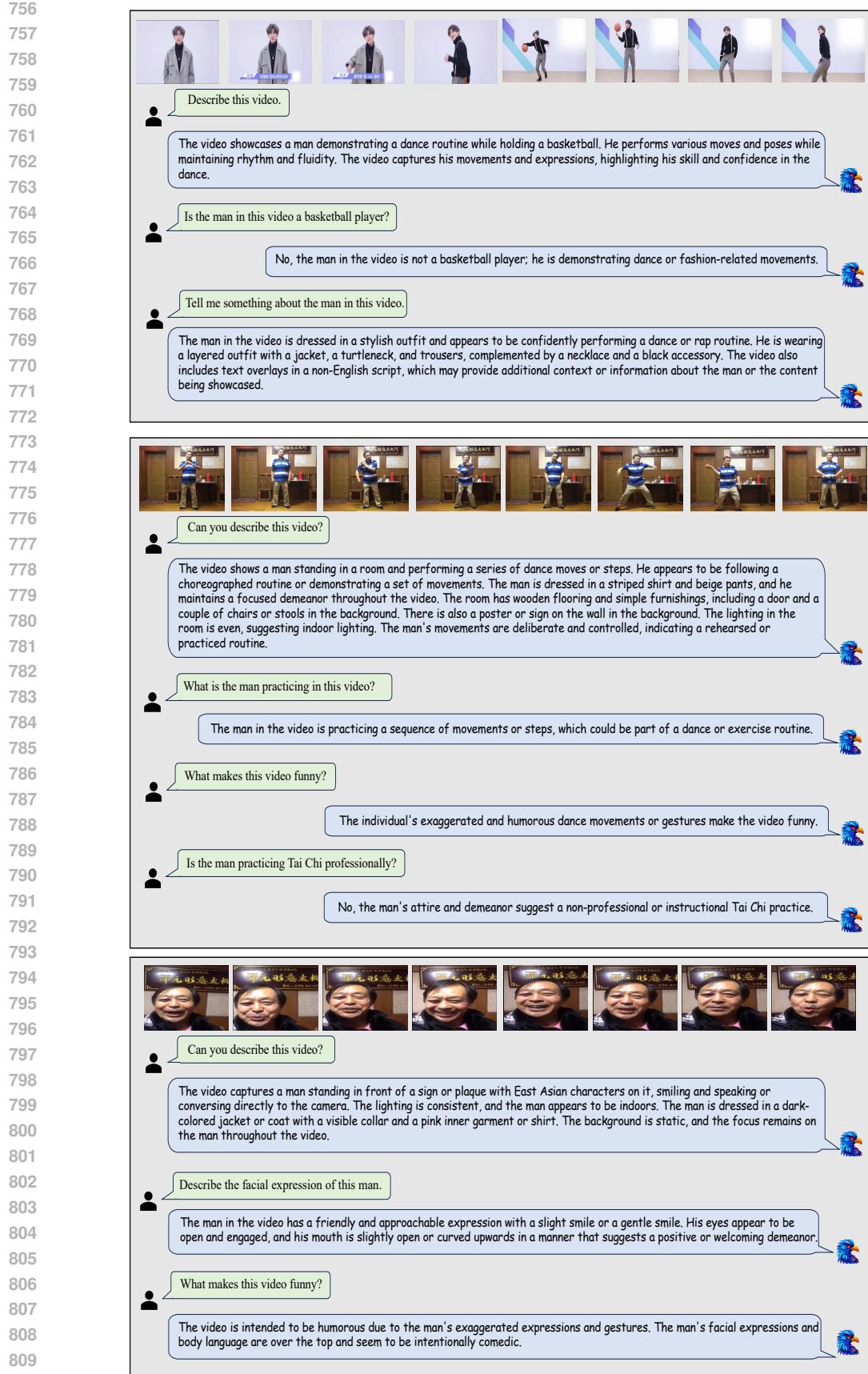


Figure 7: Qualitative result of multi-turn video conversation and reasoning.

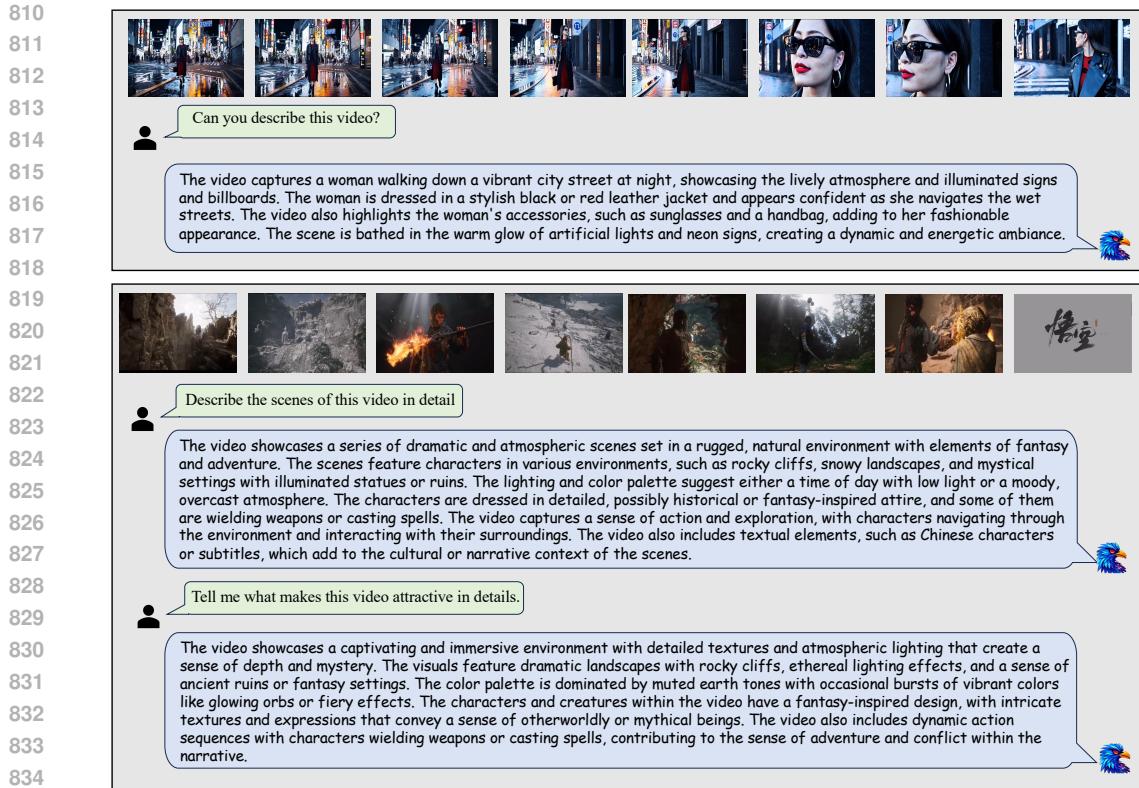


Figure 8: Qualitative result of video summary and detailed video description.

role in handling captioning-related questions. In Fig. 8 and 7, we further present some examples of video dialogue. As shown in Fig. 8, for the famous Sora video, PPLLaVA can accurately and intricately describe details about the protagonist and the environment. For the more complex scene changes in the trailer for Black Myth Wu Kong, PPLLaVA remarkably captures the details of each scene and character. In Fig. 7, PPLLaVA maintains accuracy and consistency across multiple rounds of dialogue and is capable of making reasonable inferences on open-ended questions.

B LIMITATION

Limited model size and context. Although the 7B PPLLaVA has demonstrated impressive performance, even rivaling that of 34B video LLMs, our biggest regret is that, due to having only eight A100 GPUs, we were unable to train a larger model or extend the context length to uncover the full potential of this architecture. Current state-of-the-art MLLMs, such as LLaVA-OneVision, typically adopt an 8K or longer context, which requires at least 64 A100 GPUs for training—an expense we cannot afford. On the other hand, the smaller context length ensures PPLLaVA’s exceptional efficiency, representing a trade-off between efficiency and performance.

Dependency on user prompt. PPLLaVA utilizes user instructions to compress visual tokens and extract relevant information. However, when the user instruction carries limited information (e.g., "Describe this video"), it may impact the model’s performance. In fact, this is a common limitation of MLLM methods that rely on semantic priors Park et al. (2024); Wang et al. (2024b); Shen et al. (2024); Wang et al. (2024c;a). Nonetheless, there is evidence that PPLLaVA can partially mitigate the impact of insufficient information in user prompts: (1) Theoretically, numerous studies have shown that Q-former can adaptively extract key video features, even when given minimal or no user prompts. Since PPLLaVA functions as a more lightweight and flexible version of Q-former, it may also inherit Q-former’s ability to adaptively capture essential video features. (2) Quantitatively, in the VideoChatGPT-Bench, over 50% of the questions are caption-style prompts such as "What is happening in the video?" and "What is the sequence of events in the video?" Despite this, our method still performs well on VideoChatGPT. (3) Qualitatively, in Fig. 6, we visualize the attention weights

864 used to guide video pooling for captioning-related questions. As shown in the figure, despite the lack
865 of sufficient information in prompts like "Describe this video," the attention weights still manage to
866 distribute relatively evenly across the foreground while filtering out some meaningless background.
867 This suggests that our model remains effective in handling captioning-related questions.
868

869 **C USE OF LLM**
870

871 In this work, the LLM is used solely for language polishing and serves no other purpose.
872

873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917