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ABSTRACT

Optimiser design influences learning speed and generalisation in training machine
learning models. Several studies have attempted to learn more effective gradient-
descent optimisers via solving a bi-level optimisation problem where generalisation
error is minimised with respect to optimiser parameters. However, most existing
neural network oriented optimiser learning methods are intuitively motivated, with-
out clear theoretical support, and focus on learning implicit biases that improve
generalisation, rather than speed of convergence. We take a different perspective
starting from mirror descent rather than gradient descent, and meta-learning the
corresponding Bregman divergence. Within this paradigm, we formalise a novel
meta-learning objective of optimising the rate of convergence. The resulting frame-
work, termed Meta Mirror Descent (MetaMD), learns to accelerate optimisation
speed. Unlike many meta-learned neural network optimisers, it also supports con-
vergence guarantees and uniquely does so without requiring validation data. We
empirically evaluate our framework on a variety of tasks and architectures in terms
of convergence rate and generalisation error and demonstrate strong performance.

1 INTRODUCTION

Gradient-based optimisation algorithms, such as stochastic gradient descent (SGD), are fundamental
building blocks of many machine learning algorithms—notably those focused on training linear
models and deep neural networks. These methods are typically developed to solve a broad class of
problems, and therefore the method developers make as few assumptions about the target problem as
possible. This leads to a variety of general purpose techniques for optimisation, but such generality
often comes with slower convergence. By taking advantage of more information about the target
problem, one is typically able to design more efficient—but less general—optimisation algorithms.
Another challenge in a non-convex deep learning context, is that that many of the empirically fastest
optimisers such as Adam (Kingma & Ba, 2015) lack convergence guarantees.

While one line of research hand-designs optimisers to exploit known properties of particular problems,
a complementary line of research focuses on situations where optimisation problems come in families.
This allows the use of meta-learning techniques to fit an optimiser to the given problem family
with the goal of maximising convergence speed or generalisation performance. For example, in
the many-shot regime, Andrychowicz et al. (2016) and Wichrowska et al. (2017) learn black-box
neural optimisers to accelerate training of neural networks, while Bello et al. (2017) learn symbolic
gradient-based optimisers to improve generalisation. MAML (Finn et al., 2017) and Meta-SGD (Li
et al., 2017) learned initialisation and learning rate for SGD training of neural networks with good
generalisation performance in the few-shot regime. Later generalisations focused on learning problem
family-specific curvature information (Park & Oliva, 2019; Flennerhag et al., 2020). Nevertheless,
most existing learned optimisers such as Andrychowicz et al. (2016); Wichrowska et al. (2017);
Flennerhag et al. (2020); Bello et al. (2017) can not provide convergence guarantees.

In this work, we revisit the optimiser learning problem from the perspective of mirror descent. Mirror
descent introduces a Bregman divergence that regularises the distance between current and next
iterate, introducing a strongly convex sub-problem that can be optimised exactly. In mirror descent,
the choice of Bregman divergence determines optimisation dynamics. In a meta-learning context, the
Bregman divergence thus provides a interesting representation of an optimisation strategy that can be
fit to a given family of optimisation problems, leading to our learned optimiser termed Meta Mirror
Descent (MetaMD). Many existing learned optimisers do not have a formal notion of convergence
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rate, and in practice typically optimise a meta-objective reflecting training or validation loss after a
fixed number of iterations. In contrast, MetaMD is directly trained to optimise the convergence rate
bound for mirror descent. Importantly, this means we can adapt theoretical guarantees from mirror
descent to provide convergence guarantees for MetaMD, an important property not provided by most
learned optimsers, and many hand-designed optimisers widely used in deep learning.

An important issue in meta-learning mirror descent is specifying the family of Bregman divergences
to learn. Meta-learning with general Bregman divergences leads to an intractable tri-level optimi-
sation problem. Thus, we seek a family of divergences for which the innermost optimisation has a
closed form solution. The chosen paramaterisation should be complex enough to exhibit interesting
optimisation dynamics, simple enough to provide a closed form solution, and always provide a valid
Bregman divergence. We provide a parameterisation that meets all these desideratum in the form of a
Kronecker factorised preconditioner Zehfuss (1858); Martens & Grosse (2015). Preconditioners have
been successfully exploited in meta-learning methods such as Meta-Curvature Park & Oliva (2019),
and WarpGrad Flennerhag et al. (2020), and are richer than the parameter-wise learning rates Li et al.
(2017); Khodak et al. (2019), which is a special case. Importantly, we also show how to train the
divergence efficiently with implicit gradient computation Lorraine et al. (2020). Uniquely, this means
that our framework can effectively train learning-rates (as a special case of preconditioning) with
implicit gradient, an idea that was previously suggested to be impossible (Lorraine et al., 2020).

Empirically we demonstrate that we can train MetaMD given a model architecture and a suite of train-
ing tasks. We then deploy it to novel testing tasks and show that MetaMD provides fast convergence
and good generalisation compared to several existing hand-designed and learned optimisers.

2 RELATED WORK

Meta-learning aims to extract some notion of ‘how to learn’ given a task or distribution of tasks
(Hospedales et al., 2020), such that new learning trials are better or faster. These two stages are often
called meta-training, and meta-testing respectively. Key dichotomies include: meta-learning from a
single task vs a task distribution (as formalised, e.g., by Baxter (2000)); the type of meta-knowledge to
be extracted; and long- vs short-horizon meta-learning. For few-shot problems with short optimisation
horizons, the seminal model-agnostic meta-learning (MAML) Finn et al. (2017) learns an initial
condition from which only a few optimisation steps are required solve a new task. Meta-SGD Li et al.
(2017) and Meta-Curvature Park & Oliva (2019) extend MAML by learning a parameter-wise learning
rate, and a preconditioning matrix, respectively. Another group of methods focus on larger scale
problems in terms of dataset size and optimisation horizon. For example, neural architecture search
(NAS) Real et al. (2019); Zoph & Le (2017) discovers effective neural architectures. MetaReg Balaji
et al. (2018) meta-learns regularisation parameters to improve domain generalisation.

Several studies focus specifically on optimiser meta-learning for many-shot batch learning problems,
which we address here. In this case, the extracted meta-knowledge spans learning rates for SGD
(Micaelli & Storkey, 2021), symbolic gradient-descent rules (Bello et al., 2017) neural network
gradient-descent rules (Andrychowicz et al., 2016; Li & Malik, 2017), and gradient-free optimisers
(Sandler et al., 2021; Chen et al., 2017). Differently to the gradient-descent based methods, we
start from the perspective of mirror descent, where mirror descent’s Bregman Divergence provides a
target for meta-learning. This perspective has several benefits, notably the ability to derive a learned
optimiser with convergence and generalisation guarantees. Our suggested practical instantiation is
to meta-learn a Kronecker-factorised pre-conditioner, which is effective and efficient. However, the
framework is general and can be used to learn particular special cases such as element-wise learning
rates Li et al. (2017); Micaelli & Storkey (2021). Beyond supporting this richer representation,
we provide convergence guarantees, do not rely on a validation set, and demonstrate cross-dataset
generalisation, enabling us to amortise meta-learning cost. In contrast, the single task meta-learner
of Micaelli & Storkey (2021) needs to repeat meta-learning on each specific dataset to optimise
per-dataset validation performance.

In addition to the work on deep meta-learning of optimisers and optimiser hyperparameters, there is
also a rich literature on principled development of online meta-learning algorithms that aim minimise
various notions of meta-regret Finn et al. (2019); Denevi et al. (2019b;a; 2018); Balcan et al. (2019);
Khodak et al. (2019). Several of these build on online mirror descent, but there is an important
distinction between their work and ours: we focus on the batch setting, with a view to ensuring the
resulting algorithm can be tractably applied to deep neural networks. ARUBA (Khodak et al., 2019)
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is perhaps closest to our work. A closed-form update rule for the Bregman divergence is derived
from a similar convergence bound. However, (i) it addresses online rather than the batch training
regime relevant for neural network learning, and (ii) it is only instantiated with a Bregman divergence
parameterised by a diagonal matrix.

3 STOCHASTIC MIRROR DESCENT

We formalise the problem of learning an optimiser using the Stochastic Mirror Descent (SMD)
framework, which can be thought of as a generalisation of stochastic subgradient descent. SMD
optimisers produce a series of progressively better estimates for the optimal parameters of the
objective function. This is accomplished by solving a convex optimisation problem at each step, t,

θt+1 = argmin
θ

⟨∇θLS(θt; ξ), θ⟩+
1

2η
Bϕ(θ||θt) (1)

where LS(·; ξ) provides an unbiased stochastic approximation of the loss based on the random
variable ξ and training set S, η is the step size. Bϕ denotes a Bregman divergence, which can be
thought of as a way of measuring distance in parameter space, and each choice of Bregman divergence
leads to a different optimisation algorithm. One can define Bregman divergences as

Bϕ(θ||θ′) = ϕ(θ)− ϕ(θ′)− ⟨∇ϕ(θ′), θ − θ′⟩, (2)

where ϕ is a λ-strongly convex function. There are several choices of ϕ that result in existing
algorithms specialised for various types of optimisation problems in machine learning. For example,
if one chooses ϕ to be 1

2∥ · ∥
2
2, then mirror descent becomes gradient descent, while choosing ϕ to be

the negative entropy results in the Kullback-Leibler divergence, leading to the exponentiated gradient
algorithm (Kivinen & Warmuth, 1997). A significant benefit of deriving new algorithms that fit into
the mirror descent framework is that, in the convex setting, one can obtain bounds on the rate of
convergence towards a minima θ∗ for any valid choice of ϕ—including those that are learned. In this
work we make use of the following convergence analysis:

Theorem 3.1 (Corollary 8 from D’Orazio et al. (2021)). If LS(·; ξ) is convex and L-smooth1 w.r.t.
to the Euclidean norm for all ξ, and ϕ is essentially smooth, then stochastic mirror descent with
constant step size η ≤ λ/2L guarantees

Eξ[LS(θ̄; ξ)− LS(θ∗; ξ)] ≤
2Bϕ(θ∗||θ1)

ηT
+ 2σ2, (3)

where θ̄ = 1
T

∑T
t=1 θt and σ2 = infθ Eξ[LS(θ; ξ)]− Eξ[infθ LS(θ; ξ)].

We note that one can obtain a trivial corollary where instead of θ̄ appearing the left-hand side, one can
instead use the best iterate obtained after T steps, argminθt:1≤t≤T Eξ[LS(θt; ξ)]. The above bound
assumes convexity, but the convergence of stochastic mirror descent for neural networks is an open
problem, with recent work focusing on narrower families of optimisers (e.g., Zhang et al. (2020)).

4 META-LEARNING A BREGMAN DIVERGENCE

4.1 OPTIMISER LEARNING FRAMEWORK

We propose a meta-learning algorithm to learn mirror descent optimisers. We consider the multi-task
meta-learning setting (Hospedales et al., 2020; Finn et al., 2017), assuming that a task distribution
p(T ) is available from which we can draw tasks for meta-training, and that we will evaluate the
learned optimizer by meta-testing on novel tasks from the same distribution. For gradient-based
meta-learning, the meta-training procedure is conventionally framed as a bilevel optimization problem
where the inner problem solves learning tasks given the optimiser, and the outer problem updates the
optimiser (Hospedales et al., 2020). We do this by using a parameterised potential function, ϕM , to
construct the Bregman divergence. The outer problem is to minimise some meta objective denoted
E(M) with respect to parameters, M . Since our mirror descent optimizer is defined by a Bregman

1In D’Orazio et al. (2021), a function, f , is said to be L-smooth if 1
2
∥∇f(x⃗)∥22 ≤ L for all x⃗.
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Algorithm 1 Meta Mirror Descent learning algorithm.
1: Input: S1, ..., Sn, M , k {Meta-train set, initial divergence parameters, minibatch size}
2: Output: M {Learned divergence parameters}
3: while not converged or reached max steps do
4: H= 0 {Set hypergradient accumulator}
5: for all Si ∈ minibatch(S1, ..., Sn, k) do
6: Init θi {Set random weights for base model}
7: θ∗i = argminθ BϕM (θ, θ1) s.t. θ ∈ argminθ′ LS(θ

′) {Train the base model with mirror descent}
8: H = H + 1

k
hypergradient(BϕM , E , ϕM , θ∗i ) {Obtain in Eq 13, detailed in Appx.A.12}

9: end for
10: M = update(M,H) {Update M using SGD (or similar) update rule}
11: end while

divergence BϕM
, this leads to a tri-level optimisation problem with a new layer corresponding to the

problem given in Eq. 1 required to complete a single mirror descent step,

min
M

E(M, θ∗(M)) (4)

s.t. θ∗(M) = argmin
θ

LS(θ) = (πϕM
◦ πϕM

◦ ... ◦ πϕM
)(θ1) (5)

s.t.πϕM
(θt) = argmin

θ
⟨∇θLS(θt), θ⟩+

1

2η
BϕM

(θ||θt). (6)

In the outer problem (Eq. 4), the algorithm aims to learn a divergence by optimising the meta-
objective E , which evaluates the optimiser performance. To achieve this requires getting the best
response from the mid-level problem (Eq. 5) where the base model is trained from the initialisation θ1
to θ∗ by recursively applying the πϕM

operation, which is defined in the innermost problem (Eq. 15).
The inner problem corresponds to performing a stochastic mirror descent update using a Bregman
divergence based on ϕM . Compared with the standard bilevel problems in meta-learning, introducing
this third layer adds significant cost to both meta-train and meta-test stages. However, with a suitable
choice of divergence, we can obtain a closed-form solution for the inner problem, thus reducing the
cost to be similar to that of a standard bilevel optimisation problem. This section explains the main
components of our method, which is summarised in Algorithm 1.

4.2 DIVERGENCE PARAMETERISATION

The paramaterisation of the divergence is important for a practical instantiation of our framework.
Ideally it should be expressive enough to represent interesting optimisation dynamics, while being
simple enough to provide an efficient or closed form solution to the innermost convex mirror descent
optimisation. We describe a reasonable compromise as follows.

We define our Bregman divergences via the squared norm, ϕM (θ) = 1
2θ

TMθ, where M is a learnable
symmetric positive definite matrix. In this case, the inner problem has a closed form solution,

θt+1 = θt − ηM−1∇θLS(θt).

The derivation of this closed-form mapping is given in Appx. A.2. This parameterisation can
be interpreted as a preconditioner, which has high representation potentialPark & Oliva (2019);
Flennerhag et al. (2020), but it can be inefficient to compute M−1 when the dimensionality of θ is
high—as is typically the case for neural networks. To provide a better trade-off between capacity and
efficiency, we reduce the capacity of ϕM by using block diagonal matrix M = diag(M1,M2, ...,MZ)
with each block operating on the gradient of one layer in a neural network. We additionally represent
each Mζ by a Kronecker factorisation (Zehfuss, 1858; Hensel, 1889; Martens & Grosse, 2015),

Mζ = Aζ ⊗Bζ ,

where Aζ ∈ Rκ×κ and Bζ ∈ Rι×ι are two symmetric positive definite matrices parameterised by the
column vectors aζ and bζ ,

Aζ = aζa
T
ζ + Iκ, Bζ = bζb

T
ζ + Iι.

To avoid explicitly constructing Mi, we make use of the fact that

M−1
ζ ∇θζLS(θt) = (Aζ ⊗Bζ)

−1∇θζLS(θ) = B−1
ζ ∇θζLS(θ)(A

−1
ζ )T
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where θζ denotes the weights in layer ζ. A−1
ζ and B−1

ζ can be easily computed by composing
the eigenvector matrices and inverting the diagonal eigenvalue matrix generated by Singular Value
Decomposition from Aζ and Bζ respectively.

4.3 META-OBJECTIVE

The next step is to define the meta-objective in terms of the Bregman divergence parameters, M .
An advantage of the SMD framework is that we have a formal notion of convergence from an
initialisation θ1 to a solution θ∗ (from Theorem 3.1). By defining the meta objective E(M, θ) as a
bound on the convergence rate, meta-learning ϕM leads to a faster optimiser. In particular, we design
a meta-objective based on the quantities that appear in Theorem 3.1. Expanding the definition of the
condition on the step size in the bound yields

Eξ[LS(θ̄; ξ)− LS(θ∗; ξ)] ≤
2BϕM

(θ∗||θ1)L
λT

+ 2σ2. (7)

Minimising the right-hand side of this inequality with respect to M ensures that the learned optimiser
finds a solution closer to a minima after T iterations of training. As our goal is to optimise the
expected speed of convergence on future tasks, we design a meta-objective that considers the average
convergence rate over n different meta-train tasks. We also discard terms that do not depend on M ,
and separate λ into a regularisation term that allows us to control the importance of optimising the
strong convexity coefficient. Thus, we define the meta-objective as

E(M, θ
(1)
T , θ

(2)
T , ...) =

1

n

n∑
i=1

BϕM
(θ

(i)
T ||θ(i)1 ) +

k

λ
+ g(M), (8)

where θ
(i)
1 and θ

(i)
T are the initial and final weights for the task i, and we leave k as a hyperparameter

that can be tuned heuristically . We will shortly define a regularisation function, g(·), which is used
to prevent meta-overfitting. The strong convexity parameter is given by λ = minζ υmin(Mζ), where
υmin denotes the smallest eigenvalue and the details are given in Appx. A.5.

We solve the outer loop optimisation problem (Eq. 4) by gradient descent using ∂E/∂M . This
gradient computation relies on unrolling training trajectories in the inner loop where it is expensive
to compute the gradient with standard reverse-mode differentiation. In this work, we apply implicit
differentiation (Lorraine et al., 2020) to solve this problem, which will be discussed in Section 4.4.

Generalisation of Convergence Rate Selecting the Bregman divergence parameters using a set of
training tasks will result in an optimistic view of how well one would expect the learned optimiser to
converge on novel tasks. That is, when Eq. 8 is evaluated on the meta-train tasks, it will provide an
overly optimistic estimate of the convergence rate one can expect on future tasks. Given the relatively
simple family of Bregman divergences we employ, it is possible to construct a high-confidence bound
on how biased this estimate will be, and therefore provide convergence guarantees for novel tasks in
terms of the meta-train objective:
Theorem 4.1. Under the same conditions as Theorem 3.1, for any M , θ1, and θ∗ such that ∥M −
I∥F ≤ C and ∥θ1 − θ∗∥2 ≤ r, the following holds with probability at least 1− δ,

ESEξ[LS(θ̄; ξ)− LS(θ∗; ξ)] ≤
1

n

n∑
i=1

2BϕM
(θ

(i)
∗ ||θ(i)1 )

ηT
+ 2σ2 +

Cr2

2
√
n
+ 3Cr2

√
ln(2/δ)
8n

. (9)

This tells us that the expected convergence rate on novel tasks depends on the learned divergence
on training tasks, plus a complexity term depending on the Frobenius distance of the meta-learned
optimiser weights M from the identity. Note that restricting the diameter r of the parameter space or
neural networks is usually required to obtain generalisation guarantees (Bartlett et al., 2017; Long &
Sedghi, 2020; Gouk et al., 2021), so this is not an unusual or counterproductive requirement. We
therefore use g(M) = γ∥M − I∥F as a regulariser. The details for computing ∥M − I∥F are given
in Appendix A.4. Note that as M approaches I , mirror descent will behave similarly to SGD.

4.4 META-GRADIENT COMPUTATION WITH IMPLICIT GRADIENT

We optimise the outer objective using a gradient-based optimisation method. Typical meta-learning
pipelines will either unroll the sequence of updates performed by an iterative optimiser to solve the
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inner problem (Finn et al., 2017), or make use of the Implicit Function Theorem (IFT) to compute
derivatives w.r.t. parameters that appear in the inner objective (Lorraine et al., 2020). The number of
inner loop iterations required to arrive at a solution in our use-case (i.e., many shot learning) makes
the memory and computation requirements of unrolling this loop infeasible, so we use our prospective
MD optimiser to find a solution and then apply the IFT method. However, the Bregman divergence
parameters do not appear in the inner problem objective, which blocks the hypergradient computation
through IFT. To this end, when computing the hypergradients, we use a rephrased inner objective
expressed in terms of the Bregman divergence parameters. This is possible by using the property that
mirror descent finds the fixed point closest to the initial guess of the network parameters, as measured
by the corresponding Bregman divergence (Azizan et al., 2021). The alternative objective function is

argmin
θ

BϕM
(θ, θ1) (10)

s.t. θ ∈ argmin
θ′

LS(θ
′). (11)

Framing the constrained optimisation problem as its Lagrangian and replacing the constraints with
(LS(θ∗)− LS(θ))

2 = 0, we obtain

argmin
θ

sup
µ

BϕM
(θ, θ1) + µ(LS(θ∗)− LS(θ))

2, (12)

where θ∗ is the solution obtained via solving the inner problem with our prospective MD optimiser,
and we note that θ = θ∗ provides us with an immediate solution to this transformed problem. This
means the second term always evaluates to zero when evaluated at the solution, and we therefore only
need to apply the IFT to the first term, yielding

∂E
∂M

=
∂E
∂θ

(
∂2BϕM

∂θ ∂θ

)−1
∂2BϕM

∂θ ∂M

∣∣∣∣∣
ϕM ,θ∗(M)

, (13)

where the inverse Hessian matrix can be approximated by Neumann series (Lorraine et al., 2020).

5 EXPERIMENTS

We evaluate our learned optimiser and compare its performance on a variety of tasks against commonly
used standard optimisers including SGD, SGD-M (with momentum), Adam (Kingma & Ba, 2015)
RMSProp (Tieleman & Hinton, 2012) and KFAC (Martens & Grosse, 2015), and meta-learning
based methods, L2O (Andrychowicz et al., 2016), Meta-SGD (Li et al., 2017), Meta-Curvature
(MetaCur) (Park & Oliva, 2019), ARUBA (Khodak et al., 2019), ARUBA++ (Khodak et al., 2019),
PowerSign (Bello et al., 2017) and AddSign (Bello et al., 2017). We first explore synthetic tasks,
followed by shallow neural networks on digit datasets, and then training ResNet on CIFAR-10, before
finally evaluating deep neural networks on high resolution images.

Algorithm deployment pipeline: For each set of experiments, we train MetaMD on a set of meta-
train datasets, and evaluate it on a disjoint set of meta-test datasets. In the meta-test stage, models are
trained by MetaMD (or competitors) using each dataset’s standard training set, and evaluated on the
corresponding test splits. We emphasize that for meta-testing, each optimiser consumes the same
amount of data, and a comparable amount of computing per iteration, except KFAC is much more
expensive due to its inverse operation in every iteration. The learned optimisers such as MetaMD,
MetaSGD, MetaCur, and X-Sign use additional data and compute for the prior meta-training stage,
but this is a one-off cost that can be amortized across different meta-test problems of interest.

5.1 SYNTHETIC PROBLEM: META-QUADRATIC OPTIMISATION

We start with a synthetic experiment to illustrate the impact of the proposed meta objective, and
simply using exact Forward Mode Differentiation (FMD) for hypergradient for learning. Meta Mirror
Descent is deployed on a family of 2D quadratic optimisation problems from which we can sample a
disjoint set of meta-training and meta-testing optimisation problems. We sample tasks of the form:

min
θ

θTQθ − bT θ
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Figure 1: Trajectory comparison of different optimisers on two quadratic optimisation problems
(rows). Columns represent optimisers from left to right: MetaMD, SGD, SGD-M and Adam. The
point green point denotes the starting point and the orange point denotes the minima. Top row:
Iterations to convergence are 23, 928, 104 and 45 respectively. Bottom Row: Iterations to convergence
are 280, 27,328, 1,838 and 324 respectively. MetaMD is the fastest.
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Figure 2: Comparison of training loss curves for different optimisers. Left: RotatedMNIST, averaged
over all held-out domains. Right: Training loss curve of ResNet18 trained on CIFAR10

where Q and b are random variables. We give the details of the setting in Appx. A.1. A comparison
of optimisation trajectories on two kinds of meta-test quadratic problems is shown in Fig. 1. All the
optimisers are initialised in the same position and stopped when the stop criterion is met. All the
optimisers reach the minima, but those that have not meta-learned the curvature information in this
family of problems require more iterations to converge compared with MetaMD.

5.2 LEARNING MIRROR DESCENT FOR NEURAL NETWORKS

RotatedMNIST and MLPs We first evaluate optimiser learning for neural networks using the
RotatedMNIST dataset and a 3-layer MLP architecture. RotatedMNIST defines 6 domains by rotating
the original MNIST dataset by 0, 15, 30, 45, 60 and 75 degrees. We use 5 domains for meta-training,
and train MetaMD to convergence in the inner loop, and evaluate the performance on the held-out
domain. This process is repeated, holding out each domain in turn as meta-test. The convergence
curve is shown in Fig. 2(left), and the testing performance in Table 1(top). We can see that MetaMD
converges rapidly and trains models with strong testing performance. The hyperparameter tuning
protocol for this and other experiments in this section is explained in Appx A.7.

Diverse Digit Datasets and Small CNNs Next we explore applying MetaMD to a more diverse set
of datasets and CNN classifiers. We collect a set of datasets, which we denote as DiverseDigits. They
include: MNIST LeCun & Cortes (2010), QMNIST Yadav & Bottou (2019), KMNIST Clanuwat
et al. (2018), FashionMNIST Xiao et al. (2017), USPS Hull (1994) and SVHN Netzer et al. (2011).
We train LeNet classifier using MetaMD, resizing all images to 28× 28 greyscale. The same leave-
one-dataset-out protocol is used: Each dataset is held out in turn for evaluation after MetaMD is
trained on the other datasets. Compared to the previous RotatedMNIST experiment, the distribution
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Table 1: Test Accuracy (%) on RotatedMNIST and DiverseDigits with 3-layer MLP and LeNet
respectivly. Each column is a test dataset, and MetaMD is trained on the other datasets.

Test domain 0 15 30 45 60 75

3-
L

ay
er

M
L

P SGD 92.23 ± 0.57 91.91 ± 0.49 92.57 ± 0.32 92.89 ± 0.35 92.73 ± 0.32 92.36 ± 0.87
SGD-M 94.77 ± 0.58 94.64 ± 0.14 94.66 ± 0.29 94.67 ± 0.47 94.60 ± 0.47 94.47 ± 0.63
Adam 92.96 ± 0.58 93.29 ± 0.92 93.51 ± 0.84 93.69 ± 0.99 93.67 ± 0.35 92.98 ± 1.17
RMSprop 92.48 ± 0.49 93.56 ± 0.51 92.77 ± 0.50 93.58 ± 0.32 93.43 ± 0.32 93.14 ± 0.31
L2O 93.48 ± 0.74 93.46 ± 0.44 93.44 ± 0.61 93.84 ± 0.51 93.04 ± 0.22 93.64 ± 0.23
MetaCur 93.92 ± 0.45 94.62 ± 0.71 94.98 ± 0.30 94.43 ± 0.43 94.98 ± 0.71 93.83 ± 0.92

MetaMD 95.67 ± 0.39 95.59 ± 0.28 95.50 ± 0.61 95.33 ± 0.45 95.03 ± 0.63 94.99 ± 0.52

Test domain MNIST QMNIST KMNIST FashionMNIST USPS SVHN

L
eN

et

SGD 96.44 ± 0.91 96.23 ± 0.73 87.61 ± 1.87 88.95 ± 1.43 92.73 ± 1.13 85.44 ± 1.22
SGD+M 98.47 ± 0.16 97.21 ± 0.15 92.54 ± 0.62 86.44 ± 0.45 95.37 ± 0.24 86.26 ± 0.48
Adam 98.49 ± 0.17 98.10 ± 0.33 93.20 ± 0.82 87.36 ± 0.55 93.68 ± 0.38 87.07 ± 0.61
RMSprop 98.65 ± 0.21 98.30 ± 0.09 93.14 ± 0.87 87.45 ± 0.13 95.43 ± 1.06 87.01 ± 0.18
L2O 90.80 ± 0.27 92.60 ± 0.34 87.27 ± 0.68 82.34 ± 0.66 91.23 ± 0.54 34.42 ± 0.43
MetaCur 97.45 ± 0.48 97.62 ± 0.67 93.74 ± 0.27 87.50 ± 0.58 93.42 ± 0.67 86.27 ± 0.53

MetaMD 98.72 ± 0.33 98.74 ± 0.24 96.56 ± 0.49 87.33 ± 0.36 95.96 ± 0.14 86.43 ± 0.64

0 1000 2000 3000 4000 5000
Training iteraion

0.0

0.5

1.0

1.5

2.0

Tr
ai
ni
ng

 lo
ss

MNIST
SGD
SGD-M
Adam
RMSprop
L2O
MetaCur
MetaMD

0 1000 2000 3000 4000 5000
Training iteraion

0.0

0.5

1.0

1.5

2.0

Tr
ai

ni
ng

 lo
ss

QMNIST
SGD
SGD-M
Adam
RMSprop
L2O
MetaCur
MetaMD

0 20000 40000 60000 80000 100000
Training iteraion

0.0

0.5

1.0

1.5

2.0

Tr
ai
ni
ng
 lo
ss

SVHN
Adam
SGD
SGD-M

RMSprop
L2O

MetaCur
MetaMD

Figure 3: Learning curves for DiverseDigits. From left to right: MNIST, QMNIST and SVHN.

of tasks used for meta-training and meta-testing is now more diverse and challenging. Due to the
greater cost of training the base model here, we use T = 500 iterations for the inner loop, and leave
efficient meta-learning under longer-horizons as future work. We compare all methods fairly using a
common hyper-parameter tuning protocol for meta-test. Specifically, we perform grid search with
respect to meta-test validation accuracy for each competitor, and more detail is given in Appx. A.7.

The results averaged over 3 meta-test trials are shown as testing performance at convergence in
Table 1(bottom) and selected meta-test learning curves in Fig. 3, with the remaining learning curves
given in Appx. A.8. We can see that MetaMD is clearly faster than SGD and SGD-M in training con-
vergence (Fig. 3), while typically producing models with the strongest generalisation error (Table 1).
It is noteworthy that MetaMD exhibits strong cross-dataset generalisation here, corroborating our
Theorem 4.1 on cross-task optimiser generalisation.

Application to ResNet18 and CIFAR10 We next explore scaling up to deeper architectures,
aiming to train a ResNet18 on CIFAR10 as a held out testing task. To this end, we construct a suite of
meta-training datasets by combining STL10 (Coates et al., 2011) and DiverseDigits from the previous
setting. ResNet18+CIFAR10 is a well-studied problem with lots of known tuning tricks for standard
optimisers. For fair comparison, we therefore tune all methods with exactly the same BayesOpt-based
hyperparameter tuning protocol, based on CIFAR10 validation performance. For this experiment
we also compare some other learned optimisers, including: (i) PowerSign and AddSign that are not
directly comparable. They were trained on CIFAR10 (for us it is a held out dataset), but on a different
architecture Bello et al. (2017). (ii) KFAC which is directly comparable insofar as using the same
structure of preconditioner to MetaMD, but not comparable in that it computes the preconditioner
during meta-test via the Fisher Information Matrix of the target problem – while MetaMD amortizes
this cost and meta-learns it from a disjoint set of tasks, without tuning to the target task. (iv) MetaSGD
which we re-implement to use exactly the same meta-train data as MetaMD for direct comparability.

Table 2: Test accuracy on CIFAR10 using Resnet18 and various optimisers
Method KFAC SGD-M Adam AdamW PowerSign AddSign MetaSGD MetaMD

Accuracy 87.54 ± 0.23 91.37 ± 0.45 91.64 ± 0.56 92.66 ± 0.32 87.77 ± 0.32 88.29 ± 0.67 91.54 ± 0.17 93.56 ± 0.34
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Table 3: Test Accuracy (%) on high resolution datasets. Comparison with various optimiser.
Datasets Caltech DTD Flowers Pubfig

SGD-M 26.95 ± 0.35 32.66 ± 0.61 47.18 ± 0.17 74.10 ± 0.11
Adam 27.21 ± 0.53 28.09 ± 0.44 41.03 ± 0.48 73.31 ± 0.18
PowerSign 26.11 ± 0.39 31.91 ± 0.31 44.66 ± 0.53 68.25 ± 0.42
AddSign 27.21 ± 0.37 29.52 ± 0.24 44.79 ± 0.47 67.77 ± 0.29
Meta-SGD 25.41 ± 0.58 27.93 ± 0.34 48.77 ± 0.44 66.51 ± 0.36
MetaCur 12.19 ± 2.04 15.96 ± 1.42 6.46 ± 0.65 28.98 ± 1.87
ARUBA 21.84 ± 0.74 21.17 ± 1.31 20.26 ± 0.79 52.35 ± 1.16
ARUBA++ 24.26 ± 0.97 25.64 ± 0.64 39.24 ± 0.67 67.29 ± 0.63

MetaMD 37.50 ± 1.59 41.01 ± 0.87 54.84 ± 1.62 77.77 ± 0.87
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Figure 4: Learning curves on Pubfig. The left, middle and right column represent Training loss,
Training accuracy and Test accuracy respectively.

From the results in Fig. 2 (right), we can see that MetaMD converges rapidly as expected; and from
the results in Table 2 we can see that it also provides the best generalisation performance.

High Resolution Image Application Finally, we explore benchmarks with higher resolution
images with ResNet18. We construct a set of datasets including Aircraft (Maji et al., 2013), But-
terfly (Chen et al., 2018), Pets (Parkhi et al., 2012), Caltech (Griffin et al., 2007), DTD (Cimpoi
et al., 2014), Flowers (Nilsback & Zisserman, 2008), Pubfig (Pinto et al., 2011). See Appx. A.9 for
the details about each. Compared with the (28× and 32×) images used in the previous experiment
settings, these datasets are much higher resolution images. We resize them to standard 224× 224 for
ResNet18. We divide this suite of datasets into meta-train and meta-test groups. Meta-train contains
Aircraft, Butterfly and Pets. Meta-test has Caltech, DTD, Flowers, and Pubfig. Compared with
Rotated MNIST and Diverse Digit settings, the meta-train and meta-test domains are much more
different, which affects the competitors whose initialisations are part of the meta-training objectives.
MetaMD and the competitors including ARUBA, ARUBA++, MetaCur and Meta-SGD, are trained
on the meta-train domains. MetaMD requires the model trained to be converged in each outer loop it-
eration. To improve meta-training efficiency, therefore we train the base model on 20 subcategories of
each domain which are randomly sampled in each outer loop iteration. All the competitors are tested
on the meta-test tasks by training ResNet18 for each dataset individually. We did fair hyperparameter
tuning for every competitor as detailed in Appx. A.7. We compare the learning curve and the test set
performance of the learned model on each dataset. The learning curves on Pubfig are shown in Fig. 4
and the others are in Appx. A.9. Online algorithms ARUBA and ARUBA++ converge poorly in terms
of the training loss during meta-test. This is due to their prior poor convergence during meta-train,
in contrast to the batch competitors that better exploit the meta-train tasks. In contrast, MetaCur
converged well during meta-train, but suffers from meta-overfitting and converges poorly during
meta-test. Meanwhile, MetaMD exhibits rapid convergence as expected. In terms of test accuracy on
the downstream tasks, Table 3 shows that MetaMD performs best, thanks to knowledge transfer from
the source tasks reducing overfitting to these comparatively small target tasks.

6 CONCLUSION

We explored meta-learning neural network optimisers from the Mirror Descent perspective – in
practice by meta-learning a Bregman Divergence to manipulate the gradient during learning. Our
approach has clear theoretical motivation by optimizing a bound on the convergence rate, and has
both a convergence guarantee and a cross-dataset generalisation guarantee. Our practical implicit-
gradient based algorithm surprisingly (Lorraine et al., 2020) enables meta-learning of learning rates
via implicit gradient, and is empirically fast and effective compared to SGD and other competitors.
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A APPENDIX

A.1 QUADRATIC SETTING

Meta Mirror Descent is deployed on a family of 2D quadratic optimisation problems from which we
can sample a disjoint set of meta-training and meta-testing optimisation problems. We sample tasks
of the form:

min
θ

θTQθ − bT θ

where Q and b are random variables. b follows a Gaussian distribution with mean vector [1, 1]T and
identity covariance. To generate Q, which controls the flatness of the quadratic function, we sample
Q0,0 and Q1,1, independently with different Gaussian distributions. For example, on the top row in
Figure 1: the mean of Q0,0 and Q1,1 are 0.3 and 14 while on the bottom row, the mean of Q0,0 and
Q1,1 are 0.02 and 14 respectively. In addition, the initialisation of each optimisation problem is also
a random variable.

A.2 DERIVE OF THE CLOSED FORM MIRROR LOOP

In our setting, the mirror loop is described as

θt+1 = argmin
θ

⟨∇θL(θt), θ⟩+
1

2η
Bϕ(θ||θt) (14)

or, equivalently,

θt+1 = argmin
θ

η⟨∇θLtr(θt), θ⟩+Bϕ(θ||θt). (15)

Setting the gradient w.r.t. θ to zero, we have

η∇L(θt) +∇ϕ(θt+1)−∇ϕ(θt) = 0, (16)

which when rearranged yields

∇ϕ(θt+1) = ∇ϕ(θt)− η∇L(θt) (17)

θt+1 = ∇ϕ−1(∇ϕ(θt)− η∇L(θt)). (18)

In our case

ϕ(θ) =
1

2
θTMθ, (19)

where M is a block diagonal matrix. Therefore,

∇ϕ(θ) = Mθ (20)

∇ϕ−1(θ) = M−1θ. (21)

As a result, we also have

θt+1 = ∇ϕ−1(∇ϕ(θt)− η∇L(θt)) (22)

= M−1(Mθt − η∇L(θt)) (23)

= θt − ηM−1∇L(θt). (24)

A.3 PROOF OF THEOREM 4.1

We will make use of a well-known bound on suprema of empirical processes due to Bartlett &
Mendelson (2002).
Theorem A.1. For all functions f ∈ F with ∥f∥∞ ≤ a, and i.i.d. Zi, the following holds with
probability at least 1− δ,

E[f(Z)] ≤ 1

n

n∑
i=1

f(Zi) + 2R̂n(F) + 3a

√
ln(2/δ)
2n

. (25)
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In this theorem, R̂n(F) is the empirical Rademacher complexity of the class F , defined as

R̂n(F) = Eϵ

[
sup
f∈F

1

n

n∑
i=1

ϵif(Zi)

]
, (26)

where ϵi is a Rademacher random variable, so P (ϵi = −1) = P (ϵi = 1) = 0.5.

Proof. It suffices to bound, with high confidence, the difference between the first term of the meta-
objective, and the expected Bregman divergence between initializations and solutions on new tasks
sampled from the same task distribution. We will obtain such a bound using Rademacher complexity,
and the main result will follow from standard applications of Rademacher complexity-based gener-
alisation bounds (Bartlett & Mendelson, 2002), along with the observation that Bϕ(θ∗||θ1) ≤ Cr2

2 .
That is, we will treat the initial and final points of an optimisation trajectory for each task as a random
variable, and we will bound to what extent the mean Bregman divergence between initial and trained
parameters on some meta-train tasks can deviate from the expected Bregman divergence on unseen
tasks. In particular, we analyse the following class:

F = {(θ∗, θ1) 7→ Bϕ(θ∗||θ1) : ϕ(θ) =
1

2
θTMθ, ∥M − I∥F ≤ C}. (27)

Denoting θ
(i)
∗ − θ

(i)
1 by θ̃i, we can bound the Rademacher complexity of this class from above by

R̂n(F) = Eϵ

[
sup

Bϕ∈F

1

n

n∑
i=1

ϵiBϕ(θ
(i)
∗ ||θ(i)1 )

]
(28)

=
1

2n
Eϵ

[
sup
M

n∑
i=1

ϵiθ̃
T
i Mθ̃i

]
(29)

=
1

2n
Eϵ

[
sup
M

n∑
i=1

ϵi⟨M, θ̃iθ̃
T
i ⟩F

]
(30)

=
1

2n
Eϵ

[
sup
M

⟨M,

n∑
i=1

ϵiθ̃iθ̃
T
i ⟩F

]
(31)

=
1

2n
Eϵ

[
sup
M

⟨(M − I),

n∑
i=1

ϵiθ̃iθ̃
T
i ⟩F

]
+

1

2n
Eϵ

[
⟨I,

n∑
i=1

ϵiθ̃iθ̃
T
i ⟩F

]
, (32)

where ⟨·, ·⟩F is the Frobenius inner product. Note that the second term in the final equality is equal
to zero. As such we can continue by further bounding the first term using the Cauchy-Schwarz
inequality,

R̂n(F) ≤ C

2n
Eϵ

[∥∥∥∥∥
n∑

i=1

ϵiθ̃iθ̃
T
i

∥∥∥∥∥
F

]
(33)

The remainder of the proof follows a well-known sequence of steps using when bounding the expected
norm of a Rademacher sum (see, e.g., (Shalev-Shwartz & Ben-David, 2014)), which we include here
for completeness. Jensen’s inequality tells us that

Eϵ

[∥∥∥∥∥
n∑

i=1

ϵiθ̃iθ̃
T
i

∥∥∥∥∥
F

]
≤

√√√√Eϵ

[∥∥∥∥∥
n∑

i=1

ϵiθ̃iθ̃Ti

∥∥∥∥∥
2

F

]
(34)

=

√√√√Eϵ

[
n∑

i=1

n∑
j=1

ϵiϵj⟨θ̃iθ̃Ti , θ̃j θ̃Tj ⟩F

]
. (35)

14



Under review as a conference paper at ICLR 2023

Noting that E[ϵiϵj ] is one if i = j and zero otherwise, we obtain√√√√Eσ

[
n∑

i=1

n∑
j=1

ϵiϵj⟨θ̃iθ̃Ti , θ̃j θ̃Tj ⟩F

]
≤

√√√√ n∑
i=1

∥θ̃iθ̃Ti ∥2F (36)

≤

√√√√ n∑
i=1

(∥θ̃i∥2∥θ̃i∥2)2 (37)

≤
√
nr4. (38)

Substituting this back into our earlier derivation yields

R̂n(F) ≤ C
√
nr4

2n
(39)

=
Cr2

2
√
n
, (40)

which concludes the proof.

A.4 META REGULARISER COMPUTATION

We provide the meta regualriser computation details in this section. The proposed meta regulariser is
expressed as

||M − I||2F = ||M ||2F + || − I||2F + 2⟨M,−I⟩F (41)

= ||M ||2F + ||I||2F − 2tr(M) (42)

= ||M ||2F + ||I||2F − 2tr(A)tr(B) (43)

=
∑
i,j

υi(A)υj(B) + ||I||2F − 2tr(A)tr(B), (44)

where υi(·) denotes the i-th singular value of a matrix. To get from Eq. 42 to Eq. 43 we use that
tr(A ⊗ B) = tr(A)tr(B), and from Eq. 43 to Eq. 44 we use that ∥M∥2F =

∑
i υ

2
i (A ⊗ B) =∑

i,j υi(A)υj(B).

A.5 COMPUTING λ

In this section, we provide the computation details for λ, as used in Equation 8:

λ = min
ζ

υmin(Mζ) (45)

= min
ζ

υmin(Aζ ⊗Bζ) (46)

= min
ζ

min
i,j

(υi(Aζ)υj(Bζ)) (47)

where υi(·) denotes the i-th singular value of a matrix. From Eq. 46 to Eq. 47, we use that υ(A⊗B) =
υ(A) · υ(B)T , where υ(·) gives all the eigenvalues in the column vector form.

A.6 GRADIENT COMPUTATION FOR DIAGONAL MATRIX

Diagonal matrix is a special case of block diagonal matrix, which we applied in the 2D quadratic
setting in section 5.2. With this simple parameterisation, the exact hypergradient w.r.t. the target
optimiser can be computed with Forward Mode Differential (FMD). The gradient of the second term
in the proposed meta-objective in Eq.8 is easy to compute while the first term with respect to ϕ is
expressed as:

∂BϕM
(θ∗, θ1)

∂M
≈ ∂BϕM

(θT , θ1)

∂M
(48)

=
∂BϕM

(θT , θ1)

∂M︸ ︷︷ ︸
direct gradient

+
∂BϕM

(θT , θ1)

∂θT

∂θT
∂M︸ ︷︷ ︸

indirect gradient

(49)
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when T is large enough to satisfy that θ∗ ≈ θT . The computation of the direct gradient can be easily
solved by the existing auto-differentiation library. The indirect gradient in Eq 49, usually termed
hypergradient, is much more computationally chanllenging as it is expressed in the form:

∂θT
∂M

=

T∑
t=1

(
T∏

t′=t+1

At′

)
Bt (50)

s.t.At =
∂πϕM

(θt−1)

∂θt−1
= I − ηM−1 ∂2

∂θ2
Ltr(θt−1), (51)

Bt =
∂πϕM

(θt−1)

∂M
= 2η

∂

∂θ
Ltr(θt−1)M

−2. (52)

Forward-Mode Differentiation (FMD) and Reverse-Mode Differentiation Franceschi et al. (2017)
are two algorithms to compute Eq 50. RMD computes the gradient from the last to the initial step,
requiring one to store the entire optimisation trajectory in memory. When the optimisation trajectory
is long, this computation is very expensive. In comparison, FMD updates the hypergradient in parallel
with in inner loop optimisation by:

∂θt
∂M

=
∂πϕM

(θt−1)

∂θt−1

∂θt−1

∂M
+

∂πϕM
(θt−1)

∂M
, (53)

where it only requires the information from step t− 1.

A.7 HYPERPARAMETER TUNING

Grid Search For tuning the hyperparameters on 3-layer MLPs model settings in section 5.2,
we sweep over the learning rates {0.1, 0.05, 0.01, 0.005, 0.001} and weight decay parameters of
{0.001, 0.0001, 0.0005} for the SGD, SGD-M and RMSprop. In terms of Adam, we do grid search
over the learn rates {0.3, 0.2, 0.1, 0.01, 0.001} and weight decay {0.001, 0.0001, 0.0005}. For L2O,
MetaCur, ARUBA and ARUBA++, we tune the models on the meta-test setting with the learning
rates {0.1, 0.01, 0.005, 0.001, 0.0005, 0.0001} and weight decay {0.001, 0.0001, 0.0005}.

Bayesian Optimisation We implement our BayesOpt using (Balandat et al., 2020) for the hy-
perparameter tuning on the ResNet18 and CIFAR10 setting. The model the expected performance
using a Gaussian process with RBF kernel, which maps the learning rate and weight decay to the
estimated validation accuracy. This also provides uncertainty information to the Upper Confidence
Bound (UCB) acquisition function for exploring/exploiting the hyperparameter space. For each
model selection in the meta-test stage, we run the Bayesian optimisation for 25 iterations.

A.8 TRAINING LOSS LEARNING CURVE FOR DIVERSEDIGITS DATASET

We give all the training loss learning curves on DiverseDigits in Fig 5. It can be noticed that the
conclusion we drew that MetaMD is clearly faster than SGD and SGD-M in training convergence in
Section 5.2 is further supported.
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Figure 5: Convergence comparison of different optimisers on DiverseDigits.
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Figure 6: Learning curves on Caltech, DTD, Flowers and Pubfig. The left, middle and right collumn
represent Training loss, Training accuracy and Test accuracy respectively

A.9 EXPERIMENT DETAILS ON HIGH RESOLUTION IMAGE DATASETS

We provide a summary of each dataset applied in our High Resolution tasks and give a clear split for
the meta-train and meta-test datasets in Table 4. All the datasets except Caltech-256 has standard
training, testing splits. As a result, we build our own split with 60 and 20 examples for each classes
in training and testing stage respectively. Both MetaMD and competitors are tuned on learning rates,

Table 4: Statistics for the datasets used throughout the experiments. The Train, and Test columns
contain the number of instances in each of the corresponding subsets.

Dataset Train Test Classes

Meta-Train
Aircraft (Maji et al., 2013) 6,667 3,333 100
Butterfly (Chen et al., 2018) 10,270 15,009 200
Pets (Parkhi et al., 2012) 4,000 3,390 37

Meta-Test

Caltech (Griffin et al., 2007) 12,800 5,120 256
DTD (Cimpoi et al., 2014) 3,760 1,880 47
Flowers (Nilsback & Zisserman, 2008) 2,040 6,149 102
PubFig (Pinto et al., 2011) 12,178 1,660 83

{0.1, 0.01, 0.001, 0.0001} and weight decays, {0.001, 0.0005, 0.0001, 0.00001, 0}. The learning
curve for Caltech, DTD, Flowers and Pubfig are shown in Fig 6.

A.10 LOSS LANDSCAPE ANALYSIS

The generalisation ability is reflected by the flatness of the converged loss landscape (Foret et al.,
2021). Motivated by this, we compare the converged loss landscapes achieved by MetaMD with
those by SGD on the High Resolution Image setting. From Figure 7, it can be observed that the
landscapes reached by MetaMD are much more flattened than SGD.
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Figure 7: 1D Training Loss Landscape on Caltech, DTD, Flowers and Pubfig, where perturbations
are performed in the direction of the eigenvector of the loss Hessian matrix corresponding to the
largest eigenvalue.

A.11 LOW RANK REPRESENTATION ANALYSIS

The recent research (Saunshi et al., 2021; Chen & Lee, 2021) claim that low rank representation
generalizes well. Following the low-rank representation analysis proposed in (Chen & Lee, 2021),
we compare the learned feature space of the model trained by SGD and that trained by MetaMD in
the high resolution setting in Fig. 8. −

∑
i λ̃ilogλ̃i denotes the low rank level, where the smaller

value represents the lower rank and λ̃i = λi/λmax represent the normalized singular values. One
can observe that MetaMD has the lower rank feature spaces on all the meta-test tasks than SGD. The
decay speed of the normalized singular values also indicates that MetaMD learns the lower rank
feature space than SGD.

A.12 HYPERGRADIENT COMPUTATION

In this section, we introduce details of the inverse Hessian computation. The hypergradient of the
meta-objective E w.r.t. to the optimiser parameters M is computed through

∂E
∂M

=
∂E
∂θ

(
∂2BϕM

∂θ ∂θ

)−1
∂2BϕM

∂θ ∂M

∣∣∣∣∣
ϕM ,θ∗(M)

= lim
i→∞

∂E
∂θ

i∑
j=0

(
I − ∂2BϕM

∂θ ∂θ

)j
∂2BϕM

∂θ ∂M

∣∣∣∣∣
ϕM ,θ∗(M)

,

where following Lorraine et al. (2020), the inverse Hessian matrix is approximated by Neumann
series: (

∂2BϕM

∂θ ∂θ

)−1

= lim
i→∞

i∑
j=0

(
I − ∂2BϕM

∂θ ∂θ

)j

.

In practice, the approximation iteration j does not need to go to infinity, and in our case we set it as
20. We give the implementation details for computing ∂E

∂M in Algorithm 2 by adapting the algorithm
proposed in (Lorraine et al., 2020) to our problem, where α is the hyperparameter controlling the
iteration step length.
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Figure 8: Low rank representation Analysis on Caltech, DTD, Flowers and Pubfig.

Algorithm 2 Computing the hypergradient of the meta-objective E , with respect to the optimiser
parameter M . The grad(·, ·, ·) function from PyTorch computes a Jacobian-vector product when
called with a non-scalar first argument. Inspired by Lorraine et al. (2020), we use this to efficiently
compute the Hessian required for approximating the Neumann series.

Input: BϕM
, E , ϕM , θ∗i

Output:−p
∂2BϕM

∂θ∂M

v = p = ∂E
∂θ |ϕM ,θ∗

i

for all j = 1, ..., J do
v− = α · grad(∂BϕM

∂θ , θ, v)
p += v

end for

A.13 CONVERGENCE RATE COMPARISON

We aim to learn optimisers with fast convergence speed. To evaluate the training speed of the learned
MetaMD and to compare it with other methods, we measure the area under the curve (AUC) of
the training loss (Rijn et al., 2015) where a small AUC value indicates an optimiser converges fast.
Table 5 shows that the learned MetaMD has the fastest convergence speed in the CIFAR10 and
ResNet18 setting while MetaMD ranks second in the High resolution setting in Table 6. To further
illustrate the property of MetaMD, we compute the wall clock time of each optimisation iteration for
each model in Table 7. Our model can still outperform other meta-learned precondition methods,
such as MetaCur.

A.14 FINE TUNING WITH LEARNED METAMD

We studied the transferability of the learned MetaMD by shifting dataset between the meta-train and
meta-test stage. A different kind of domain shift is to deploy the learned MetaMD for fine-tuning
the base model, which is different to the meta-train stage where the base model is learned from
scratch in each each inner loop. We reuse the High resolution setting in Section 5.2, MetaMD is
trained on all the meta-train datasets with the Algorithm 1 but deployed to fine-tune the ResNet18
pre-trained on ImageNet on each individual meta-test dataset in the meta-test stage. Compared
with the hand-craft optimisers including, SGD-M and Adam, with fair hyperparameters selection,
MetaMD has competitive performance in terms of test accuracy in Table 8.
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Table 5: Area under the learning curve of the training loss for CIFAR10 and Resnet18. Comparison
with various optimisers.

Method SGD-M Adam AdamW KFAC PowerSign AddSign Meta-SGD MetaMD

CIFAR10 32.04 15.27 20.05 27.77 34.06 32.90 19.47 11.82

Table 6: Area under the learning curve of the training loss for high resolution task. Comparison with
various optimisers.

Method SGD-M Adam PowerSign AddSign Meta-SGD ARUBA ARUBA ++ MetaCur MetaMD

Caltech 106.80 69.77 108.23 111.86 176.59 409.97 327.83 736.83 90.20
DTD 434.23 94.35 138.44 133.88 153.68 509.23 379.49 469.52 132.84
Flowers 111.32 74.78 145.12 142.23 112.06 672.46 386.41 332.81 94.25
Pubfig 56.80 44.19 82.33 68.77 81.08 416.87 274.47 512.78 47.88

Average Rank 4.00 1.00 5.00 4.25 5.00 8.50 7.00 8.25 2.00

A.15 NUMBER OF META-PARAMETERS

We compute the number of the meta-parameters for every meta-optimiser including Meta-SGD
MetaCur and MetaMD in Table9. It can be noticed that MetaMD has a significantly small number
of meta-parameters to learn compared with other meta-optimiser, which is one of the reasons that
MetaMD suffers less from meta-overfitting.

A.16 WEIGHT DECAY STRENGTH AS DOMAIN SHIFT

We simulate the domain shift by changing the weight decay strength to evaluate the transferability of
the learned optimisers. During the meta-train stage, the optimisers are learned by setting the weight
decay strength as zero, and we test the model on the meta-train dataset with various weight strengths
including {0.0, 10−5, 10−4, 10−3}. In Figure 9, we can notice that MetaMD is quite stable with the
simulated domain shift compared with SGD and Adam and has the lowest AUC on all the settings.
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Table 7: Wall clock time per iteration (mean and standard deviation) for High resolution task with
ResNet18. Comparison with various optimisers.

Method SGD-M Adam PowerSign AddSign Meta-SGD ARUBA ARUBA ++ MetaCur MetaMD

Time 118.21 ± 2.37 121.16 ± 2.62 121.30 ± 2.38 122.45 ± 3.21 120.29 ± 3.32 118.43 ± 3.63 118.38 ± 3.62 132.63 ± 3.63 131.12 ± 3.62

Table 8: Test Accuracy (%) and AUC on high resolution datasets by fine-tuning ImageNet pre-trained
ResNet18. Comparison with various optimisers.

Datasets Caltech DTD Flowers Pubfig Avg Rank

SGD-M (Fine-tuning) 77.81 ± 0.73 67.13 ± 0.58 91.56 ± 0.54 89.52 ± 0.39 2.5
Adam (Fine-tuning) 72.44 ± 0.19 68.46 ± 0.77 92.03 ± 0.81 90.12 ± 0.28 2.5
MetaMD (Fine-tuning) 77.93 ± 0.44 68.66 ± 0.93 91.67 ± 0.75 89.94 ± 0.41 1.5

SGD-M (AUC) 154.98 78.58 22.12 59.06 2.5
Adam (AUC) 70.64 42.39 26.86 59.62 2.0
MetaMD (AUC) 150.40 77.23 21.63 54.29 1.5

Table 9: Number of Meta-parameters for various Meta-optimisers
Model MetaSGD MetaCur MetaMD

11176512 2974717 37664
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Figure 9: Area Under the Curve (AUC) comparison with various optimisers on different Weight
Decay strength.
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