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ABSTRACT

CLIP (Contrastive Language–Image Pre-training) uses contrastive learning from
noise image-text pairs to excel at recognizing a wide array of candidates, yet its
focus on broad associations hinders the precision in distinguishing subtle differ-
ences among fine-grained items. Conversely, Multimodal Large Language Models
(MLLMs) excel at classifying fine-grained categories, thanks to their substantial
knowledge from pre-training on web-level corpora. However, the performance of
MLLMs declines with an increase in category numbers, primarily due to grow-
ing complexity and constraints of limited context window size. To synergize the
strengths of both approaches and enhance the few-shot/zero-shot recognition abil-
ities for datasets characterized by extensive and fine-grained vocabularies, this pa-
per introduces RAR, a Retrieving And Ranking augmented method for MLLMs.
We initially establish a multi-modal retriever based on CLIP to create and store
explicit memory for different categories beyond the immediate context window.
During inference, RAR retrieves the top-k similar results from the memory and
uses MLLMs to rank and make the final predictions. Our proposed approach not
only addresses the inherent limitations in fine-grained recognition but also pre-
serves the model’s comprehensive knowledge base, significantly boosting accu-
racy across a range of vision-language recognition tasks. Notably, our approach
demonstrates a significant improvement in performance on 5 fine-grained visual
recognition benchmarks, 11 few-shot image recognition datasets, and the 2 object
detection datasets under the zero-shot recognition setting.

1 INTRODUCTION

The new material added for the rebuttal discussion is in red.

The CLIP (Contrastive Language–Image Pre-training) (Radford et al., 2021) model and its diverse
variants (Sun et al., 2023a; Dong et al., 2023; Li et al., 2023b) provide flexible and robust perfor-
mance across a wide array of visual-language understanding tasks. Despite its successes, we observe
that CLIP’s performance begins to wane when faced with datasets characterized by vast vocabularies
or fine-grained categories. As shown in the upper left of Fig. 1, the decline is largely attributable to
the inherent ambiguity of language descriptions and the challenges posed by synonyms, which can
confound the model’s ability to distinguish between closely related but distinct classes.

Parallel to these developments, Multi-modal Large Language Models (MLLMs) have emerged as
a powerful class of generative models, exemplified by the likes of GPT-4V (OpenAI, 2023) and
analogous advancements (Zhu et al., 2023; Liu et al., 2024a; Dai et al., 2023; Peng et al., 2023; Ye
et al., 2023; Awadalla et al., 2023; Zhang et al., 2023; Bai et al., 2023; Wang et al., 2023b; Chen
et al., 2023). MLLMs, pre-trained on extensive corpora with substantial knowledge, demonstrate
remarkable proficiency in identifying fine-grained categories when the total number of candidates
remains manageable. Nevertheless, MLLMs’ efficacy is similarly compromised in scenarios involv-
ing extensive vocabularies and fine-grained categorizations (upper left of Fig. 1).

To address these challenges, we propose augmenting standard MLLMs with our RAR, a retrieving-
and-ranking augmented technique. Our RAR enables models to dynamically incorporate external
knowledge into the processing and generation workflows. By augmenting MLLMs with external
knowledge sources, we address challenges related to language ambiguity, synonym handling, and the
limitations imposed by limited context windows when dealing with vast vocabularies. Our method
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Figure 1: Upper left: our motivation about the drawbacks of CLIP and MLLM. Our RAR can seam-
lessly integrate into MLLMs to improve the few-shot/zero-shot abilities on classification (upper
right) and detection (bottom) datasets.

uses the inherent strength of MLLMs in generalizing from existing knowledge while addressing their
limitations in visual recognition. We first construct a multi-modal retriever that creates and stores
multimodal embeddings for visual images and text descriptions. As shown in Fig.1, upon receiving
an input image at the inference stage, our approach retrieves the top-k class names most similar to
the image. Subsequently, the MLLMs rank these retrieved candidate results as the final prediction re-
sults. To bolster the MLLMs’ ranking performance, we explore fine-tuning with ranking format data
or in-context learning examples without training. By integrating our retrieval-augmented design, our
approach seeks to bridge the gap between the broad generalization capabilities of MLLMs and the
need for precise, fine-grained categorization, offering a path forward that preserves the model’s
extensive knowledge base while significantly boosting its performance on downstream tasks.

To evaluate our method’s efficacy, we conducted benchmarks in three areas: (1) fine-grained visual
recognition across 5 benchmarks, (2) few-shot image recognition across 11 datasets, and (3) zero-
shot object recognition on 2 object detection datasets with vast vocabularies (e.g., 13204 classes of
V3Det (Wang et al., 2023a)). As presented in the right part of Fig. 1, our findings reveal that our
approach notably enhances few-shot learning abilities, yielding an average improvement of 6.2%
over 11 image classification datasets under the 4-shot setting. Furthermore, our method achieves a
6.4% improvement on the LVIS dataset and a 1.5% gain on the V3Det dataset in zero-shot object
recognition performance.

In summary, our key contributions are outlined as follows: (1) We conduct an in-depth analysis
of the strengths and weaknesses of VLMs and MLLMs in processing fine-grained datasets. (2) To
enhance the fine-grained few-shot and zero-shot perception capabilities of MLLMs, we introduce
RAR with a multi-modal retriever and the inference pipeline based on retrieving and ranking. (3)
Our RAR can be seamlessly integrated into various MLLMs in a plug-and-play manner. (4) Through
rigorous testing across 11 classification datasets and 2 object detection datasets, we demonstrate that
our method outperforms baselines on a variety of visual recognition tasks.

2 RELATED WORK

Contrastive Language-Image Pre-training (CLIP) (Radford et al., 2021) understands images and
texts by contrastive learning from a vast amount of visual data paired with natural language descrip-
tions. CLIP has robust capabilities in downstream tasks including image-text retrieval (Yasunaga
et al., 2023; Yu et al., 2024; Glass et al., 2022), zero-shot classification (Zhou et al., 2022a; Gao et al.,
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2023), and open-vocabulary perception (Gu et al., 2022; Zang et al., 2022; Zhou et al., 2022b). Fol-
lowing CLIP, many subsequent vision-language models (Jia et al., 2021; Li et al., 2022a;b; Zhong
et al., 2022; Fang et al., 2023; Dong et al., 2023; Li et al., 2023b; Sun et al., 2023b; Yang et al.,
2023b; Lüddecke & Ecker, 2022) are proposed to further improve the vision-language understand-
ing abilities. There are also works done to improve CLIP in zero-shot perception tasks (Subramanian
et al., 2022; Shtedritski et al., 2023; Liang et al., 2023; Xu et al., 2023; Yang et al., 2023a). However,
simple dot-product between two unimodality features can lead to sub-optimal results for fine-grained
classification. In this paper, we demonstrate that CLIP faces challenges in making accurate zero-
shot predictions for fine-grained classes, and how our proposed method can effectively re-rank these
predictions to improve the accuracy.

Multimodal Large Language Models (MLLMs) such as GPT4V (OpenAI, 2023), represent a sig-
nificant evolution in the landscape of Large Language Models (LLMs) by integrating visual images
as input tokens alongside textual information. The integration is facilitated through the use of an
additional vision encoder (Radford et al., 2021) and a bridging mechanism (Zhu et al., 2023; Liu
et al., 2024a; Dai et al., 2023; Peng et al., 2023; Ye et al., 2023; Awadalla et al., 2023; Zhang et al.,
2023; Bai et al., 2023; Wang et al., 2023b; Chen et al., 2023). MLLMs significantly enhance the
interaction between humans and AI in more natural and intuitive ways and demonstrate remark-
able capabilities in understanding and generating multi-modal content. Despite their prowess, our
research uncovers a nuanced limitation: MLLMs tend to underperform in tasks requiring vast vocab-
ularies, where distinguishing subtle differences among different categories is crucial. However, we
prove that MLLMs exhibit a strong ability to excel in the re-ranking of top results obtained through
vision-language models such as CLIP. Fine-R (Liu et al., 2024b) first delves into leveraging MLLMs
for fine-grained perception tasks by prompt design for better descriptions and attributes. We find a
new way to prompt it with possible candidates to help screening and achieve better performance.

3 METHODOLOGY

We first provide the background information on CLIP, MLLMs, and retrieval-augmentation in LLMs
(Sec. 3.1). Then we present the multi-modal retriever (Sec. 3.2) module of RAR and how to apply
RAR on downstream tasks via retrieving and ranking (Sec. 3.3).

3.1 PRELIMINARIES

CLIP is a model combining an image encoder Φimg and a text encoder Φtxt that uses contrastive
learning to understand and align images and text by training on a vast dataset gathered from the
web. The core mechanism of CLIP involves mapping an input image I to its most semantically
similar category c ∈ C:

p(y = c|x) = argmax
c∈C

cos(Φimg(I),Φtxt(c)) , (1)

where y represents the predicted category, C refers to the whole categories list and cos(·, ·) denotes
to the cosine similarity.

Multimodal Large Language Models such as GPT4V (OpenAI, 2023) learning to generate pre-
dictions over sequences of tokens that span both image and text modalities. The MLLM model
f , parameterized by weights θ, conditioned on the input sequences x = (x1, . . . , xLin

) of length
Lin, which consist of both text tokens xtxt and visual tokens ximg. The ximg are extracted from the
input image I via the image encoder Φimg. MLLM model forecast a sequence of output tokens
y = (y1, . . . , yLout

) of length Lout as follows:

pθ(y|x) =
∏Lout

l=1
pθ(yl|x,y≤l−1) =

∏Lout

l=1
softmax(f(x,y≤l−1; θ))yl

, (2)
where y≤l−1 := (y1, . . . , yl−1) refers to the mechanism that predicts the distribution of the next
token considering all previously generated tokens.

Retrieval-Augmentation in Large Language Models introduces a retrieval module R with the
LLM parameterized by θ for generation. The retrieval module R is designed to process an input
sequence x against an external memory of documents M, efficiently selecting a subset of documents
M ⊆ M. The subset M is then fed along with the original input sequence x into the LLM θ, which
uses both the input and the context provided by retrieved results to generate the target output y:

pθ(y|x,M) =
∏Lout

l=1
pθ(yl|x,M,y≤l−1). (3)

3
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Figure 2: Pipeline of RAR. (a) We design a multimodal retriever that extracts the image or text
embeddings and stores embeddings in an external memory M. (b) For the inference stage of down-
stream recognition tasks, we retrieve top-k categories from the memory and use MLLMs to refine
the retrieved results as the final prediction through ranking.

3.2 MULTIMODAL RETRIEVER

The multimodal retriever is essentially responsible for querying a large multi-modal external mem-
ory or database to find information relevant to the input query or context. In the process of multi-
modal retriever, the main challenge lies in efficiently encoding and storing a large volume of im-
ages/text embeddings for quick, accurate retrieval. Recognizing the main challenge, as shown in
Fig. 2, we have developed a multi-modal retriever that creates and stores multimodal embeddings,
with a focus on optimizing retrieval speed through index construction techniques.

Extracting the Multi-modal Embeddings. We use the CLIP model discussed in Sec. 3.1 to extract
the multi-modal embeddings. Given a data sample (xi, ci) from the dataset D containing the image
xi and class name ci, we use the CLIP image encoder Φimg to extract the image embedding eimg ∈ Rd

and the CLIP text encoder Φtext to extract the text embedding etext ∈ Rd. The symbol d refers to the
feature dimension (e.g., d = 512 for CLIP ViT-B/16). The image and text embeddings are stored
in the memory M for retrieval (will discuss in Sec. 3.3). In some zero-shot settings, the image
embedding is not available and we merely store the text embedding into the memory.

Fast Retrieval Optimization. The brute force search is the common method for designing the re-
triever, which requires iteration over all vectors in the memory M to compute similarity scores (e.g.,
cosine similarity) and subsequently identify the top-k results. Although the brute force method is
inherently straightforward, its efficiency markedly diminishes as the dataset escalates to the magni-
tude of millions of embeddings. To enhance the speed of retrieval, we implement an index system
that uses the HNSW(Hierarchical Navigable Small World) algorithm (Malkov & Yashunin, 2018).
The adoption of the HNSW methodology facilitates a significant dimensionality reduction, thereby
enabling the construction of a more condensed index. Specifically, vectors in a Rd space of dimen-
sion d are transformed into a reduced d

9 dimensional space. This reduction in dimensionality plays
a pivotal role in enhancing the speed of the retrieval process.

Pre-processing for Detection Datasets. In object detection datasets, our methodology for extract-
ing image embeddings eimg is slightly different from the approach discussed previously. As pre-
sented in Fig. 3, we apply two additional pre-processing steps: cropping and blurring. Some pre-
vious works have proposed similar methods in CLIP like (Yang et al., 2023b; Lüddecke & Ecker,
2022). In the object detection dataset, an image typically contains multiple objects of varying sizes.
Some objects may dominate a large portion of the image, whereas others occupy minimal space.
Accordingly, our object detection procedure begins with cropping the image regions based on pro-
posal bounding box coordinates, subsequently resizing the cropped region to a fixed proportion.
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Figure 3: Extending our multimodal retriever to zero-shot recognition on object detection datasets
such as LVIS (Gupta et al., 2019) and V3Det (Wang et al., 2023a). Compared to the classification
datasets, we apply the additional pre-processing techniques such as cropping and resizing to extract
the image embeddings.

Moreover, unlike image classification tasks the objects of interest generally appear large and cen-
trally positioned, the objects within object detection datasets are smaller and their positions more
varied. To help the MLLMs understand the objects to be detected, we employ a blurring technique
on the non-target areas surrounding the objects of interest. The blurring strategy is designed to di-
rect the MLLMs’ focus toward the relevant objects, thereby facilitating their identification in object
detection tasks.

3.3 INFERENCE WITH RETRIEVING AND RANKING

After successfully constructing memory M by using our multimodal retriever, our next step is to
integrate the memory with the retrieval process and use MLLMs to rank the retrieval results and
enhance the performance in few-shot/zero-shot perception tasks.

For example, in the inference stage of the few-shot image classification task, we first use the visual
encoder Φimg to process the input image and obtain the corresponding image embedding ê. The
visual encoder is identical to the encoder used in our multi-modal retriever. The image embedding
ê is then navigated through the previously constructed memory index and ranked by similarity to
identify the top-k related images. Consequently, memory M yields the names of the retrieved top-k
categories, denoted as {c1, c2, c3, ..., ck}. The top-k retrieved results serve as a preliminary filter,
narrowing down the vast possibilities to those most likely relevant, based on historical data and the
semantic closeness of stored labels to the image content.

Since these cropped sub-images are usually small, CLIP’s ability to extract features from these low-
resolution images is limited. Therefore, in the object detection task, we do not perform image-to-
image retrieval but use CLIP’s inherent image-text interaction capabilities to conduct image-to-text
retrieval. Finally, we also obtain the top-k category information with the highest similarity.

Following the retrieval phase, the retrieved category labels alongside image embedding ê are inte-
grated and sent to the MLLMs through our ranking prompt. The MLLMs, combining the internal
knowledge and the retrieved information, make the final prediction of the image category. Our
proposed inference process, using both the retrieval results from our memory bank and subsequent
ranking by the MLLM, ensures a more accurate and contextually aware classification prediction.
Our design represents a significant advancement in few-shot image classification, enabling our sys-
tem to handle a wide variety of images and categories with high precision and flexibility.

Ranking Prompt Format. Fig. 4 presents our ranking prompt format. The process be-
gins with the prompt ‘Sort the optional categories: [class a, class b,
class c, class d, class e]’, which is dynamically generated to include the top-k class
names retrieved from our multimodal retriever. Our method uses the MLLM’s ability to rank these
retrieved class names. Unlike traditional approaches that might rely solely on the initial retrieval
order, our MLLM employs advanced linguistic and semantic analysis to assess the contextual ap-
propriateness of each class name with the input image.

Fine-tuning for Ranking. When directly applying MLLMs to ranking the retrieved results, MLLMs
may predict some errors such as beyond the given list or occasional misalignment. To fully exploit
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Figure 4: Ranking Prompt examples for few-shot image classification. The fine-grained image
examples are from Stanford Cars (Krause et al., 2013). We incorporate the initial top-k retrieved
results (e.g., k = 5) into our ranking prompts and use the MLLMs to rank the retrieved results and
make the final prediction.

the ranking potential of MLLMs for downstream tasks, while avoiding the consumption of extensive
computational resources for training MLLMs, we selected a small-scale classification dataset to fine-
tune the MLLMs. The primary goal of fine-tuning was to enable MLLMs to improve their ranking
ability such as following the format of prompts and returning results as required.

To create our fine-tuning data, we use the CLIP image encoder Φimg to extract the embeddings of
two disjoint subsets of images Da and Db, both drawn from the FGVC-Aircraft dataset. We provide
the ablation studies in Sec. 4.5 about using different datasets to construct the fine-tuning data. Our
observation reveals that the MLLM demonstrates robustness to the choice of fine-tuning datasets,
with only marginal differences in performance outcomes.

For each image in Db, we apply the k-NN clustering algorithm to find the top 20 most similar
images in Da including their categories. Afterward, we select 16 sets from these 20 images, each
set comprising k images, and retain those groups that contain images of the same category as Db.
We then shuffled the category labels for these sets. Using the prompts shown in Fig. 4, we create a
dataset comprising roughly 30,000 entries, with the original sequence of categories serving as the
ground-truth label. In summary, we build the fine-tuning data aiming to bolster the MLLM’s ranking
performance.

In-Context Learning for Ranking. In-context learning presents a valuable alternative to fine-tuning
with ranking examples, particularly due to its flexibility and lower requirement for specialized data
preparation. While fine-tuning with ranking examples has proven to be highly effective, it neces-
sitates a substantial amount of curated data and computational resources for training. In contrast,
in-context learning uses the model’s existing knowledge by providing it with specific examples di-
rectly within the input prompt, guiding the model to understand and execute the task of ranking
without the need for explicit re-training. Here we elaborate on the application of in-context learning
with MLLMs to rank the retrieved results. To effectively guide the MLLMs in comprehending the
ranking task, we use the prompt format similar to Fig. 4 and integrate a specific ranking example
into the prompts. Please refer to the Sec. B for our structured in-context learning prompt. Please
refer to Sec. 4.5 for the ablation studies of discussing the difference between using fine-tuning or
in-context learning for ranking.

4 EXPERIMENTS

In this section, we present our experiment step (Sec. 4.1) and conduct experiments on different tasks
such as fine-grained visual recognition (Sec. 4.2), few-shot image recognition (Sec. 4.3) and zero-
shot object recognition (Sec. 4.4). We also provide the ablation studies about our design choices
(Sec. 4.5).

4.1 EXPERIMENTAL SETUP

Datasets and Evaluation Metrics. We follow previous work (Liu et al., 2024b) to choose 5 datasets
for fine-grained visual recognition (Bird-200 (Wah et al., 2011), Cars-196 (Krause et al., 2013),
Dog-120 (Khosla et al., 2011), Flower-102 (Nilsback & Zisserman, 2008), and Pet-37 (Parkhi et al.,

6
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Table 1: Fine-grained visual recognition across 5 datasets. We follow (Liu et al., 2024b) to report
the averaged clustering accuracy (cACC, %) and semantic similarity accuracy (sACC, %) results
over 10 runs. The best and second-best results are colored Green and Red , respectively.

Bird-200 Car-196 Dog-120 Flower-102 Pet-37 Average
cACC sACC cACC sACC cACC sACC cACC sACC cACC sACC cACC sACC

WordNet+CLIP 39.3 57.7 18.3 33.3 53.9 70.6 42.1 49.8 55.4 61.9 41.8 54.7
BLIP-2 30.9 56.8 43.1 57.9 39.0 58.6 61.9 59.1 61.3 60.5 47.2 58.6
CaSED 25.6 50.1 26.9 41.4 38.0 55.9 67.2 52.3 60.9 63.6 43.7 52.6
FineR 51.1 69.5 49.2 63.5 48.1 64.9 63.8 51.3 72.9 72.4 57.0 64.3

RAR (Ours) 51.6 69.5 53.2 63.6 50.0 65.2 63.7 53.2 74.1 74.8 58.5 65.3

2012)) and report the clustering accuracy (cACC) and semantic similarity accuracy (sACC) as eval-
uation metrics.

For few-shot image recognition, we select 11 datasets including general objects (ImageNet (Deng
et al., 2009), Caltech101 (Fei-Fei et al., 2004)), textual (DTD (Cimpoi et al., 2014)), scene objects
(SUN397 (Xiao et al., 2010)), satellite images (EuroSAT (Helber et al., 2019)), facial expressions
(RAF-DB (Li et al., 2017)), car types (Stanford Cars (Krause et al., 2013)) and fine-grained datasets
(FGVC-Aircraft (Maji et al., 2013), Oxford Flowers (Nilsback & Zisserman, 2008), Food101 (Nils-
back & Zisserman, 2008) and Oxford Pets (Parkhi et al., 2012)). We report the top-1 accuracy (%)
for all these classification datasets.

Additionally, we also select two benchmarks for our zero-shot object recognition setting: (1) The
LVIS(Gupta et al., 2019) dataset that encompasses over 164,000 images and 1,203 categories. We
report the APr, APc, APf, and APall metrics for rare, common, frequent, and all categories. (2)
V3Det (Wang et al., 2023a) dataset encompasses an immense number of 13204 categories of real-
world images. For V3Det, we report the standard mAP metric of the object detection task.

Implementation Details. We employ a frozen CLIP ViT B/16 model as the visual encoder Φimg to
encode the input images and extract the corresponding image embeddings. For the retrieval process,
we search the stored embeddings in memory M using the HNSW algorithm (Malkov & Yashunin,
2018). We use k = 5 for the top-k results, with a solo exception k = 4 in the 4-shot few-shot setting.
To improve the ranking ability of MLLMs, we prepare 30k fine-tuning data from the FGVC-Aircraft
dataset. In the fine-tuning process, we train the model with one epoch with a learning rate of 1e−5

on our fine-tuning data and subsequently evaluate the performance across additional datasets. We
present the ablation studies about the hyper-parameters such as the value of k and the fine-tuning
data source in the Sec. 4.5.

4.2 FINE-GRAINED VISUAL RECOGNITION

We first evaluate our RAR on the fine-grained visual recognition setting defined in previous work
(Liu et al., 2024b). We use only 3 unlabelled images per category to build our memory M for
retrieving. Please refer to Sec. C for more implementation details.

Baselines. We follow (Liu et al., 2024b) to select four representative methods as our baselines to
compare with: WordNet (Miller, 1995)+CLIP, BLIP-2 (Li et al., 2023a), CaSED (Conti et al., 2024),
and FineR (Liu et al., 2024b).

Averaged Results over 5 Datasets. Tab. 1 summarizes the results and our RAR achieves the top per-
formance on both the cACC (58.5%) and sACC (65.3%) metrics. The WordNet+CLIP and CaSED
baselines rely solely on CLIP for class name retrieval, yet often yield inaccurate predictions. In con-
trast, our method adds the additional ranking process with MLLMs, which increases the likelihood
of correctly predicting those accurate yet initially lower-ranked candidates and thereby boosts per-
formance. Besides, FineR uses MLLM (e.g., BLIP-2) for fine-grained recognition via multi-round
questioning-answering processes, which may demand more computational resources and struggle to
scale efficiently with large vocabulary datasets. Conversely, our approach first retrieves candidates
and then lets MLLMs make predictions on the candidates, optimizing both accuracy and efficiency.

We can observe that RAR did not achieve SOTA results on Dog-120 and Flower-102. This is because
some baselines use exhaustive knowledge bases on specialized datasets: WordNet covers all ground-
truth Dog-120 categories, and CaSED includes 101 of 102 ground-truth Flower-102 categories. As
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Table 2: Few-shot image classification across 11 datasets. We report the top-1 accuracy (%) under the 4-shot
and 8-shot settings. Here our RAR uses the LLaVA1.5 (Liu et al., 2023) as the MLLM to rank the retrieved
results. The symbol ‘-’ denotes to the LLaVA model fails to make the predictions due to the limited window
size.
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4-shot
CLIP+KNN 42.1 87.9 14.2 51.4 67.6 47.5 64.6 84.5 49.2 62.6 55.6 57.0
LLaVA1.5 Finetuning - 88.4 24.9 - 48.2 46.6 58.9 13.2 - 66.4 28.9 -
RAR (LLaVA1.5) 51.0 92.1 27.7 58.8 74.8 53.9 69.6 80.4 54.4 71.4 60.9 63.2
∆ +9.9 +4.2 +13.5 +7.4 +7.2 +6.4 +5.0 -4.1 +5.2 +8.8 +5.3 +6.2
8-shot
CLIP+KNN 47.6 90.6 28.2 56.8 72.8 53.2 68.3 89.5 56.1 68.3 61.8 63.0
LLaVA1.5 Finetuning - 92.1 24.9 - 48.2 54.7 66.5 30.1 - 72.5 46.1 -
RAR (LLaVA1.5) 56.5 93.5 46.9 63.4 81.5 59.3 74.3 87.3 61.2 76.6 67.7 69.8
∆ +8.9 +2.9 +18.7 +6.6 +8.7 +6.1 +6.0 -2.2 +5.1 +8.3 +5.9 +6.8

discussed in FineR (Liu et al., 2024b), this leads to biased high performance. Moreover, BLIP-2 uses
a more powerful 11B Flan-T5xxl encoder. RAR does not use these exhaustive knowledge bases but
still achieves the best results on majority fine-grained datasets (average +16.7%/+11.3%/+14.8%
gains over WordNet/BLIP-2/CaSED), which demonstrate RAR is effective and general.

4.3 FEW-SHOT IMAGE RECOGNITION

The few-shot setting aims to enable a model to recognize new objects with only a few examples
for each new category. Few-shot learning faces substantial challenges when applied to fine-grained
datasets, which consist of numerous highly similar classes yet are accompanied by only a minimal
amount of training data.

Baselines. For few-shot image recognition, we introduce two baselines including CLIP and MLLMs.
The first is the CLIP (Radford et al., 2021) model combined with k-NN to retrieve predictions based
on few-shot examples. The second is the LLaVA model directly fine-tuning with LoRA (Hu et al.,
2021) on few-shot examples.

Averaged Results on 11 Datasets. Tab. 2 summarizes the few-shot results on 11 datasets, including
4 fine-grained datasets. Compared to the CLIP initial retrieval results (top row), our RAR (third
row) with ranking facilitates a notable increase in classification accuracy. On average, our approach
boosts the top-1 accuracy from 57.0 to 63.2 (%) on the 4-shot setting, and from 63.0 to 69.8 (%) on
the 8-shot setting. Such improvements illustrate the ranking process of MLLMs effectively uses a
nuanced understanding of context and detail to better align predictions with ground truth. Addition-
ally, we observe that LLaVA1.5 + fine-tuning (second row) baseline underperforms in datasets with
large vocabularies such as ImageNet due to the constraint of LLMs’ context window. Thanks to the
retrieved candidates, our RAR works for datasets with a vast of categories and is a potent tool in
refining classification decisions, proving particularly useful in handling the diverse and challenging
landscape of image classification tasks.

4.4 ZERO-SHOT OBJECT RECOGNITION

Given the pre-existing object proposals such as ground-truth box annotations, the zero-shot object
recognition task measures the model’s capability of aligning regions with textual class descriptions.

Baselines. We select two representative papers CLIP (Radford et al., 2021) and RegionCLIP (Zhong
et al., 2022) and report their performances as the baseline results. Besides, we apply our method on a
range of cutting-edge open-source MLLMs, including LLaVA1.5 (Liu et al., 2023), QWen-VL (Bai
et al., 2023) and InternLM-XC2 (Dong et al., 2024).

Main Results on LVIS. Tab. 3 presents the results that reveal notable metrics improvements when
applying our RAR. Specifically, when combing with the recent InternLM-XC2 (Dong et al., 2024)
model, our approach yielded an 8.4 (%) point increase over the CLIP baseline and a 6.4 (%) enhance-
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Table 3: Zero-shot object recognition on LVIS (Gupta
et al., 2019) v1.0 validation set.

APr APc APf APall

CLIP w/ box 40.6 53.1 59.2 48.7
CLIP w/ mask 40.8 53.5 59.6 49.2
RegionCLIP 50.1 50.1 51.7 50.7

RAR (LLaVA1.5) 58.7 57.9 54.4 56.2
∆ +8.6 +7.8 +2.7 +5.5

RAR (Qwen-VL) 59.6 57.5 53.7 56.4
∆ +9.5 +7.4 +2.0 +5.7

RAR (InternLM-XC2) 60.2 58.0 54.3 57.1
∆ +10.1 +7.9 +2.6 +6.4

Table 4: Zero-shot object recognition on
V3Det (Wang et al., 2023a) validation set with
13,204 categories.

APs APm APl APall

CLIP w/ box 7.2 12.9 12.8 9.8

RAR (LLaVA1.5) 9.9 13.2 13.9 11.1
∆ +2.7 +0.3 +1.1 +1.3
RAR (Qwen-VL) 9.6 12.7 13.7 10.8
∆ +2.4 -0.2 +0.9 +1.0

RAR (InternLM-XC2) 10.1 13.1 14.5 11.3
∆ +2.9 +0.2 +1.7 +1.5

['pin_(non_jewelry)', 'pennant', 'mail_slot', 'earring', 'scrubbing_brush']

['slipper_(footwear)', 'flipper_(footwear)', 'glove', 'ski_boot', 'sock']

['sportswear', 'tennis_racket', 'racket', 'polo_shirt', 'tank_top_(clothing)']

['tennis_racket', 'short_pants', 'sportswear', 'tennis_ball', 'knee_pad']
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Figure 5: Visualization of the ranking examples for zero-shot object recognition on LVIS (Gupta
et al., 2019) validation set. Given the top retrieved predictions, our RAR uses MLLMs to select the
correct class names accurately.

ment relative to RegionCLIP (Zhong et al., 2022). These advancements underscore the efficacy of
using an external memory for retrieval assistance coupled with the ranking prowess of MLLMs.

Comparison with Rare Classes Results (APr). We find an interesting observation from the ex-
perimental results presented in Tab. 3. For the CLIP model, we observe a progressive increase in
performance from APr through APc to APf, which indicates a gradation in precision across varying
class frequencies. However, employing our method yields a different trend, where the peak perfor-
mance is achieved on APr, surpassing the CLIP model by as much as 19.6 percentage points. This
significant leap in performance suggests a substantial advantage of our method when it comes to
rare categories. The integration of our RAR to MLLMs plays a pivotal role here, as it demonstrates
a heightened ability to discriminate among the rare classes. Our observation could be attributed to
the fact that our retrieving and reranking mechanism effectively pools relevant information from the
external memory, providing the MLLMs with a richer context for rare class identification. Moreover,
the ranking capability of MLLMs ensures that even the lesser-represented classes receive adequate
attention during the classification process. Our RAR achieves a robust enhancement in the model’s
ability to discern and accurately classify objects that are infrequently encountered, addressing one
of the significant challenges in long-tailed distribution datasets.

Main Results on V3Det. To further test the effectiveness of using MLLMs for ranking in sce-
narios with an extremely large number of fine-grained categories, we conducted additional exper-
iments on V3Det (Wang et al., 2023b). The experimental results in Tab. 4 reveal that our RAR
has achieved a commendable improvement in performance, surpassing the CLIP baseline by 1.5
percentage points in overall average precision (APall) with InternLM-XC2. Such an improvement
is particularly significant given the complexity of the V3Det dataset, which presents challenging
13,204 distinct classes. The MLLMs, with the aid of our retrieving and ranking mechanisms, have
once again demonstrated their robust performance in the domain of object detection datasets. Us-
ing our retrieval-augmented approach allows MLLMs to navigate the extensive and fine-grained
category landscape of V3Det effectively.

Qualitative Results. Fig. 5 presents the visualization results about ranking examples of our ap-
proach on LVIS validation set. The CLIP&K-NN approach provides an extensive list of object
predictions, albeit with the caveat that the most accurate label might not always emerge as the top-1
choice. The incorporation of MLLMs in our RAR significantly streamlines the prediction process,
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Table 5: Ablation studies about (1) using different datasets for fine-tuning and (2) fine-tuning vs in-context
learning. The symbols ‘F’ and ‘S’ stand for fine-tuning on the FGVC-Aircraft or Stanford-Cars datasets.

Method Strategy Common Fine-Grained
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RAR F ✗ 75.8 95.5 66.0 72.7 90.7 72.5 81.4 97.5 88.1 87.2 82.7
S ✗ 75.3 94.9 65.1 73.1 88.1 71.0 81.1 95.8 88.3 87.0 82.0

(QWen-VL) ✗ ✓ 72.0 93.4 63.6 65.6 86.2 66.8 76.5 95.6 84.7 82.3 78.7

RAR
F ✗ 71.5 94.4 72.7 69.7 91.7 69.9 77.6 93.2 83.9 79.3 80.4
S ✗ 71.5 94.7 71.2 69.7 90.3 69.9 77.5 92.0 83.6 79.7 80.0

(InternLM-XC2) ✗ ✓ 69.2 94.1 66.0 69.7 91.8 68.9 66.1 95.7 85.7 79.2 78.6

yielding more precise and relevant object labels. The visualization results demonstrate that our RAR
meets the need for fine-grained and large vocabulary recognition.

4.5 ABLATION EXPERIMENTS

Different Fine-tuning data. We study the importance of using different fine-tuning datasets for
ranking. We select two representative datasets: FGVC-Aircraft and Stanford-Cars as the data
sources for constructing the fine-tuning data. Our selection is motivated by their diverse charac-
teristics and relevance in visual recognition tasks, providing a comprehensive basis for fine-tuning.
Subsequently, we fine-tune the RAR with different MLLMs (QWen-VL and InternLM-XC2) on
these two datasets, aiming to investigate how different data sources influence performance. To thor-
oughly assess the impact of using different fine-tuning datasets, we evaluate the fine-tuned RAR
across a diverse set of 10 additional datasets.

Tab. 5 presents the results. We observe that RAR is not sensitive to changes in the fine-tuning
dataset for ranking, thereby confirming its viability as a generalizable and reliable method for en-
hancing the performance of MLLMs. The consistency in results, irrespective of the fine-tuning data
source, underlines the robustness of our fine-tuning strategy. Despite these minor variations, the
overall performance of using FGVC-Aircrafts (82.7%, top row) is higher than using StanfordCars
(82.0%, second row) for QWen-VL, and we observe the same trend for InternLM-XC2. Based on
our findings, we adopt the FGVC-Aircraft dataset as our preferred choice for fine-tuning.

Fine-tuning vs In-Context Learning. We validate the effectiveness of fine-tuning the MLLM or
just in-context learning (training-free) for ranking. The results are illustrated in Tab. 5. We select two
distinct groups for comparison. The first group (top and fourth rows) involves models that are fine-
tuned using the FGVC-Aircraft dataset, while the second group (third and bottom rows) consists of
models with in-context learning prompts for ranking. The results show a consistent improvement in
accuracy for the fine-tuned model across almost all datasets for both QWen-VL and InternLM-XC2.
The notable enhancement in performance across a diverse range of datasets highlights the efficacy
of our fine-tuning strategy. The results substantiate that fine-tuning the MLLM with target datasets
like FGVC-Aircraft significantly bolsters the model’s ranking capabilities.

5 CONCLUSION

In this paper, we highlight the potential of combining retrieving and ranking with multi-modal large
language models to revolutionize perception tasks such as fine-grained recognition, zero-shot im-
age recognition, and few-shot object recognition. Motivated by the limited zero-shot/few-shot of
CLIP and MLLMs on fine-grained datasets, our RAR designs the pipeline that uses MLLM to rank
the retrieved results. Our proposed approach can be seamlessly integrated into various MLLMs
for real-world applications where the variety and volume of categories continuously expand. Our
method opens up new avenues for research in augmenting the MLLM’s abilities with the retrieving-
augmented solution and could be beneficial for other tasks such as reasoning and generation in future
works.
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Appendix

In this appendix, we provide a series of detailed supporting materials to aid in a deeper understanding
of our work. Firstly, in Sec. A, we introduce the fourteen image classification datasets involved in
our experiments, including seven common datasets and seven fine-grained datasets, as well as two
large-scale vocabulary detection datasets. Following that, in Sec. B, we provide detailed information
on the prompts used in our RAR, as well as the prompts used in corresponding ablation studies.
In Sec. C, we supplement details on the structure and experimental aspects of RAR, dividing the
content into three sections: Fine-Grained Visual Recognition, Few-Shot Image Classification, and
Zero-Shot Region Recognition.

A DATASET STATISTICS

In this section, we delve deeper into the specifics of the fourteen classification and two detection
datasets employed in our research. The classification datasets encompass a wide range, from general
categories that cover a broad spectrum of common objects to fine-grained types that focus on more
specific, detailed distinctions within a particular category. The detection datasets, on the other hand,
are extensive, encompassing tens of thousands of object categories. These datasets are designed to
challenge the model’s ability to identify and categorize objects from a vast array of possible classes.
The long-tail nature of these datasets poses a significant challenge for our RAR model.

A.1 CLASSIFICATION DATASETS

In the experimental part, we use a total of fourteen image classification datasets, including seven
fine-grained classification datasets and seven common classification datasets. Fine-grained image
classification datasets include: Bird-200 (Wah et al., 2011), Stanford Cars (Krause et al., 2013),
Dog-120 (Khosla et al., 2011), Oxford Flowers (Nilsback & Zisserman, 2008), Oxford Pets (Parkhi
et al., 2012), FGVC-Aircraft (Maji et al., 2013), and Food101 (Nilsback & Zisserman, 2008).
Common image classification datasets include: ImageNet (Deng et al., 2009), Caltech101 (Fei-Fei
et al., 2004), RAF-DB (Li et al., 2017), Sun397 (Xiao et al., 2010), Eurosat (Helber et al., 2019),
DTD (Cimpoi et al., 2014), and UCF-101 (Soomro et al., 2012). We present all the utilized datasets
in Fig. 6. And in Tab. 6, we list the statistics and sources of these datasets in detail.

In our fine-grained visual recognition experiments, we employed the following datasets: Bird-200,
Stanford Cars, Dog-120, Flowers-102, and Oxford pets. In each dataset, we selected 3 images from
the training set to construct our memory and conducted tests on the corresponding validation sets.
In our few-shot image classification experiments, we used the FGVC-Aircraft dataset to build fine-
tune data and tested our RAR model across eleven classification datasets: Stanford Cars, Flower-
102, Oxford Pets, Food101, ImageNet, Caltech101, RAF-DB, Sun397, Eurosat, DTD, and UCF-
101. We selected either 4 or 8 images from the training set of each dataset to place into memory,
corresponding to 4-shot and 8-shot settings, respectively, and conducted tests across all validation
sets.

A.2 DETECTION DATASETS

In our Zero-Shot Region Recognition experiments, we utilized two large-scale vocabulary detection
datasets, namely LVIS and V3Det. The LVIS dataset, developed by Facebook AI researchers, stands
out with its extensive coverage, including 164,000 images and about 2,000,000 high-quality instance
segmentation annotations that span over 1,000 object classes. This dataset is particularly notable for
its long-tail distribution, which means it includes a large number of infrequent or rare object classes
in addition to the common ones. This diversity challenges our model to recognize and differentiate
between a wide array of objects, including those that are less common and hence more challenging
to identify accurately.

The V3Det dataset complements LVIS by offering an even broader scope. With its 245,000 images
distributed across an impressive 13,204 categories, V3Det brings an unprecedented level of diver-
sity to the table. The dataset includes 1,753,000 meticulously annotated bounding boxes, making it
an invaluable resource for developing and testing detection algorithms capable of handling a wide
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RAF-DBDTDEurosatSUN397 Caltech101 Imagenet

Stanford Cars

UCF101

Food101 Oxford petsFlower102 FGVC-Aircraft

 Common Classification Dataset

Dog-120 Bird-200

Fine-Grained Classification Dataset

LVIS

V3Det

Detection Dataset

Datasets

Figure 6: Datsets used in our experiments. We select 14 classification datasets (7 fine-grained and
7 common) and 2 object detection datasets as our benchmarks.

Table 6: Statistics for the classification and detection datasets used in our three settings: fine-grained
visual recognition, few-shot image recognition, and zero-shot region recognition.

Settings Dataset Categories Evaluation Metrics Source link

Fine-Grained
Visual Recog.

Bird-200 200 cACC, sACC Bird website
Car-196 196 cACC, sACC Kaggle
Dog-120 120 cACC, sACC Tensorflow

Flower-102 102 cACC, sACC Tensorflow
Pet-37 37 cACC, sACC Tensorflow

Few-Shot Im-
age Recog.

RAF-DB 7 Accuracy RAF-DB website
Eurosat 10 Accuracy Tensorflow
DTD 47 Accuracy Tensorflow

FGVC Aircraft 100 Accuracy FGVC website
Caltech101 101 Accuracy Tensorflow

Food101 101 Accuracy Tensorflow
UCF-101 101 Accuracy Tensorflow
SUN397 397 Accuracy Tensorflow
ImageNet 1000 Accuracy Tensorflow

Zero-Shot LVIS 1203 mAP LVIS website
Region Recog. V3Det 13204 mAP Github

variety of object types. Its large number of categories ensures that the dataset has a comprehen-
sive representation of the visual world, making it an ideal testing ground for our Zero-Shot Region
Recognition experiments.

B PROMPT FORMATS

In this section, we delve into the detailed design of our prompts. We have crafted distinct prompts for
various tasks to test the capabilities of the baseline model and our RAR model in visual recognition.

In our RAR pipeline, the prompt primarily serves to merge the input image with the category infor-
mation retrieved from memory. It guides MLLMs to rank the retrieved candidate object categories
based on similarity. Our prompt format is as follows:

Please play the role of a classification expert, and sort the provided
categories from high to low according to the {top-k} similarity with the
input image.Here are the optional categories:{categories}.
Here, ‘{top-k}’ is replaced with the number of categories input. And ‘{categories}’ is replaced with
the top-k categories retrieved from memory.

Additionally, to assess the visual recognition and ranking capabilities of MLLMs themselves, we
have prepared a prompt with examples to serve as input for the model. Our structured in-context
learning prompt is as follows:
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Please play the role of a classification expert, and 
sort the provided categories from high to low 
according to the top 5 similarity with the input 
image. Here are the optional categories:['2012 Aston 
Martin V8 Vantage Convertible', '2012 Aston Martin 
Virage Coupe', '2012 Aston Martin Virage 
Convertible', '2012 Audi TTS Coupe', '2012 Aston 
Martin V8 Vantage Coupe']

Why did you give this order?

The car in the image is an Aston Martin, and its 
styling most closely resembles the Vantage model 
line. It's a coupe, not a convertible, so coupes have 
been ranked higher than convertibles. The Audi TTS 
Coupe, while also a coupe, is from a different 
manufacturer and thus has distinct styling cues that 
are less similar to the vehicle in the image.

Based on the input image and the provided 
categories, the sorting from high to low similarity 
with the car in the image is as follows:
1. 2012 Aston Martin V8 Vantage Coupe
2. 2012 Aston Martin Virage Coupe
3. 2012 Aston Martin V8 Vantage Convertible
4. 2012 Aston Martin Virage Convertible
5. 2012 Audi TTS Coupe

Please play the role of a classification expert, and 
sort the provided categories from high to low 
according to the top 5 similarity with the input 
image. Here are the optional categories: ['737-800', 
'757-300', '767-200', 'A340-300', 'MD-90']

Based on the input image and the provided 
categories, the sorting from high to low similarity 
with the aircraft in the image is as follows:
1. 757-300
2. 767-200
3. MD-90
4. 737-800
5. A340-300

The aircraft in the image is a Boeing 757, which is 
identifiable by its long fuselage, narrow-body, and 
characteristic nose shape. The -300 series has an 
extended fuselage compared to other variants, which 
appears to match the aircraft pictured. The 767-200 
and MD-90 have some similarities but differ in 
specific design elements such as winglets and 
engine placement. The 737-800 is a shorter aircraft 
with a different wing design. The A340-300 is a 
wide-body aircraft with four engines, making it 
quite distinct from the 757-300.

Why did you give this order?

Figure 7: GPT4V Example for Stanford Cars and FGVC Aircraft. Green for ground truth, blue for
characteristics analyzed by GPT-4V.

Please play the role of a classification expert, and sort the provided
categories from high to low according to the top 5 similarity with the
input image.Here are the optional categories:{categories}.Your answer
should follow the following format, like:[‘category A’, ‘category B’,
‘category C’, ‘category D’, ‘category E’]. Only choose five categories,
and no further information.

When testing the RAR pipeline with MLLMs, ‘{categories}’ is replaced with all the category names
of each dataset.

C MORE IMPLEMENTED DETAILS AND EXPERIMENTS

C.1 FINE-GRAINED VISUAL RECOGNITION

In the fine-grained visual recognition section, we first evaluate our RAR on the setting defined in
previous work (Liu et al., 2024b). For each category in the five datasets, we select three unlabeled
images to form a 3-shot setting. Then, we extract embeddings using the CLIP B/16 model and store
them in memory. The labels for each image correspond to the predictions in [31]. We then test the
validation set using the RAR pipeline and measure the results with Clustering Accuracy (cACC) and
Semantic Similarity (sACC).

Evaluation Metrics. In the fine-grained visual recognition section, we use two synergistic met-
rics: Clustering Accuracy (cACC) and Semantic Similarity (sACC) to evaluate our method, follow-
ing (Liu et al., 2024b). Clustering Accuracy (cACC) mainly assesses the accuracy of clustering
images within the same category, without considering the semantic relatedness of category labels.
Complementing this, Semantic Similarity (sACC) measures the similarity between the names of
categories in the clusters and the ground truth.
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Based on the input image and 
the provided categories, here 
is the sorting of the categories 
from high to low according to 
their similarity with the flower 
in the image:
1. Japanese anemone
2. Tree poppy
3. Camellia
4. Lenten rose
5. Columbine

The flower in the image 
appears to be a Japanese 
anemone, which typically has 
white petals surrounding a 
yellow center of stamens and a 
greenish pistil, matching the 
one shown. The other flowers 
listed have different 
characteristics that do not 
match as closely.

Please play the role of a 
classification expert, and sort 
the provided categories from 
high to low according to the 
top 5 similarity with the input 
image. Here are the optional 
categories: ['yorkshire_terrier', 
'chihuahua','miniature_pinsche
r','havanese','beagle']

Based on the input image and 
the provided categories, the 
sorting from high to low 
similarity with the dog in the 
image is:
1. Chihuahua
2. Miniature Pinscher
3. Yorkshire Terrier
4. Havanese
5. Beagle

The dog in the image is a 
Chihuahua, identifiable by its 
small size, prominent ears, and 
facial features. Miniature 
Pinschers are somewhat similar 
in size and ear shape, while 
Yorkshire Terriers, Havanese, 
and Beagles have distinct 
differences in coat, size, and 
facial structure compared to the 
Chihuahua.

Please play the role of a 
classification expert, and sort 
the provided categories from 
high to low according to the 
top 5 similarity with the input 
image. Here are the optional 
categories:['lenten rose', 
'japanese anemone', 'tree 
poppy', 'columbine', 'camellia']

Please play the role of a 
classification expert, and sort 
the provided categories from 
high to low according to the top 
5 similarity with the input 
image. Here are the optional 
categories: 
 ['donuts', 'breakfast_burrito', 
'falafel', 'hummus', 'beet_salad']

Based on the input image and 
the provided categories, the 
sorting from high to low 
similarity with the food items 
in the image is:
1. Falafel
2. Hummus
3. Beet Salad
4. Breakfast Burrito
5. Donuts

The dish in the image appears 
to include falafel balls and a 
side of hummus, which are 
typically found in Middle 
Eastern cuisine. The other 
items, such as beet salad, 
breakfast burrito, and donuts, 
do not seem to be present in the 
image or resemble the food 
shown.

Why did you give this order? Why did you give this order? Why did you give this order?

Figure 8: GPT4V Example for Flowers102, Pets37 and Food101. Green for ground truth, blue for
characteristics analyzed by GPT-4V.

Top-k Top-k Top-k

Top-k Top-k Top-k

Figure 9: Evaluation on CLIP+KNN for Caltech101, Flowers102, RAF-DB, Pets37, DTD and
UCF101. We report the top-1, 5, 10, 15, 20 accuracy (%) under the 4-shot settings.

C.2 FEW-SHOT IMAGE CLASSIFICATION

In this section, we delve deeper into some intriguing observations and motivations behind our study.
Additionally, we have included an array of expanded test results in this part, encompassing clas-
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Figure 10: Evaluation on MLLMs for Caltech101, Flowers102. We report the test results using 10,
15, 20, 25, and 30 category names as inputs.

Table 7: Few-shot image classification across 11 datasets. We report the top-1 accuracy (%) under the 1-shot,
2-shot, 4-shot, 8-shot and 16-shot settings. The CLIP+KNN method does not utilize the text encoder of CLIP.
Instead, we employ the visual encoder to extract image features, and then apply the KNN algorithm to these
features. Here our RAR uses the LLaVA1.5 (Liu et al., 2023) as the MLLM to rank the retrieved results. The
symbol ‘-’ denotes to the LLaVA model fails to make the predictions due to the limited window size.
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1-shot
CLIP+KNN 29.2 75.9 11.3 37.7 53.9 35.1 47.8 66.7 32.6 45.3 41.3 43.3
LLaVA1.5 Finetuning - 84.1 24.9 - 48.2 22.3 35.4 4.59 - 39.2 16.3 -
RAR (LLaVA1.5) 40.3 85.2 34.8 46.5 62.4 38.1 57.4 50.4 38.3 57.6 47.0 50.7
∆ +10.5 +9.3 +23.5 +8.8 +8.5 +3.0 +9.6 -16.3 +5.7 +12.3 +5.7 +7.4
2-shot
CLIP+KNN 36.1 82.9 11.7 44.6 58.7 41.2 58.5 78.9 40.9 54.1 49.0 50.6
LLaVA1.5 Finetuning - 53.1 24.9 - 48.2 22.3 38.7 10.03 - 38.2 16.3 -
RAR (LLaVA1.5) 46.8 89.2 27.9 53.1 68.6 47.9 66.5 54.7 45.9 65.4 54.7 57.4
∆ +10.7 +6.3 +16.2 +8.5 +9.9 +6.7 +8.0 -24.2 +5.0 +11.3 +5.7 +6.8
4-shot
CLIP+KNN 42.1 87.9 14.2 51.4 67.6 47.5 64.6 84.5 49.2 62.6 55.6 57.0
LLaVA1.5 Finetuning - 88.4 24.9 - 48.2 46.6 58.9 13.2 - 66.4 28.9 -
RAR (LLaVA1.5) 51.0 92.1 27.7 58.8 74.8 53.9 69.6 80.4 54.4 71.4 60.9 63.2
∆ +9.9 +4.2 +13.5 +7.4 +7.2 +6.4 +5.0 -4.1 +5.2 +8.8 +5.3 +6.2
8-shot
CLIP+KNN 47.6 90.6 28.2 56.8 72.8 53.2 68.3 89.5 56.1 68.3 61.8 63.0
LLaVA1.5 Finetuning - 92.1 24.9 - 48.2 54.7 66.5 30.1 - 72.5 46.1 -
RAR (LLaVA1.5) 56.5 93.5 46.9 63.4 81.5 59.3 74.3 87.3 61.2 76.6 67.7 69.8
∆ +8.9 +2.9 +18.7 +6.6 +8.7 +6.1 +6.0 -2.2 +5.1 +8.3 +5.9 +6.8
16-shot
CLIP+KNN 52.0 92.4 35.0 61.2 78.7 57.5 70.6 92.1 63.2 71.8 68.3 67.5
LLaVA1.5 Finetuning - 94.1 24.9 - 50.6 63 74.7 59.0 - - 62.4 -
RAR (LLaVA1.5) 60.3 94.1 53.1 68.0 84.8 63.7 75.9 92.1 67.8 79.4 72.7 73.8
∆ +8.3 +1.7 +18.1 +6.8 +6.1 +6.2 +5.3 +0.0 +4.6 +7.6 +4.4 +6.3

sification tests from 1-shot to 16-shot, tests for top-5 accuracy, and we have further expanded our
memory to explore the potential capabilities of RAR.

More Discussion about Motivation. In the field of image classification, especially when facing
the challenges of fine-grained image categorization, can MLLMs prove competent and effective?
To further explore the potential of MLLMs in image classification tasks, we employed the GPT-4V
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Table 8: Evaluation on 11 datasets, reporting the top-5 accuracy. We use the 4-shot setting.
Method Common Fine-Grained
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CLIP+KNN 67.1 97.6 48.0 78.9 91.5 70.5 85.4 96.5 79.1 86.2 87.6 80.8

RAR (LLaVA1.5) 69.7 97.7 53.8 80.1 92.5 71.9 86.2 96.5 79.1 87.7 88.1 82.1
∆ +2.6 +0.1 +5.8 +1.2 +1.0 +1.4 +0.8 +0.0 +0.0 +1.5 +0.5 +1.3

Table 9: Evaluation on 11 datasets, reporting the top-1 accuracy. The GPT4V (OpenAI, 2023) results are
copied from (Wu et al., 2023).
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GPT-4V 62.0 95.5 58.5 57.7 36.2 59.1 81.6 70.6 58.3 80.1 92.6 68.4

RAR (LLaVA1.5) 73.4 94.6 73.8 70.6 93.3 71.9 79.1 95.6 72.6 86.2 79.9 81.0
∆ +11.4 -0.9 +15.3 +12.9 +57.1 +12.8 -2.5 +25.0 +14.3 +6.1 -12.7 +12.6

RAR (Intern-IXC2) 71.5 94.4 72.7 69.7 91.7 69.9 77.6 93.2 65.4 83.9 79.3 79.0
∆ +9.5 -1.1 +14.2 +12.0 +55.5 +10.8 -4.0 +22.6 +7.1 +3.8 -13.3 +10.6

RAR (Qwen-VL) 75.8 95.5 66.0 72.7 90.7 72.5 81.4 97.5 81.6 87.2 88.1 82.6
∆ +13.8 +0.0 +7.5 +5.0 +54.5 +13.4 -0.2 +26.9 +23.3 +7.1 -4.5 +14.2

model to test selected images from our fine-grained datasets. Initially, we used the CLIP+KNN
method to select 5 candidate images and their categories for a single image, ensuring that these
candidates are at the top-5 in similarity among all images in memory, thus guaranteeing minimal
differences between the chosen categories. Additionally, we intentionally selected examples that
CLIP failed to classify correctly, increasing the complexity of the task. Subsequently, we presented
these images and categories to GPT-4V, utilizing the prompt described in Sec. B, prompting GPT-4V
to rank all categories by similarity. During this process, we also requested GPT-4V to provide the
rationale for its classifications, allowing us to analyze the specific role of MLLMs in classification
tasks based on the reasons provided by GPT-4V. Fig. 13 and Fig. 8 presents several examples of five
fine-grained classification datasets.

From the examples in Fig. 13 and Fig. 8, it is evident that GPT-4V is capable of effectively analyzing
the main feature information of objects in images during fine-grained image classification tasks.
For instance, it identifies key characteristics such as “coupe” (a two-door car), “long fuselage”
(long body of an aircraft), and “prominent ears” (noticeably protruding ears), which are crucial for
distinguishing between similar categories. Sometimes, these detailed aspects may be overlooked by
the CLIP model, leading to classification errors. Therefore, adopting a method of initial retrieval
followed by deeper analysis, firstly filtering through the numerous fine-grained categories and then
using MLLMs for further examination to select the most accurate answer, proves to be an effective
approach for fine-grained image classification tasks.

Simultaneously, we assessed CLIP’s accuracy in handling a variety of classification datasets. We
selected six datasets: Caltech101, Flower102, RAF-DB, Pets37, DTD, and UCF101, and tested the
CLIP+KNN method for top 1, 5, 10, 15, and 20 accuracy, with results presented in Fig. 9. We
observed that as the top-k value increased, the classification accuracy improved rapidly, reaching
over 90% in four of the six datasets when top-k reached 10. This indicates that CLIP shows signifi-
cant advantages as the number of predicted categories increases, complementing MLLMs’ ability to
discern among similar categories.

20



1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

Table 10: Evaluation on 11 datasets, reporting the top-1 accuracy. We use the CLIP ViT-L/14@336 as feature
extractor and RAR is based on LLaVA 1.5.
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4-shot
CLIP+KNN 52.2 92.4 24.7 56.2 68.3 52.5 72.6 92.3 62.4 74.1 67.0 65.0
RAR (LLaVA1.5) 58.4 93.6 46.3 61.8 73.5 58.5 75.5 83.2 70.8 79.0 68.4 69.9
∆ +6.2 +1.2 +21.6 +5.6 +5.2 +6.0 +2.9 -9.1 +8.4 +4.9 +1.4 +4.9
8-shot
CLIP+KNN 57.8 94.4 41.0 61.3 78.9 57.0 76.2 95.8 63.1 80.2 73.1 70.8
RAR (LLaVA1.5) 63.2 95.0 57.6 66.9 84.3 62.8 79.1 93.2 70.8 83.5 73.7 75.5
∆ +5.4 +0.6 +16.6 +5.6 +5.4 +5.8 +2.9 -2.6 +7.7 +3.3 +0.6 +4.7

k = 3 k = 4 k = 5 k = 6 k = 7

DTD 70.27 71.34 71.93 71.93 71.99
Flowers102 96.18 95.57 95.62 95.66 95.57
Oxford-pets 80.21 80.38 79.91 79.72 79.42
Eurosat 92.38 92.48 93.28 92.52 92.59

Average 84.76 84.96 85.19 84.96 84.90

Table 11: Ablation studies about the se-
lection of the hyper-parameter k.

Following the experimental design in Fig. 9, we used MLLMs to rank categories when expanding
the number of categories. We chose two datasets, Caltech101 and Flowers102, and used 10, 15, 20,
25, 30 categories as input to MLLMs, ensuring these included the correct category. As shown in
Fig. 10, the distinction ability of MLLMs gradually decreased as the number of categories input into
MLLMs increased.

Hence, we found that MLLMs and CLIP have complementary advantages in classification tasks.
CLIP initially narrows down the correct answer to a smaller set through preliminary screening,
while MLLMs can finely select the correct answer from this set. Our RAR combines the strengths
of both CLIP and MLLMs, first finding likely correct candidates through CLIP and retrieval, and
then accurately selecting the correct answer through MLLMs’ ranking, thus achieving outstanding
results across multiple classification datasets.

More Evaluation Results. In our few-shot image classification experiments, we employed the
CLIP B/16 model to extract embeddings from n images in each category, which were then stored in
memory for testing the accuracy of n-shot experiments. To accelerate retrieval speed, we initially
use the HNSW algorithm to transform the original 576-dimensional vectors into 64-dimensional
indices before storing the image embeddings in memory. HNSW is a commonly used Approximate
Nearest Neighbor (ANN) algorithm, primarily aimed at quickly finding the k nearest elements to
a query in a large set of candidates. To demonstrate the effectiveness of our method, we included
results from 1-shot, 2-shot, and 16-shot experiments in the supplementary materials, alongside the
results of 4-shot and 8-shot experiments, all of which are presented in Tab. 7.

From the 1-shot to 16-shot experiments, RAR’s results showed an improvement over the
CLIP+KNN method by 7.4%, 6.8%, 6.2%, 6.8%, and 6.3% respectively, averaging a 6.7% per-
centage point increase, and significantly outperforming the performance of the LLaVa model it-
self. This outcome demonstrates the excellence of RAR in image classification tasks (including
fine-grained image classification), achieved by integrating the strengths of MLLMs and retrieval
techniques.

Top-5 Accuracy Results. Moreover, in the experiments conducted for our paper, we selected the top
5 retrieved results for ranking. To test the scalability of this method, we conducted a new experiment
using the top 10 retrieved results, ranking these ten categories and then assessing the accuracy of the
top 5. In this experiment, we utilized a 4-shot setting, the result is shown in Tab. 8.
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Table 12: Cropping ablation of CLIP (Radford et al., 2021) zero-shot classification on LVIS (Gupta et al.,
2019) with ground truth proposals. Different behaviors can be seen before and after blurring with respect to
different object scales.

Crop scale Blurring 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0

AP
✗ 46.7 47.0 46.6 46.4 43.4 43.0 40.9 40.7 37.7 37.1 36.2

✓ 47.9 51.3 52.2 53.9 53.3 52.9 52.6 51.8 51.2 50.3 49.8

APs

✗ 39.5 40.9 44.6 44.8 44.4 44.2 42.9 43.3 41.2 40.5 39.8

✓ 33.6 35.2 41.4 43.2 45.6 46.3 46.7 46.9 47.4 47.4 47.3

APm

✗ 61.5 61.3 56.4 55.2 49.5 48.6 44.4 43.7 39.9 39.0 38.5

✓ 63.5 64.2 66.1 68.3 65.2 64.2 63.4 62.2 61.0 59.2 58.6

APl

✗ 59.1 57.2 51.1 50.1 45.6 44.4 41.4 40.9 38.0 37.8 37.2

✓ 72.4 71.3 69.5 69.6 67.0 65.2 62.9 60.7 59.6 57.4 55.2

Crop Scale
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Figure 11: Metric curve visualization of CLIP (Radford et al., 2021) zero-shot classification on
LVIS (Gupta et al., 2019) with ground truth proposals. Different behaviors can be seen before and
after blurring with respect to different object’s scales.

The final results demonstrate that although the top 5 accuracy achieved by CLIP+KNN was already
high, our RAR method still managed to make comprehensive improvements on this basis. The
average top 5 accuracy across eleven datasets increased by 1.3%.

Extension to the whole Training Set. To further explore the potential of RAR, we expanded the
memory size to include all images from the training set stored in memory. We then compared the
performance of RAR under this setup with that of GPT-4V across multiple image classification
datasets. The results are presented in Tab. 9.

The results in Tab. 9 show that, regardless of whether the base model is LLaVa, Intern-IXC2, or
Qwen-VL, RAR significantly outperforms GPT-4V in terms of accuracy. Across eleven datasets,
the average precision of RAR exceeds that of GPT-4V by 12.5 percentage points. It is observed that
even 7B MLLMs, when integrated into the RAR pipeline, far surpass the classification capabilities
of GPT-4V across multiple image classification datasets.
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Question：Please play the role of a classification expert, suppose you are given a 
picture and 5 categories, then you need to sort the provided 5 categories from 
high to low according to the top 5 similarity with the input image. 
For example, you are given a picture of a chair, and the provided categories are 
['armchair', 'recliner', 'chair', 'rocking_chair', 'loveseat'], the sorted categories 
should  be like: "['chair', 'armchair', 'rocking_chair', 'recliner', 'loveseat']", and 
your answer is: "['chair', 'armchair', 'rocking_chair', 'recliner', 'loveseat']", no 
more information. 
Now, according to the input pictures, sort the provided categories: ['767-400', 
'747-400', '767-400', '757-300', 'A319'].

Answer: ['757-300', '767-400', '747-400', '767-400', 'A319']

Input Category：757-300

757-300767-400 747-400 767-400 A319

Question：The above is an example of a ranking. Please explain the reason for your ranking results(Answer).

Answer: In the given image, there is a large commercial airplane parked on the runway. The image is described as a 
Delta airplane, which is a specific type of aircraft. The categories provided are related to different types of 
airplanes, including the Delta airplane. 

To sort the categories from high to low according to the top 5 similarity with the input image, we need to consider 
the visual features of the airplane and the categories. In this case, the Delta airplane is a large commercial airplane, 
which is a specific type of aircraft. The categories related to other types of airplanes, such as the 767-400, 747-
400, 757-300, and A319, are not as similar to the Delta airplane as the categories related to other Delta airplanes, 
such as the 767-400 and 757-300. Therefore, the categories related to other types of airplanes should be ranked 
lower than the categories related to the Delta airplane.

The sorted categories are: ['757-300', '767-400', '747-400', '767-400', 'A319'], which reflects the similarity 
between the input image and the categories related to the Delta airplane.

Figure 12: Interpretability. Our model provides interpretability for the ranking process.

More Feature Extractor results. In the few-shot image classification experiment, we primarily
used the CLIP-B/16. To verify the generalization capability of the method, we conducted experi-
ments using the more powerful CLIP ViT-L/14@336 as the feature extractor. The results, as shown
in Tab. 10, demonstrate that RAR still consistently outperforms the baseline.

Ablation Study on Effects of the Parameter k. We delve into the impact of the hyper-parameter k
on few-shot image recognition setting, as detailed in Tab. 13. We report the results of RAR with the
LLaVA1.5 as the MLLM. Our findings reveal that our RAR demonstrates a remarkable robustness
to variations in k, with only minor differences observed across a broad spectrum of values from
3 to 7. Such a consistency suggests that RAR’s ability to generalize from a few examples is not
significantly influenced by the choice of k. Consequently, based on the averaged results, we select
k = 5 as the default choice.

C.3 ZERO-SHOT REGION RECOGNITION

We carefully study how to adapt CLIP and MLLMs pretrained on full images to region-level recog-
nition tasks. Zero-shot LVIS (Gupta et al., 2019) AP metric under different crop scales and object
scales are reported in Fig. 11 and Tab. 12. Based on this experiment, we conclude with two major
observations: Firstly, a proper amount of blurring can significantly improve classification accuracy.
This trick can help leave enough context information while keeping the foreground object promi-
nent. Secondly, for objects with different scales, different crop scales should be adapted to maximize
classification accuracy. As shown in Fig. 11, after blurring, Different object scale AP curves behave
differently with respect to crop scale. We contribute this phenomenon to the resolution shift of CLIP
input images. Therefore, we make two adaptations for CLIP and MLLMs for region-level recogni-
tion: Gaussian blurring and adaptive crop scale. We adopt the hyperparameters of these two tricks
on the LVIS training set and find these adaptions not only fit for the LVIS validation set but also
other detection datasets like V3Det (Wang et al., 2023a).
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DTD Flowers102 Oxford-pets Eurosat Average
LLaVa baseline 46.6 13.2 28.9 48.2 34.2
CLIP+KNN baseline 68.4 95.5 75.6 90.5 82.5

RAR (k = 3) 70.3 96.2 80.2 92.4 84.8
RAR (k = 4) 71.3 95.6 80.4 92.5 85.0
RAR (k = 5) 71.9 95.6 79.9 93.3 85.2
RAR (k = 6) 71.9 95.7 79.7 92.5 85.0
RAR (k = 7) 72.0 95.6 79.4 92.6 84.9

Upper bound 89.0 99.2 97.0 98.3 95.8

Table 13: Limitation Study. We present
the baselines of LLaVa and CLIP, as
well as the upper limit of the model and
RAR’s results under different k values.

Question：Please play the role of a classification expert, suppose you are given a 
picture and 5 categories, then you need to sort the provided 5 categories from 
high to low according to the top 5 similarity with the input image. 
For example, you are given a picture of a chair, and the provided categories are 
['armchair', 'recliner', 'chair', 'rocking_chair', 'loveseat'], the sorted categories 
should  be like: "['chair', 'armchair', 'rocking_chair', 'recliner', 'loveseat']", and 
your answer is: "['chair', 'armchair', 'rocking_chair', 'recliner', 'loveseat']", no 
more information. 
Now, according to the input pictures, sort the provided categories: ['Global 
Express', 'ERJ 145', 'ERJ 135', 'Global Express', 'Falcon 2000'].

The differences in fine-grained categories are so subtle that even the results retrieved by CLIP are all incorrect. 

Input Category：CRJ-700

Global ExpressGlobal Express ERJ 145 ERJ 135 Falcon 2000

Retrieved Category:

Retrieved Category:

Input Category：DHC-8-100

Question：Please play the role of a classification expert, suppose you are given a 
picture and 5 categories, then you need to sort the provided 5 categories from 
high to low according to the top 5 similarity with the input image. 
For example, you are given a picture of a chair, and the provided categories are 
['armchair', 'recliner', 'chair', 'rocking_chair', 'loveseat'], the sorted categories 
should  be like: "['chair', 'armchair', 'rocking_chair', 'recliner', 'loveseat']", and 
your answer is: "['chair', 'armchair', 'rocking_chair', 'recliner', 'loveseat']", no 
more information. 
Now, according to the input pictures, sort the provided categories: ['EMB-120', 
'DHC-8-300', 'Embraer Legacy 600', 'DHC-8-100', 'Cessna 525'].

DHC-8-100EMB-120 DHC-8-300 Embraer Legacy 600 Cessna 525

Answer：[‘DHC-8-300’, ’DHC-8-100’, ’EMB-120’, ’Embraer Legacy 600’, ’Cessna 525’]

MLLM tends to make errors when encountering categories beyond its knowledge scope.

Figure 13: Error Analysis. RAR is prone to errors in the following two scenarios: 1. The differ-
ences in fine-grained categories are so subtle that even the results retrieved by CLIP are all incorrect.
2. MLLM tends to make errors when encountering categories beyond its knowledge scope.
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