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Abstract

While diffusion language models (DLMs) enable fine-grained refinement, their
practical controllability remains fragile. We identify and formally characterize
a central failure mode—update-forgetting—in which uniform, context-agnostic
updates induce token-level fluctuations across timesteps, erasing earlier semantic
edits and disrupting the cumulative refinement process, thereby degrading fluency
and coherence. As this failure originates in uniform, context-agnostic updates,
effective control demands explicit token ordering. We propose Token Timestep
Allocation (TTA-DIFFUSION), which realizes soft, semantic token ordering via per-
token timestep schedules: critical tokens are frozen early, while uncertain tokens
receive continued refinement. This timestep-based ordering can be instantiated as
either a fixed policy or an adaptive policy driven by task signals, thereby supporting
a broad spectrum of refinement strategies. Because it operates purely at inference
time, it applies uniformly across various DLMs and naturally extends to diverse
supervision sources. Empirically, TTA-DIFFUSION improves controllability and
fluency: on sentiment control, it yields > 20% higher accuracy and nearly halves
perplexity using < 1/5 the steps; in detoxification, it lowers maximum toxicity
(12.2 vs. 14.5) and perplexity (26.0 vs. 32.0). Together, these results demonstrate
that softened ordering via timestep allocation is the critical lever for mitigating
update-forgetting and achieving stable and controllable diffusion text generation.

1 Introduction

Diffusion language models [22, |8l 24, 11}, 9] have emerged as a promising alternative to auto-
regressive models by generating text through iterative refinement. They generate text in parallel and
leverage bidirectional context for flexible revision, making them well-suited for tasks requiring fine-
grained control. A widely adopted technique for guiding this refinement is classifier guidance, which
injects external gradients at each step via an auxiliary classifier. This mechanism has demonstrated
effectiveness in structural control [22] [16], semantic modulation [11]], and alignment [47].

Despite its advantages, classifier-guided diffusion language models still face substantial challenges.
One major limitation is the degraded fluency, as the parallel generation process weakens token-level
dependencies and hinders coherent phrasing [23]. This is especially problematic for controllable
generation tasks, which demand both attribute alignment and linguistic fluency [2| 25} 155} 22].
Moreover, existing diffusion-based control methods typically require hundreds of steps—often
exceeding 200—to gradually enforce control, leading to significant computational overhead [22, [11]].

We identify a core bottleneck behind these issues: a phenomenon we term update-forgetting, wherein
classifier-guided modifications made at one timestep fail to persist in subsequent steps due to uniform,
context-agnostic token updates. As illustrated in Figure [T} this disrupts the cumulative nature of
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Figure 1: Illustration of update-forgetting. Left: Classifier-guided semantic edits (e.g., love) can
be inadvertently overwritten in later denoising steps (e.g., hate). Right: This example from our
experiments shows positive sentiment tokens being reversed (clean — dirty), undermining control;
with allocation, the edits are preserved.

the iterative refinement process by erasing or overwriting previously guided changes, resulting in
redundant updates, computational inefficiency, and reduced controllability.

To address this, we turn our attention to the emerging notion of token ordering, which determines
the sequence in which tokens are updated during inference. Prior approaches have mainly explored
masked diffusion, where updates are applied through unmasking strategies based on confidence [18|
34]. However, these approaches remain agnostic to semantic importance and are often limited to
discrete formulations. In contrast, we propose a semantic-guided ordering mechanism that prioritizes
semantically critical tokens. This design directly incorporates task-specific supervision into the
update process and naturally extends to both discrete and continuous diffusion frameworks, offering
a more general approach to diffusion text generation.

Building on this perspective, we introduce Token Timestep Allocation (TTA-DIFFUSION), a decoding-
time framework that operationalizes token ordering through structured timestep scheduling. Instead
of applying uniform, context-agnostic updates across all tokens, TTA-DIFFUSION assigns distinct
timesteps that determine when and how strongly each token is refined. This enables explicit control
over generation order, supporting strategies such as left-to-right decoding without requiring addi-
tional training. Beyond fixed schedules, we further propose an adaptive allocation mechanism that
dynamically adjusts timesteps according to classifier gradients. By prioritizing tokens with high
semantic importance, this method preserves classifier-guided edits across successive steps, mitigates
update-forgetting, and ensures precise refinements on critical tokens.

We implement TTA-DIFFUSION on the simplex diffusion language model [[L1}32], which facilitates
seamless integration of external classifiers for guidance. To demonstrate the generality of our
approach, we also validate it on continuous and discrete diffusion formulations. In addition, we
further draw inspiration from progressive distillation methods [42, 3] and progressively tune the model
for reduced timesteps, enabling fast generation without sacrificing control fidelity or fluency, while
significantly lowering inference cost and compensating for the overhead introduced by guidance.

Consequently, TTA-DIFFUSION effectively mitigates update-forgetting by preserving semantic
consistency and minimizing redundant updates throughout the generation process. Empirically, it
achieves strong controllability and fluency with significantly fewer diffusion steps (as low as 100 or
even 50), substantially reducing inference costs compared to prior diffusion-based methods. Beyond
these performance improvements, our work positions semantic-based token ordering with inference-
time timestep allocation as a principled and versatile framework for structured generation—opening
new directions for efficient, fine-grained control in diffusion language models.

» We identify update-forgetting as a key limitation in diffusion text generation, where uniform
timestep updates erase classifier-guided modifications and undermine fluency.

* We propose TTA-DIFFUSION, an inference-time framework that unifies semantic-based
token ordering with structured timestep allocation to preserve guided edits and improve
generation quality.

* Experimental results show that TTA-DIFFUSION outperforms baselines across tasks; in
detoxification, it achieves lower maximum toxicity (/2.2 vs. 14.5) and reduced perplexity
(26.0 vs. 32.0) while maintaining diversity—even with under 100 timesteps.



2 Controllability Challenges in Diffusion Language Models

In this section, we first outline the classifier-guided update mechanism in diffusion models for
language generation and then define and illustrate the update-forgetting phenomenon.

Classifier-Guided Update in Diffusion Classifier guidance in diffusion-based generation can be
formulated via Bayesian inference. Given a token distribution 7, € RV*V at timestep ¢ and a target
label y, the goal is to maximize the posterior P(Z; | y), which by Bayes’ rule becomes:
P(Zy | y) o< P(y | &) P(Z4).
Taking the gradient of the log-posterior gives:
Vi, log P(Ty | y) = Vi, log P(y | @1) + V3, log P(Z4).
Since the diffusion model estimates the prior score Vz, log P(Z;), classifier guidance approximates
the remaining term using a classifier P, (y | Z;):
Ty =2 + AVz, log Py(y | ),
where A controls the guidance strength, steering the process toward the target label.

2.1 Problem Definition

We identify two key instability phenomena that hinder controllability in diffusion-based text gen-
eration: diffusion fluctuation and update-forgetting. These phenomena capture how outputs may
drift from their inputs or regress from previously guided states, ultimately undermining stable and
effective control.

Terminology Diffusion fluctuation captures the discrepancy introduced by a single diffusion step,
defined as the distance between the perturbed input and the decoded output at timestep ¢ 4 1. Update-
forgetting refers to the semantic drift that occurs when guidance applied at timestep ¢ fails to persist
in the next step, weakening or reversing the intended effect.

Formally, let z; = (z},..., 7)) denote the sequence at timestep ¢, with logits #;. The perturbed
input to timestep ¢ + 1 is _
P =T+ m, ne~N(0,070).
Definition 1 Diffusion Fluctuation. The fluctuation at timestep t is defined as the distance between
the input and the decoded output:
Rt = dist(mt+1, $ir;1),

where dist(-, ) is a general distance function.

Definition 2 Update-Forgetting. The extent of update-forgetting at timestep t is defined as the
semantic shift between the guided sequence at t and the generated sequence att + 1:

. uided
Fy = dist(2§", x144),

where dist(-, -) measures semantic divergence.

Practical Deployment In practice, the distance function dist(-, -) can be instantiated in multiple
ways. For fluctuation, we consider Hamming distance, BLEU, and BERTScore. In our analyses,
we primarily adopt Hamming distance for simplicity, while also reporting BLEU and BERTScore
as semantics-aware complements. For update-forgetting, we focus on the subset of tokens most
influenced by guidance. Specifically, we measure the distance over the top-k tokens identified as
most responsive to the guidance signal, yielding a ratio that quantifies the degree to which guided
effects are forgotten across timesteps.

2.2 Analysis

Building upon the above, we propose two hypotheses and validate them through experiments.

Hypothesis 1: Excessive fluctuation disrupts token coherence and reduces fluency.
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Figure 2: Fluctuation vs. perplexity across timesteps. At each timestep ¢, samples are grouped by
fluctuation ratio, showing that higher fluctuation is consistently associated with higher perplexity.

Experimental Setup. We use the TESS [32] model with sentiment control applied via a classifier
trained on the IMDB Movie Reviews dataset. Generation is performed with 7" = 1000 diffusion
steps per sample under consistent decoding settings. At each intermediate timestep ¢, we compute the
mean fluctuation ratio R;, defined as the average fluctuation (Normalized Hamming distance) from
steps 1000 down to ¢, and record the model’s perplexity at timestep ¢. For each timestep, we correlate
R; with the final perplexity across 150 generated samples to assess how fluctuation dynamics relate
to fluency.

Empirical Observation. Figure [2]illustrates the relationship between fluctuation and perplexity.
We observe a strong positive correlation, with a binned correlation of » = 0.86. This supports
Hypothesis 1: increased fluctuation is indicative of degraded fluency. Furthermore, semantics-aware
metrics show consistent trends: BLEU, BERTScore, and cosine similarity exhibit strong correlations
with perplexity at timestep ¢t (—0.6 ~ —0.8), closely mirroring the perplexity curves. While we
also observe that low-confidence tokens are more prone to fluctuation, confidence alone does not
sufficiently account for the degradation in fluency; rather, excessive fluctuation emerges as the
dominant factor driving reduced coherence. See Appendix [B.|for detail.

This observation is consistent with theoretical analyses of discrete diffusion models [28,[12]], which
establish connections between per-step transition instability and generation cross-entropy. Specifically,
a higher fluctuation ratio reflects more pronounced transitions, which in turn increases the expected
divergence between the model’s generative distribution and the target distribution. We provide
additional theoretical context in Appendix

Hypothesis 2: Update-forgetting weakens control accuracy.

Experimental Setup. Using the same setup as in Hypothesis 1, we
investigate how edits to semantically pivotal tokens change the semantic
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Empirical Observation. Figure|3|shows a consistent drop in classifier confidence when key tokens
are altered. While the average drop in probability across all steps is approximately 3—4%, the drop
becomes significantly larger—often exceeding 10%—when classifier-critical tokens are modified.
This provides strong evidence that update-forgetting disrupts classifier-guided control.

Based on the above observations, we substantiate the dual role of fluctuation control in classifier-
guided text generation: reducing overall fluctuation enhances fluency, while stabilizing key tokens
preserves classifier-driven constraints, thereby improving controllability. These findings underscore
the importance of minimizing unnecessary modifications to preserve linguistic quality and improve
controllable generation in diffusion language models.
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Figure 4: A comparison of token timestep allocation strategies. The left panel illustrates a default
schedule in which all tokens share the same timestep. The middle panel depicts a linear schedule
where timesteps decrease uniformly across tokens, allowing gradual denoising. The right panel
demonstrates the adaptive schedule, in which critical tokens with high gradient values are assigned
smaller timesteps, preserving important updates while refining less significant tokens.

3 Methodology

We begin from the perspective of token ordering—the order in which tokens are refined during
inference. In masked diffusion frameworks, ordering has typically been implemented through
heuristic unmasking strategies, such as selecting tokens based on confidence or margin [[18}34]. Once
unmasked, these tokens are fixed and excluded from further refinement. While effective in certain
tasks, this “hard” ordering can prematurely lock in errors and is limited to discrete formulations.

In contrast, we propose a soft token ordering framework that achieves ordering through timestep
allocation rather than discrete masking. Instead of fixing tokens once generated, we dynamically
adjust the noise schedule applied to each token, allowing them to remain revisable but with controlled
update strength. This approach enables fine-grained prioritization of tokens while avoiding irreversible
early commitments. Moreover, because the mechanism is based on timesteps rather than masking, it
integrates naturally with not only discrete diffusion but also continuous diffusion models.

Building on this framework, we introduce TTA-DIFFUSION (Token Timestep Allocation), a method
that dynamically assigns timesteps to tokens to enhance stability and controllability in the diffusion
process. By regulating token update rates, TTA-DIFFUSION mitigates excessive fluctuations and
stabilizes guided text generation. Our approach strategically prioritizes important tokens so that
guided constraints persist throughout generation.

3.1 Token Timestep Allocation

Following AR-Diffusion [49]], we assign each token x; its own timestep ¢;. Unlike AR-Diffusion,
which assigns timesteps based solely on positional movement speed in training time, we define a
token timestep function that independently controls refinement for each token. Formally, let f (i, )
be a token timestep function mapping the global sentence-level timestep ¢ and the token index ¢ to a
local token-level timestep:

A token’s timestep determines its effective noise level: larger timesteps correspond to higher noise
and stronger denoising, while smaller timesteps correspond to lighter refinement. By adjusting ¢;, we
can precisely control how much refinement each token undergoes, proportional to its uncertainty and
contextual importance.

To formalize this, recall the forward diffusion process:
Ty ~ N(ft; VoarZi-, (1 —ay) —7)7

where {ay }7_ is a strictly decreasing sequence of noise variance. As t increases, the injected noise
grows, requiring stronger denoising during the reverse process. This property enables us to tailor the
refinement strength at the token level through timestep allocation (see Appendix [A-6]for derivation).



Building on this principle, we design allocation schedules that distribute timesteps across a sequence
of length N under maximum timestep 7. For instance, a linear schedule

fiinear (4,1) = {Ni—l tJ

progressively increases timesteps with token index, keeping earlier tokens more stable while allocating
greater refinement to later tokens. This process is illustrated in Figure ]

3.2 Semantic-based Adaptive Allocation Strategy

While the fixed schedules in Section [3.1|enforce structured timestep assignments, they do not account
for the varying importance of individual tokens. Some key tokens require minimal denoising to
preserve their intended semantics, whereas others benefit from more extensive refinement. To address
this limitation, we propose an adaptive strategy that leverages classifier gradients to guide token-wise
timestep allocation.

We interpret the gradient of the classifier output with respect to each token embedding as an indicator
for token importance. This intuition is supported by prior work showing that gradient-based attribution
identifies important input tokens for model predictions [44, 48|, 46]]. In our generation process, where
classifier guidance is applied between denoising steps, a high gradient magnitude indicates that a
token has already been strongly shifted toward the desired attribute and is likely aligned with the
control objective. To avoid overwriting this adjustment during the next denoising step, we assign a
smaller timestep to such tokens. This limits further perturbation and helps preserve classifier-driven
changes. We offer a simple theoretical insight into this mechanism in Appendix [A.5]

Let {g;:} Y| be a set of gradient magnitudes derived from a task-specific classifier or scoring function,
indicating the relative importance of each token. We first normalize these gradients:
R gi — min; g;

g; = " , 1217,N
Hlan g; —1min; g;

To adaptively allocate timesteps, we assign smaller timesteps to tokens with larger normalized
gradients g;. The final timestep allocation, incorporating a smoothing factor cgmooth, 1S defined as:

t?daptive = asmootht + (1 - asmooth)(l - Q’L)t

3.3 Progressive Step Reduction

We build upon progressive distillation approaches [42] 3], where a student model with fewer diffusion
steps is trained to imitate a teacher model trained with a larger number of steps. While effective,
we found that the distillation objective becomes unstable in the final outputs, especially under small
timestep regimes. Thus, we adopt a simplified training strategy that eliminates the need for distillation.
Given a teacher model trained with 7" diffusion steps, we initialize a student model and fine-tune it
for N = r - T steps, where r € (0, 1] is the reduction ratio. Instead of matching the teacher’s outputs,
the student is optimized directly via cross-entropy loss over ground truth tokens X = (2!, ..., z%),

using its refined logits X, at each step:

N
Lee =Exp | Y CE(softmax(X;), X)| ,
t=1

where X is iteratively refined through the diffusion process.

4 Experiments

For our main experiments, we adopt simplex diffusion language models [11}32] because their simplex
parameterization facilitates direct utilization of external classifiers. Following the experimental setup
of [L14132], we use a pretrained RoBERTa-large [26] model, trained on a 1M subset of C4 [39], as our
base model. We initially train the base model with 5000 diffusion timesteps and then progressively
reduce the train steps to {1000, 200, 50}. For classifier-guided updates, we fix the guidance strength
to A = 2000. See Appendix [B]for further details.



Table 1: Results on detoxification and sentiment-control tasks. All models are size-matched at
330M parameters, except LD4LG (110M). For Diffusion-LM and LD4LG, maximum toxicity is
not reported because the prompt is not used. For TTA-DIFFUSION, we report the variant trained
with T'=>50. Results use linear allocation for toxicity and adaptive allocation for sentiment, with a
smoothing factor of 0.6.

Model Toxicity Sentiment Control
Avg. tox| Max. tox] PPL| Dist-31 | Acct PPL| Dist-31

Auto-regressive Baselines

PPLM 30.6 59.7 107.4 0.95 42.6 201.1 0.94
GeDi 22.0 36.1 98.8 0.94 79.9 98.6 091
DExperts 15.1 32.0 48.0 0.87 83.2 31.8 0.93
Air-decoding 18.5 40.4 49.0 0.93 82.6 27.1 0.94
LM-Steer 19.1 47.0 44 .4 0.91 85.4 78.8 0.86
Diffusion Baselines

Diffusion-LMr=000 21.8 - 131.2 0.94 72.8 89.3 0.94
SSD-LMrt-1000 24.6 50.3 58.3 0.94 76.2 51.1 0.94
LD4LGr-250 14.5 - 296.4 0.90 59.9 70.7 0.95
TESSt-1000 14.6 32.3 58.8 0.92 71.1 31.7 0.85
Ours

TTA (50) =200 12.2 26.0 40.6 0.92 94.7 20.5 0.86
TTA (50) t=100 12.2 26.7 46.3 0.93 92.7 28.7 0.86
TTA (50) 1=50 12.5 27.3 59.5 0.94 88.7 47.3 0.87

4.1 Tasks & Evaluation Metrics

Detoxification. This task aims to generate non-toxic text while preserving fluency and semantic
coherence. Following Qian et al. [37/], we use the challenging subset of RealToxicityPrompts [6] and
select 203 prompts. For each, we generate 20 sequences with a maximum sequence length of 64.

Sentiment Control. This task involves generating text that adheres to sentiment constraints, such as
positive or negative. Using 15 prompts from PPLM [2], we generate 50 sequences per sentiment.

Topic Control We generate text for four target topics—World, Business, Sports, and Sci-Tech—using
20 prompts from PPLM [2], with 20 sequences generated per topic.

Lexically-Constrained Generation Following Li et al. [22], we generate text under lexical con-
straints, including syntax trees, syntactic spans, and length constraints. Using 200 constraints applied
to 50 sentences each. We train BERT-base [4]] on the E2E dataset [35] to align with Li et al. [22].

Evaluation Metrics To evaluate overall generation quality, we measure fluency and diversity. Fluency
is calculated using Perplexity (PPL) with GPT-2 Large [38]], while diversity is evaluated using Dist-3
[21]]. For each task, we measure control strength via APIs or classifiers. For details, see Appendix B

4.2 Baselines

Auto-regressive Baselines. PPLM [2] modifies the hidden representations of the model with
gradient ascent. GeDi [19] leverages CC-LM to guide generation. DExperts [25] contrasts expert
and anti-expert models to regulate output distribution. Air-decoding [55] conditions generation on
prefix-based language models, while LM-Steer [[10] adjusts word embeddings to enforce control.

Diffusion Baselines. Diffusion-LM [22] performs end-to-end training in embedding space, while
SSD-LM [[11]] adopts a simplex-based method in vocabulary space. LD4LG [29] operates in latent
space with control codes for guided generation. As our architecture builds on TESS [32], we include
it for comparison.

4.3 Main Results

We present the results for detoxification and sentiment control in Table |1} and lexical control in
Table[2] Detailed results, including those for topic control, are provided in Appendix [E] Step-by-step
outputs and full generation examples can be found in Appendix [F



Detoxification and Sentiment Control As shown in Table [I, TTA-DIFFUSION consistently
achieves the lowest toxicity in the detoxification task, demonstrating strong robustness even at a
reduced timestep of 7" = 50. In terms of fluency, while TTA-DIFFUSION with 7' = 200 achieves the
lowest perplexity, configurations with 7" = 100 maintain comparable levels. For sentiment control,
TTA-DIFFUSION outperforms all baselines in accuracy, with the T' = 50 setting already surpassing
others, and achieving up to a 10% improvement at 7" = 200. Although perplexity increases slightly
at lower timesteps (e.g., T' = 50), it remains within an acceptable range and still compares favorably
to baseline models.

Lexically-Constrained =~ Generation In Table 2: Lexical Control Results. Results of
lexically-constrained generation, we compare  Diffusion-LM are from Li et al. [22].
TTA-DIFFUSION with Diffusion-LM [22]]

at T = 200. As shown in Table Pl TTA- Metric Diffusion-LM  TTA-DIFFUSION
DIFFUSION significantly improves fluency Syntax;l‘ree AAcc ((TT)) ggg gg%

; F o ; ; yntax Span Acc . .
over Diffusion LM, redupmg perplexuy from Length Acc (1) 999 100.0
248.6 to 111.4 while maintaining comparable Mean PPL (/) 248.6 1114

lexical accuracy.

4.4 Ablation Study

Allocation for Continuous and Discrete Diffusion Our Table 3: Adaptive allocation results on
context-dependent timestep allocation extends beyond sim-  discrete diffusion.

plex diffusion models to both continuous and discrete for-
mulations. In continuous diffusion, we apply the adaptive 7 Method  Valid (%) Mean Property

schedule to Diffusion-LM [22] for sentiment control and 1 D-CBG 989 0.474
observe gains in both controllability and fluency: accuracy 0 + ]/)\dé‘g‘éve gg? g-‘s‘gg
increases from 72.8% to 75.6%, while perplexity drops + Adaptive 756 0.591

from 89.3 to 77.9. In discrete diffusion, we incorporate
adaptive allocation into D-CBG [43] for molecular prop-
erty maximization on QM9 by adjusting transition probabilities according to the same scoring signal
used by D-CBG; as summarized in Table|3| adaptive allocation improves validity and increases the
mean property score (0.474— 0.494 and 0.585— 0.591). Taken together, these results clarify that
adaptive allocation yields consistent, measurable benefits across diffusion regimes, not just in the
simplex-based setting.

Effect of Timestep Allocation Table [da] presents = Constant  mm Adaptive
the impact of token-level timestep allocation on both

o
Y
S

the base model TTA (5000) and its step-reduced vari- - R

ant TTA (50) across detoxification and sentiment 5 **° £ 01

control tasks. At relatively low timesteps, introduc- g **° EE"”“

ing a scheduling strategy substantially improves both = 005 MG o0s

control accuracy and language fluency. For instance, 0.00 -85 —800 700 E,? 0.00 - 0 600
at T" = 50, scheduling reduces toxicity from 14.0 to Timestep Timestep
12.5 and improves sentiment accuracy from 83.5% @) ®

to 85.9%, while simultaneously lowering perplexity.
However, we observe diminishing benefits of alloca-
tion as the number of denoising steps increases. In
the case of T=1000, while some improvements are
visible (e.g. sentiment accuracy from 92.2 to 92.6), the relative gains are less pronounced. Detailed
results across a wider range of schedules are provided in Appendix [D} [E.T]

Figure 5: Comparison of constant and adap-
tive allocation on (a) fluctuation ratio and (b)
key-token change ratio.

Also, to analyze the impact of scheduling on fluctuation and update-forgetting, we compare an
adaptive allocation with a constant allocation by evaluating the fluctuation ratio and key-token change
ratio (k = 5) for the sentiment control task. As shown in Figure[5] the adaptive allocation consistently
reduces fluctuation and mitigates update-forgetting.

Transferability of Timestep Allocation While developed for classifier-guided control, our timestep
allocation readily extends to general generation tasks with classifier feedback. We demonstrate its
effectiveness on paraphrasing and long-form generation. For paraphrasing, we follow Yuan et al.
[51] using the QQP dataset with a timestep of 50. Token importance is estimated via paraphrase



Table 4: Results of scheduling and timestep allocation on generation tasks.

(a) Detoxification and sentiment control. (b) Paraphrase generation.
Model T Detoxification Sentiment Model T BLEUT BERTT R-L?T
Tox.] PPL| Acc.t PPL|
TTA (3000) o 5304 203 3 TTA (5000) 1000 28.9 84.3 59.8
2 - . . TTA (1000 1000 29.8 85.3 60.7
+withschedule 200 128 708 821 355 (1000)
TTA (50) 50 14.0 68.0 83.5 44.0 TTA_(2()0) 200 30.1 852 60.9
+with schedule 125 595 859 402 + with schedule 200 303 855 ol3
+ with schedule 30 30.3 85.5 61.5
—e— TTA(5000) TTA(1000) —e— TTA(200) —e— TTA(50) Best Auto-regressive ——- Best Diffusion
100 Accuracy 125 Perplexity
90 -5 100
S &
> 80 > 75
e =
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Inference Timesteps Inference Timesteps

Figure 6: Sentiment control performance of models progressively fine-tuned with ¢ diffusion steps
(TTA(t)). Left: sentiment accuracy (%). Right: perplexity (PPL) across inference steps. Dashed
lines denote the best-performing autoregressive (gray) and diffusion (black) baselines.

classifier. Table #b] shows improved results with allocation compared to a uniform baseline. In
long-form generation (up to 512 tokens), we reuse prompts from sentiment control experiment and
apply a fluency classifier with adaptive allocation at timestep 50. While unguided generation leads to
extreme perplexity, guidance with allocation stabilizes it around 25-30. Further details are provided

in Appendix B2}

About Progressive Step Reduction Figure 6] presents the results of progressive step reduction on
the sentiment control task. As shown in the figure, while all models converge to similar performance
under large inference budgets (e.g., 7' = 1000), significant differences emerge under low timesteps.
Notably, step-reduced models exhibit stronger stability at small inference timesteps. For perplexity,
although the original 7" = 5000 model achieves competitive results only at high inference timesteps
(around T = 1000), the progressively fine-tuned models attain comparable perplexity with as few as
T = 100 inference steps, highlighting the efficiency gained through step reduction. See Appendix[A.6]
Table[9] for the detailed speedup comparison.

Effect of Different Allocation Strategies We evaluate the accuracy and fluency of a sentiment
control task under several timestep allocation strategies. To isolate the effect of timestep reduction,
we compare perplexity against the base TTA(5000) target (rather than TTA(50) reported in the main
results). The random schedule samples a timestep for each token uniformly from (0, T"), where T is
the maximum timestep. The fixed schedule uses a predetermined timestep, either 0 or 7.

As shown in Figure[7] the adaptive schedule consistently achieves the lowest perplexity (best fluency).
linear and backward-linear schedules also reduce perplexity relative to a constant schedule, but their
gains are setting-dependent (with backward-linear sometimes edging linear). By contrast, random
and fixed allocations are suboptimal; in particular, fixed-at-7" exhibits large variance with occasional
extreme values.

5 Related Works

Diffusion Language Models The application of diffusion models to text generation has garnered
increasing interest [} 22} (8 24} |12} [28]]. A key challenge in this area is bridging the gap between
discrete text and the continuous diffusion framework, which has been approached through embedding-
based methods [22| 24, 8| 49], latent modeling [29, 53], and discrete mapping [13}, 154} 40} 134, 41]].
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Figure 7: Effect of different token allocation strategies on perplexity. We compare linear, backward
linear (BLinear), random, and fixed schedules (at timesteps 0 and T), as well as the adaptive schedule,
against a constant allocation baseline (no scheduling).

Recent studies have explored simplex mapping to operate in vocabulary space [11} 32, 147]]. For
controllable text generation, the iterative nature of diffusion models enhances control over the
generation process [22}111}129,127,116}130}143]]. However, applying identical noise to all tokens disrupts
local dependencies and harms coherence. Prior efforts on token-level noise modeling [51] and multi-
level diffusion [49]] primarily modify training objectives and thus offer limited leverage at inference
time. We instead introduce an inference-time adaptive allocation strategy that schedules denoising
timesteps token-wise to improve controllability. This perspective connects naturally to the emerging
notion of foken ordering—the sequence in which tokens are (un)masked and revised—studied in
discrete diffusion [[18| 34]]; our approach realizes a soft ordering via timestep scheduling, making it
applicable beyond discrete unmasking schemes.

Controllable Text Generation As language models scale, effective mechanisms for controlling
their outputs become essential. Training-based approaches [[17, 56| 36] demand extensive com-
putational resources and large-scale annotated datasets, constraining their scalability. In contrast,
inference-stage methods offer a more flexible solution by enforcing constraints through contrastive
techniques [19}25]], prompt tuning [20, 50]], or modulation via latent space [} [10]. However, these
methods offer only indirect control and remain constrained by the model’s inherent generative capa-
bilities. Plug-and-play methods [2} 33]], which employ external classifiers to steer generation, are
closely related to our work. Despite their effectiveness, these methods struggle in auto-regressive
models due to sequential dependencies that hinder the modification of previously generated tokens.

6 Conclusion

In this work, we identify update-forgetting as a central limitation in controllable text generation with
diffusion language models, wherein uniform token updates overwrite previously guided modifications
and disrupt the generation trajectory, compromising both fluency and controllability. To address this,
we propose TTA-DIFFUSION, an inference-time framework that implements soft token ordering by
dynamically allocating denoising timesteps across tokens according to their semantic importance.
By prioritizing critical tokens and structuring the update schedule accordingly, TTA-DIFFUSION
improves generation stability and enhances controllability. Our findings demonstrate that token-wise
timestep allocation provides a principled mechanism for structured generation. TTA-DIFFUSION
not only improves quality and efficiency through progressive reduction but also introduces a flexible,
inference-time approach to operationalize token ordering without additional training. While this work
adopts classifier-informed allocation, future research may explore alternative heuristics, semantic-
aware scheduling, or extensions to multi-attribute control. More broadly, we view TTA-DIFFUSION
as a step toward general-purpose frameworks that integrate soft ordering strategies into diffusion
models, opening promising directions for efficient, fine-grained, and controllable text generation.
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the dataset).
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5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We plan to publicly release our code either during the review period or shortly
thereafter.
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* The answer NA means that paper does not include experiments requiring code.

¢ Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

 The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: We provide experimental details in Appendix B.
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» The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]
Justification: For all the main generation tasks, we have experimented at least 1500 samples.
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* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
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call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

* It should be clear whether the error bar is the standard deviation or the standard error
of the mean.
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of Normality of errors is not verified.
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they were calculated and reference the corresponding figures or tables in the text.

Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
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* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
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than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]
Justification: We have adhered to the NeurIPS Code of Ethics.
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¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

o If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).
Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]
Justification: We discuss the potential societal impacts in Appendix F.
Guidelines:
» The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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12.

» The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [Yes]
Justification: We provide the usage guidelines in Appendix F.
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We have followed the license and usage guidelines provided by creators of the
assets.

Guidelines:

* The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]
Justification: We provide the license, guidelines and training details in Appendix B-F.
Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: This paper does not does not involve crowdsourcing nor research with human
subjects.

Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: This paper does not does not involve crowdsourcing nor research with human
subjects.

Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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16. Declaration of LLLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]
Justification: Core method development in this research does not involve LLM:s.
Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

* Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Diffusion Formulation

A.1 Diffusion Model Formulation

Diffusion probabilistic models [14] are generative models that learn a probabilistic distribution
by iteratively denoising a latent variable, following a Markov chain. The diffusion forward pass
progressively corrupts the original data representation into pure noise, and a learned reverse process
(backward pass) recovers the original representation by iterative denoising.

Diffusion Forward Pass The forward process follows a Markov process that transforms a given
data point 7 into a sequence of latent variables {7, }7_; by iteratively injecting Gaussian noise. This

process is defined as:
(T | Tp—1) = N(Cft; Vo Zpq, (1 — at)I)v

where a; is the noise schedule that controls the scale of noise. For sufficiently large T and appropriate
noise schedule, the final distribution of Z7 converges to pure Gaussian noise N (0, I).

Diffusion Backward Pass To recover the original data from pure noise, we approximate the
reverse Markov process, which progressively removes injected noise at each timestep, ultimately
reconstructing . Given the sampling from prior Zr ~ A (0, I), the reverse process is modeled as:

p@(jt—l ‘ i‘t) "N“N(i‘t—l; /Lg(jht)a Ee(jht))a

where 119(Z¢,t) and X¢(Z4, t) are parameterized by a neural network trained to predict the denoised
representation at timestep ¢t — 1.

Guided Update Procedure To incorporate classifier control within the generation procedure, the
diffusion backward process can be modified using an external classifier p(y | Z:).

Controlling Z, . . ., Z7 corresponds to sampling from the posterior:

T
p(i'()a oo 75"T | y) = Hp(i'tfl | jtay)'
t=1

By applying Bayes’ rule, the conditional transition at each step is expressed as:

P(Te1 | Te,y) X p(Te—1 | Tt) - p(y | Te—1, T4).
Following prior work on controlled diffusion models [22]], we simplify the dependency structure
using a conditional independence assumption.

Py | Te—1,3) = p(y | Te-1).
Under this assumption, the gradient-based update at each step of the reverse process is given by:
Vi, logp(Ti—1 | 21,y) =
Vfct—l logp(‘%t—l ‘ jt) + Vizt—l logp(y ‘ i‘t—l)'

where log p(Z:—1 | Z+) is modeled by the diffusion process and log p(y | Z:—1) is modeled by an
external classifier.

A.2 Simplex Diffusion Language Model Formulation

This section provides a detailed formulation of the simplex diffusion process applied to diffusion
language modeling.

Simplex Mapping Since text is inherently discrete, we map tokens into a continuous simplex
space following [[11]. Let V be the vocabulary set, and x € V be a token. The token-to-simplex
transformation is defined as:

i [+K, ifi=index(x)

v —K, otherwise

where K is a predefined simplex constant. This mapping produces a logit representation X, over the
vocabulary, forming the input for the diffusion process.
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Forward Diffusion Process The forward process for standard diffusion process described above

now becomes: o ~ _
a( Xy | Xim1) = N (X vVarXo—1, (1 — o)),
The latent state at any step ¢ can be expressed directly as:

X, =vVaXo+Vi—aZ, Z~N(0,K).

Backward Diffusion Process To reconstruct the original representation, we approximate the
reverse diffusion process as:

po(Xi1 | Xo) = N(thﬂﬂa(Xtat)a EH(Xtat))a

where 119(Xy, ) and Xg(Xy, ) are predicted by a neural network trained to estimate the denoised
representation.

Sampling and Decoding Sampling begins from a Gaussian prior X7 ~ N (0, K2I) and iteratively
refines through reverse diffusion:

X1 = Va1 X +/1 - @12,
where Z ~ N (0, K2I). At each step, logits are predicted from the current noisy simplex representa-
tion:
Xlogits,t = 1Ogit89 (Xta t)'
The corresponding token distribution is obtained via softmax:
P(Xy) = softmax(Xjogits,t)-

To project back into the vocabulary space, we employ top-p sampling [[15] as in [[L1], ensuring
diversity while preserving fluency. The selected token is mapped back to the simplex representation

as:
i +K, ifi=top-p(P(X:))
t 7 | —K, otherwise.

[[L1]] noted that this transformation maintains the sampled representation near the original simplex
structure while ensuring the model retains its non-autoregressive properties

A.3 Connection of Simplex Diffusion to Uniform—State Discrete Diffusion

LetV = |V|and lete, € {0, 1}V be the one—hot vector for token y. Our simplex embedding uses
the constant X > 0 and maps y to

Y(y) = K (2, —1) €RY,

so the correct coordinate is + K and all others are — K. The forward (continuous) corruption used in

§A.2is

S d = —
X, = Valy) + Vi—a Z, Z ~ N0, K%Iy). (1)
Define the discrete projection z; := arg max(X;) € {e1,..., ey }.

Normalization to the Gaussian dual form. There exist scalars a; > 0 and b; € R such that the
affine reparameterization

wy = atXt + btl

obeys
d - -
wy = J\f( Gt ey, (1—at2)Iv), )
with the (Gaussian) correlation parameter
9 4y 1 Vay
& = ———, ap = ——F———, by = ———. (3)
14+ 3ay K1+ 3ay vV1+3a,

Moreover, arg max(w;) = arg max(X;) because arg max is invariant to adding b;1 and to positive
rescaling a;.
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Discrete marginals via Diffusion Duality. Applying the Diffusion Duality result of Sahoo et al.

[41]] to @), the pushforward of w; (equivalently, of X;) under arg max yields the marginals of a
Uniform—State Discrete Diffusion Model (USDM):

Vv

where T : [0, 1] — [0, 1] is the diffusion transformation operator of Sahoo et al. [41]] (their Eq. (10)),
defined for a V' -class simplex. Combining (3)) and (@) gives the induced discrete schedule directly

from the simplex process:
. da
disc t
=T _— . 5
R (\/ 1+3a ) )

Remarks. The map a; — @& in (3) is monotone and independent of the embedding scale K due to
the matched noise variance Z ~ N (0, K21Iy/) in ().

: iscy 1
P(Zt = - ‘ 20 = ey) = Cat <, Oé?lsc €y + (1 - O[?lsc)l) s O[?lbc = T(dt), (4)

A.4 Relation Between Diffusion Fluctuation and Perplexity

Proposition. High empirical diffusion fluctuation, when measured as a deviation from an optimal
baseline, is a theoretically grounded indicator of a high upper bound on model perplexity. This
follows because excess fluctuation lower-bounds the per-step denoising error that appears in the
perplexity certificate.

Formalism. We adopt the discrete diffusion setting of Haxholli et al. [12]]. By definition, PPL =
exp(#H(po, po)), and Theorem 4 of Haxholli et al. [12] provides an upper bound on the cross-entropy
of the form

H(po,ps) < UB(H) = C + /0 Ea.a, [Dxr(a(- [ 20) [Ipo(- | 20))] dt, (©)

where q(- | z;) is the Bayes-optimal reverse kernel and pg(- | x;) is the learned reverse kernel.

Let L be the sequence length, dg (-, -) the Hamming distance, and define the (sampled) fluctuation
rates at time ¢ by

1
Rip)(xt) = Expy(-|ze) [L dH(X, xt)} , @)
1
REQ) (mt) = Equ(<|zt) |:L dH(Y, {Et):| . (8)

The excess fluctuation is ARy (z;) = R,Ep) (x¢) — qu) (x¢).

Proof of relation. Step 1: Excess fluctuation = total variation. For the bounded function
f(z)= %dH(z,xt) € [0,1],

|AR(z4)| = |Epy [f] = Eqlf]| < drv(a(- | ze), pal- | 24)), )
which is the standard variational bound for TV when f € [0, 1].

Step 2: TV = KL (Pinsker). Pinsker’s inequality yields

drv(a(- |22, po- | 2)) < \/3 Drcala(- | 20) [ po(- | ). (10)
Combining () and (I0) gives the pointwise lower bound
Dxr(a(- | ) [ po(- | 20)) > 2 (ARi(zy))”. (11)

Step 3: Impact on the cross-entropy upper bound. Taking expectations over (¢, x;) (the forward
process) and integrating over ¢ in (TT)),

1

1 2
/ By, [Dxc(a(- | ze) | po(- | 20))] dt > 2/ Emu,mt[(ARt(zt)) }dt. (12)
0

0
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Substituting (I2)) into (6) yields

UB(H) > C + 2/1 E,, xt{(ARt(xt))Z} dt. (13)

Therefore, the large fluctuation forces the certified upper bound to be large. Equivalently,

UB(PPL) = exp(UB(H)) > eXp(O+2 / 1 o x,[(ARt(xt))Q] dt).

0

Conclusion. The excess fluctuation ARy is a principled indicator of generation quality: large
deviations from the Bayes-optimal flip rate imply large per-step denoising KL, which enlarges the
certified upper bound on cross-entropy and thus on perplexity. Empirically observed instability is
therefore a direct, theoretically grounded symptom of underlying denoising error.

A.5 Theoretical rationale for token—timestep allocation

Setup and notation. Letx = (z!,...,2") be a sequence of length N and ¢ € [0, T the global
reverse time. A schedule is amapping f : {1,..., N} x [0,T] — [0, T] with local times t; = f(i, t).
We assume f is monotone in time: Ot;/0t € [pmin, Pmax] With 0 < pmin < Pmax < 00. Let
a;(t) € (0, 1] be the signal coefficient, and define the per-token forward variance o2 (t) = 1 — ;(t).

At reverse time ¢, we impose a budget constraint Zfil o2(t) = C(t) with box constraints o2 (t) <

o2(t) < 02, (t) induced by the integrator and training schedule. Classifier guidance augments the
score by AV; log p(y | &1); write g;(t) = Hvﬂziﬁclf(i‘t)u and let g;(t) € [0,1] be a normalized
importance weight.

Assumptions. (Al) (Score-error bound form) The cross-entropy upper bound can be written (or

upper bounded) as
T N
Jy < / Z(bi(af(t))dt,

where each ¢; : [0,1] — Rx¢ is nondecreasmg and convex. (A2) (Local sensitivity) For small
perturbations of the noise around a baseline, ¢;(0?) ~ a; + b; 02 with b; < w; and welghts
w; = w;(t) nondecreasing in g;(t). (A3) (Margin smoothness) The classifier margin m(Z) is
L-smooth: ||[Vm(u) — Vm(v)| < L|ju — v||. Under a one-step Euler-Maruyama update with
independent Gaussian perturbations e ~ N(0, 21), the expected one-step margin drop satisfies

E[Am] < Z 70 with 7; < ¢+ c¢19:
for constants cg, c; > 0 determined by the diffusion and guidance drifts.

Perplexity bound improvement. By (Al) and (A2), at each ¢ minimizing the instantaneous
contribution to J5 under the budget and box constraints reduces to

N

?HQI; bio? st ZU? =C(t), o2, <o? <ol (%)

g i—1 .
Because the objective is linear and the feasible set is a product of intervals intersected with a simplex,
the optimum assigns smaller o? to larger b; until box constraints are met. When C'(t) lies strictly
inside the box (no saturation), the interior KKT solution is affine in the weights:
2
g; (t) - H[J o2 ] (C(t) - K(t) b1 (t) )

min’” max

for Lagrange multipliers ¢(t), x(¢) > 0, where II denotes clipping to the box. Since b; is nondecreas-
ing in g;, a practical normalized rule

o (t) oc 1—gi(t)

?

is a realizable instance of the KKT solution up to scaling and clipping. Integrating over ¢ yields
Jo(fadapiive) < J2(feonstant), With strict inequality whenever the b; are not all equal and no box
constraint forces equality. By Haxholli et al. [12]], the adaptive schedule yields a tighter upper bound,
UBppL (fadaptive) < UBppL(feonstant) Whenever the above conditions hold.
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Impact on control accuracy. By (A3), the expected one-step margin drop obeys
N
E[Am] < £ Z nio? with 7; non-decreasing in g;.
i=1

Minimizing this upper bound under the same budget and box constraints is the same program as (*)
with b; < 7;, hence has the same KKT form and the same monotone allocation: assign less noise
to larger g;. Therefore the adaptive rule 02 (1 — §;) minimizes the margin-drop bound among
feasible schedules, yielding

ACC (fadaptive ) 2 ACC (fconstant) )
with strict improvement under the same “no-saturation and non-identical weights” condition.

Conclusion. Under (A1)-(A3) and a fixed per-time noise budget with box constraints, the allocation
0? o (1 — §;) is the affine KKT solution of the per-time convex programs that (i) minimize the

i
cross-entropy upper bound integrand and (ii) minimize the one-step margin-drop bound. Hence it is a
Pareto improvement for both perplexity (via the bound) and control accuracy. Strict improvements
obtain whenever token importances are not identical and box constraints do not force equality.

A.6 Relation of Denoising Ratio and Diffusion Timestep

We analyze the relationship between the magnitude of denoising updates and the diffusion timestep.
Specifically, we show that the noise injected at timestep ¢ + 1 is greater than the noise injected at
timestep ¢, implying that later timesteps require proportionally larger denoising updates.

We examine the forward diffusion process given by

Ty = Vardi—1 + V1i—are, e ~N(0,1),

where {o} C (0, 1] is a strictly decreasing sequence in . We show below that the variance of the
newly injected noise at timestep (¢ + 1) is strictly larger than that at timestep ¢.

First, observe that the newly injected noise at step ¢ can be written as
Noise; = V1 — a; €4,
where ¢, ~ N(0, I). Its variance is then
Var[Noise;| = (1 — o) 1.
Next, because {«; } is strictly decreasing,
a1 < p = l—oyer > 1—aoy.
Thus, for the noise term at step (¢ + 1),
Var(\/m et+1) = (1—au1) ]
> (1—ay)l,

which is exactly Var[Noise;|. Consequently, the noise injected at each successive timestep (¢ + 1) is
strictly larger in variance than the noise injected at timestep ¢. In summary,

Var(WetH) > Var(ﬁet)

Since the forward diffusion process injects increasing noise at later timesteps, the corresponding re-
verse (denoising) steps must compensate by removing larger noise magnitudes. Hence, the magnitude
of the denoising update is greater for higher timesteps in the reverse diffusion chain.
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B Experimental Details

B.1 Experiment Configuration for Fluctuation and Update-Forgetting

We conduct our analysis using a TESS-based diffusion language model [32] trained with subset of
C4, equivalent to a fully non-autoregressive extension of SSD-LM. For controllability, we apply
classifier-guided sentiment control using a classifier trained on the IMDB Movie Reviews dataset,
with a guidance strength of A = 2000. Each sample is generated using 7' = 1000 diffusion steps
under fixed decoding parameters.

Fluctuation—Perplexity Analysis. To quantify how token-level fluctuations affect fluency, we
compute the mean fluctuation ratio 12; from steps 7" down to each intermediate timestep ¢ (i.e., over
{T,T —1,...,t}). For each timestep ¢, we correlate R; with the final sequence perplexity across
150 samples. We repeat this procedure using BLEU and BERTScore (F1) computed between each
step’s output and the previous step’s sequence. This allows us to track how instability during the
denoising process relates to semantic drift and final output quality. To evaluate lexical subtlety,
we also detect synonym replacements using WordNet. Across all timesteps, only 0.117 tokens per
64-token sequence (on average) are replaced by synonyms, suggesting that most fluctuations involve
non-trivial changes.

Update-Forgetting Analysis. For each sequence at timestep ¢, we compute classifier gradients and
select the top-5 tokens with highest gradient norm as key tokens K;. We record classifier confidence
before and after a single diffusion step and compare it for cases where at least 3 of the 5 key tokens
are modified. The “before” state refers to the output immediately after classifier guidance, while
the “after” state is the output following noise injection and denoising. The classifier’s confidence is
measured as the probability assigned to the target label.

Correlation Computation. We compute Pearson correlation coefficients between fluctuation ratio
and semantic similarity metrics (BLEU, BERTScore), as well as between those metrics and final
perplexity. All correlations are computed across (sample, timestep) pairs from 150 generations. In
addition, we compute correlation trends within timestep bins to isolate convergence effects in later
steps. Even in the final 100 steps, we observe non-trivial correlations (e.g., BLEU—perplexity: —0.23),
indicating that sample-level fluctuation trajectories meaningfully affect final outcomes.

Synonym Analysis by Timestep. To rule out the possibility that observed fluctuations are predom-
inantly benign, we compute the proportion of changed tokens that qualify as WordNet synonyms
within 100-step bins. The proportion remains consistently low (1-5%) even in later timesteps, re-
inforcing the interpretation that update-forgetting and fluctuation often correspond to semantically
meaningful deviations rather than minor paraphrasing.

B.2 TTA-DIrFrFUSION Configuration

RoBERTa-large RoBERTa-large [26] serves as the base model for sentiment/topic-controlled text
generation, and detoxification tasks. For training, we extract a 1M subset from the C4 dataset[39].
The model was fine-tuned for 300K steps using a batch size of 64 and a learning rate of 3 x 1072,
During training, we randomly select between 2 and 10 tokens as a prefix, with the model learning
to generate the remaining tokens. The training objective follows the standard cross-entropy loss, as
in [11,132]. A cosine noise schedule [45] with a simplex parameter of kK = 5 was employed. The
training process used 5,000 diffusion timesteps, For progressive step reduction, we begin with a base
model trained using 5000 diffusion steps and progressively reduce the number of steps to 1000, 200,
and 50. The base model is trained for a maximum of 300K timesteps, while each fine-tuned model is
trained until convergence (300K, 100K, 40K). Training was performed on a single NVIDIA H100
GPU, requiring approximately 50 hours to complete.

BERT-base BERT-base [4] is utilized to maintain consistency in model size with [22]], which
employs BERT-base [4] as the base architecture. The model is trained on the E2E dataset [35] using
a batch size of 50 and a learning rate of 1 x 10~%. The maximum sequence length is set to 64, with
2,000 diffusion steps during training and 200 steps during inference. A cosine noise schedule is

28



applied, with a simplex parameter of & = 5. The training process was conducted on a single NVIDIA
A100 GPU, requiring approximately 10 hours to complete.

Generation Configuration For the detoxification task, we set A to 2000 and use the control
classifier [s-nlp/roberta_toxicity_classifier. For sentiment control, we set A to 2000 and employ
cardiffnlp/twitter-roberta-base-sentiment-latest. For topic control, we set A to 20,000 and train a
classifier on the AGNews dataset, independent of the evaluation classifier. For the syntax tree and
syntax span tasks, we set A to 2 and 20,000, respectively, using a control classifier trained on the
E2E dataset. For length control, no classifier is required. Instead, constraint enforcement is achieved
by fixing the <eos> token at the desired position. We set A to 20,000 for this task. Also, We adopt
DDPM [14] over DDIM [43]], as the latter resulted in reduced diversity.

For the text paraphrasing task, we use the QQP dataset curated by [51]], and fine-tune our progressively
step-reduced model on its training set, following the setup of [32] with 50K training steps and a batch
size of 6. Classifier-based control is applied using the publicly available paraphrase classifier, with a
control strength (A = 2000). For the long-form generation task, we retrain each step-reduced model
with a maximum generation length of 512 tokens. We adopt the same prompts used in the sentiment
classification task from [2]], generating 50 outputs per prompt. For classifier guidance, we employ
a fluency classifier, but apply control only during the first half of the denoising process to preserve
generation diversity in later steps.

Evaluation Configuration For detoxification, we report the average toxicity, maximum toxicity
(averaged per prompt), and toxicity probability (the proportion of sentences with a toxicity score
greater than 0.5) using the Perplexity API. For sentiment control, we compute the average results
from three external classifiers: one from [55]], and two from siebert/sentiment-roberta-large-english
and j-hartmann/sentiment-roberta-large-english-3-classes| For topic control, we utilize the classifier
provided in [S5]. Lastly, for lexical constraints, we follow the evaluation setup used in Diffusion-LM
[22]].

B.3 Baseline Implementation & Generation

PPLM The toxicity and sentiment classifiers are trained using the same datasets and hyperparame-
ters as specified in the original PPLM paper. However, the classifier sizes are scaled following [25],
as this configuration has been shown to enhance performance. The generation process is conducted
using the same settings as described in the original work.

GeDi For all tasks, we utilize the class-conditional language models provided by the original
authors and employ GPT-2 Medium [38]] as the generation model. The generation process follows
the original setup, using a discrimination weight of 30 and a filter/target probability of 0.8.

DExperts Since the expert and anti-expert models provided by the original authors are based
on GPT-2 Large, we retrain both models using GPT-2 Medium while adhering to the original
configuration described in the DExperts paper. For the topic-guided text generation task, we use the
AGNews dataset [52] and maintain the same hyperparameter settings, training only the expert model
with the same architecture. Generation is performed using an alpha value of 2.0 for detoxification,
3.2 for sentiment control, and 2.0 for expert-only topic generation.

Air-Decoding We use the models released by the original authors and adhere to the recommended
generation settings for each task. Control strength parameters are set to 120 for detoxification, 140
for sentiment control, and 60 for topic control.

LM-Steer The sentiment and detoxification models are trained following the original implemen-
tation provided by the authors. For topic modeling, we train four separate models on the AGNews
dataset, adopting the same training configuration as the sentiment model. Generation is conducted
using a steering value of 5 for all tasks, consistent with the original implementation.

Diffusion-LM To ensure consistency with other baseline models, we initialize the model using
BERT-large [4]. The training process utilizes the same subset of the C4 dataset as our model, with a
learning rate of 1 x 107, 2,000 diffusion steps, a batch size of 64, and an embedding dimension of
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128. The model is trained for 1 million steps until convergence. Due to instability during training, we
select the checkpoint that produces coherent outputs as the final model.

SSD-LM  Given the substantial computational resources required for training, we use the pretrained
model provided by the original authors, which was trained on the OpenWebText dataset [7]]. For
controlled generation, we employ the same guidance classifiers as used in our model, with a control
hyperparameter of 2000. Other hyperparameters, including a maximum timestep of 1000 and a block
size of 25, remain consistent with the original paper.

LD4LG [Initially, we attempted to train the model using BART-1arge [4]]; however, due to instability,
we instead utilized the pretrained BART-base model while maintaining the hyperparameters specified
by the original authors. The model is trained in a class-conditional format using the AGNews dataset
[52] for topic control, the Jigsaw Unintended Bias in Toxicity classification dataset| (100K subset)
for detoxification, and the IMDB Movie Reviews dataset [31] for sentiment control. While LD4LG
allows the use of either control codes or prompts, we solely rely on control codes for generation.
Sampling is conducted using 250 timesteps with DDPM sampling.

B.4 Dataset Details

Details of the C4 subset used for our model and Diffusion-LM are shown in Table[3l Dataset details
of AGNews [52], IMDB Movie Reviews [31] and Jigsaw Unintended Bias in Toxicity for training
baseline models are illustrated in Table [6] Table [7]and Table [§

Table 5: Dataset configuration for C4 subset.
Train Valid
Num samples 9,500,000 500,000

Table 6: Dataset configuration for AGNews.

World Sports Business Sci-tech
Num samples 15,000 15,000 15,000 15,000

Table 7: Dataset configuration for IMDB Movie reviews dataset.

Positive Negative
Num samples 25,000 25,000

Table 8: Dataset configuration for Jigsaw Unintended Bias in Toxicity.

Toxic Non-Toxic
Num samples 50,000 50,000

C About Progressive Step Reduction

Result of Progressive Step Reduction Figure[6]presents the results of progressive step reduction on
the sentiment control task. As shown in the figure, while all models converge to similar performance
under large inference budgets (e.g., 7' = 1000), significant differences emerge under low timesteps.
Notably, step-reduced models exhibit stronger stability at small inference timesteps. For perplexity,
although the original 7" = 5000 model achieves competitive results only at high inference timesteps
(around T" = 1000), the progressively fine-tuned models attain comparable perplexity with as few as
T = 100 inference steps, highlighting the efficiency gained through step reduction.

Speedup Comparison Table 0] summarizes relative decoding speed ratios (GPT-2 base= 1.0); for
diffusion-based methods, 7" is the number of inference steps.
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Table 9: Relative decoding speed ratios measured in our setup (GPT-2 base = 1.0). For diffusion-style
methods, Timestep denotes the number of inference steps 7.

Method Timestep 7" Speed ratio (x)
GPT-2 (base) — 1.0
DExperts — 2.6
PPLM — 270.1
LM-steer — 1.2
Diffusion-LM 200 14.7
Diffusion-LM 1000 72.7
SSD-LM 1000 109.8
LD4LG 250 2.2
DGLM 50 44
TTA (w/o control) 50 1.4
TTA (w/o control) 1000 27.4
TTA (with control) 50 2.0
TTA (with control) 100 4.0
TTA (with control) 200 7.9
TTA (with control) 1000 39.2

D Hyperparameter Sensitivity

D.1 Effect of Control Hyperparameter \

Table 10: Effect of control A on sentiment control task. We report the result with TTA (5000) with
inference step of 1000. Sentiment accuracy, Perplexity and Dist-3 is reported.

A Accuracy (%) PPL Dist-3

0 35.8 17.0 0.86

2 42.6 158 0.86

20 56.2 163  0.85
200 74.1 194 0.83
2000 90.1 26.8 0.85
20000 94.2 424 090

The generation quality of controllable diffusion is highly sensitive to the choice of the con-
trol hyperparameter A. Throughout our experiments, we select the optimal A from the range
{2, 20, 200, 2000, 20000} based on its effectiveness in achieving a balance between accuracy and
fluency.

Table[I0] presents the impact of different A values on the sentiment control task. A higher A generally
leads to increased accuracy but at the cost of reduced fluency, reflecting the well-known trade-off
between control strength and naturalness. Among the tested values, A = 2000 provides the best
balance between accuracy and fluency, making it our choice for sentiment control.

The effect of A follows a similar trend across other tasks as well. Consequently, we determine the
optimal X for each task by selecting the value that best balances these two competing objectives.

D.2 Smoothing Factor

To regulate the balance between the global timestep and the adaptive token timestep, we introduce a
smoothing factor, defined as follows:

adaptive
= Osmooth t + (]- - asmooth) tz‘ .

t?nal
In our experiments, we set Qsmooth = 0.6, as it provides an optimal trade-off between accuracy and
fluency. To examine the impact of this factor, we conduct a sentiment control task, generating 600
samples for each value of agmootn in the range of 0.0 to 1.0. Here, asmootn = 0.0 corresponds to a

purely adaptive gradient schedule, while ago0th = 1.0 represents a constant schedule.

Figure [8|illustrates the effect of agmeoth On both accuracy and fluency. As shown in Figure a),
accuracy tends to decrease as (vsmooth increases from 0O to 1, supporting our hypothesis that adaptive
scheduling enhances key token preservation. For fluency, rather than exhibiting a monotonous
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Figure 8: Effect of smoothing factor on (a) Sentiment accuracy and (b) Perplexity.

decrease in perplexity, a U-shaped trend emerges, with the lowest perplexity observed within the
range of 0.4 to 0.8, as depicted in Figure [§{b).

E Detailed Results

E.1 Sentiment Control

We present sentiment-controlled generation results using the fully progressively reduced models
in Table All results are reported under a fixed control strength of A = 2000, with adaptive
timestep allocation (smoothing factor = 0.6) and two control iterations. Under the same configuration,
Table [I3] compares adaptive and constant allocation strategies for TTA(200) and TTA(50), focusing
on inference steps fewer than 100.

Table 11: Accuracy (Acc) and Perplexity (PPL) across different inference steps and training-time
TTA schedules for sentiment control task. (Iter 2)

T TTA (5000) TTA (1000) TTA (200) TTA (50) TTA (20)
Acc (%) PPL | Acc(%) PPL | Acc(%) PPL | Acc(%) PPL | Acc(%) PPL

20 59.0 119.9 60.8 109.3 71.6 96.8 69.8 90.4 66.5 106.5
50 71.4 60.2 76.8 58.6 85.9 40.2 85.6 42.0 83.8 46.6
100 79.6 39.8 84.7 38.3 90.0 30.1 91.0 254 89.1 29.4
200 84.2 29.2 89.5 27.8 92.1 232 91.6 19.4 91.2 234
500 87.5 239 91.9 22.5 923 18.7 92.8 16.1 92.5 18.3
1000 87.6 21.5 93.3 21.0 92.6 17.1 934 15.7 93.5 17.5

Table 12: Accuracy (Acc) and Perplexity (PPL) across different inference steps and training-time
TTA schedules for the sentiment control task. (Iter 3; values rounded to 1 decimal)

T TTA (1000) TTA (200) TTA (50) TTA (20)
Acc (%) PPL | Acc(%) PPL | Acc(%) PPL | Acc(%) PPL

20 62.9 137.0 74.7 120.0 71.3 109.7 66.8 107.8

50 79.2 75.3 89.0 51.1 88.7 47.3 85.3 56.7

100 86.4 48.7 93.8 31.9 92.7 28.7 914 36.4
200 90.8 329 95.1 24.3 94.7 20.5 934 23.6
500 93.6 25.0 95.3 19.5 95.6 16.4 95.0 18.9
1000 94.6 22.6 95.1 18.3 94.9 16.4 95.5 17.0

E.2 Topic Control
For topic control task, we generate text conditioned on four topics: World, Business, Sports, and

Sci-Tech. Using 20 prompts from PPLM [2]], we generate 20 sequences per topic. Adaptive allocation
with smoothing factor of 0.6 with control lambda of 20000 is reported.
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Table 13: Accuracy and perplexity comparisons for different TTA values with and without token
timestep allocation.

TTA 200 TTA 50

TTA

acc pp! acc ppl
20 689 985 692 94.0
+ with allocation 71.6 96.8 69.8 90.4
50 845 440 850 437

+ with allocation 859 402 85.6 42.0

100 89.1 302 904 274
+ with allocation 90.0 30.1 91.0 254

Table 14: Results of topic control task. We report the result with TTA (5000) for T=1000 abd TTA
(200) for T=200.

Model Acct PPL| Dist-31 S-BLJ
Auto-regressive Baselines

GeDi 964 55.6 0.94 0.11
DExperts 945 599 0.94 0.13
Air-decoding 929 324 094 0.21
Mix&Match 634 64.6 0.94 0.06
LM-Steer 522 443 0.88 0.24
Diffusion Baselines

Diffusion-LMrt=000 63.1 1356 0.93 0.10
SSD-LMrt1000 46.1 61.8 0.95 0.11
LD4LGr-250 88.3 1295 0.92 0.10
Ours

TTA-DIFFUSIONT=1000 94.6 41.2 0.89 0.12
TTA-DIFFUSIONT=00 85.8 58.8 0.90 0.10

Result for topic control is provided in Table While topic control at 7' = 1000 achieves strong
performance in both fluency and accuracy, reducing the number of timesteps below 200 still yields
superior results compared to existing diffusion-based models, yet remains inferior to auto-regressive
baselines. We hypothesize that this performance gap may stem from the increased complexity of
topic classification, which often involves multiple overlapping labels and nuanced semantics that are
more difficult to capture with a single-step classifier during the diffusion process.

F Generated Samples

We provide the generation results for our model as in Table [16{and Table We also provide the
per step generation results in Table [T3]

G Ethics Statement

Our model’s enhanced control mechanisms could be misused to generate misleading, biased, or
harmful content, including fabricated news, impersonation, and propaganda. While it is designed
for detoxification, adversarial modifications could enable the evasion of toxicity detection systems.
Additionally, our model may unintentionally amplify biases present in training data, leading to
discriminatory outputs if classifier guidance is miscalibrated. We do not intend for our model to
generate biased or toxic content and strongly advocate for its ethical use, restricting its application to
responsible and constructive domains.
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H Licenses

We plan to release our code under the Apache 2.0 license. Our implementation is based on Diffusion{
LM and TESS-Diffusion, both of which are also distributed under the Apache 2.0 license.

Table 15: We present generated samples at each timestep, underlining the Top-5 tokens with the
highest classifier gradient magnitudes.

Sentiment Control (Negative)

Prompt Timestep  Generated Sample
200 The pizza is is the the the the the the the the the.........ccooveeeeninnene.
160 The pizza and the pizza are not the best. I have been to..........
. 120 The pizza at this place is not the best pizza I have ever had and it was
The pizza

not the good. The. They have the quality, too. I would not recommend
going to this place.

80 The pizza at this place is not the best quality I have ever had and I would
not recommend to for it. The food is terrible, too. I would not recommend
going to this place.

40 The pizza from this place is not the best quality I have ever had and I
would not recommend paying for it, The food is terrible, too, I would not
recommend going to this.

0 The pizza from this place is not the best quality I have ever had and I
would not recommend paying for it, The food is terrible, too, I would not
recommend going to this.

Sentiment Control (Positive)

Prompt Timestep  Generated Sample

200 The lake is the the the the the the the the the the the the the the the the
the the the the the the the the the the the the the the the the the the the the
the the the the the the the the the the the the

The lake 160 The lake is a beautiful and beautiful place to live, and.,,,,...ve... ., the
lake, and,,,,,..cceeeeennennnn.
120 the lake is a beautiful and beautiful place to live, and it? to to to.....
from...,,...,, lake, and,,, lake, and many,,....... ,»s» the property,,,
80 The lake is a beautiful and exciting place to live in but it’s also a great

place to relax. There are numerous recreational areas around the lake, the
the areas of the lake where you can enjoy boating, kayaking, and many
other recreational activities on the lake. Take advantage of these areas
and enjoy your

40 The lake not only makes an exciting place to live, but it is also a beautiful
place to live. There are numerous open areas between the north and south
west ends of the lake where you can enjoy boating, kayaking, and many
other activities offered by the lake. Take advantage of these opportunities
and enjoy summer

0 The lake not only makes a great place to live, but it is also a beautiful
place to explore. There are numerous open areas along the north and
south west ends of the lake where you can enjoy boating, kayaking,
and many other activities offered by the city. Take advantage of these
opportunities and enjoy summer
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Table 16: Generated text samples under detoxification and sentiment control settings.

Detoxification

Prompt

Generated Sample

Not only is he a total
babe,

but he’s also an amazing photographer. Check out some of his beautiful work below,
and you’ll get a sneak peek at what he’s up to!

In the Year of the
Horse, stop being an

introvert and live the life of a horse. Put aside all your fears and develop the
confidence to do big things, no matter what you’re afraid to do.

Three Lions support-
ers have reportedly
been heard chanting:
s

during England’s friendly game against Slovakia at Rickenham Stadium. This is as
international governing bodies express deep regret that England is unlikely to be
involved in 2020. Having already failed at the 2016 World Cup,

Mitchell wasted no
time in diving in to
say what most fans
probably were already
thinking by beginning,
“George, you heartless

man who just stole my heart.” I wholeheartedly agree with Mitchell’s point: if
George hadn’t been there, I wouldn’t have been"

Sentiment Control (Positive)

Prompt

Generated Sample

The city

of San Francisco presented an exciting opportunity for me. With its diverse cultures,
world-class schools, and excellent public transportation, it’s a great place to live
and work. I had the pleasure of working with several companies, but the one in San
Francisco was the most rewarding for me.

The chicken

! I'love this dish because it’s so easy and delicious! First, cut up all dry ingredients:
water, olive oil, salt, and baking soda; put them in a food processor, and you’re done!
In another bowl, whisk together onion, garlic, and curry powder.

The book

provides an excellent introduction to many aspects of computer science and program-
ming, it covers important topics like: Systems and Programming, Graphs/Objects,
Networking, etc..

The year is 1910.

We are going through a very exciting time, with a lot of really interesting events.
One of those really interesting events had to do with the 100th anniversary of Boxing
Day! Wow, that’s a big one!

Sentiment Control (Negative)

Prompt

Generated Sample

The city

of Radnica is in need of a whole bunch of cajax service and auto maintenance, they
were all established around 2005 and are run by a local cajax company, their prices
are pretty high for this industry, but I do not like using this company or their service,

The chicken

isn’t good and I'm not happy with my order, I’ll have to order again! I like the sauce,
but the quality is not that great!

The book

they are advertising just had a big success and then they lost a lot of people, it was
so hard. And now they have another one coming out and I think that they are having
a hard time advertising that.

The year is 1910.

We’ve had a little snow, and now we’re in the middle of a terrible industrial recession
and they’re trying to lock us out. They won’t give us an opportunity to talk about
what’s really going on
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Table 17: Generated text samples under topic control settings.

Topic Control (World)

Prompt

Generated Sample

The connection

between India and Afghanistan goes back a long way, before any political situation
and before any war between India and Pakistan. For that reason, there has always
been an agent of India in London, England; and an agent of Afghanistan in Washing-
ton, D.C.

In summary

the Report provides an independent assessment of the current security situation in
India and its major political parties and its main armed groups, and its consequences
for the upcoming national polls in the country,

This essay discusses

major social, political, and economic changes that affected teaching in the Arab
World and subsets, offers contemporary views on workers’ rights, and also considers
alternative views on teachers’ unions and professional development, before conclud-
ing the chapter,

Topic Control (Sports)

Prompt

Generated Sample

The connection

between John and his team is great, it doesn’t matter where we came from and he
knows what players we had, it doesn’t matter where we are now and he knows where
we are going. The challenge of being a head coach is one he faces and he gives all
he has to support his players.

In summary

yesterday was a good day for us, as we played the best team-not our highest-ranked
opponent-but played a fantastic match and advanced to the District Final!

This essay discusses

the positive influence that sports can now have on someone that has just got started.

Topic Control (Business)

Prompt

Generated Sample

The connection

between a trader and an investor goes back many years, there are three phases of the
relationship. a Trader adds a Stock to his portfolio, an Investor places a bid on a
Stock and

In summary

— this is an introduction to the fundamentals of all business activities — including
advertising and marketing, the sale and distribution of consumer products and
services; building supplies and insurance; financial services; government, internal
and foreign exchange; the public and private sectors.

This essay discusses

the relationship between international trade and consumer prices, focusing on the
impact of medicines and other imports from different regions and their effect on
consumer prices. In international trade, some advanced economies, like France,
maintain an Import deficit;

Topic Control (Sci-tech)

Prompt

Generated Sample

The connection

of two Devices via USB is quite simple in itself, and consists of two separate
components, one being a Power Supply and the other being a Lightning Cable. First,
the power supply must be positioned between the two USB Devices, and the Cable
must be connected to the USB Device using a standard Lightning connector

In summary

, this research evaluated various transmission systems for transmitting high-frequency
radiation, shed some light on the environmental characteristics of these systems, and
analyzed them in a more detailed way.

This essay discusses

the link between mental and physical illnesses and how it might impact people. The
main aim of understanding the link is to understand how little control a person has
over how long a condition lasts, and to better understand the underlying mechanisms
of mental and physical illnesses.
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