
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

HOW DOES YOUR RL AGENT EXPLORE?
AN OPTIMAL TRANSPORT ANALYSIS OF OCCUPANCY
MEASURE TRAJECTORIES

Anonymous authors
Paper under double-blind review

ABSTRACT

The rising successes of RL are propelled by combining smart algorithmic strate-
gies and deep architectures to optimize the distribution of returns and visitations
over the state-action space. A quantitative framework to compare the learning
processes of these eclectic RL algorithms is currently absent but desired in prac-
tice. We address this gap by representing the learning process of an RL algorithm
as a sequence of policies generated during training, and then studying the policy
trajectory induced in the manifold of state-action occupancy measures. Using an
optimal transport-based metric, we measure the length of the paths induced by the
policy sequence yielded by an RL algorithm between an initial policy and a final
optimal policy. Hence, we first define the Effort of Sequential Learning (ESL).
ESL quantifies the relative distance that an RL algorithm travels compared to the
shortest path from the initial to the optimal policy. Further, we connect the dy-
namics of policies in the occupancy measure space and regret (another metric to
understand the suboptimality of an RL algorithm), by defining the Optimal Move-
ment Ratio (OMR). OMR assesses the fraction of movements in the occupancy
measure space that effectively reduce an analogue of regret. Finally, we derive
approximation guarantees to estimate ESL and OMR with finite number of sam-
ples and without access to an optimal policy. Through empirical analyses across
various environments and algorithms, we demonstrate that ESL and OMR provide
insights into the exploration processes of RL algorithms and hardness of different
tasks in discrete and continuous MDPs.

1 INTRODUCTION

In recent years, significant advancements in Reinforcement Learning (RL) have been achieved in
developing exploration techniques that improve learning (Bellemare et al., 2016; Burda et al., 2019;
Eysenbach et al., 2019) along with new learning methods (Lazaridis et al., 2020; Müller et al., 2021;
Li, 2023). With growing computational resources, these techniques have led to various successful
applications of RL, such as playing games up to human proficiency (Silver et al., 2017; Jaderberg
et al., 2019), controlling robots (Ibarz et al., 2021; Kaufmann et al., 2023), tuning databases and
computer systems (Wang et al., 2021; Basu et al., 2019), etc. However, there remains a lack of
consensus over approaches that can quantitatively compare these exploratory processes across RL
algorithms and tasks (Seijen et al., 2020; Amin et al., 2021; Ladosz et al., 2022). This is attributed
to some methods being algorithm-specific (Tang et al., 2017), while others provide theoretical guar-
antees for very specific settings (Lattimore & Szepesvári, 2020; Agarwal et al., 2022). Thus, com-
paring the exploratory processes of these eclectic algorithms across the multi-directional space of
RL algorithm design, emerges as a natural question. However, the present literature lacks a metric
to compare them except regret, which is often hard to estimate (Ramos et al., 2017; 2018).

This paper aims to address this gap based on two key observations. First, we observe from the lin-
ear programming formulation of RL that solving the value maximization problem is equivalent to
finding an optimal occupancy measure (Syed et al., 2008; Neu & Pike-Burke, 2020; Kalagarla et al.,
2021). Occupancy measure is the distribution of state-action pair visits induced by a policy (Alt-
man, 1999; Laroche & des Combes, 2023). Under mild assumptions, a policy maps uniquely to
an occupancy measure. Second, we observe that any RL algorithm learns by sequentially updating

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

policies starting from an initial policy to reach an optimal policy. The search for an optimal policy
is influenced by the exploration-exploitation strategy and functional approximators, both of which
impact the overall performance of the agent by determining the quality of experiences from which
it learns (Zhang et al., 2019; Ladosz et al., 2022). Hereby, we term collectively the learning strategy
and the exploration-exploitation interplay as the exploratory process.

Contributions. 1. A Framework. Motivated by our observations, we abstract any RL algorithm
as a trajectory of occupancy measures induced by a sequence of policies between an initial and a
final (optimal) policy. The occupancy measure of a policy given an environment corresponds to the
data-generating distribution of state-actions. Thus, we can quantify the effort of each policy update,
i.e. the effort to shift the state-action data distributions, as the transportation distance between their
occupancy measures. The total effort of learning by the algorithm can be measured as the total
distance covered by its occupancy measure trajectory. We provide a mathematical basis for this
quantification by proving that the space of occupancy measures is a differentiable manifold for
smoothly parameterized policies (Section 3). Hence, we can compute the length of the occupancy
measure trajectory on this manifold using Wasserestein distance as the metric (Villani, 2009).

2. Effort of Sequential Learning. In contrast to RL, if we knew the optimal policy we could update
our initial policy directly via supervised or imitation learning. Effort of this learning is represented
by a direct, shortest (geodesic) path from initial to optimal policy on the occupancy measure mani-
fold. To quantify the cost of the exploratory process to learn the environment, we define the Effort
of Sequential Learning (ESL) as the ratio of the (indirect) path traversed by an RL algorithm in the
occupancy measure space to the direct distance between the initial and optimal policy (Section 3.1).
Lower ESL implies more efficient exploratory process.

3. Efforts to learn that lead to Regret-analogue minimization. Regret is a widely used optimality
measures for reward-maximizing RL algorithms (Sutton & Barto, 2018). It measures the total de-
viation in the value functions achieved by a sequence of policies learned by an RL algorithm with
respect to the optimal algorithm that always uses the optimal policy (Sinclair et al., 2023). We show
that regret is related to the sum of distances between the optimal policy and each policy in the se-
quence learned by the RL algorithm, in the occupancy measure space. We can define an analogue
of instantaneous regret (at any one step during learning rather than cumulative), in the occupancy
measure space, as the geodesic distance between the occupancy measure of the policy at this step in
the learning sequence, and the optimal one. We find that not all policy updates lead to a reduction
in this analogue of immediate regret, and thus define another index Optimal Movement Ratio that
measures the fraction that do (Section 3.2).

4. Computational and Numerical Insights. We prove sample complexity guarantees to approximate
ESL and OMR in practice as we do not have access to the occupancy measures but collection of
rollouts from the corresponding policies (Section 4). We show the relation of empirical OMR and
ESL to the true ones if the optimal policy is never reached by an algorithm. We conduct experiments
on multiple environments, both discrete and continuous, with sparse and dense rewards, comparing
state-of-the-art algorithms. We observe that by visualizing aspects of the path traversed (and by
comparing ESL and OMR), we are able to compare and provide insights into their exploratory
processes and the impact of task hardness on them (Section 5). The results confirm the ubiquity and
effectiveness of our approach to study the exploratory processes of RL algorithms.

2 PRELIMINARIES

Markov Decision Processes. Consider an agent interacting with an environment in discrete
timesteps. At each timestep t ∈ N, the agent observes a state st, executes an action at, and re-
ceives a scalar reward R(st, at). The behaviour of the agent is defined by a policy π(at|st), which
maps the observed states to actions. The environment is modelled as a Markov Decision Process
(MDP) M with a state space S, action space A, transition dynamics T : S × A → S , and reward
function R : S ×A → R. During task execution, the agent issues actions in response to states vis-
ited, and hence a sequence of states and actions ht = (s0, a0, s1, a1, ..., st−1, a−1, st), here called a
rollout, is observed.

In infinite-horizon settings, the state value function for a given policy π is the expected discounted
cumulative reward over time Vπ(s) ≜ Eπ [

∑∞
t=0 γ

tR(st, at) | s0 = s], where γ ∈ [0, 1) is the dis-

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

count rate. The goal is to learn a policy that maximises the objective Jπ
µ ≜ Es∼µ[Vπ(s)], where µ(s)

is the initial state distribution.

Occupancy Measure. The state-action occupancy measure is a distribution over the S ×A space
that represents the discounted frequency of visits to each state-action pair when executing a policy
π in the environment (Syed et al., 2008). Formally, the occupancy measure of π is vπ(s, a) ≜
ρ
∑∞

t=0 γ
tP(st = s, at = a | π, µ), where ρ = 1− γ is the normalizing factor.

Stationary Markovian policies allow a bijective correspondence with their state-action occupancy
measures (Givchi, 2021). We express the objective Jπ

µ in terms of the occupancy measure as

Jπ
µ =

1

ρ
E(s,a)∼vπ

[
R̄(s, a)

]
, (1)

where R̄(s, a) is the expected immediate reward for the state-action pair (s, a).

Wasserstein Distance. Let µ, ν ∈ P(X) be probability measures on a complete and separable
metric (Polish) space (X , dX). The p-Wasserstein distance between µ and ν is (Villani, 2009)

Wp(µ, ν) ≜

(
min

π∈Π(µ,ν)

∫
X×X

c(x, x′) dπ(x, x′)

)1/p

, (2)

where the cost function is given by the metric as c(x, x′) = (dX (x, x′))p for some p ≥ 1. Π(µ, ν)
is a set of all admissible transport plans between µ and ν, i.e. probability measures on X × X
space with marginals µ and ν. Wasserstein distances induce geodesic in well-behaved spaces of
probability measures. For more discussion, we refer to Appendix A.9. For this work, we consider
1-Wasserstein distance, i.e. p = 1, though the results are generalizable to p > 1.

MDPs with Lipschitz Rewards. Following Pirotta et al. (2015) and Kallel et al. (2024), we assume
an MDP with LR-Lipschitz rewards (ref. Appendix A.1 for elaboration) that satisfies |R̄(s, a) −
R̄(s′, a′)| ≤ LRdSA((s, a), (s

′, a′)) for all s, s′ ∈ S and a, a′ ∈ A. Here, dSA((s, a), (s
′, a′)) =

dS((s, s
′))+dA((a, a

′)) is the metric defined on the joint state-action space S×A. This is a weaker
condition than assuming a completely Lipschitz MDP. Pirotta et al. (2015) showed that for any pair
of stationary policies π and π′, the absolute difference between their corresponding objectives is∣∣∣Jπ

µ − Jπ′

µ

∣∣∣ ≤ LR

ρ
W1(vπ, vπ′) , (3)

where W1(vπ, vπ′) is the 1-Wasserstein distance between the occupancy measures of the policies
(ref. Appendix A.2 for details).

3 RL ALGORITHMS AS TRAJECTORIES OF OCCUPANCY MEASURES

The exploration process (i.e. the exploration-exploitation interplay and learning strategy) of an RL
algorithm, influence how the policy model updates its policies (Kaelbling et al., 1996; Sutton &
Barto, 2018). During training, a policy trajectory, i.e. sequence of policies (π0, π1, . . . , πN), is
generated during policy updates due to the exploratory process. We assume these policies belong to
a set of stationary Markov policies parameterised by θ. For policies in this set πθ ∈ Γθ, we define
the space of occupancy measures corresponding to Γθ as M = {vπθ

(s, a) | πθ ∈ Γθ, θ ∈ RNθ}.
Proposition 1 (Properties of M). If the policy π has a smooth parameterization θ and the inverse of
the transition matrix Pπ exists, then the space of occupancy measures M is a differentiable manifold.
(Proof in Appendix A.3)

We can endow the manifold M with a 1-Wasserstein metric W1 to the compute the length of any
path on M since (M,W1) is a geodesic space (ref. Appendix A.9 for details). The path dis-
tance between occupancy measures corresponding to policies parameterized by θ, θ + dθ ∈ M is
ds = W1(vπθ

, vπθ+dθ
). Additionally, in imitation learning, the 1-Wasserstein distance between the

occupancy measures of the learner and expert can be used as a minimizable loss function to learn the
expert’s policy (Zhang et al., 2020). Hence, the 1-Wasserstein distance reflects the effort required to
achieve this imitation learning. Similarly, we propose the following quantification for the effort to
update from one policy to another.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

Figure 1: Schematic of the policy trajectory
C in the space of occupancy measures M dur-
ing RL training (solid line) vs. the geodesic L
(shortest path, dashed line) between the initial
and final points (i.e. π0 and πN = π∗).

Figure 2: Schematic of how distance-to-optimal
(denoted by xk) and stepwise-distance (denoted
by yk) on the occupancy measure space describe
exploratory process of an RL algorithm during
training.

Definition 1 (Effort of Learning). We define the 1-Wasserstein metric between occupancy measures
of two policies π and π′, i.e. W1(vπ, vπ′), as the effort required to learn or update from one policy
to the other.

When a learning process causes an update between occupancy measures in M, we attribute the re-
sulting update effort to the learning process and refer to it as the effort of learning. In a learning
process, first the initial policy π0 is obtained typically by randomly sampling the model parameters,
then these parameters θ undergo updates until a predefined convergence criterion is satisfied, yield-
ing the final optimal policy πN = π∗. Since each policy has a corresponding occupancy measure,
this process yields a sequence of points on M, which can be connected by geodesics between suc-
cessive points, producing a curve. The length of the curve is computed by the summation of the
finite geodesic distances between consecutive policies along it (Lott, 2008),

C ≜
N−1∑
k=0

W1(vπθk
, vπθk+1

) , (4)

where θ0 and θN are respectively the initial and final parameter values before and after learning.

3.1 EFFORT OF SEQUENTIAL LEARNING (ESL)

As we saw above, RL generates a trajectory in the occupancy measure manifold M, whose length
is given by Equation (4). Compared to the long trajectory of sequential policies generated by the
exploratory process, the geodesic L is the ideal shortest path to the optimal policy πN = π∗ from
π0, whose length is L = W1(vπ0

, vπN
). This path would be taken by an imitation-learning oracle

algorithm that knows π∗. Both these paths are schematically depicted in Figure 1.
Definition 2 (Effort of Sequential Learning (ESL)). We define the effort of sequential learning in-
curred by a trajectory of the exploratory process of an RL algorithm, relative to the oracle that
knows π∗(= πN), as

η ≜

∑N−1
k=0 W1(vπk

, vπk+1
)

W1(vπ0
, vπN

)
(5)

Due to the stochasticity of the exploratory process, we introduce an expectation to obtain η̄ =
Eπ0,µ [η]. We refer to η̄ as the effort of sequential learning (ESL).

η̄ ≥ 1 and a larger η̄ correspond to a less efficient exploratory process of the RL algorithm. Hence,
an RL algorithm with η̄ ≈ 1 closely mimics the oracle and has an efficient exploratory process.

3.2 OPTIMAL MOVEMENT RATIO (OMR)

Regret measures the total deviation in value functions incurred by a sequence of policies learned by
an RL algorithm with respect to the optimal algorithm that always uses the optimal policy (Sinclair
et al., 2023). We show that regret is connected to the sum of distances from each policy in the
sequence learned by an RL algorithm to the optimal policy in the occupancy measure space.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Proposition 2 (Regret and Occupancy Measures). Given an MDP with LR-Lipschitz rewards, we
obtain Regret ≜

∑N
k=1

(
Jπ∗

µ − Jπk
µ

)
≤ LR

ρ

∑N
k=1 W1(vπk

, vπ∗). (Proof in Appendix A.4)

We refer to W1(vπk
, vπ∗) as the distance-to-optimal, and analogously use it as the expected imme-

diate regret in the occupancy measure space. Furthermore, we refer to W1(vπk
, vπk+1

) as stepwise-
distance. Interestingly, during training, the distance-to-optimal and stepwise-distance share a rela-
tionship illustrated in Figure 2. From Figure 2, we observe that if the change in distance-to-optimal,
δk ≜ W1(vπk

, vπ∗)−W1(vπk+1
, vπ∗) > 0, it indicates that the agent got closer to the optimal. We

define the set K+ as containing indices k for which δk > 0, while K− contains the rest.
Definition 3 (Optimal Movement Ratio (OMR)). We define the proportion of policy transitions that
effectively reduce the distance-to-optimal, in a learning trajectory, as

κ ≜

∑
k∈K+ W1(vπk

, vπk+1
)∑N−1

k=0 W1(vπk
, vπk+1

)
. (6)

Due to the stochasticity of the exploratory process, we introduce an expectation to obtain κ̄ =
Eπ0,µ [κ]. We refer to κ̄ as the optimal movement ratio (OMR).

Note that κ̄ ∈ [0, 1], and κ̄ → 1 indicates that nearly all the policy updates reduce the distance-to-
optimal, thus showing high efficiency. κ̄ → 0 implies low efficiency, since only a small fraction of
the policy updates contribute towards the reduction of the distance-to-optimal.

3.3 EXTENSION TO FINITE-HORIZON EPISODIC SETTING

In the episodic finite-horizon MDP formulation of RL, in short Episodic RL (Osband et al., 2013;
Azar et al., 2017; Ouhamma et al., 2023), the agent interacts with the environment in multiple
episodes of H steps. An episode starts by observing state s1. Then, for t = 1, . . . H , the agent
draws action at from a (possibly time-dependent) policy πt(· | st), observes the reward r(st, at),
and transits to a state st+1 ∼ T (· | st, at). Here, the value function and the state-action value
functions at step h ∈ [H] are defined as V π

h (s) ≜ EM,π

[∑H
t=h r(st, at) | sh = s

]
, and Qπ

h(s, a) ≜

EM,π

[∑H
t=h r(st, at) | sh = s, ah = a

]
. Following (Altman, 1999), we can define a finite-horizon

version of occupancy measures as

vHπ (s, a) ≜
1

H

H∑
t=1

P(st = s, at = a | π, µ). (7)

Following (Syed et al., 2008), we can show that vHπ satisfies the linear programming description of
value function maximization along with the Bellman flow constraints (ref. Sec II.C. in Kalagarla
et al. (2021)). Additionally, we prove that under some assumptions, the finite-horizon occupancy
measures also construct a manifold, referred as MH .
Proposition 3 (Properties of MH). If the policy π has a smooth parametrization θ and the inverses
of both the transition matrix Pπ and (I − Pπ) exist, then the space of finite-horizon occupancy
measures MH is a differentiable manifold. (Proof in Appendix A.5)

This allows us to similarly define a Wasserstein metric on this manifold, which in turn, allows us to
compute ESL and OMR to evaluate different RL algorithms.

4 COMPUTATIONAL CHALLENGES AND SOLUTIONS

Similar to regret, our method requires knowing the optimal policy. This is because the efficiency
and effectiveness of exploratory processes of RL algorithms are highly coupled with their ability to
reach optimality. ESL and OMR depend on the policies being stationary and Markovian.

4.1 POLICY DATASETS FOR COMPUTING OCCUPANCY MEASURES

We consider approximations of occupancy measures using datasets assumed to be drawn from these
measures. We estimate the Wasserstein distance between the occupancy measures using a method in-
troduced by Alvarez-Melis & Fusi (2020) known as the optimal transport dataset distance (OTDD).

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

OTDD uses datasets to estimate the Wasserstein distance between the underlying distributions. See
Appendix A.6 for a detailed account on OTDD.

Definition 4 (Policy dataset). A dataset of a policy Dπ is a set of state-action pairs drawn from the
policy’s occupancy measure, i.e. Dπ = {(s(i), a(i))}mi=1 ∼ vπ . These can be constituted from the
rollouts generated by the policy during task execution.

We know from imitation learning that if we are given Dπ , generated by an expert policy, we can
train a policy model on it in a supervised manner via behaviour cloning (Hussein et al., 2017). Thus,
knowing Dπ can allow converting an RL task into a Supervised Learning (SL) task. Consider a
scenario when we have access to a sequence of datasets (Dπ0 , . . . ,DπN

), each corresponding to
policy πt for t ≥ 0. If we train (in a supervised manner) a policy model sequentially on these
datasets, the model will undergo a similar policy evolution as via the RL algorithm that generated
the policy trajectory (πt)t≥0. This allows us to conceptualise learning in RL as a sequence of SL
tasks with sequential transfer learning across the datasets (Dπ0 , . . . ,DπN

). We employ OTDD to
estimate W1(vπk

, vπk+1
) using these datasets, i.e. dOT (Dπk

,Dπk+1
) ≈ W1(vπk

, vπk+1
), based on

Proposition 4.
Proposition 4 (Upper Bound on Estimation Error). Let an RL algorithm yield a sequence of
policies π0, . . . , πN while training. Now, we construct N datasets Dπ0

, . . . ,DπN
, each consist-

ing of M rollouts of the corresponding policies. Then, we can use these datasets to approxi-
mate

∑N−1
k=0 W1(vππk

, vππk+1
) by

∑N−1
k=0 dOT (Dπk

,Dπk+1
) with an expected error upper bound

2NE2√
M

+ NγT+1diam(SA). Here, T is the total number of steps per episode, diam(SA) is the
diameter of the state-action space, and E2 is a positive-valued and polylogarithmic function of S
and A. For finite horizon case, we can further reduce the error bound to 2NE2√

M
.

Proof of Proposition 4 is in Appendix A.7. The results support that ESL and OMR can be estimated
as

η̄ = Eπ0,µ

[∑N−1
k=0 dOT (Dπk

,Dπk+1
)

dOT (Dπ0 ,DπN
)

]
, and κ̄ = Eπ0,µ

[∑
k∈K+ dOT (Dπk

,Dπk+1
)∑N−1

k=0 dOT (Dπk
,Dπk+1

)

]
. (8)

4.2 WHEN AN OPTIMAL POLICY IS NOT REACHED

So far we have assumed that the algorithms converge at the optimal policy, i.e. πN = π∗. However,
this is not always true. We consider a scenario when πN ̸= π∗, and define

ηsub =

∑N−1
k=0 W1(vππk

, vππk+1
)

W1(vπ0
, vπN

)
, πN ̸= π∗ . (9)

Proposition 5. Given N ≥ 2 and π0 ̸= πN ̸= π∗, we obtain

η − ηsub
η

≤ 2W1(vπN
, vπ∗)

W1(vπ0
, vπN

)
. (10)

This is true due to the triangle inequalities: W1(vπ0 , vπ∗) + W1(vπN
, vπ∗) ≥ W1(vπ0 , vπN

) and
W1(vπN−1

, vπN
) +W1(vπN

, vπ∗) ≥ W1(vπN−1
, vπ∗). Equation (10) shows that in the case where

πN is close to π∗, then ηsub is a good approximation of η, and thus, a good quantifier to determine the
efficiency of the algorithm’s exploratory process. The proof is in Appendix A.8 and corresponding
experimental results are in Appendix B.5.

5 EXPERIMENTAL EVALUATION

In this section, we evaluate the proposed methods in the 2D-Gridworld and Mountain Car (Moore,
1990; Brockman et al., 2016) environments, to analyse our methods in discrete and continuous state-
action spaces respectively. The 2D-Gridworld environment is of size 5x5 with actions: {up, right,
down, left}. In the gridworld, we perform experiments on 3 settings namely:- A) deterministic with
dense rewards, B) deterministic with sparse rewards, and C) stochastic with dense rewards. Further
details about these settings are provided in Appendix B.1. The Mountain Car environment, in our
experimentation, is a deterministic MDP with dense rewards that consists of both continuous states

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Figure 3: Top row: 3D scatter plots of distance-to-optimal (x-axis) and stepwise-distance (y-axis)
across number of updates (z-axis), illustrating policy evolution in the occupancy measure space for
algorithms: ϵ(=0)-greedy and ϵ(=1)-greedy Q-learning, UCRL2, PSRL, SAC, and DQN (left to
right). Bottom row: Corresponding state visitation frequencies over the full training. The problem
setting is deterministic with dense-rewards and 15 maximum number of steps per episode. (Larger
3D versions and individual 2D projections of these plots are in Appendix D.1)

and actions (described in detail in (Brockman et al., 2016)). The final experiment studies how ESL
scales with task hardness in several gridworld environments of varying difficulty.

Our experiments aim to address the following questions:
1. What information can the visualization of the policy evolution during RL training provide about
the exploratory process of the algorithm?
2. How do ESL and OMR allow us to analyse the exploratory processes of RL algorithms?
3. Does ESL scale proportionally with task difficulty?

Summary of Results. In Section 5.1, we demonstrate that visualizing evolution of distance-to-
optimal and stepwise-distance of different RL algorithms during training reveals: 1) whether the
agent is stuck in suboptimal policies, 2) the coverage area of the exploration processes, and 3) their
varied characteristics over time. We further compare ESL and OMR of different algorithms on a few
environments in Section 5.2. Finally, we show in Section 5.3 that ESL scales proportionally with
task difficulty, and thus, reflects the effects of task difficulty on exploration and learning.

5.1 EXPLORATION TRAJECTORIES OF RL ALGORITHMS

(I) DISCRETE MDP. To understand the utility of visualizing exploratory processes, we use the fol-
lowing RL algorithms: 1) Tabular Q-learning with a) ϵ-greedy (ϵ = 0) and b) ϵ-greedy (ϵ = 1) strate-
gies; 2) UCRL2 (Jaksch et al., 2010); 3) PSRL (Osband et al., 2013); 4) SAC (Haarnoja et al., 2018;
Christodoulou, 2019); and 5) DQN (Mnih et al., 2013) with ϵ-decay. The algorithms solve a simple
5x5 gridworld with dense rewards, starting from top-left (0,0) to reach bottom-right (4,4). Figure 3
presents exploratory behavior of the algorithms in occupancy measure space and state space.

Q-learning: ϵ = 0 vs ϵ = 1. Note that ϵ = 0 updates the Q-table by only exploiting, while ϵ = 1
by exploring. From the state visitations, we observe expected characteristics, like a preferred visit
path for ϵ = 0 versus ϵ = 1 with visitation frequencies that are similar at states equidistant from
the start-state and gradually decreasing as the distance from the state-state increases. From the
policy evolution, we see how scattered and erratic the policy transitions are for ϵ = 0. Whereas ϵ
= 1 is dominated by unchanging or little-changing policies seen by straight vertical line segments
(indicating being ’stuck in suboptimality’). In this setting, ϵ = 0 is characterized by transitioning
between diverse policies (i.e. being aggressive with larger coverage area) while ϵ = 1 is likely to be
stuck in suboptimality. This stuck in suboptimality is due to high action randomness in ϵ = 1 that
cause the agent to select suboptimal actions, slowing the Q-table convergence and unchanging the
learning policy until the best actions are discovered.

UCRL2 vs PSRL. UCRL2 has nearly uniform state visits (with the exception of the start-state
because the initial state distribution is 1 at state (0,0)), thus being consistent with literature since the
algorithm selects exploratory state-action pairs more uniformly (Jaksch et al., 2010). In contrast,
PSRL has high visit frequencies along the diagonal states, because it selects actions according to the
probability that they are optimal (Osband et al., 2013). We observe from the policy evolution plots
that PSRL has smoother policy transitions that are orientated towards optimality, while UCRL2
behaves more aggressively with policy transitions that do not taper as it approaches optimality.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

0 5000 10000 15000 20000
#updates

0.40

0.45

0.50

0.55

0.60

O
M

R(
k)

0 5000 10000 15000 20000
#updates

0.40

0.45

0.50

0.55

0.60

O
M

R(
k)

Figure 4: Top row: 3D scatter plots of distance-to-optimal and stepwise-distance vs. number of
updates for DDPG and SAC. Bottom row: OMR(k) vs. #update, k, for the corresponding algorithms.

Algo. ESL OMR UC SR%
SAC 9.26±5.54 0.58±0.14 980±670 100
UCRL2 47.2±8.20⋆ 0.49±0.04 60.7±11 100
PSRL 23.2±11.5 0.52±0.06 34.1±9.34 100
DQN 12.4±7.13 0.54±0.11 161±93 98
ϵ(=1)-greedy 6.27±2.22 0.61±0.09 672±385 100
ϵ(=0.9)-decay 8.10±3.43 0.61±0.10 389±138 100
ϵ(=0)-greedy 15.5±5.28 0.53±0.06 176±37.9 84

Table 1: Evaluation of RL algorithms (over 40
runs) in the deterministic, dense-rewards set-
ting for 5x5 gridworld, including Effort of Se-
quential Learning (ESL), Optimal Movement
Ratio (OMR), number of updates to conver-
gence (UC), and success rate (SR). Lowest ESL,
highest OMR and lowest UC values are in bold,
while the highest ESL value is starred (⋆).

Algo. ESL OMR UC SR%
Deterministic, sparse

SAC 27.8±21.9 0.57±0.13 4385±3274 100
UCRL2 73.3±0.0 0.45±0.0 93.0±0.0 100
PSRL 73.2±54.1 0.52±0.076 100±67.3 100
DQN 137±154⋆ 0.49±0.08 12638±4431 80

Stochastic, dense
SAC 445±245 0.501±0.004 2463±2043 92
UCRL2 198±121 0.502±0.027 268±155 32
PSRL 55.4±33.6 0.52±0.04 76.1±50.6 92
DQN 458±311⋆ 0.502±0.01 1586±1077 24

Table 2: Evaluation of RL algorithms (over 40
runs) in the deterministic, sparse-rewards and
stochastic, dense-rewards settings for 5x5 grid-
world. Lowest ESL, highest OMR and lowest UC
values are in bold. The highest ESLs are starred.

Osband et al. (2013) highlighted that exploration in PSRL is guided by the variance of sampled
policies as opposed to optimism in UCRL2. We observe in Figure 3 that the guiding variance in
PSRL reduces after every policy update until optimality is reached, while UCRL2 maintains high
variance. These insights are not reflected by regret as both UCRL2 and PSRL achieve same order of
regrets. This shows complementarity of insights yielded by ESL and OMR w.r.t. regret.

SAC vs DQN. The state visits of both the algorithms appear to be similar. SAC has higher visitation
frequencies at the corners than DQN. Surprisingly from the policy evolution plots, we learn that
both algorithms have a reluctance to transition between policies - hence the stuck in suboptimality
vertical line segments, especially initially (plotted after removing the filling time for the transitions
buffer). This reluctance is due to the slow “soft updates” of target networks (Lillicrap et al., 2016)
in the algorithms. We also observe that SAC approaches optimality more gradually than DQN.

Algo. ESL OMR UC SR%
DDPG 1881±500 0.501 23500±5268 100
SAC 1619±189 0.5 22700±2971 100

Table 3: Evaluation of RL algorithms
in the Mountain Car continuous MDP
(over 5 runs). The variances for OMR
and UC are negligible.

All algorithms. Figure 3 shows that UCRL2 was more
meandering (with larger coverage area) towards optimal-
ity than the rest. SAC and DQN approached optimal-
ity more directly and smoothly (with smaller coverage
area) than the rest. These characteristics are intuitively re-
vealed by policy visualization plots, and are aligned with
literature, hence enhancing our understanding of the ex-
ploratory processes.

(II) CONTINUOUS MDP. We use DDPG (Lillicrap et al., 2016) and SAC (Haarnoja et al., 2018) to
solve the Mountain Car. The policy evolutions of these algorithms are presented in Figure 4.

DDPG vs SAC. Both exhibit short-distances (< 1) between policy updates (i.e. small coverage
area). They depict no sign of being stuck or settling early on any particular policy, which shows

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

their continuously exploratory nature. While they begin with almost constant mean distances-to-
optimal and stepwise-distances, SAC drops its mean distance-to-optimal earlier than DDPG.

Figure 4 illustrates how OMR changes with update number k. OMR(k) represents OMR starting
with the kth policy as the initial policy, while OMR starts from the 0th policy. Details of computing
OMR(k) are in Appendix B.2. For both algorithms, OMR(k) remains near chance level (∼ 0.5)
initially, then sharply increases near the final updates. This suggests that early policy updates are
purely exploratory and oblivious to policy improvement but align with the optimal policy just before
convergence. The algorithm’s efficiency depends on how early this transition occurs, e.g. starting
earlier for SAC than DDPG, rendering SAC more efficient.

5.2 COMPARISON OF ESL AND OMR ACROSS RL ALGORITHMS AND ENVIRONMENTS, AND
THEIR COMPLEMENTARITY TO NUMBER OF UPDATES (UC) AND REGRET

Tables 1-3 showcase how ESL and OMR are summary metrics of the policy trajectories during
learning by evaluating the algorithms in various settings.

Figure 5: Q-learning with ϵ-greedy (ϵ
= 0.9 decaying, averaged over 40 runs)
across deterministic 2D-Gridworld (5x5
and 15x15) tasks. The 1st and 4th (from
left to right) have dense rewards, while
the rest have sparse rewards (details in
Appendix B.1).

Dense Rewards. We observe, in Table 1, that PSRL took
the lowest number of updates (UC) to reach the optimal
policy in contrast with SAC. Yet, PSRL was meandering
more than SAC. The relative directness of SAC is cap-
tured by lower ESL and higher OMR compared to PSRL.
Even though SAC has larger UC than PSRL, it took a
shorter path to optimality than PRSL. This shows that the
UC does not necessary correlate with ESL and OMR, and
it provides incomplete information about the exploratory
processes. Indeed, two algorithms may have the same
UC, but different ESL or OMR due to different step-wise
distances and varied movement towards optimality.

Sparse Rewards. In the sparse rewards setting (Table 2),
low performance of DQN is observed in both our met-
rics and UC. However, SAC is more efficient with lowest
ESL and highest OMR, yet UCRL2 has the lowest num-
ber of updates (UC). Thus, our metrics complement UC.
UCRL2 is provably regret-optimal, while SAC does not
have such rigorous theoretical guarantees but is known to
be practically efficient, and this is well captured by ESL
and OMR.

Stochastic Transitions. In the stochastic setting (Ta-
ble 2), by observing only successful cases, we notice that the meandering characteristic of PSRL
and UCRL2 is more suitable for this setting than SAC and DQN (based on better ESL and OMR
values). PSRL and UCRL2 have similar regret bounds (Osband et al., 2013), yet in both Tables 1
and 2, PSRL has better ESL and OMR (along with higher success rate). Thus, our metrics are
complementary to regret as well.

Table 3 corroborates with policy evolution plots in Figure 4, in that due to SAC dropping its mean
distance-to-optimal earlier than DDPG it exhibits a lower ESL. Additionally, we notice a trend
of increasing ESL and decreasing OMR across algorithms when shifting from dense-rewards to
sparse-rewards settings, from deterministic to stochastic transitions, from discrete to continuous
environments, indicating an increase in the effort of the exploratory processes. We have shown how
ESL and OMR metrics summarize policy trajectories of algorithms, and that they are complementary
to UC and regret. Appendix B.7 highlights further usefulness of these metrics.

5.3 ESL INCREASES WITH TASK DIFFICULTY

Figure 5 illustrates the ESLs for Q-learning with ϵ-decay strategy (for ϵ = 0.9) across tasks with
varying hardness. These tasks are deterministic 2D-Gridworld of sizes 5x5 and 15x15 matched with
either dense or sparse rewards (as specified in Appendix B.1). We chose to assess the ϵ-decay Q-
learning algorithm because it is simple and yet completes all these tasks. We observe that the ESL is
lowest for [5x5] dense (5x5 grid, dense rewards) and highest for [15x15] sparse (15x15 grid, sparse
rewards) as anticipated. The results demonstrate that ESL scales proportionally with task difficulty,
matching expectations that more difficult tasks demand greater effort of the exploratory process.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

6 RELATED WORKS

Several prior works have utilized various components leveraged in our work, namely Wasserstein
distance, occupancy measures, and the trajectory of RL on a manifold, but for different purposes.
Here, we summarise them and elucidate the connections.

In supervised learning, Alvarez-Melis & Fusi (2020) proposed an optimal transport approach,
namely Optimal Transport Dataset Distance (OTDD), to quantify the transferability between two
supervised learning tasks by computing the similarity (aka distance) between the task datasets. Here,
we conceptualise and define the effort of learning for RL, as a sequence of such supervised learning
tasks. We observe that the total effort of sequential learning can be computed as the sum of OTDD
distances between consecutive occupancy measures. Recently, Zhu et al. (2024) have developed
generalized occupancy models by defining cumulative features that are transferable across tasks. In
future, one can generalize our indices for the cumulative features constructed from some invertible
functions of the step-wise occupancy measures.

Optimal transport-based approaches are also explored in RL literature. These works broadly be-
long to two families. First line of works uses Wasserstein distance over a posterior distribution of
Q-values (Metelli et al., 2019; Likmeta et al., 2023) or return distributions (Sun et al., 2022) to
quantify uncertainty, and then to use this Wasserstein distance as a loss to learn better models of
the posterior distribution of Q-values or return distributions, respectively. The second line of works
uses Wasserstein distance between a feasible family of MDPs as an additional robustness constraint
to design robust RL algorithms (Abdullah et al., 2019; Derman & Mannor, 2020; Hou et al., 2020).
Here, we bring a novel concept of using Wasserstein distance between occupancy measures to un-
derstand the exploratory dynamics. Incorporating this insight into better algorithm design would be
an interesting future work. Recently, Calo et al. (2024) relate Wasserstein distance between reward-
labelled Markov chains to bisimulation metrics which abstract state spaces. In the same spirit, we
could use reward as the cost-function in computing our nested Wasserstein distance (OTDD) to ob-
tain a reward- or value-aware OTDD to define broader bisimulation metrics with abstract state-action
spaces, instead of just state spaces.

As a parallel approach to optimal transport, the information geometries of the trajectory of an RL
algorithm under different settings are studied. These approaches use mutual information as a met-
ric instead of Wasserstein distance. Basu et al. (2020) study the information geometry of Bayesian
multi-armed bandit algorithms. They consider a bandit algorithm as a trajectory on a belief-reward
manifold, and propose a geometric approach to design a near-optimal Bayesian bandit algorithm.
Eysenbach et al. (2021); Laskin et al. (2022) study information geometry of unsupervised RL and
propose mutual information maximization schemes over a set of tasks and their marginal state distri-
butions. Yang et al. (2024) extend this approach with Wasserstein distance and demonstrate benefits
of using Wasserstein distance than mutual information. We use Wasserstein distance as a natural
metric in occupancy manifold that also allows comparison of hardness of different tasks. It would
be interesting to extend our framework to understand the dynamics of unsupervised RL algorithms.

7 DISCUSSION AND FUTURE WORKS

Our work introduces methods to theoretically and quantitatively understand and compare the learn-
ing strategies of different RL algorithms. Since learning in a typical RL algorithm happens through
a sequence of policy updates, we propose to understand the learning process by visualizing and
analysing the path traversed by an RL algorithm in the space of occupancy measures corresponding
to this sequence.

We show the usefulness of this approach by conducting experiments on various environments. Our
results show that the indices ESL and OMR provide insight into the agent’s policy evolution, re-
vealing whether it is steadily approaching the optimal policy or mostly meandering. Additionally,
this allows us to understand how the learning process of the same algorithm changes with different
rewards and transitions structures, and task hardness. A key limitation of our indices is that they are
based on assumption that the final policy reached at the end of training is an optimal one, though we
could still derive some benefit from our approach even if not (see Appendix B.7). In the future, it
would be interesting to use this approach to benchmark and compare the learning dynamics of dif-
ferent RL algorithms on further environments. In addition, it would be useful to study whether the
occupancy measures trajectory of an algorithm provides insights to improve its exploratory process.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

M. A. Abdullah, H. Ren, H. B. Ammar, V. Milenkovic, R. Luo, M. Zhang, and J. Wang. Wasserstein
robust reinforcement learning. arXiv preprint arXiv:1907.13196, 2019.

A. Agarwal, N. Jiang, S. M. Kakade, and W. Sun. Reinforcement learning: Theory and algorithms,
2022. URL https://rltheorybook.github.io/.

M. Aleksandrowicz and J. Jaworek-Korjakowska. Metrics for assessing generalization of deep rein-
forcement learning in parameterized environments. JAISCR, 14(1):45–61, 2023.

E. Altman. Constrained Markov Decision Processes. Routledge, 1999.

D. Alvarez-Melis and N. Fusi. Geometric dataset distances via optimal transport. In Proceedings
of the 34th International Conference on Neural Information Processing Systems, Red Hook, NY,
USA, 2020. Curran Associates Inc. ISBN 9781713829546.

S. Amin, M. Gomrokchi, H. Satija, H. van Hoof, and D. Precup. A survey of exploration methods
in reinforcement learning, 2021.

M. G. Azar, I. Osband, and R. Munos. Minimax regret bounds for reinforcement learning. In
International conference on machine learning, pp. 263–272. PMLR, 2017.

D. Basu, X. Wang, Y. Hong, H. Chen, and S. Bressan. Learn-as-you-go with megh: Efficient live
migration of virtual machines. IEEE Transactions on Parallel and Distributed Systems, 30(8):
1786–1801, 2019.

D. Basu, P. Senellart, and S. Bressan. Belman: An information-geometric approach to stochastic
bandits. In Machine Learning and Knowledge Discovery in Databases: European Conference,
ECML PKDD 2019, Würzburg, Germany, September 16–20, 2019, Proceedings, Part III, pp.
167–183. Springer, 2020.

M. Bellemare, S. Srinivasan, G. Ostrovski, T. Schaul, D. Saxton, and R. Munos. Unifying count-
based exploration and intrinsic motivation. In Advances in Neural Information Processing Sys-
tems, pp. 1471–1479. Curran Associates, Inc., 2016.

H. Bojun. Steady state analysis of episodic reinforcement learning. In H. Larochelle,
M. Ranzato, R. Hadsell, M.F. Balcan, and H. Lin (eds.), Advances in Neural In-
formation Processing Systems, volume 33, pp. 9335–9345. Curran Associates, Inc.,
2020. URL https://proceedings.neurips.cc/paper_files/paper/2020/
file/69bfa2aa2b7b139ff581a806abf0a886-Paper.pdf.

S. Boyd and L. Vandenberghe. Convex Optimization. Cambridge University Press, 2004.

G. Brockman, V. Cheung, L. Pettersson, J. Schneider, J. Schulman, J. Tang, and W. Zaremba. Ope-
nai gym, 2016. URL https://www.gymlibrary.dev/environments/classic_
control/mountain_car/.

Y. Burda, H. Edwards, A. Storkey, and O. Klimov. Exploration by random network distillation. In
International Conference on Learning Representations, 2019. URL https://openreview.
net/forum?id=H1lJJnR5Ym.

S. Calo, A. Jonsson, G. Neu, L. Schwartz, and J. Segovia-Aguas. Bisimulation metrics are optimal
transport distances and can be computed efficiently, 2024. URL http://arxiv.org/abs/
2406.04056.

P. Christodoulou. Soft actor-critic for discrete action settings, 2019.

E. Derman and S. Mannor. Distributional robustness and regularization in reinforcement learning.
arXiv preprint arXiv:2003.02894, 2020.

B. Eysenbach, A. Gupta, J. Ibarz, and S. Levine. Diversity is all you need: Learning skills without
a reward function. In International Conference on Learning Representations, 2019.

11

https://rltheorybook.github.io/
https://proceedings.neurips.cc/paper_files/paper/2020/file/69bfa2aa2b7b139ff581a806abf0a886-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/69bfa2aa2b7b139ff581a806abf0a886-Paper.pdf
https://www.gymlibrary.dev/environments/classic_control/mountain_car/
https://www.gymlibrary.dev/environments/classic_control/mountain_car/
https://openreview.net/forum?id=H1lJJnR5Ym
https://openreview.net/forum?id=H1lJJnR5Ym
http://arxiv.org/abs/2406.04056
http://arxiv.org/abs/2406.04056

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

B. Eysenbach, R. Salakhutdinov, and S. Levine. The information geometry of unsupervised rein-
forcement learning. arXiv preprint arXiv:2110.02719, 2021.

R. Flamary, N. Courty, A. Gramfort, M. Z. Alaya, A. Boisbunon, S. Chambon, L. Chapel, A. Coren-
flos, K. Fatras, N. Fournier, L. Gautheron, N. T.H. Gayraud, H. Janati, A. Rakotomamonjy,
I. Redko, A. Rolet, A. Schutz, V.Seguy, D. J. Sutherland, R.Tavenard, A. Tong, and T. Vayer.
Pot: Python optimal transport. Journal of Machine Learning Research, 22(78):1–8, 2021. URL
http://jmlr.org/papers/v22/20-451.html.

C. Gelada, S. Kumar, J. Buckman, O. Nachum, and M. G. Bellemare. Deepmdp: Learning con-
tinuous latent space models for representation learning. In Proceedings of the 36th International
Conference on Machine Learning, pp. 2170–2179. PMLR, 2019.

A. Gibbs and F. E. Su. On choosing and bounding probability metrics. International Statistical
Review / Revue Internationale de Statistique, 70(3):419–435, 2002.

A. Givchi. Optimal Transport in Reinforcement Learning. PhD thesis, Graduate School-Newark
Rutgers, The State University of New Jersey, 2021. URL https://rucore.libraries.
rutgers.edu/rutgers-lib/66700/PDF/1/.

X. Glorot and Y. Bengio. Understanding the difficulty of training deep feedforward neural networks.
In International Conference on Artificial Intelligence and Statistics, 2010.

T. Haarnoja, A. Zhou, P. Abbeel, and S. Levine. Soft actor-critic: Off-policy maximum entropy
deep reinforcement learning with a stochastic actor. In Proceedings of the 35th International
Conference on Machine Learning, 2018.

T. Haarnoja, A. Zhou, K. Hartikainen, G. Tucker, S. Ha, J. Tan, V. Kumar, H. Zhu, A. Gupta,
P. Abbeel, and S. Levine. Soft actor-critic algorithms and applications, 2019.

L. Hou, L. Pang, X. Hong, Y. Lan, Z. Ma, and D. Yin. Robust reinforcement learning with wasser-
stein constraint. arXiv preprint arXiv:2006.00945, 2020.

A. Hussein, M. M. Gaber, E. Elyan, and C. Jayne. Imitation learning: A survey of learning methods.
ACM Computing Surveys, 50:1—-35, 2017.

J. Ibarz, J. Tan, C. Finn, M. Kalakrishnan, P. Pastor, and S. Levine. How to train your robot with
deep reinforcement learning: lessons we have learned. The International Journal of Robotics
Research, 40(4-5):698–721, 2021.

M. Jaderberg, W. M. Czarnecki, I. Dunning, L. Marris, G. Lever, A. G. Castaneda, C. Beattie, N. C.
Rabinowitz, A. S. Morcos, A. Ruderman, N. Sonnerat, T. Green, L. Deason, J. Z. Leibo, D. Silver,
D. Hassabis, K. Kavukcuoglu, and T. Graepel. Human-level performance in 3d multiplayer games
with population-based reinforcement learning. Science, 364(6443):859–865, 2019.

T. Jaksch, R. Ortner, and P. Auer. Near-optimal regret bounds for reinforcement learning. Journal of
Machine Learning Research, 11(51):1563–1600, 2010. URL http://jmlr.org/papers/
v11/jaksch10a.html.

L. P. Kaelbling, M. L. Littman, and A. W. Moore. Journal of artificial intelligence research. Rein-
forcement Learning: A Survey, 4:237—-285, 1996.

K. Kalagarla, R. Jain, and P. Nuzzo. A sample-efficient algorithm for episodic finite-horizon mdp
with constraints. In The 35th AAAI Conference on Artificial Intelligence, pp. 8030–8037, 2021.

M. Kallel, D. Basu, R. Akrour, and C. D’Eramo. Augmented bayesian policy search. In The 12th
International Conference of Learning Representations, volume 139, 2024.

E. Kaufmann, L. Bauersfeld, A. Loquercio, M. Müller, V. Koltun, and D. Scaramuzza. Champion-
level drone racing using deep reinforcement learning. Nature, 620(7976):982–987, 2023.

D. P. Kingma and J. Ba. Adam: A method for stochastic optimization, 2017.

12

http://jmlr.org/papers/v22/20-451.html
https://rucore.libraries.rutgers.edu/rutgers-lib/66700/PDF/1/
https://rucore.libraries.rutgers.edu/rutgers-lib/66700/PDF/1/
http://jmlr.org/papers/v11/jaksch10a.html
http://jmlr.org/papers/v11/jaksch10a.html

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

S. Kolouri, S. R. Park, M. Thorpe, D. Slepcev, and G. K. Rohde. Optimal mass transport: Signal
processing and machine-learning applications. IEEE Signal Processing Magazine, 34:43–59,
2017.

P. Ladosz, L. Weng, M. Kim, and H. Oh. Exploration in deep reinforcement learning: A survey.
Information Fusion, 85:1–22, 2022.

R. Laroche and R. T. des Combes. On the occupancy measure of non-markovian policies in contin-
uous mdps. In Proceedings of the 40th International Conference on Machine Learning, volume
202, 2023.

M. Laskin, H. Liu, X. Bin Peng, D. Yarats, A. Rajeswaran, and P. Abbeel. CIC: contrastive intrinsic
control for unsupervised skill discovery. CoRR, abs/2202.00161, 2022. URL https://arxiv.
org/abs/2202.00161.

T. Lattimore and C. Szepesvári. Bandit algorithms. Cambridge University Press, 2020.

A. Lazaridis, A. Fachantidis, and I. Vlahavas. Deep reinforcement learning: A state-of-the-art
walkthrough. Journal of Artificial Intelligence Research, 69:1421–1471, 2020.

S. E. Li. Deep reinforcement learning. In Reinforcement learning for sequential decision and
optimal control, pp. 365–402. Springer, 2023.

A. Likmeta, M. Sacco, A. M. Metelli, and M. Restelli. Wasserstein actor-critic: directed exploration
via optimism for continuous-actions control. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 37, pp. 8782–8790, 2023.

T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa, D. Silver, and D. Wierstra. Contin-
uous control with deep reinforcement learning. In International Conference on Learning Repre-
sentations, 2016. URL https://arxiv.org/pdf/1509.02971v6.

S. Liu. An evaluation of ddpg, td3, sac, and ppo: Deep reinforcement learning algorithms for
controlling continuous system. In International Conference on Data Science, Advanced Algorithm
and Intelligent Computing, 2023.

J. Lott. Some geometric calculations on wasserstein space. Communications in Mathematical
Physics, 277:423—-437, 2008.

M. Memmel, P. Liu, D. Tateo, and J. Peters. Dimensionality reduction and prioritized exploration
for polic search. In 25th International Conference on Artificial Intelligence and Statistics, 2022.

A. M. Metelli, A. Likmeta, and M. Restelli. Propagating uncertainty in reinforcement learning via
wasserstein barycenters. Advances in Neural Information Processing Systems, 32, 2019.

V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D. Wierstra, and M. Riedmiller.
Playing atari with deep reinforcement learning, 2013.

A. W. Moore. Efficient Memory-based Learning for Robot Control. PhD thesis, University of
Cambridge, 1990.

S. Müller, A. von Rohr, and S. Trimpe. Local policy search with bayesian optimization. Advances
in Neural Information Processing Systems, 34:20708–20720, 2021.

G. Neu and C. Pike-Burke. A unifying view of optimism in episodic reinforcement learning. Ad-
vances in Neural Information Processing Systems, 33:1392–1403, 2020.

I. Osband, B. V. Roy, and D. Russo. (more) efficient reinforcement learning via posterior sampling.
In Advances in Neural Information Processing Systems, pp. 3003—-3011, 2013.

R. Ouhamma, D. Basu, and O. Maillard. Bilinear exponential family of mdps: frequentist regret
bound with tractable exploration & planning. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 37, pp. 9336–9344, 2023.

13

https://arxiv.org/abs/2202.00161
https://arxiv.org/abs/2202.00161
https://arxiv.org/pdf/1509.02971v6

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

V. M. Panaretos and Y. Zemel. Statistical aspects of wasserstein distances. Annual Review
of Statistics and its Applications, 6:405–431, 2019. URL https://doi.org/10.1146/
annurev-statistics-030718-104938.

G. Peyré. Computational optimal transport. Foundations and Trends in Machine Learning, 11(5-6):
355–607, 2019.

M. Pirotta, M. Restelli, and L. Bascetta. Policy gradient in lipschitz markov decision processes.
Machine Learning, 100(2-3):255––283, 2015.

M. L. Puterman. Markov decision processes: Discrete stochastic dynamic programming. John Wiley
and Sons, 1994.

G. O. Ramos, B. C. da Silva, and A. L. C. Bazzan. Learning to minimise regret in route choice. In
Proceedings of the 16th Conference on Autonomous Agents and MultiAgent Systems, pp. 846–855,
2017.

G. O. Ramos, A. L. C. Bazzan, and B. C. da Silva. Analysing the impact of travel information for
minimising the regret of route choice. Transportation Research Part C: Emerging Technologies,
88:257–271, 2018.

F. Santambrogio. Optimal Transport for Applied Mathematicians. Bikhauser Cham, 2015. ISBN
978-3-319-20828-2.

H. Van Seijen, H. Nekoei, E. Racah, and S. Chandar. The loca regret: a consistent metric to evaluate
model-based behavior in reinforcement learning. Advances in Neural Information Processing
Systems, 33:6562–6572, 2020.

D. Silver, J. Schrittwieser, K. Simonyan, I. Antonoglou, A. Huang, A. Guez, T. Hubert, L. Baker,
M. Lai, A. Bolton, Y. Chen, T. Lillicrap, F. Hui, L. Sifre, G. van den Driessche, T. Graepel, and
D. Hassabis. Mastering the game of go without human knowledge. nature, 550(7676):354–359,
2017.

S. R. Sinclair, S. Banerjee, and C. L. Yu. Adaptive discretization in online reinforcement learning.
Operations Research, 71(5):1636–1652, 2023.

M. Sommerfeld, J. Schrieber, Y. Zemel, and A. Munk. Optimal transport: Fast probabilistic approx-
imation with exact solvers. Journal of Machine Learning Research, 20:1–23, 2019.

K. Sun, Y. Zhao, Y. Liu, B. Jiang, and L. Kong. Distributional reinforcement learning via sinkhorn
iterations. arXiv preprint arXiv:2202.00769, 2022.

R. S. Sutton and A. G. Barto. Reinforcement Learning: An Introduction, 2nd Edition. MIT press,
2018.

U. Syed, M. Bowling, and R. E. Schapire. Apprenticeship learning using linear programming. In
Proceedings of the 25th International Conference on Machine Learning, pp. 1032–1039. PMLR,
2008. URL https://doi.org/10.1145/1390156.1390286.

H. Tang, R. Houthooft, D. Foote, X. Chen A. Stooke, Y. Duan, J. Schulman, F. De Turck, and
P. Abbeel. #exploration: A study of count-based exploration for deep reinforcement learning.
In Advances in Neural Information Processing Systems, pp. 2753–2762. Curran Associates, Inc.,
2017.

C. Villani. Optimal Transport Old and New. Springer Berlin, Heidelberg, 2009. ISBN 978-3-662-
50180-1.

J. Wang, I. Trummer, and D. Basu. Udo: universal database optimization using reinforcement
learning. Proceedings of the VLDB Endowment, 14(13):3402–3414, 2021.

P. N. Ward. Linear programming in reinforcement learning, 2021. URL https://
escholarship.mcgill.ca/downloads/xs55mh725. MSc thesis.

14

https://doi.org/10.1146/annurev-statistics-030718-104938
https://doi.org/10.1146/annurev-statistics-030718-104938
https://doi.org/10.1145/1390156.1390286
https://escholarship.mcgill.ca/downloads/xs55mh725
https://escholarship.mcgill.ca/downloads/xs55mh725

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Y. Yang, T. Zhou, Q. He, L. Han, M. Pechenizkiy, and M. Fang. Task adaptation from skills: Infor-
mation geometry, disentanglement, and new objectives for unsupervised reinforcement learning.
In The Twelfth International Conference on Learning Representations, 2024.

L. Zhang, K. Tang, and X. Yao. Explicit planning for efficient exploration in reinforcement learning.
In H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett (eds.), Ad-
vances in Neural Information Processing Systems, volume 32, pp. 7488–7497. Curran Associates,
Inc., 2019.

M. Zhang, Y. Wang, X. Ma, L. Xia, J. Yang, Z. Li, and X. Li. Wasserstein distance guided adversarial
imitation learning with reward shape exploration. In IEEE 9th Data Driven Control and Learning
Systems Conference, pp. 1165–1170, 2020.

C. Zhu, X. Wang, T. Han, S. S. Du, and A. Gupta. Transferable reinforcement learning via general-
ized occupancy models, 2024.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

A THEORETICAL ANALYSIS

A.1 MDP WITH LIPSCHITZ REWARDS

Given two metric spaces (X , dX) and (Y, dY), a function f : X → Y is called 1-Lipschitz continu-
ous if (Villani, 2009):

dY (f(x), f(x
′)) ≤ dX(x, x′), ∀(x, x′) ∈ X (11)

This implies that the Lipschitz semi-norm over the function space F(X,Y), defined as

∥f∥L = sup
x ̸=x′

{
dY (f(x), f(x

′))

dX(x, x′)
| ∀(x, x′) ∈ X

}
, (12)

is ≤ 1. When (X , dX) is a Polish space and µ, ν ∈ P(X), the Kantorovich-Rubinstein formula
states that (Villani, 2009):

W1(µ, ν) = sup
∥f∥L≤1

{∫
X
f dµ−

∫
X
f dν

}
= sup

∥f∥L≤1

{Eµ [f(X)]− Eν [f(X)]} ,
(13)

where W1(µ, ν) is the 1-Wasserstein distance between µ and ν with f as the cost function.

Note that when ∥f∥L ≤ LR for any LR > 0, then function f is called LR-Lipschitz continuous,
and Equation (13) becomes (Gelada et al., 2019),

W1(µ, ν) =
1

LR
sup

∥f∥L≤LR

{Eµ [f(X)]− Eν [f(X)]} . (14)

Now, we consider X = S ×A, i.e. the state-action space, Y = R, i.e. the real line, and the function
f to be the reward function R̄. Then, we can call the reward function R̄ to be LR-Lipschitz if

|R̄(s, a)− R̄(s′, a′)| ≤ LRdSA((s, a), (s
′, a′))

for all s, s′ ∈ S, and a, a′ ∈ A, and dSA((s, a), (s
′, a′)) = dS((s, s

′)) + dA((a, a
′)) being the

metric on the state-action space S × A. If the reward function R̄ of an MDP is LR-Lipschitz, we
refer it as an MDP with Lipschitz rewards.

A.2 PERFORMANCE DIFFERENCE AND OCCUPANCY MEASURES

We know that

Jπ
µ =

1

ρ
E(s,a)∼vπ

[
R̄(s, a)

]
. (15)

Using Equation (15), we write for two policies π and π′, with µ(s) as the initial state distribution,∣∣∣Jπ
µ − Jπ′

µ

∣∣∣ = 1

ρ

∣∣E(s,a)∼vπ

[
R̄(s, a)

]
− E(s,a)∼vπ′

[
R̄(s, a)

]∣∣ (16)

Given an MDP with LR-Lipschitz rewards, the Kantorovich-Rubinstein formula dictates that
(Gelada et al., 2019):

sup
∥R̄∥L≤LR

∣∣E(s,a)∼vπ

[
R̄(s, a)

]
− E(s,a)∼vπ′

[
R̄(s, a)

]∣∣ = LRW1(vπ, vπ′) (17)

By dividing both sides of Equation (17) by ρ, and due to an upper bound by the supremum, this
inequality follows: ∣∣∣Jπ

µ − Jπ′

µ

∣∣∣ ≤ LR

ρ
W1(vπ, vπ′) (18)

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

A.3 PROOF OF PROPOSITION 1

The Linear Programming formulation for solving MDPs, assuming discrete state and action spaces,
is (Puterman, 1994):

max
vπ

∑
s,a

r(s, a)vπ(s, a)

subject to
∑
a

vπ(s, a) = p0(s) + γ
∑
s′,a

T (s | s′, a)vπ(s′, a)

vπ(s, a) ≥ 0 ∀(s, a) ∈ S ×A ,

(19)

where p0(s) is the initial state distribution and T (s | s′, a) is the transition probability. The con-
straints of this optimization problem are often referred to as Bellman Flow Constraint.

A stationary policy π has a corresponding occupancy measure vπ(s, a) that satisfies the Bellman
flow constraint (Syed et al., 2008), and hence π and vπ(s, a) share a bijective relationship (Syed
et al., 2008; Givchi, 2021),

π(a | s) = vπ(s, a)

uπ(s)
(20)

with
uπ(s) =

∑
a′

vπ(s, a
′) = p0(s) + γ

∑
s′,a′

T (s | s′, a′)vπ(s′, a′) (21)

By rearranging Equation (20) to

vπ(s, a) = π(a | s)uπ(s) (22)

and substituting Equation (22) into Equation (21), we can rewrite Equation (21) as (defining Pπ ≜∑
a T (s | s′, a)π(a | s′)),

p0(s) = uπ(s)− γ
∑
s′,a

T (s | s′, a)π(a | s′)uπ(s
′)

≜ uπ(s)− γ
∑
s′

Pπ(s | s′)uπ(s
′)

(23)

which in matrix form is
p0 = uπ − γPπuπ

= (I− γPπ)uπ ,
(24)

where p0,uπ ∈ R|S| are column vectors and Pπ ∈ R|S|×|S| are matrices. Solving for uπ , we get

uπ = (I− γPπ)
−1

p0 (25)

The inverse matrix (I− γPπ)
−1 exists because for γ < 1, (I− γPπ) is a strictly diagonally domi-

nant matrix (Syed et al., 2008). Thus, (I− γPπ)
−1

=
∑∞

t=0(γP
π)t, where

∑∞
t=0(γP

π)t forms a
valid Neumann series (Ward, 2021). We let Aπ =

∑∞
t=0(γP

π)t, so Equation (24) can be written as
uπ = Aπp0. We can therefore express Equation (22) in matrix form as:

vπ = Π⊙
(
uT
π ⊗ 1

)T
= Π⊙

(
pT
0 (A

π)T ⊗ 1
)T

,
(26)

where Π,vπ ∈ R|S|×|A|, 1 ∈ R|A| is a column vector of ones, ⊗ presents the Kronecker product,
and ⊙ denotes the Hadamard product.

If we consider the case of a parameterized policy Π(θ), then the derivative of vπ with respect to θ
is

∇θvπ =∇θ

[
Π⊙

(
pT
0 (A

π)T ⊗ 1
)T]

=∇θΠ⊙
(
pT
0 (A

π)T ⊗ 1
)T

+Π⊙∇θ

(
pT
0 (A

π)T ⊗ 1
)T

=∇θΠ⊙
(
pT
0 (A

π)T ⊗ 1
)T

+Π⊙
(
pT
0 (∇θA

π)T ⊗ 1
)T (27)

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

The first term in Equation (36) is differentiable since the policy is parameterized by θ. We expand
∇θA

π as follows:

∇θA
π =

∞∑
t=0

t(γPπ)t−1γ∇θP
π

≡
∞∑
t=0

t(γPπ)t−1γ∇θ

∑
s′,a

T (s|s′, a)π(a|s′)

=

∞∑
t=0

t(γPπ)t−1γ

∑
s′,a

T (s|s′, a)∇θπ(a|s′)

=

∞∑
t=0

t(γPπ)t(Pπ)−1

∑
s′,a

T (s|s′, a)∇θπ(a|s′)

(28)

If (Pπ)−1 exists, then ∇θA
π is differentiable, and consequently so is ∇θvπ , based on Equation (36)

and Equation (37). Proceeding similarly, given the same conditions, we see that all higher derivatives
of vπ also exist with respect to θ. Thus, the space of parametrized occupancy measures vπ forms a
differentiable manifold.

A.4 PROOF OF PROPOSITION 2

Regret is a common metric for evaluating agents, that measures the total loss an agent incurs over
policy updates by using its policy in lieu of the optimal one, defined as (Osband et al., 2013),

Regret = Es∼µ

[∑
k

(V ∗(s)− Vπk
(s))

]
(29)

where V ∗ = Vπ∗ is the value function of the optimal policy π∗ while Vπk
(s) is the value function

of policy πk, and µ is the initial state distribution.

Since Jπ
µ = Es∼µ[Vπ(s)], we can conclude from Equation (29) that

Regret = Es∼µ

[∑
k

(V ∗(s)− Vπk
(s))

]
=
∑
k

[Es∼µ(V
∗(s)− Vπk

(s))]

=
∑
k

(
Jπ∗

µ − Jπk
µ

)
=
∑
k

∣∣∣Jπ∗

µ − Jπk
µ

∣∣∣
≤
∑
k

LR

ρ
W1(vπ∗ , vπk

)

(30)

The last inequality is due to Equation (18).

A.5 PROOF OF PROPOSITION 3

Let us begin the proof by defining the visitation probability at any step h ∈ [H] in an episode,
following policy π(a|s). Specifically,

qhπ(s, a) ≜ P(sh = s, ah = a) ∀h ∈ [H] and qhπ(s, a) ≜ 0 ∀h ∈ N ∧ h > H . (31)

Thus, we rewrite Equation (7) vHπ (s, a) = 1
H

∑H
h=1 q

h
π(s, a).

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

Then, following (Kalagarla et al., 2021), we can write the Linear Programming formulation for
solving episodic MDP MH as

max
{qhπ}H

h=1

∑
h,s,a

r(s, a)qhπ(s, a)

subject to
∑
a

qhπ(s, a) =
∑
s′,a

T (s | s′, a)qh−1
π (s′, a) ∀h ∈ [H] ∧ h > 1 ,

q1π(s, a) = π(a|s)µ(s) ,
qhπ(s, a) ≥ 0 ∀h ∈ [H], (s, a) ∈ S ×A ,

(32)

where µ(s) is the initial state distribution and T (s | s′, a) is the transition probability. The con-
straints of this optimization problem are often referred to as Bellman Flow Constraints.

This implies that

H+1∑
h=2

∑
a

qhπ(s, a) =

H+1∑
h=2

∑
s′,a

T (s | s′, a)qh−1
π (s′, a)

=⇒
∑
a

q1π(s, a) +

H+1∑
h=2

∑
a

qhπ(s, a) =

H+1∑
h=2

∑
s′,a

T (s | s′, a)qh−1
π (s′, a) +

∑
a

q1π(s, a)

=⇒
∑
a

H+1∑
h=1

qhπ(s, a) =

H+1∑
h=2

∑
s′,a

T (s | s′, a)qh−1
π (s′, a) +

∑
a

q1π(s, a)

=⇒ H
∑
a

vHπ (s, a) =
∑
s′,a

T (s | s′, a)(
H+1∑
h=2

qh−1
π (s′, a)) + µ(s)

=⇒ H
∑
a

vHπ (s, a) = H
∑
s′,a

T (s | s′, a)vHπ (s′, a) + µ(s)

=⇒
∑
a

vHπ (s, a) =
∑
s′,a

T (s | s′, a)vHπ (s′, a) +
1

H
µ(s)

=⇒ uH
π (s) ≜

∑
a

vHπ (s, a) =
∑
s′,a

T (s | s′, a)π(a|s′)uH
π (s′) +

1

H
µ(s) . (33)

Now, we denote uH
π and µ̄ as corresponding column vectors and the transition matrix Pπ ≜[∑

s′,a T (s | s′, a)π(a|s′)
]
. Thus, we obtain

(I− Pπ)uH
π =

1

H
µ̄ =⇒ uH

π =
1

H
(I− Pπ)−1µ̄ . (34)

We can therefore express the finite horizon occupancy measure in matrix form as

vH
π = Π⊙

(
(uH

π)T ⊗ 1
)T

= Π⊙
(
µ̄T (Aπ

H)T ⊗ 1
)T (35)

where Π,vπ ∈ R|S|×|A|, 1 ∈ R|A| is a column vector of ones, ⊗ presents the Kronecker product,
⊙ denotes the Hadamard product, and Aπ

H ≜ 1
H (I− Pπ)−1.

If we consider the case of a parameterized policy Π(θ), the derivative of vH
π with respect to θ is

∇θv
H
π =∇θ

[
Π⊙

(
µ̄T (Aπ

H)T ⊗ 1
)T]

=∇θΠ⊙
(
µ̄T (Aπ

H)T ⊗ 1
)T

+Π⊙∇θ

(
µ̄T (Aπ

H)T ⊗ 1
)T

=∇θΠ⊙
(
µ̄T (Aπ

H)T ⊗ 1
)T

+Π⊙
(
µ̄T (∇θA

π
H)T ⊗ 1

)T (36)

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

The first term in Equation (36) is differentiable since the policy is parameterized by θ. We expand
on ∇θA

π
H as follows:

H ∇θA
π
H = ∇θ(I− Pπ)−1

= ∇θ

(∞∑
i=0

(Pπ)i

)

=

∞∑
i=0

i(Pπ)i−1∇θPπ

=

∞∑
i=0

i(Pπ)i−1

∑
s′,a

T (s|s′, a)∇θπ(a|s′)

 .

(37)

If (Pπ)−1 exists, then ∇θA
π
H is differentiable, and consequently so is ∇θv

H
π . Proceeding similarly,

given the same conditions, we see that all higher derivatives of vH
π also exist with respect to θ. Thus,

the space of parametrized finite-horizon occupancy measures vHπ forms a differentiable manifold
MH .

A.6 OPTIMAL TRANSPORT DATASET DISTANCE (OTDD)

Suppose we have two datasets, each consisting of feature-label pairs, DA = {(tiA, ui
A)}mi=1 ∼

PA(t, u) and DB = {(tiB , ui
B)}ni=1 ∼ PB(t, u) with tA, tB ∈ T and uA, uB ∈ UA,UB. These

datasets can be used to create empirical distributions P̂A(t, u) and P̂B(t, u). OTDD is the p-
Wasserstein distance between the datasets DA and DB - which is essentially the distance between
their empirical distributions P̂A and P̂B - with the cost function defined as the metric of the joint
space T × U (Alvarez-Melis & Fusi, 2020).

Naturally, the metric on this joint space can be defined as dT U ((t, u), (t
′, u′)) =

(dT (t, t
′)p + dU (u, u

′)p)
1/p, for p ≥ 1. However, in most applications dT is readily available,

while dU might be scarce, especially in supervised learning (SL) between labels from unrelated la-
bel sets (Alvarez-Melis & Fusi, 2020). Further, we want dT and dU to have the same units to be
addable. To overcome these issues, dU is expressed in terms of dT by mapping labels u to distribu-
tions over the feature space P(T) as u → αu(T) ≜ P (T | U = u) ∈ P(T). Therefore, the distance
between the labels u and u′ is defined as the p-Wasserstein distance between αu(T) and αu′(T),

dU (u, u
′) = Wp

p (αu(T), αu′(T))

= min
π∈Π(αu,αu′)

∫
T ×T

(dT (t, t
′))p dπ(t, t′)

(38)

The metric on the joint space becomes,

dT U ((t, u), (t
′, u′)) =

(
dT (t, t

′)p +Wp
p (αu(T), αu′(T))

)1/p (39)

Let Z = T × U , then the p-Wasserstein distance between P̂A(t, u) and P̂B(t, u) is a ”nested”
Wasserstein distance:

Wp
p (P̂A, P̂B) = min

π∈Π(PA,PB)

∫
Z×Z

(dZ(z, z
′))p dπ

= min
π∈Π(PA,PB)

∫
T U×T U

(
dT (t, t

′)p +Wp
p (αu, αu′)

)
dπ

(40)

W p
p (P̂A, P̂B) is the OTDD between datasets DA and DB , often expressed as dOT (DA,DB). This

is used in transfer learning to determine the distance (or similarity) between datasets.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

A.7 PROOF OF PROPOSITION 4

We compute the error in occupancy measure for both the infinite and finite horizon cases. In infinite
horizon MDPs, the occupancy measure is defined as the expected discounted number of visits of
a state-action pair (s, a) in a trajectory (Laroche & des Combes, 2023): µ = (1 − γ)

∑∞
t=0 γ

tµt,
where µt = P (st, at | π, η) is the state-action probability distribution at time step t with the initial
state distribution η following the policy π. In finite horizon MDPs, the occupancy measure is the
expected number of visits of a state-action pair (s, a) in an episode of length H (Altman, 1999):
µ = 1

H

∑H
t=1 µt.

First, we derive error bounds for the infinite horizon MDP in which γ < 1 and the occupancy
measure is approximated using a finite number of samples collected up to a finite number of time
steps T . Later, we derive error bounds for the finite horizon MDP.

A.7.1 INFINITE HORIZON MDPS

Estimated Occupancy Measure. For convenience, we express the occupancy measure as µ =
(1 − γ)

∑∞
t=0 γ

tµt, where µt = P (st, at | π, η) is the state-action probability distribution at time
step t with the initial state distribution η following the policy π. To compute µ, we roll out N
episodes (each of multiple time steps) using π, and take N number of samples at t to approximate
µt. Thus, the empirical occupancy measure µ̂ is given by µ̂ = ρ

∑T
t=0 γ

tµ̂N
t , where ρ = 1∑T

t=0 γt .
Note that the total number of samples in the policy dataset Dπ is |Dπ| = N(T + 1).

Occupancy Measure Estimation Error. Consider two occupancy measures µ = (1−γ)
∑∞

t=0 γ
tµt

and ν = (1 − γ)
∑∞

t=0 γ
tνt (with estimates µ̂ = ρ

∑T
t=0 γ

tµ̂
Nµ

t and ν̂ = ρ
∑T

t=0 γ
tν̂Nν

t). For
independent sets {µt}t≥0 and {νt}t≥0, the Wasserstein distance has the following additive property
(Panaretos & Zemel, 2019),

Wp(
∑
t

µt,
∑
t

νt) ≤
∑
t

Wp(µt, νt) (41)

While for a ∈ R (Panaretos & Zemel, 2019),

Wp(aµ, av) = |a|Wp(µ, v) (42)

Therefore, for our scenario where p = 1, the Wasserstein distance between µ and ν is given by:

W1(µ, ν) = W1((1− γ)

∞∑
t=0

γtµt, (1− γ)

∞∑
t=0

γtνt)

≤ (1− γ)

∞∑
t=0

γtW1(µt, νt)

(43)

while for µ̂ and ν̂,

W1(µ̂, ν̂) ≤ ρ

T∑
t=0

γtW1(µ̂
Nµ

t , ν̂Nν
t) (44)

In the RL problems we consider, the state-action space Z = S×A is commonly defined as the subset
of the Euclidean space Z ∈ RB , where usually B ≥ 2. Theorems 1 and 3 in (Sommerfeld et al.,
2019) establish the following error bounds between the true and empirical probability distributions,

E[W1(µ̂
Nµ

t , µt)] ≤ E2N
− 1

2
µ

E[W1(ν̂
Nν
t , νt)] ≤ E2N

− 1
2

ν

(45)

where

E2 ≤ 4B1/2diam(Z) ·
{
2 + (1/2)log2|Z| if B = 2

|Z|1/2−1/B
[
2 + 1/(2B/2−1 − 1)

]
if B > 2

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

Note that |Z| and diam(Z) denote the cardinality and diameter of Z , respectively.

Suppose a = W1(µ̂, ν̂), b = W1(µ̂, µ), c = W1(ν̂, µ), d = W1(µ, ν), and e = W1(ν̂, ν). Then by
performing two reverse triangle inequalities,

|a− c| ≤ b and |c− d| ≤ e

=⇒ |a− d| ≤ b+ e
(46)

Equation (46) implies that,

E[|W1(µ̂, ν̂)−W1(µ, ν)|] ≤ E[W1(µ̂, µ) +W1(ν̂, ν)]

= E[W1(ρ

T∑
t=0

γtµ̂
Nµ

t , µ) +W1(ρ

T∑
t=0

γtν̂Nν
t , ν)]

= E[W1(ρ

T∑
t=0

γtµ̂
Nµ

t , µ)] + E[W1(ρ

T∑
t=0

γtν̂Nν
t , ν)]

+ E[W1((1− γ)

∞∑
t=0

γtµ̂
Nµ

t , µ)−W1((1− γ)

∞∑
t=0

γtµ̂
Nµ

t , µ)]

+ E[W1((1− γ)

∞∑
t=0

γtν̂Nν
t , ν)−W1((1− γ)

∞∑
t=0

γtν̂Nν
t , ν)]

(47)

By virtue of triangle inequalities, we get

W1(ρ

T∑
t=0

γtµ̂
Nµ

t , (1− γ)

∞∑
t=0

γtµ̂
Nµ

t) ≥ W1(ρ

T∑
t=0

γtµ̂
Nµ

t , µ)−W1((1− γ)

∞∑
t=0

γtµ̂
Nµ

t , µ)

W1(ρ

T∑
t=0

γtν̂Nν
t , (1− γ)

∞∑
t=0

γtν̂Nν
t) ≥ W1(ρ

T∑
t=0

γtν̂Nν
t , ν)−W1((1− γ)

∞∑
t=0

γtν̂Nν
t , ν)

(48)

Therefore, the right-hand-side (R.H.S) of Equation (47) can be further simplified as

R.H.S ≤ E[W1(ρ

T∑
t=0

γtµ̂
Nµ

t , (1− γ)

∞∑
t=0

γtµ̂
Nµ

t)] + E[W1(ρ

T∑
t=0

γtν̂Nν
t , (1− γ)

∞∑
t=0

γtν̂Nν
t)]

+ E[W1((1− γ)

∞∑
t=0

γtµ̂
Nµ

t , µ)] + E[W1((1− γ)

∞∑
t=0

γtν̂Nν
t , ν)]

(49)

For simplicity, we denote µ̂∞ = (1 − γ)
∑∞

t=0 γ
tµ̂

Nµ

t (similarly ν̂∞) and µ̂T = ρ
∑T

t=0 γ
tµ̂

Nµ

t

(similarly ν̂T), where ρ = 1∑T
t=0 γt = 1−γ

1−γT+1 . Using Theorem 4 in (Gibbs & Su, 2002), the
1-Wasserstein metric W1 and the total variation distance dTV satisfy the following,

W1(µ̂∞, µ̂T) ≤ diam(Z) · dTV (µ̂∞, µ̂T)

= diam(Z) · 1
2

∑
z∈Z

|µ̂∞(z)− µ̂T (z)| (50)

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

However,

µ̂∞ − µ̂T = (1− γ)

∞∑
t=0

γtµ̂
Nµ

t − 1− γ

1− γT+1

T∑
t=0

γtµ̂
Nµ

t

= (1− γ)

∞∑
t=0

γtµ̂
Nµ

t − 1− γ

1− γT+1

T∑
t=0

γtµ̂
Nµ

t

+ (1− γ)

T∑
t=0

γtµ̂
Nµ

t − (1− γ)

T∑
t=0

γtµ̂
Nµ

t

= (1− γ)

(∞∑
t=0

γtµ̂
Nµ

t −
T∑

t=0

γtµ̂
Nµ

t

)
+

(
(1− γ)− 1− γ

1− γT+1

) T∑
t=0

γtµ̂
Nµ

t

= (1− γ)

∞∑
t=T+1

γtµ̂
Nµ

t − γT+1 1− γ

1− γT+1

T∑
t=0

γtµ̂
Nµ

t

≤ (1− γ)
∞∑

t=T+1

γtµ̂
Nµ

t

= γT+1 1− γ

γT+1

∞∑
t=T+1

γtµ̂
Nµ

t

= γT+1µ̂T+1,∞

(51)

where 1−γ
γT+1 normalizes

∑∞
t=T+1 γ

tµ̂
Nµ

t . We utilize Equation (51) in Equation (50) as,

W1(µ̂∞, µ̂T) ≤ diam(Z) · 1
2

∑
z∈Z

|µ̂∞(z)− µ̂T (z)|

≤ diam(Z) · 1
2

∑
z∈Z

|γT+1µ̂T+1,∞(z)|

=
γT+1

2
diam(Z)

(52)

Equation (52) also applies for W1(ν̂∞, ν̂T), therefore by substituting these into Equation (49),

R.H.S ≤ E[W1((1− γ)

∞∑
t=0

γtµ̂
Nµ

t , µ)] + E[W1((1− γ)

∞∑
t=0

γtν̂Nν
t , ν)] + γT+1diam(Z)

= E[W1((1− γ)

∞∑
t=0

γtµ̂
Nµ

t , (1− γ)
∞∑
t=0

γtµt)]

+ E[W1((1− γ)

∞∑
t=0

γtν̂Nν
t , (1− γ)

∞∑
t=0

γtνt)] + γT+1diam(Z)

≤ (1− γ)

∞∑
t=0

γt
(
E[W1(µ̂

Nµ

t , µt)] + E[W1(ν̂
Nµ

t , νt)]
)
+ γT+1diam(Z) .

(53)

By substituting Equation (45) into Equation (53)

R.H.S ≤ (1− γ)

∞∑
t=0

γt
(
E2N

− 1
2

µ + E2N
− 1

2
ν

)
+ γT+1diam(Z)

= E2
(
N

− 1
2

µ +N
− 1

2
ν

)
+ γT+1diam(Z)

(54)

Therefore, Equation (47) becomes:

E[|W1(µ̂, ν̂)−W1(µ, ν)|] ≤ E2
(
N

− 1
2

µ +N
− 1

2
ν

)
+ γT+1diam(Z) (55)

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

Over the full trajectory in the occupancy measure space. The true distance between consec-
utive policies πi and πi+1 after an update is W1(vπi

, vπi+1
), which is induced by the ith policy

update. We estimate this distance using datasets of the policies, i.e. approximated distributions,
using W1(v̂πi

, v̂πi+1
).

For M roll out episodes of each πi, we use Equation (55), with Nµ = Nν = M , to derive the
following error bounds,

E
[∣∣W1(vπi

, vπi+1
)−W1(v̂πi

, v̂πi+1
)
∣∣] ≤ 2E2M− 1

2 + γT+1diam(Z) (56)
which is consistent with learning from Dπi and then Dπi+1 . By summing sequentially through
policies encountered during RL training, we compute the total distance over a path of N segments
obtained via policy updates:

N−1∑
i=0

E
[∣∣W1(vπi

, vπi+1
)−W1(v̂πi

, v̂πi+1
)
∣∣] ≤ 2NE2M− 1

2 +NγT+1diam(Z) (57)

Since |
∑

t xt| ≤
∑

t |xt| then,

E

[∣∣∣∣∣
N−1∑
i=0

W1(vπi
, vπi+1

)−
N−1∑
i=0

W1(v̂πi
, v̂πi+1

)

∣∣∣∣∣
]
≤ 2NE2√

M
+NγT+1diam(Z) (58)

A.7.2 FINITE HORIZON MDPS

Occupancy Measure Estimated Error. Consider two occupancy measures µ = 1
H

∑H
t=1 µt and

ν = 1
H

∑H
t=1 νt with estimates µ̂ = 1

H

∑H
t=1 µ̂

Nµ

t and ν̂ = 1
H

∑H
t=1 ν̂

Nν
t . From Equation (46), we

have

E[|W1(µ̂, ν̂)−W1(µ, ν)|]
≤ E[W1(µ̂, µ) +W1(ν̂, ν)]

= E[W1(
1

H

H∑
t=1

µ̂
Nµ

t ,
1

H

H∑
t=1

µt) +W1(
1

H

H∑
t=1

ν̂Nν
t ,

1

H

H∑
t=1

νt)]

≤ 1

H

H∑
t=1

E[W1(µ̂
Nµ

t , µt)] +
1

H

H∑
t=1

E[W1(ν̂
Nν
t , νt)]

≤ E2
(
N

− 1
2

µ +N
− 1

2
ν

)
(59)

Therefore for the total path in the occupancy measure space with M roll out episodes of each πi,
the error bound is

E

[∣∣∣∣∣
N−1∑
i=0

W1(vπi
, vπi+1

)−
N−1∑
i=0

W1(v̂πi
, v̂πi+1

)

∣∣∣∣∣
]
≤ 2NE2√

M
(60)

by assigning Nµ = Nν = M in Equation (59), which concludes the proof.

A.8 PROOF OF PROPOSITION 5

By definition of ηsub, we get

ηsub =

∑N−2
i=0 W1(vπi

, vπi+1
) +W1(vπN−1

, vπN
)

W1(vπ0
, vπN

)

=

∑N−2
i=0 W1(vπi , vπi+1) +W1(vπN−1

, vπN
)

W1(vπ0
, vπ∗)

× W1(vπ0 , vπ∗)

W1(vπ0
, vπN

)

≥
∑N−2

i=0 W1(vπi
, vπi+1

) +W1(vπN−1
, vπ∗)−W1(vπN

, vπ∗)

W1(vπ0
, vπ∗)

× W1(vπ0
, vπ∗)

W1(vπ0
, vπN

)

=

(
η − W1(vπN

, vπ∗)

W1(vπ0
, vπN

)

)
W1(vπ0

, vπ∗)

W1(vπ0
, vπN

)
. (61)

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

The inequality above is true due to the triangle inequality W1(vπN−1
, vπN

) + W1(vπN
, vπ∗) ≥

W1(vπN−1
, vπ∗).

By applying triangle inequality, we also get

W1(vπ0 , vπ∗) +W1(vπN
, vπ∗) ≥ W1(vπ0 , vπN

) .

This implies that

W1(vπ0
, vπ∗)

W1(vπ0
, vπN

)
≥ 1− W1(vπN

, vπ∗)

W1(vπ0
, vπN

)
. (62)

Equation (61) and Equation (62) together yield

ηsub ≥
(
η − W1(vπN

, vπ∗)

W1(vπ0
, vπN

)

)(
1− W1(vπN

, vπ∗)

W1(vπ0
, vπN

)

)
= η − W1(vπN

, vπ∗)

W1(vπ0
, vπN

)
− η

W1(vπN
, vπ∗)

W1(vπ0
, vπN

)
+

(
W1(vπN

, vπ∗)

W1(vπ0
, vπN

)

)2

≥ η

(
1− W1(vπN

, vπ∗)

W1(vπ0
, vπN

)

)
− W1(vπN

, vπ∗)

W1(vπ0
, vπN

)

≥ η

(
1− 2W1(vπN

, vπ∗)

W1(vπ0 , vπN
)

)
.

The second last inequality is due to non-negativity of
(

W1(vπN
,vπ∗)

W1(vπ0
,vπN

)

)2
. The last inequality is due to

the fact that η ≥ 1.

Thus, we conclude that

η − ηsub
η

≤ 2W1(vπN
, vπ∗)

W1(vπ0
, vπN

)
.

A.9 WASSERSTEIN SPACES AS GEODESIC SPACES

Given probability measures µ, ν ∈ P(X) on a metric space X ⊂ RB with metric dX (x, x′), the
Wasserstein distance Wp(µ, ν) is the minimal transport cost for c(x, x′) = (dX (x, x′))p with p ≥
1 (Villani, 2009). The Wasserstein distance Wp(µ, ν) takes a distance on X and creates out of it
a distance on P(X)(Peyré, 2019). Proposition 5.1 in (Santambrogio, 2015) asserts that Wp is a
distance over P(X).

Definition A.9 (Wasserstein Space). (Santambrogio, 2015) Given a Polish space X , for each p ∈
[1,∞), the space P(X) endowed with the distance Wp is a Wasserstein space Wp of order p.

Theorem 5.27 in (Santambrogio, 2015) states that if X is a convex space, then the space Wp is a
geodesic space (length space). Thus, the geodesic (shortest path distance) between µ, ν ∈ P(X) is
given by Wp(µ, ν) (Kolouri et al., 2017). It was mentioned in Appendix A.7.1 that the RL problems
we consider consist of the state-action space Z = S × A ∈ RB : B ≥ 2 (subsets of the Euclidean
space). Given that Euclidean spaces are convex spaces (Boyd & Vandenberghe, 2004), our space of
occupancy measures M is a Wasserstein space Wp = (M,W1) and thus a geodesic space. There-
fore, W1(µ, ν) measures the shortest path on the surface of the manifold M between probability
distributions µ and ν.

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

B ADDITIONAL EXPERIMENTAL ANALYSIS AND RESULTS

B.1 ENVIRONMENT DESCRIPTION

2D-Gridworld environment of size 5x5 with actions: {up, right, down, left}. The start and goal
states are always located at top-left and bottom-right, respectively. A) Deterministic, dense rewards
setting: State transitions are deterministic. The reward function is given by ∥st − sg∥1, where st is
the agent state at timestep t and sg is the goal state. B) Deterministic, sparse rewards setting: State
transitions are deterministic and all states issue a reward of -0.04 except the goal state with reward of
1. C) Stochastic, dense rewards setting: Actions have a probability of 0.8 in the instructed direction
and 0.1 in each adjacent direction. Reward function is as defined in setting A.

2D-Gridworlds (Task Difficulty). Figure 6 depicts the configurations of the 5 tasks that were used
to assess ESL with respect to task hardness. They are all deterministic with actions: {up, right,
down, left}, and mostly have the start-state at the top-left and the goal-state at the bottom-right -
with only one task that has the goal-state at the center. In the order of appearance: a) [5x5] dense:
has size 5x5 and dense rewards, b) [5x5] sparse (hard): has size 5x5 and sparse rewards, c) [5x5]
sparse (easy): has size 5x5, sparse rewards, and goal-state at the center, d) [15x15] dense: has size
15x15 and dense rewards, and e) [15x15] sparse: has size 15x15 and sparse rewards. The reward
functions for both dense and sparse rewards are as previously described above for 2D-Gridworld.

Figure 6: Five gridworld tasks with the same action space, but different rewards, state space and
location of the goal state.

B.2 OMR(K): OMR OVER NUMBER OF UPDATES

OMR is defined for the entire policy trajectory by Equation 6 as,

κ ≜

∑
k∈K+ W1(vπk

, vπk+1
)∑N−1

k=0 W1(vπk
, vπk+1

)
.

To observe how it changes with respect to updates, we compute OMR from update i onwards till the
end of the learning trajectory, i.e. over subsequences with a decreasing number of policy updates
with increasing i, using:

κ(i) ≜

∑
k∈K+,k≥i W1(vπk

, vπk+1
)∑N−1

k=i W1(vπk
, vπk+1

)
, such that i ∈ [0, N − T] (63)

where T ≈ 0.9N to ensure that the last subsequence of policy updates have at least 10% of the total
updates in the trajectory.

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2025

B.3 COMPUTATION OF OCCUPANCY MEASURES

The finite-horizon occupancy measure is defined as (Altman, 1999),

vHπ (s, a) =
1

H

H∑
t=1

P(st = s, at = a | π, µ)

for which the probability of the state-action pair selected is time-dependent. If we restrict our anal-
ysis to stationary policies where π(at|st) = π(a|s), then the probability of the state-action pair
becomes time-independent and thus

vHπ (s, a) = P(s, a | π, µ)

This implies that the use of stationary policies in finite-horizon MDPs, as observed in practice with
many episodic MDPs (Memmel et al., 2022; Aleksandrowicz & Jaworek-Korjakowska, 2023; Liu,
2023), induces stationary occupancy measures - where the expected number of state-action pair
visits are independent of the time-step. Work by (Bojun, 2020) provides extensive details about the
existence of stationarity in episodic MDPs and shows (in Theorem 4) that

E(s,a)∼vH
π

[
R̄(s, a)

]
=

Eζ∼Mπ

[∑H(ζ)
t=1 R(st, at)

]
Eζ∼Mπ [H(ζ)]

(64)

where ζ is the episodic state-action pair trajectory, H(ζ) is the episode length corresponding to ζ,
and Mπ is the markov chain induced by policy π. We verified the correctness of our vHπ computation
by calculating the relative error derived from Equation 65 to check its validity. The relative error is
given as

Rel. Error % = 100 ∗
E(s,a)∼vH

π

[
R̄(s, a)

]
Eζ∼Mπ

[H(ζ)]− Eζ∼Mπ

[∑H(ζ)
t=1 R(st, at)

]
Eζ∼Mπ

[∑H(ζ)
t=1 R(st, at)

] (65)

Figure 7 depicts Rel. Error% vs number of updates in the stochastic 2D-Gridworld environment
with dense rewards. We observe that increasing the number of rollouts M reduces the estimation
error of vHπ . For M = 10, the absolute relative error can be as high as 50% with the mean less than
10%. While for M = 500, the maximum absolute relative error is 4%.

0 200 400 600 800
#updates

40

35

30

25

20

15

10

5

0

Re
l.

Er
ro

r
%

0 200 400 600 800
#updates

3.5

3.0

2.5

2.0

1.5

1.0

0.5

0.0

Re
l.

Er
ro

r
%

Figure 7: Rel. Error% vs number of updates plots in the 2D-Gridworld environment where vHπ is
estimated using M = 10 rollouts (left) and M = 500 rollouts (right).

B.4 EFFECTS OF THE NUMBER OF ROLLOUTS - SAC

The policy dataset Dπi
in a deterministic environment is made up of (s,a) pairs generated from a

single episode of the policy πi. In a deterministic environment, this sequence remains the same
across repeats of episodes, for each policy πi (deterministic) at update step i. Therefore, a single

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2025

rollout is sufficient to estimate the occupancy measure vπi
. In a stochastic environment, rollouts

are impacted by the environment’s stochasticity. Thus, multiple rollouts are needed to estimate the
occupancy measure accurately. As the number of rollouts increases, the occupancy measure should
converge and become less noisy.

Table 4 shows that, in a stochastic setting, the ESL values converge as the number of rollouts in-
creases. OMR appears to be invariant across various the number of rollouts, and the mean number of
updates appear to be consistent around 2900 (with exception for #rollouts = 1). The results indicate
that from about 6 rollouts, the estimated occupancy measures become less noisy. This aligns with
Equation (58), which shows that increasing the number of rollouts reduces estimation error.

#rollouts ESL OMR UC
1 849.1±468.5 0.500±0.004 1849±742.2
3 618.6±257.3 0.501±0.005 2413±1397
6 445.4±245.8 0.501±0.042 2462±2043
9 428.1±234.4 0.503±0.004 2281±1743

Table 4: Evaluation of SAC algorithm in the stochastic, dense-rewards setting for 5x5 gridworld
with 40 maximum steps per episode across various number of rollouts. The effects of #rollouts on
the Effort of Sequential Learning (ESL), Optimal Movement Ratio (OMR), and number of updates
to convergence (UC) are observed.

B.5 η VS ηsub

We compare ESL when the optimal policy was reached, denoted η, versus when it was not, denoted
ηsub, in Tables 5 and 6. First, we observe that the number of rollouts impacts the metric values.
Second, ηsub values are always greater than η values. Note that UCRL2 and PSRL update their
policies only at the end of each episode, whereas SAC and DQN update theirs after each time step.
Hence, UCsub = 499 for both UCRL2 and PSRL.

The ESL values (both η and ηsub) in Table 6 are lower than those in Table 5, as expected since more
data samples reduce estimation error. The distance from the initial policies to the final polices are
not so different. Using both Tables 5 and 6, we notice that comparing algorithms with ηsub yields the
same efficiency ranking (e.g. PSRL, UCRL, SAC and DQN) as η. This indicates that ηsub reliably
predicts results provided by η for comparing algorithms.

The results presented in Table 2 for stochastic dense-rewards setting are consistent with those in
Table 6 because the number of rollouts used was Nr = 6.

Algo. η ηsub d c UC UCsub

SAC
849±
468

3623±
4166

5.63±
1.50

5.26±
2.10

1850±
742

7451±
3535

UCRL2
230±
155

613±
999

5.65±
0.93

5.45±
2.15

284±
180

499±
0.0

PSRL
86.2±
44.4

389±
102

4.96±
1.26

5.29±
1.49

97.2±
52.5

499±
0.0

DQN
564±
478

3911±
1710

5.52±
1.39

6.54±
2.05

1213±
1061

9097±
1904

Table 5: Evaluation of algorithms in the stochastic, dense-rewards setting for 5x5 gridworld with
40 maximum steps per episode with the number of rollouts Nr = 1. The total number of training
episodes is 500. When the algorithm converged at optimality, η is the Effort of Sequential Learning,
d = W1(π0, π

∗) is distance from initial policy to the optimal policy, and UC is the number of
updates to convergence. When the algorithm did not converge at the optimal policy, rather a non-
optimal πN , we use ηsub, c = W1(π0, πN), and UCsub to denote the aforementioned quantities. 40
training trials were used.

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2025

Algo. η ηsub d c UC UCsub

SAC
445±
246

853±
127

5.63±
1.23

7.26±
1.45

2463±
2043

6293±
441

UCRL2
198±
121

510±
274

5.36±
0.84

4.58±
1.90

268±
155

499±
0.0

PSRL
55.4±
33.6

361±
43.6

4.97±
1.34

3.91±
0.48

76.1±
50.6

499±
0.0

DQN
458±
311

1971±
250

4.88±
1.06

6.52±
0.31

1586±
1077

13713±
6907

Table 6: Evaluation of algorithms in the stochastic, dense-rewards setting for 5x5 gridworld with
40 maximum steps per episode with the number of rollouts Nr = 6. The total number of training
episode is 500. When the algorithm converged at optimality, η is the Effort of Sequential Learning,
d = W1(π0, π

∗) is distance from initial policy to the optimal policy, and UC is the number of
updates to convergence. When the algorithm did not converge at the optimal policy however some
πN , we use ηsub, c = W1(π0, πN), and UCsub to denote the aforementioned quantities. 40 training
trials were used.

B.6 EFFECTS OF HYPERPARAMETERS - UCRL2

Table 7 illustrates the effects of hyperparameter values in the UCRL2 algorithm. The environment
is deterministic dense-rewards setting with 200 training episodes. We observe that high exploration
rates (δ → 0) appear to align with high ESL and UC, while high exploitation rates (δ → 1) appear
to align with low ESL and UC. OMR appears to be invariant across various δ values.

δ ESL OMR UC SR%
0.1 47.76±7.768 0.512±0.033 62.26±9.977 100
0.3 39.29±5.860 0.515±0.034 58.08±7.746 100
0.5 38.26±6.747 0.511±0.036 56.92±9.111 100
0.7 37.48±5.094 0.507±0.029 56.68±7.460 100
0.9 36.40±5.301 0.510±0.036 54.86±7.326 100

Table 7: Evaluation of UCRL2 algorithm in the deterministic, dense-rewards setting for 5x5
gridworld with 15 maximum steps per episode. Different confidence parameter δ ∈ (0, 1) were
evaluated to see their effects on Effort of Sequential Learning (ESL), Optimal Movement Ratio
(OMR), number of updates to convergence (UC), and success rate (SR). Note that as δ → 0, the
agent approaches absolute exploration, and with δ → 1 absolute exploitation.

B.7 EXTENDED DISCUSSION OF USEFULNESS OF ESL AND OMR

The quantities like regret and number of updates (UC) are outcomes of the exploratory processes,
and thus reflect only a partial view of the underlying exploration mechanisms. We propose ESL and
OMR to complement regret and number of updates as metrics but not to replace them.

1. Complementarity of ESL and OMR with respect to UC:

a. Case 1. Let us consider two RL algorithms that reach optimality with the same number of updates,
i.e. they have the same UC. How would one be able to distinguish the exploratory processes of these
algorithms? ESL and OMR are the summary metrics of the policy trajectory during learning. These
can reveal which algorithm’s exploratory process is more direct versus meandering, smooth versus
noisy, or has large versus small coverage area in the policy space (Figures 3 and 4, top rows).
Therefore, ESL and OMR quantify with granularity the characteristics of the exploratory process of
an RL algorithm for any given environment.

b. Case 2. Let us consider the case when optimality is not reached but the maximum number
of updates is attained by two RL algorithms. How would one be able to evaluate the exploratory
processes of these algorithms and systematically uncover which exploratory process demonstrate
desired characteristics? Looking into the training trajectories of RL algorithms in an environment
and corresponding higher/lower ESLs (ηsub, Section 4.2), we can make a knowledgeable choice
of an RL algorithm exhibiting desired characteristics (e.g. high coverage, smooth exploration).

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2025

We have shown in Section 4.2 and results in Appendix B.5 that ranking based on suboptimal ESL
is aligned with true ESL, and additionally, the visualization of the training trajectories (Figures 3
and 4) can indicate the characteristics of corresponding RL algorithms even when optimal policy is
not reached.

c. Experimental Evidence. UCRL2 is known to be provably regret-optimal and is designed to
continuously explore. SAC does not have such rigorous theoretical guarantees but is known to
be practically efficient. In Table 1, by UC, we observe that SAC is significantly suboptimal than
UCRL2. But SAC has lower ESL than UCRL2 as its exploration is smoother. Additionally, OMR
for SAC is higher than that of UCRL2. They together indicate that SAC takes smoother but larger
number of policy transitions aligned to optimal direction for exploration, while UCRL2 exhibits
bigger policy changes and in diverse manner trying to cover the environment faster.

2. Complementarity of ESL and OMR with respect to Regret:

UCRL2 and PSRL have the same order of regret bound (Osband et al., 2013). But PSRL leads to
smoother policy transitions that are much more orientated towards optimality (as shown in Figure 3),
while UCRL2 leads to less smooth policy transitions that do not taper as it approaches optimality.
This information is not evident from regret but from corresponding ESLs and OMRs (Table 1).

3. Insights for Algorithm Design:

Knowing ESL (or suboptimal ESL) and OMR can assist with developing algorithms that emphasize
certain exploratory characteristics. We can develop algorithms with grades of coverage or directness,
while also being able to visualize this. Ultimately, depending on the environment, we can choose
which characteristics of exploratory process are well suited. In contrast, looking only at the final
outcomes of RL algorithms like regret and number of updates does not include these nuances.

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2025

C SPECIFICATIONS OF THE RL ALGORITHMS UNDER STUDY

C.1 METHODS FOR SIMULATION RESULTS (DISCRETE MDP)

Model parameter initialisation. We initialised model parameters for deep learning RL algorithms
like DQN and SAC by uniformly sampling weight values between −3 · 10−4 and 3 · 10−4 and the
biases at 0. For tabular Q-learning algorithms, we randomly initialized the Q-values between −1.0
and 1.0. For UCRL and PSRL, the policy model was randomly initialized. Note that all Wasserstein
distances were computed using a python package POT (Flamary et al., 2021). Additionally, L1
norm was used in our Wasserstein metric cost function as the ground metric for the 2D gridworld
environment.

Results in Figure 3. The problem setting was deterministic with dense-rewards and 15 maximum
number of steps per episode. The total number of episodes was 200. The convergence criterion was
satisfied when maximum returns were produced by an algorithm over 5 consecutive updates. The
results showcase a single representative run of each algorithm. The confidence parameter δ = 0.1
was utilized for UCRL2. The α parameter for SAC was autotuned using the approach in (Haarnoja
et al., 2019) along with hyperparameters described in Table 8. While DQN began with ϵ = 1.0
and the value decayed as ϵ[t + 1] = max{0.9999 × ϵ[t], 0.0001}. Table 9 shows hyperparameters
for DQN. Note that the ADAM (Kingma & Ba, 2017) optimizer was used in all the neural network
models.

Table 8: SAC Hyperparameters.
Parameter Value
learning rate 5 · 10−4

discount(γ) 0.99
replay buffer size 104

number of hidden layers (all networks) 1
number of hidden units per layer 32
number of samples per minibatch 64
nonlinearity ReLU
entropy target -4
target smoothing coefficient (τ) 0.01
target update interval 1
gradient steps 1
initial exploration steps
before model starts updating 500

Table 9: DQN Hyperparameters.
Parameter Value
learning rate 5 · 10−2

discount(γ) 0.99
replay buffer size 104

number of hidden layers (all networks) 1
number of hidden units per layer 32
number of samples per minibatch 64
nonlinearity ReLU
target smoothing coefficient (τ) 0.001
target update interval 1
gradient steps 1
initial exploration steps
before ϵ decays 500

Results in Tables 1 and 2. The problem settings had 40 maximum number of steps per episode, and
the convergence criterion was satisfied when maximum returns were produced by an algorithm over
5 consecutive updates. The means and standard deviations for each algorithm were computed over
50 runs. The total number of episodes was 200 for results in Table 1, and 500 in Table 2. For results

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2025

in Figure 5, the Q-learning with decaying ϵ-greedy where ϵ = 0.9 was employed in the gridworld
tasks described in Appendix B.1. A convergence criterion of 50 consecutive model updates with
maximum returns was utilized. We aggregated the result over 40 training trials and the maximum
number of steps per episode was 60.

C.2 METHODS FOR SIMULATION RESULTS (CONTINUOUS MDP)

Model parameter initialisation. We initialised model parameters for the deep learning SAC al-
gorithm by uniformly sampling weight values between −3 · 10−4 and 3 · 10−4 and the biases at
0. For the DDPG algorithm, the output layer weight values were initialised using Xavier Initializa-
tion (Glorot & Bengio, 2010), while the rest were uniformly sampled between −3·10−3 and 3·10−3.
This was done on both the actor and critic networks. The ADAM (Kingma & Ba, 2017) optimizer
was used in all the neural network models. In both algorithms, 1) a discount factor γ = 0.99 was
used, 2) 500 initial steps were taken before updating model weights, and 3) replay buffer size was
106. Tables 10 and 11 display hyperparameters for DDPG and SAC, respectively.

Results in Figure 4. The problem setting was Mountain Car continuous (Moore, 1990) with 999
maximum number of steps per episode (Brockman et al., 2016). The total number of training
episodes was 100. The convergence criterion was satisfied when maximum returns were produced
by an algorithm over 10 consecutive updates. The results showcase a single representative run of
each algorithm. For results in Table 3, the mean and standard deviations for each algorithm were
computed over 5 runs. While RL training was conducted in a continuous state-action space, we
discretized it for Wasserstein distance calculations between occupancy measures, using 4 bins for
actions and 10 bins for states. Note that all Wasserstein distances were computed using a python
package POT (Flamary et al., 2021). Additionally, L2 norm was used in our Wasserstein metric cost
function as the ground metric for the Mountain Car environment.

Table 10: DDPG Hyperparameters.
Parameter Value
number of samples per minibatch 128
nonlinearity ReLU
target smoothing coefficients (τ) 0.001
target update interval 1
gradient steps 1
number of hidden layers (all networks) 2
number of hidden units per layer 64
Actor learning rate 5 · 10−4

Critic learning rate 5 · 10−3

Table 11: SAC Hyperparameters.
Parameter Value
learning rate 3 · 10−3

number of hidden layers (all networks) 2
number of hidden units per layer 64
number of samples per minibatch 128
nonlinearity ReLU
target smoothing coefficient (τ) 0.001
target update interval 1
gradient steps 1

32

1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2025

D SUPPLEMENTARY RESULTS

In this section we present enlarged versions of results in Figure 3 (see Section D.1) and additional
plots that support the results in the main paper (see Section D.2). Note that the Github repository of
the project is available at [link on acceptance].

D.1 ENLARGED VISUALISATION OF THE OCCUPANCY MEASURE TRAJECTORIES

Figures 8 - 10 are enlarged versions of enlarged versions of Figure 3. For each algorithm, there is a
visualisation of the policy trajectory and visualisation of the state visitation below it.

Figure 8: Top row: Scatter plots of distance-to-optimal and stepwise-distance over updates for
ϵ(=0)-greedy and ϵ(=1)-greedy Q-learning. Bottom row: State visitations.

33

1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2025

Figure 9: Top row: Scatter plots of distance-to-optimal and stepwise-distance over updates for
UCRL2 and PSRL. Bottom row: State visitations.

Figure 10: Top row: Scatter plots of distance-to-optimal and stepwise-distance over updates for
SAC and DQN. Bottom row: State visitations.

34

1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889

Under review as a conference paper at ICLR 2025

D.2 EVOLUTION OF stepwise-distance, distance-to-optimal, AND OMR(k)

In this section we present 2 dimensional versions of the policy trajectories in Figures 3 and 4, along
with corresponding OMR evolution plots. These are stepwise-distance vs. updates, distance-to-
optimal vs. updates, and OMR(k) plots for the algorithms. Figure 11 presents plots for the contin-
uous environment Mountain Car, while Figure 12) presents plots for the discrete environment 2D
Gridworld.

DDPG

0 5000 10000 15000 20000
#updates

0.0

0.1

0.2

0.3

0.4

0.5

st
ep

w
is

e_
di

st
an

ce

0 5000 10000 15000 20000
#updates

0.0

0.2

0.4

0.6

0.8

di
st

an
ce

_t
o_

op
ti

m
al

0 5000 10000 15000 20000
#updates

0.40

0.45

0.50

0.55

0.60

O
M

R(
k)

SAC

0 5000 10000 15000 20000
#updates

0.0

0.1

0.2

0.3

0.4

0.5

st
ep

w
is

e_
di

st
an

ce

0 5000 10000 15000 20000
#updates

0.0

0.2

0.4

0.6

0.8

di
st

an
ce

_t
o_

op
ti

m
al

0 5000 10000 15000 20000
#updates

0.40

0.45

0.50

0.55

0.60

O
M

R(
k)

Figure 11: Plots in the first column are stepwise-distance vs. number of updates, second column
distance-to-optimal vs. number of updates, and third OMR(k) vs. number of updates. Top row plots
belong to DDPG algorithm, while bottom row plots belong to SAC.

35

1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943

Under review as a conference paper at ICLR 2025

ϵ(=0)-greedy

0 25 50 75 100 125 150 175
#updates

0

2

4

6

8

st
ep

w
is

e_
di

st
an

ce

0 25 50 75 100 125 150 175
#updates

0

2

4

6

di
st

an
ce

_t
o_

op
ti

m
al

0 25 50 75 100 125 150 175
#updates

0.4
0.5
0.6
0.7
0.8
0.9
1.0

O
M

R(
k)

ϵ(=1)-greedy

0 500 1000 1500 2000 2500
#updates

0
1
2
3
4
5
6

st
ep

w
is

e_
di

st
an

ce

0 500 1000 1500 2000 2500
#updates

0

2

4

6

8

di
st

an
ce

_t
o_

op
ti

m
al

0 500 1000 1500 2000 2500
#updates

0.4
0.5
0.6
0.7
0.8
0.9
1.0

O
M

R(
k)

UCRL2

0 10 20 30 40 50 60 70 80
#updates

0.0
2.5
5.0
7.5

10.0
12.5

st
ep

w
is

e_
di

st
an

ce

0 10 20 30 40 50 60 70 80
#updates

0

2

4

6

di
st

an
ce

_t
o_

op
ti

m
al

0 10 20 30 40 50 60 70
#updates

0.4
0.5
0.6
0.7
0.8
0.9
1.0

O
M

R(
k)

PSRL

0 5 10 15 20 25
#updates

0

2

4

6

8

st
ep

w
is

e_
di

st
an

ce

0 5 10 15 20 25
#updates

0

2

4

6

di
st

an
ce

_t
o_

op
ti

m
al

0 2 4 6 8 10 12 14
#updates

0.4
0.5
0.6
0.7
0.8
0.9
1.0

O
M

R(
k)

SAC

0 10 20 30 40
#updates

0
1
2
3
4
5
6

st
ep

w
is

e_
di

st
an

ce

0 10 20 30 40
#updates

0

2

4

6

di
st

an
ce

_t
o_

op
ti

m
al

0 5 10 15 20 25 30 35
#updates

0.4
0.5
0.6
0.7
0.8
0.9
1.0

O
M

R(
k)

DQN

0 10 20 30 40 50 60
#updates

0

1

2

3

st
ep

w
is

e_
di

st
an

ce

0 10 20 30 40 50 60
#updates

0

2

4

6

8

di
st

an
ce

_t
o_

op
ti

m
al

0 10 20 30 40 50
#updates

0.4
0.5
0.6
0.7
0.8
0.9
1.0

O
M

R(
k)

Figure 12: Plots in the first column are stepwise-distance vs. number of updates, second column
distance-to-optimal vs. number of updates, and third OMR(k) vs. number of updates. The plots in
the row belong to algorithms in the following order from top to bottom: ϵ(=0)-greedy, ϵ(=1)-greedy,
UCRL2, PSRL, SAC, and DQN.

36

	Introduction
	Preliminaries
	RL Algorithms as Trajectories of Occupancy Measures
	Effort of Sequential Learning (ESL)
	Optimal Movement Ratio (OMR)
	Extension to Finite-Horizon Episodic Setting

	Computational Challenges and Solutions
	Policy datasets for computing occupancy measures
	When an optimal policy is not reached

	Experimental Evaluation
	Exploration Trajectories of RL Algorithms
	Comparison of ESL and OMR across RL Algorithms and Environments, and their complementarity to number of updates (UC) and regret
	ESL Increases with Task Difficulty

	Related Works
	Discussion and Future Works
	Theoretical Analysis
	MDP with Lipschitz Rewards
	Performance Difference and Occupancy Measures
	Proof of proposition 1
	Proof of proposition 2
	Proof of proposition 3
	Optimal Transport Dataset Distance (OTDD)
	Proof of Proposition 4
	Infinite Horizon MDPs
	Finite Horizon MDPs

	Proof of Proposition 5
	Wasserstein Spaces as Geodesic Spaces

	Additional Experimental Analysis and Results
	Environment Description
	OMR(k): OMR over number of updates
	Computation of Occupancy Measures
	Effects of the number of rollouts - SAC
	 vs sub
	Effects of Hyperparameters - UCRL2
	Extended Discussion of Usefulness of ESL and OMR

	Specifications of the RL Algorithms under Study
	Methods for simulation results (Discrete MDP)
	Methods for simulation results (Continuous MDP)

	Supplementary Results
	Enlarged Visualisation of the Occupancy Measure Trajectories
	Evolution of stepwise-distance, distance-to-optimal, and OMR(k)

