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ABSTRACT

The rising successes of RL are propelled by combining smart algorithmic strate-
gies and deep architectures to optimize the distribution of returns and visitations
over the state-action space. A quantitative framework to compare the learning
processes of these eclectic RL algorithms is currently absent but desired in prac-
tice. We address this gap by representing the learning process of an RL algorithm
as a sequence of policies generated during training, and then studying the policy
trajectory induced in the manifold of state-action occupancy measures. Using an
optimal transport-based metric, we measure the length of the paths induced by the
policy sequence yielded by an RL algorithm between an initial policy and a final
optimal policy. Hence, we first define the Effort of Sequential Learning (ESL).
ESL quantifies the relative distance that an RL algorithm travels compared to the
shortest path from the initial to the optimal policy. Further, we connect the dy-
namics of policies in the occupancy measure space and regret (another metric to
understand the suboptimality of an RL algorithm), by defining the Optimal Move-
ment Ratio (OMR). OMR assesses the fraction of movements in the occupancy
measure space that effectively reduce an analogue of regret. Finally, we derive
approximation guarantees to estimate ESL and OMR with finite number of sam-
ples and without access to an optimal policy. Through empirical analyses across
various environments and algorithms, we demonstrate that ESL and OMR provide
insights into the exploration processes of RL algorithms and hardness of different
tasks in discrete and continuous MDPs.

1 INTRODUCTION

In recent years, significant advancements in Reinforcement Learning (RL) have been achieved in
developing exploration techniques that improve learning (Bellemare et al., 2016; Burda et al., 2019;
Eysenbach et al., 2019) along with new learning methods (Lazaridis et al., 2020; Müller et al., 2021;
Li, 2023). With growing computational resources, these techniques have led to various successful
applications of RL, such as playing games up to human proficiency (Silver et al., 2017; Jaderberg
et al., 2019), controlling robots (Ibarz et al., 2021; Kaufmann et al., 2023), tuning databases and
computer systems (Wang et al., 2021; Basu et al., 2019), etc. However, there remains a lack of
consensus over approaches that can quantitatively compare these exploratory processes across RL
algorithms and tasks (Seijen et al., 2020; Amin et al., 2021; Ladosz et al., 2022). This is attributed
to some methods being algorithm-specific (Tang et al., 2017), while others provide theoretical guar-
antees for very specific settings (Lattimore & Szepesvári, 2020; Agarwal et al., 2022). Thus, com-
paring the exploratory processes of these eclectic algorithms across the multi-directional space of
RL algorithm design, emerges as a natural question. However, the present literature lacks a metric
to compare them except regret, which is often hard to estimate (Ramos et al., 2017; 2018).

This paper aims to address this gap based on two key observations. First, we observe from the lin-
ear programming formulation of RL that solving the value maximization problem is equivalent to
finding an optimal occupancy measure (Syed et al., 2008; Neu & Pike-Burke, 2020; Kalagarla et al.,
2021). Occupancy measure is the distribution of state-action pair visits induced by a policy (Alt-
man, 1999; Laroche & des Combes, 2023). Under mild assumptions, a policy maps uniquely to
an occupancy measure. Second, we observe that any RL algorithm learns by sequentially updating
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policies starting from an initial policy to reach an optimal policy. The search for an optimal policy
is influenced by the exploration-exploitation strategy and functional approximators, both of which
impact the overall performance of the agent by determining the quality of experiences from which
it learns (Zhang et al., 2019; Ladosz et al., 2022). Hereby, we term collectively the learning strategy
and the exploration-exploitation interplay as the exploratory process.

Contributions. 1. A Framework. Motivated by our observations, we abstract any RL algorithm
as a trajectory of occupancy measures induced by a sequence of policies between an initial and a
final (optimal) policy. The occupancy measure of a policy given an environment corresponds to the
data-generating distribution of state-actions. Thus, we can quantify the effort of each policy update,
i.e. the effort to shift the state-action data distributions, as the transportation distance between their
occupancy measures. The total effort of learning by the algorithm can be measured as the total
distance covered by its occupancy measure trajectory. We provide a mathematical basis for this
quantification by proving that the space of occupancy measures is a differentiable manifold for
smoothly parameterized policies (Section 3). Hence, we can compute the length of the occupancy
measure trajectory on this manifold using Wasserestein distance as the metric (Villani, 2009).

2. Effort of Sequential Learning. In contrast to RL, if we knew the optimal policy we could update
our initial policy directly via supervised or imitation learning. Effort of this learning is represented
by a direct, shortest (geodesic) path from initial to optimal policy on the occupancy measure mani-
fold. To quantify the cost of the exploratory process to learn the environment, we define the Effort
of Sequential Learning (ESL) as the ratio of the (indirect) path traversed by an RL algorithm in the
occupancy measure space to the direct distance between the initial and optimal policy (Section 3.1).
Lower ESL implies more efficient exploratory process.

3. Efforts to learn that lead to Regret-analogue minimization. Regret is a widely used optimality
measures for reward-maximizing RL algorithms (Sutton & Barto, 2018). It measures the total de-
viation in the value functions achieved by a sequence of policies learned by an RL algorithm with
respect to the optimal algorithm that always uses the optimal policy (Sinclair et al., 2023). We show
that regret is related to the sum of distances between the optimal policy and each policy in the se-
quence learned by the RL algorithm, in the occupancy measure space. We can define an analogue
of instantaneous regret (at any one step during learning rather than cumulative), in the occupancy
measure space, as the geodesic distance between the occupancy measure of the policy at this step in
the learning sequence, and the optimal one. We find that not all policy updates lead to a reduction
in this analogue of immediate regret, and thus define another index Optimal Movement Ratio that
measures the fraction that do (Section 3.2).

4. Computational and Numerical Insights. We prove sample complexity guarantees to approximate
ESL and OMR in practice as we do not have access to the occupancy measures but collection of
rollouts from the corresponding policies (Section 4). We show the relation of empirical OMR and
ESL to the true ones if the optimal policy is never reached by an algorithm. We conduct experiments
on multiple environments, both discrete and continuous, with sparse and dense rewards, comparing
state-of-the-art algorithms. We observe that by visualizing aspects of the path traversed (and by
comparing ESL and OMR), we are able to compare and provide insights into their exploratory
processes and the impact of task hardness on them (Section 5). The results confirm the ubiquity and
effectiveness of our approach to study the exploratory processes of RL algorithms.

2 PRELIMINARIES

Markov Decision Processes. Consider an agent interacting with an environment in discrete
timesteps. At each timestep t ∈ N, the agent observes a state st, executes an action at, and re-
ceives a scalar reward R(st, at). The behaviour of the agent is defined by a policy π(at|st), which
maps the observed states to actions. The environment is modelled as a Markov Decision Process
(MDP) M with a state space S, action space A, transition dynamics T : S × A → S , and reward
function R : S ×A → R. During task execution, the agent issues actions in response to states vis-
ited, and hence a sequence of states and actions ht = (s0, a0, s1, a1, ..., st−1, a−1, st), here called a
rollout, is observed.

In infinite-horizon settings, the state value function for a given policy π is the expected discounted
cumulative reward over time Vπ(s) ≜ Eπ [

∑∞
t=0 γ

tR(st, at) | s0 = s], where γ ∈ [0, 1) is the dis-
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count rate. The goal is to learn a policy that maximises the objective Jπ
µ ≜ Es∼µ[Vπ(s)], where µ(s)

is the initial state distribution.

Occupancy Measure. The state-action occupancy measure is a distribution over the S ×A space
that represents the discounted frequency of visits to each state-action pair when executing a policy
π in the environment (Syed et al., 2008). Formally, the occupancy measure of π is vπ(s, a) ≜
ρ
∑∞

t=0 γ
tP(st = s, at = a | π, µ), where ρ = 1− γ is the normalizing factor.

Stationary Markovian policies allow a bijective correspondence with their state-action occupancy
measures (Givchi, 2021). We express the objective Jπ

µ in terms of the occupancy measure as

Jπ
µ =

1

ρ
E(s,a)∼vπ

[
R̄(s, a)

]
, (1)

where R̄(s, a) is the expected immediate reward for the state-action pair (s, a).

Wasserstein Distance. Let µ, ν ∈ P(X ) be probability measures on a complete and separable
metric (Polish) space (X , dX ). The p-Wasserstein distance between µ and ν is (Villani, 2009)

Wp(µ, ν) ≜

(
min

π∈Π(µ,ν)

∫
X×X

c(x, x′) dπ(x, x′)

)1/p

, (2)

where the cost function is given by the metric as c(x, x′) = (dX (x, x′))p for some p ≥ 1. Π(µ, ν)
is a set of all admissible transport plans between µ and ν, i.e. probability measures on X × X
space with marginals µ and ν. Wasserstein distances induce geodesic in well-behaved spaces of
probability measures. For more discussion, we refer to Appendix A.9. For this work, we consider
1-Wasserstein distance, i.e. p = 1, though the results are generalizable to p > 1.

MDPs with Lipschitz Rewards. Following Pirotta et al. (2015) and Kallel et al. (2024), we assume
an MDP with LR-Lipschitz rewards (ref. Appendix A.1 for elaboration) that satisfies |R̄(s, a) −
R̄(s′, a′)| ≤ LRdSA((s, a), (s

′, a′)) for all s, s′ ∈ S and a, a′ ∈ A. Here, dSA((s, a), (s
′, a′)) =

dS((s, s
′))+dA((a, a

′)) is the metric defined on the joint state-action space S×A. This is a weaker
condition than assuming a completely Lipschitz MDP. Pirotta et al. (2015) showed that for any pair
of stationary policies π and π′, the absolute difference between their corresponding objectives is∣∣∣Jπ

µ − Jπ′

µ

∣∣∣ ≤ LR

ρ
W1(vπ, vπ′) , (3)

where W1(vπ, vπ′) is the 1-Wasserstein distance between the occupancy measures of the policies
(ref. Appendix A.2 for details).

3 RL ALGORITHMS AS TRAJECTORIES OF OCCUPANCY MEASURES

The exploration process (i.e. the exploration-exploitation interplay and learning strategy) of an RL
algorithm, influence how the policy model updates its policies (Kaelbling et al., 1996; Sutton &
Barto, 2018). During training, a policy trajectory, i.e. sequence of policies (π0, π1, . . . , πN ), is
generated during policy updates due to the exploratory process. We assume these policies belong to
a set of stationary Markov policies parameterised by θ. For policies in this set πθ ∈ Γθ, we define
the space of occupancy measures corresponding to Γθ as M = {vπθ

(s, a) | πθ ∈ Γθ, θ ∈ RNθ}.
Proposition 1 (Properties of M). If the policy π has a smooth parameterization θ and the inverse of
the transition matrix Pπ exists, then the space of occupancy measures M is a differentiable manifold.
(Proof in Appendix A.3)

We can endow the manifold M with a 1-Wasserstein metric W1 to the compute the length of any
path on M since (M,W1) is a geodesic space (ref. Appendix A.9 for details). The path dis-
tance between occupancy measures corresponding to policies parameterized by θ, θ + dθ ∈ M is
ds = W1(vπθ

, vπθ+dθ
). Additionally, in imitation learning, the 1-Wasserstein distance between the

occupancy measures of the learner and expert can be used as a minimizable loss function to learn the
expert’s policy (Zhang et al., 2020). Hence, the 1-Wasserstein distance reflects the effort required to
achieve this imitation learning. Similarly, we propose the following quantification for the effort to
update from one policy to another.

3
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Figure 1: Schematic of the policy trajectory
C in the space of occupancy measures M dur-
ing RL training (solid line) vs. the geodesic L
(shortest path, dashed line) between the initial
and final points (i.e. π0 and πN = π∗).

Figure 2: Schematic of how distance-to-optimal
(denoted by xk) and stepwise-distance (denoted
by yk) on the occupancy measure space describe
exploratory process of an RL algorithm during
training.

Definition 1 (Effort of Learning). We define the 1-Wasserstein metric between occupancy measures
of two policies π and π′, i.e. W1(vπ, vπ′), as the effort required to learn or update from one policy
to the other.

When a learning process causes an update between occupancy measures in M, we attribute the re-
sulting update effort to the learning process and refer to it as the effort of learning. In a learning
process, first the initial policy π0 is obtained typically by randomly sampling the model parameters,
then these parameters θ undergo updates until a predefined convergence criterion is satisfied, yield-
ing the final optimal policy πN = π∗. Since each policy has a corresponding occupancy measure,
this process yields a sequence of points on M, which can be connected by geodesics between suc-
cessive points, producing a curve. The length of the curve is computed by the summation of the
finite geodesic distances between consecutive policies along it (Lott, 2008),

C ≜
N−1∑
k=0

W1(vπθk
, vπθk+1

) , (4)

where θ0 and θN are respectively the initial and final parameter values before and after learning.

3.1 EFFORT OF SEQUENTIAL LEARNING (ESL)

As we saw above, RL generates a trajectory in the occupancy measure manifold M, whose length
is given by Equation (4). Compared to the long trajectory of sequential policies generated by the
exploratory process, the geodesic L is the ideal shortest path to the optimal policy πN = π∗ from
π0, whose length is L = W1(vπ0

, vπN
). This path would be taken by an imitation-learning oracle

algorithm that knows π∗. Both these paths are schematically depicted in Figure 1.
Definition 2 (Effort of Sequential Learning (ESL)). We define the effort of sequential learning in-
curred by a trajectory of the exploratory process of an RL algorithm, relative to the oracle that
knows π∗(= πN ), as

η ≜

∑N−1
k=0 W1(vπk

, vπk+1
)

W1(vπ0
, vπN

)
(5)

Due to the stochasticity of the exploratory process, we introduce an expectation to obtain η̄ =
Eπ0,µ [η]. We refer to η̄ as the effort of sequential learning (ESL).

η̄ ≥ 1 and a larger η̄ correspond to a less efficient exploratory process of the RL algorithm. Hence,
an RL algorithm with η̄ ≈ 1 closely mimics the oracle and has an efficient exploratory process.

3.2 OPTIMAL MOVEMENT RATIO (OMR)

Regret measures the total deviation in value functions incurred by a sequence of policies learned by
an RL algorithm with respect to the optimal algorithm that always uses the optimal policy (Sinclair
et al., 2023). We show that regret is connected to the sum of distances from each policy in the
sequence learned by an RL algorithm to the optimal policy in the occupancy measure space.

4
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Proposition 2 (Regret and Occupancy Measures). Given an MDP with LR-Lipschitz rewards, we
obtain Regret ≜

∑N
k=1

(
Jπ∗

µ − Jπk
µ

)
≤ LR

ρ

∑N
k=1 W1(vπk

, vπ∗). (Proof in Appendix A.4)

We refer to W1(vπk
, vπ∗) as the distance-to-optimal, and analogously use it as the expected imme-

diate regret in the occupancy measure space. Furthermore, we refer to W1(vπk
, vπk+1

) as stepwise-
distance. Interestingly, during training, the distance-to-optimal and stepwise-distance share a rela-
tionship illustrated in Figure 2. From Figure 2, we observe that if the change in distance-to-optimal,
δk ≜ W1(vπk

, vπ∗)−W1(vπk+1
, vπ∗) > 0, it indicates that the agent got closer to the optimal. We

define the set K+ as containing indices k for which δk > 0, while K− contains the rest.
Definition 3 (Optimal Movement Ratio (OMR)). We define the proportion of policy transitions that
effectively reduce the distance-to-optimal, in a learning trajectory, as

κ ≜

∑
k∈K+ W1(vπk

, vπk+1
)∑N−1

k=0 W1(vπk
, vπk+1

)
. (6)

Due to the stochasticity of the exploratory process, we introduce an expectation to obtain κ̄ =
Eπ0,µ [κ]. We refer to κ̄ as the optimal movement ratio (OMR).

Note that κ̄ ∈ [0, 1], and κ̄ → 1 indicates that nearly all the policy updates reduce the distance-to-
optimal, thus showing high efficiency. κ̄ → 0 implies low efficiency, since only a small fraction of
the policy updates contribute towards the reduction of the distance-to-optimal.

3.3 EXTENSION TO FINITE-HORIZON EPISODIC SETTING

In the episodic finite-horizon MDP formulation of RL, in short Episodic RL (Osband et al., 2013;
Azar et al., 2017; Ouhamma et al., 2023), the agent interacts with the environment in multiple
episodes of H steps. An episode starts by observing state s1. Then, for t = 1, . . . H , the agent
draws action at from a (possibly time-dependent) policy πt(· | st), observes the reward r(st, at),
and transits to a state st+1 ∼ T (· | st, at). Here, the value function and the state-action value
functions at step h ∈ [H] are defined as V π

h (s) ≜ EM,π

[∑H
t=h r(st, at) | sh = s

]
, and Qπ

h(s, a) ≜

EM,π

[∑H
t=h r(st, at) | sh = s, ah = a

]
. Following (Altman, 1999), we can define a finite-horizon

version of occupancy measures as

vHπ (s, a) ≜
1

H

H∑
t=1

P(st = s, at = a | π, µ). (7)

Following (Syed et al., 2008), we can show that vHπ satisfies the linear programming description of
value function maximization along with the Bellman flow constraints (ref. Sec II.C. in Kalagarla
et al. (2021)). Additionally, we prove that under some assumptions, the finite-horizon occupancy
measures also construct a manifold, referred as MH .
Proposition 3 (Properties of MH ). If the policy π has a smooth parametrization θ and the inverses
of both the transition matrix Pπ and (I − Pπ) exist, then the space of finite-horizon occupancy
measures MH is a differentiable manifold. (Proof in Appendix A.5)

This allows us to similarly define a Wasserstein metric on this manifold, which in turn, allows us to
compute ESL and OMR to evaluate different RL algorithms.

4 COMPUTATIONAL CHALLENGES AND SOLUTIONS

Similar to regret, our method requires knowing the optimal policy. This is because the efficiency
and effectiveness of exploratory processes of RL algorithms are highly coupled with their ability to
reach optimality. ESL and OMR depend on the policies being stationary and Markovian.

4.1 POLICY DATASETS FOR COMPUTING OCCUPANCY MEASURES

We consider approximations of occupancy measures using datasets assumed to be drawn from these
measures. We estimate the Wasserstein distance between the occupancy measures using a method in-
troduced by Alvarez-Melis & Fusi (2020) known as the optimal transport dataset distance (OTDD).
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OTDD uses datasets to estimate the Wasserstein distance between the underlying distributions. See
Appendix A.6 for a detailed account on OTDD.

Definition 4 (Policy dataset). A dataset of a policy Dπ is a set of state-action pairs drawn from the
policy’s occupancy measure, i.e. Dπ = {(s(i), a(i))}mi=1 ∼ vπ . These can be constituted from the
rollouts generated by the policy during task execution.

We know from imitation learning that if we are given Dπ , generated by an expert policy, we can
train a policy model on it in a supervised manner via behaviour cloning (Hussein et al., 2017). Thus,
knowing Dπ can allow converting an RL task into a Supervised Learning (SL) task. Consider a
scenario when we have access to a sequence of datasets (Dπ0 , . . . ,DπN

), each corresponding to
policy πt for t ≥ 0. If we train (in a supervised manner) a policy model sequentially on these
datasets, the model will undergo a similar policy evolution as via the RL algorithm that generated
the policy trajectory (πt)t≥0. This allows us to conceptualise learning in RL as a sequence of SL
tasks with sequential transfer learning across the datasets (Dπ0 , . . . ,DπN

). We employ OTDD to
estimate W1(vπk

, vπk+1
) using these datasets, i.e. dOT (Dπk

,Dπk+1
) ≈ W1(vπk

, vπk+1
), based on

Proposition 4.
Proposition 4 (Upper Bound on Estimation Error). Let an RL algorithm yield a sequence of
policies π0, . . . , πN while training. Now, we construct N datasets Dπ0

, . . . ,DπN
, each consist-

ing of M rollouts of the corresponding policies. Then, we can use these datasets to approxi-
mate

∑N−1
k=0 W1(vππk

, vππk+1
) by

∑N−1
k=0 dOT (Dπk

,Dπk+1
) with an expected error upper bound

2NE2√
M

+ NγT+1diam(SA). Here, T is the total number of steps per episode, diam(SA) is the
diameter of the state-action space, and E2 is a positive-valued and polylogarithmic function of S
and A. For finite horizon case, we can further reduce the error bound to 2NE2√

M
.

Proof of Proposition 4 is in Appendix A.7. The results support that ESL and OMR can be estimated
as

η̄ = Eπ0,µ

[∑N−1
k=0 dOT (Dπk

,Dπk+1
)

dOT (Dπ0 ,DπN
)

]
, and κ̄ = Eπ0,µ

[∑
k∈K+ dOT (Dπk

,Dπk+1
)∑N−1

k=0 dOT (Dπk
,Dπk+1

)

]
. (8)

4.2 WHEN AN OPTIMAL POLICY IS NOT REACHED

So far we have assumed that the algorithms converge at the optimal policy, i.e. πN = π∗. However,
this is not always true. We consider a scenario when πN ̸= π∗, and define

ηsub =

∑N−1
k=0 W1(vππk

, vππk+1
)

W1(vπ0
, vπN

)
, πN ̸= π∗ . (9)

Proposition 5. Given N ≥ 2 and π0 ̸= πN ̸= π∗, we obtain

η − ηsub
η

≤ 2W1(vπN
, vπ∗)

W1(vπ0
, vπN

)
. (10)

This is true due to the triangle inequalities: W1(vπ0 , vπ∗) + W1(vπN
, vπ∗) ≥ W1(vπ0 , vπN

) and
W1(vπN−1

, vπN
) +W1(vπN

, vπ∗) ≥ W1(vπN−1
, vπ∗). Equation (10) shows that in the case where

πN is close to π∗, then ηsub is a good approximation of η, and thus, a good quantifier to determine the
efficiency of the algorithm’s exploratory process. The proof is in Appendix A.8 and corresponding
experimental results are in Appendix B.5.

5 EXPERIMENTAL EVALUATION

In this section, we evaluate the proposed methods in the 2D-Gridworld and Mountain Car (Moore,
1990; Brockman et al., 2016) environments, to analyse our methods in discrete and continuous state-
action spaces respectively. The 2D-Gridworld environment is of size 5x5 with actions: {up, right,
down, left}. In the gridworld, we perform experiments on 3 settings namely:- A) deterministic with
dense rewards, B) deterministic with sparse rewards, and C) stochastic with dense rewards. Further
details about these settings are provided in Appendix B.1. The Mountain Car environment, in our
experimentation, is a deterministic MDP with dense rewards that consists of both continuous states

6
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Figure 3: Top row: 3D scatter plots of distance-to-optimal (x-axis) and stepwise-distance (y-axis)
across number of updates (z-axis), illustrating policy evolution in the occupancy measure space for
algorithms: ϵ(=0)-greedy and ϵ(=1)-greedy Q-learning, UCRL2, PSRL, SAC, and DQN (left to
right). Bottom row: Corresponding state visitation frequencies over the full training. The problem
setting is deterministic with dense-rewards and 15 maximum number of steps per episode. (Larger
3D versions and individual 2D projections of these plots are in Appendix D.1)

and actions (described in detail in (Brockman et al., 2016)). The final experiment studies how ESL
scales with task hardness in several gridworld environments of varying difficulty.

Our experiments aim to address the following questions:
1. What information can the visualization of the policy evolution during RL training provide about
the exploratory process of the algorithm?
2. How do ESL and OMR allow us to analyse the exploratory processes of RL algorithms?
3. Does ESL scale proportionally with task difficulty?

Summary of Results. In Section 5.1, we demonstrate that visualizing evolution of distance-to-
optimal and stepwise-distance of different RL algorithms during training reveals: 1) whether the
agent is stuck in suboptimal policies, 2) the coverage area of the exploration processes, and 3) their
varied characteristics over time. We further compare ESL and OMR of different algorithms on a few
environments in Section 5.2. Finally, we show in Section 5.3 that ESL scales proportionally with
task difficulty, and thus, reflects the effects of task difficulty on exploration and learning.

5.1 EXPLORATION TRAJECTORIES OF RL ALGORITHMS

(I) DISCRETE MDP. To understand the utility of visualizing exploratory processes, we use the fol-
lowing RL algorithms: 1) Tabular Q-learning with a) ϵ-greedy (ϵ = 0) and b) ϵ-greedy (ϵ = 1) strate-
gies; 2) UCRL2 (Jaksch et al., 2010); 3) PSRL (Osband et al., 2013); 4) SAC (Haarnoja et al., 2018;
Christodoulou, 2019); and 5) DQN (Mnih et al., 2013) with ϵ-decay. The algorithms solve a simple
5x5 gridworld with dense rewards, starting from top-left (0,0) to reach bottom-right (4,4). Figure 3
presents exploratory behavior of the algorithms in occupancy measure space and state space.

Q-learning: ϵ = 0 vs ϵ = 1. Note that ϵ = 0 updates the Q-table by only exploiting, while ϵ = 1
by exploring. From the state visitations, we observe expected characteristics, like a preferred visit
path for ϵ = 0 versus ϵ = 1 with visitation frequencies that are similar at states equidistant from
the start-state and gradually decreasing as the distance from the state-state increases. From the
policy evolution, we see how scattered and erratic the policy transitions are for ϵ = 0. Whereas ϵ
= 1 is dominated by unchanging or little-changing policies seen by straight vertical line segments
(indicating being ’stuck in suboptimality’). In this setting, ϵ = 0 is characterized by transitioning
between diverse policies (i.e. being aggressive with larger coverage area) while ϵ = 1 is likely to be
stuck in suboptimality. This stuck in suboptimality is due to high action randomness in ϵ = 1 that
cause the agent to select suboptimal actions, slowing the Q-table convergence and unchanging the
learning policy until the best actions are discovered.

UCRL2 vs PSRL. UCRL2 has nearly uniform state visits (with the exception of the start-state
because the initial state distribution is 1 at state (0,0)), thus being consistent with literature since the
algorithm selects exploratory state-action pairs more uniformly (Jaksch et al., 2010). In contrast,
PSRL has high visit frequencies along the diagonal states, because it selects actions according to the
probability that they are optimal (Osband et al., 2013). We observe from the policy evolution plots
that PSRL has smoother policy transitions that are orientated towards optimality, while UCRL2
behaves more aggressively with policy transitions that do not taper as it approaches optimality.
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Figure 4: Top row: 3D scatter plots of distance-to-optimal and stepwise-distance vs. number of
updates for DDPG and SAC. Bottom row: OMR(k) vs. #update, k, for the corresponding algorithms.

Algo. ESL OMR UC SR%
SAC 9.26±5.54 0.58±0.14 980±670 100
UCRL2 47.2±8.20⋆ 0.49±0.04 60.7±11 100
PSRL 23.2±11.5 0.52±0.06 34.1±9.34 100
DQN 12.4±7.13 0.54±0.11 161±93 98
ϵ(=1)-greedy 6.27±2.22 0.61±0.09 672±385 100
ϵ(=0.9)-decay 8.10±3.43 0.61±0.10 389±138 100
ϵ(=0)-greedy 15.5±5.28 0.53±0.06 176±37.9 84

Table 1: Evaluation of RL algorithms (over 40
runs) in the deterministic, dense-rewards set-
ting for 5x5 gridworld, including Effort of Se-
quential Learning (ESL), Optimal Movement
Ratio (OMR), number of updates to conver-
gence (UC), and success rate (SR). Lowest ESL,
highest OMR and lowest UC values are in bold,
while the highest ESL value is starred (⋆).

Algo. ESL OMR UC SR%
Deterministic, sparse

SAC 27.8±21.9 0.57±0.13 4385±3274 100
UCRL2 73.3±0.0 0.45±0.0 93.0±0.0 100
PSRL 73.2±54.1 0.52±0.076 100±67.3 100
DQN 137±154⋆ 0.49±0.08 12638±4431 80

Stochastic, dense
SAC 445±245 0.501±0.004 2463±2043 92
UCRL2 198±121 0.502±0.027 268±155 32
PSRL 55.4±33.6 0.52±0.04 76.1±50.6 92
DQN 458±311⋆ 0.502±0.01 1586±1077 24

Table 2: Evaluation of RL algorithms (over 40
runs) in the deterministic, sparse-rewards and
stochastic, dense-rewards settings for 5x5 grid-
world. Lowest ESL, highest OMR and lowest UC
values are in bold. The highest ESLs are starred.

Osband et al. (2013) highlighted that exploration in PSRL is guided by the variance of sampled
policies as opposed to optimism in UCRL2. We observe in Figure 3 that the guiding variance in
PSRL reduces after every policy update until optimality is reached, while UCRL2 maintains high
variance. These insights are not reflected by regret as both UCRL2 and PSRL achieve same order of
regrets. This shows complementarity of insights yielded by ESL and OMR w.r.t. regret.

SAC vs DQN. The state visits of both the algorithms appear to be similar. SAC has higher visitation
frequencies at the corners than DQN. Surprisingly from the policy evolution plots, we learn that
both algorithms have a reluctance to transition between policies - hence the stuck in suboptimality
vertical line segments, especially initially (plotted after removing the filling time for the transitions
buffer). This reluctance is due to the slow “soft updates” of target networks (Lillicrap et al., 2016)
in the algorithms. We also observe that SAC approaches optimality more gradually than DQN.

Algo. ESL OMR UC SR%
DDPG 1881±500 0.501 23500±5268 100
SAC 1619±189 0.5 22700±2971 100

Table 3: Evaluation of RL algorithms
in the Mountain Car continuous MDP
(over 5 runs). The variances for OMR
and UC are negligible.

All algorithms. Figure 3 shows that UCRL2 was more
meandering (with larger coverage area) towards optimal-
ity than the rest. SAC and DQN approached optimal-
ity more directly and smoothly (with smaller coverage
area) than the rest. These characteristics are intuitively re-
vealed by policy visualization plots, and are aligned with
literature, hence enhancing our understanding of the ex-
ploratory processes.

(II) CONTINUOUS MDP. We use DDPG (Lillicrap et al., 2016) and SAC (Haarnoja et al., 2018) to
solve the Mountain Car. The policy evolutions of these algorithms are presented in Figure 4.

DDPG vs SAC. Both exhibit short-distances (< 1) between policy updates (i.e. small coverage
area). They depict no sign of being stuck or settling early on any particular policy, which shows
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their continuously exploratory nature. While they begin with almost constant mean distances-to-
optimal and stepwise-distances, SAC drops its mean distance-to-optimal earlier than DDPG.

Figure 4 illustrates how OMR changes with update number k. OMR(k) represents OMR starting
with the kth policy as the initial policy, while OMR starts from the 0th policy. Details of computing
OMR(k) are in Appendix B.2. For both algorithms, OMR(k) remains near chance level (∼ 0.5)
initially, then sharply increases near the final updates. This suggests that early policy updates are
purely exploratory and oblivious to policy improvement but align with the optimal policy just before
convergence. The algorithm’s efficiency depends on how early this transition occurs, e.g. starting
earlier for SAC than DDPG, rendering SAC more efficient.

5.2 COMPARISON OF ESL AND OMR ACROSS RL ALGORITHMS AND ENVIRONMENTS, AND
THEIR COMPLEMENTARITY TO NUMBER OF UPDATES (UC) AND REGRET

Tables 1-3 showcase how ESL and OMR are summary metrics of the policy trajectories during
learning by evaluating the algorithms in various settings.

Figure 5: Q-learning with ϵ-greedy (ϵ
= 0.9 decaying, averaged over 40 runs)
across deterministic 2D-Gridworld (5x5
and 15x15) tasks. The 1st and 4th (from
left to right) have dense rewards, while
the rest have sparse rewards (details in
Appendix B.1).

Dense Rewards. We observe, in Table 1, that PSRL took
the lowest number of updates (UC) to reach the optimal
policy in contrast with SAC. Yet, PSRL was meandering
more than SAC. The relative directness of SAC is cap-
tured by lower ESL and higher OMR compared to PSRL.
Even though SAC has larger UC than PSRL, it took a
shorter path to optimality than PRSL. This shows that the
UC does not necessary correlate with ESL and OMR, and
it provides incomplete information about the exploratory
processes. Indeed, two algorithms may have the same
UC, but different ESL or OMR due to different step-wise
distances and varied movement towards optimality.

Sparse Rewards. In the sparse rewards setting (Table 2),
low performance of DQN is observed in both our met-
rics and UC. However, SAC is more efficient with lowest
ESL and highest OMR, yet UCRL2 has the lowest num-
ber of updates (UC). Thus, our metrics complement UC.
UCRL2 is provably regret-optimal, while SAC does not
have such rigorous theoretical guarantees but is known to
be practically efficient, and this is well captured by ESL
and OMR.

Stochastic Transitions. In the stochastic setting (Ta-
ble 2), by observing only successful cases, we notice that the meandering characteristic of PSRL
and UCRL2 is more suitable for this setting than SAC and DQN (based on better ESL and OMR
values). PSRL and UCRL2 have similar regret bounds (Osband et al., 2013), yet in both Tables 1
and 2, PSRL has better ESL and OMR (along with higher success rate). Thus, our metrics are
complementary to regret as well.

Table 3 corroborates with policy evolution plots in Figure 4, in that due to SAC dropping its mean
distance-to-optimal earlier than DDPG it exhibits a lower ESL. Additionally, we notice a trend
of increasing ESL and decreasing OMR across algorithms when shifting from dense-rewards to
sparse-rewards settings, from deterministic to stochastic transitions, from discrete to continuous
environments, indicating an increase in the effort of the exploratory processes. We have shown how
ESL and OMR metrics summarize policy trajectories of algorithms, and that they are complementary
to UC and regret. Appendix B.7 highlights further usefulness of these metrics.

5.3 ESL INCREASES WITH TASK DIFFICULTY

Figure 5 illustrates the ESLs for Q-learning with ϵ-decay strategy (for ϵ = 0.9) across tasks with
varying hardness. These tasks are deterministic 2D-Gridworld of sizes 5x5 and 15x15 matched with
either dense or sparse rewards (as specified in Appendix B.1). We chose to assess the ϵ-decay Q-
learning algorithm because it is simple and yet completes all these tasks. We observe that the ESL is
lowest for [5x5] dense (5x5 grid, dense rewards) and highest for [15x15] sparse (15x15 grid, sparse
rewards) as anticipated. The results demonstrate that ESL scales proportionally with task difficulty,
matching expectations that more difficult tasks demand greater effort of the exploratory process.
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6 RELATED WORKS

Several prior works have utilized various components leveraged in our work, namely Wasserstein
distance, occupancy measures, and the trajectory of RL on a manifold, but for different purposes.
Here, we summarise them and elucidate the connections.

In supervised learning, Alvarez-Melis & Fusi (2020) proposed an optimal transport approach,
namely Optimal Transport Dataset Distance (OTDD), to quantify the transferability between two
supervised learning tasks by computing the similarity (aka distance) between the task datasets. Here,
we conceptualise and define the effort of learning for RL, as a sequence of such supervised learning
tasks. We observe that the total effort of sequential learning can be computed as the sum of OTDD
distances between consecutive occupancy measures. Recently, Zhu et al. (2024) have developed
generalized occupancy models by defining cumulative features that are transferable across tasks. In
future, one can generalize our indices for the cumulative features constructed from some invertible
functions of the step-wise occupancy measures.

Optimal transport-based approaches are also explored in RL literature. These works broadly be-
long to two families. First line of works uses Wasserstein distance over a posterior distribution of
Q-values (Metelli et al., 2019; Likmeta et al., 2023) or return distributions (Sun et al., 2022) to
quantify uncertainty, and then to use this Wasserstein distance as a loss to learn better models of
the posterior distribution of Q-values or return distributions, respectively. The second line of works
uses Wasserstein distance between a feasible family of MDPs as an additional robustness constraint
to design robust RL algorithms (Abdullah et al., 2019; Derman & Mannor, 2020; Hou et al., 2020).
Here, we bring a novel concept of using Wasserstein distance between occupancy measures to un-
derstand the exploratory dynamics. Incorporating this insight into better algorithm design would be
an interesting future work. Recently, Calo et al. (2024) relate Wasserstein distance between reward-
labelled Markov chains to bisimulation metrics which abstract state spaces. In the same spirit, we
could use reward as the cost-function in computing our nested Wasserstein distance (OTDD) to ob-
tain a reward- or value-aware OTDD to define broader bisimulation metrics with abstract state-action
spaces, instead of just state spaces.

As a parallel approach to optimal transport, the information geometries of the trajectory of an RL
algorithm under different settings are studied. These approaches use mutual information as a met-
ric instead of Wasserstein distance. Basu et al. (2020) study the information geometry of Bayesian
multi-armed bandit algorithms. They consider a bandit algorithm as a trajectory on a belief-reward
manifold, and propose a geometric approach to design a near-optimal Bayesian bandit algorithm.
Eysenbach et al. (2021); Laskin et al. (2022) study information geometry of unsupervised RL and
propose mutual information maximization schemes over a set of tasks and their marginal state distri-
butions. Yang et al. (2024) extend this approach with Wasserstein distance and demonstrate benefits
of using Wasserstein distance than mutual information. We use Wasserstein distance as a natural
metric in occupancy manifold that also allows comparison of hardness of different tasks. It would
be interesting to extend our framework to understand the dynamics of unsupervised RL algorithms.

7 DISCUSSION AND FUTURE WORKS

Our work introduces methods to theoretically and quantitatively understand and compare the learn-
ing strategies of different RL algorithms. Since learning in a typical RL algorithm happens through
a sequence of policy updates, we propose to understand the learning process by visualizing and
analysing the path traversed by an RL algorithm in the space of occupancy measures corresponding
to this sequence.

We show the usefulness of this approach by conducting experiments on various environments. Our
results show that the indices ESL and OMR provide insight into the agent’s policy evolution, re-
vealing whether it is steadily approaching the optimal policy or mostly meandering. Additionally,
this allows us to understand how the learning process of the same algorithm changes with different
rewards and transitions structures, and task hardness. A key limitation of our indices is that they are
based on assumption that the final policy reached at the end of training is an optimal one, though we
could still derive some benefit from our approach even if not (see Appendix B.7). In the future, it
would be interesting to use this approach to benchmark and compare the learning dynamics of dif-
ferent RL algorithms on further environments. In addition, it would be useful to study whether the
occupancy measures trajectory of an algorithm provides insights to improve its exploratory process.
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A THEORETICAL ANALYSIS

A.1 MDP WITH LIPSCHITZ REWARDS

Given two metric spaces (X , dX ) and (Y, dY), a function f : X → Y is called 1-Lipschitz continu-
ous if (Villani, 2009):

dY (f(x), f(x
′)) ≤ dX(x, x′), ∀(x, x′) ∈ X (11)

This implies that the Lipschitz semi-norm over the function space F(X,Y ), defined as

∥f∥L = sup
x ̸=x′

{
dY (f(x), f(x

′))

dX(x, x′)
| ∀(x, x′) ∈ X

}
, (12)

is ≤ 1. When (X , dX ) is a Polish space and µ, ν ∈ P(X ), the Kantorovich-Rubinstein formula
states that (Villani, 2009):

W1(µ, ν) = sup
∥f∥L≤1

{∫
X
f dµ−

∫
X
f dν

}
= sup

∥f∥L≤1

{Eµ [f(X)]− Eν [f(X)]} ,
(13)

where W1(µ, ν) is the 1-Wasserstein distance between µ and ν with f as the cost function.

Note that when ∥f∥L ≤ LR for any LR > 0, then function f is called LR-Lipschitz continuous,
and Equation (13) becomes (Gelada et al., 2019),

W1(µ, ν) =
1

LR
sup

∥f∥L≤LR

{Eµ [f(X)]− Eν [f(X)]} . (14)

Now, we consider X = S ×A, i.e. the state-action space, Y = R, i.e. the real line, and the function
f to be the reward function R̄. Then, we can call the reward function R̄ to be LR-Lipschitz if

|R̄(s, a)− R̄(s′, a′)| ≤ LRdSA((s, a), (s
′, a′))

for all s, s′ ∈ S, and a, a′ ∈ A, and dSA((s, a), (s
′, a′)) = dS((s, s

′)) + dA((a, a
′)) being the

metric on the state-action space S × A. If the reward function R̄ of an MDP is LR-Lipschitz, we
refer it as an MDP with Lipschitz rewards.

A.2 PERFORMANCE DIFFERENCE AND OCCUPANCY MEASURES

We know that

Jπ
µ =

1

ρ
E(s,a)∼vπ

[
R̄(s, a)

]
. (15)

Using Equation (15), we write for two policies π and π′, with µ(s) as the initial state distribution,∣∣∣Jπ
µ − Jπ′

µ

∣∣∣ = 1

ρ

∣∣E(s,a)∼vπ

[
R̄(s, a)

]
− E(s,a)∼vπ′

[
R̄(s, a)

]∣∣ (16)

Given an MDP with LR-Lipschitz rewards, the Kantorovich-Rubinstein formula dictates that
(Gelada et al., 2019):

sup
∥R̄∥L≤LR

∣∣E(s,a)∼vπ

[
R̄(s, a)

]
− E(s,a)∼vπ′

[
R̄(s, a)

]∣∣ = LRW1(vπ, vπ′) (17)

By dividing both sides of Equation (17) by ρ, and due to an upper bound by the supremum, this
inequality follows: ∣∣∣Jπ

µ − Jπ′

µ

∣∣∣ ≤ LR

ρ
W1(vπ, vπ′) (18)

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

A.3 PROOF OF PROPOSITION 1

The Linear Programming formulation for solving MDPs, assuming discrete state and action spaces,
is (Puterman, 1994):

max
vπ

∑
s,a

r(s, a)vπ(s, a)

subject to
∑
a

vπ(s, a) = p0(s) + γ
∑
s′,a

T (s | s′, a)vπ(s′, a)

vπ(s, a) ≥ 0 ∀(s, a) ∈ S ×A ,

(19)

where p0(s) is the initial state distribution and T (s | s′, a) is the transition probability. The con-
straints of this optimization problem are often referred to as Bellman Flow Constraint.

A stationary policy π has a corresponding occupancy measure vπ(s, a) that satisfies the Bellman
flow constraint (Syed et al., 2008), and hence π and vπ(s, a) share a bijective relationship (Syed
et al., 2008; Givchi, 2021),

π(a | s) = vπ(s, a)

uπ(s)
(20)

with
uπ(s) =

∑
a′

vπ(s, a
′) = p0(s) + γ

∑
s′,a′

T (s | s′, a′)vπ(s′, a′) (21)

By rearranging Equation (20) to

vπ(s, a) = π(a | s)uπ(s) (22)

and substituting Equation (22) into Equation (21), we can rewrite Equation (21) as (defining Pπ ≜∑
a T (s | s′, a)π(a | s′)),

p0(s) = uπ(s)− γ
∑
s′,a

T (s | s′, a)π(a | s′)uπ(s
′)

≜ uπ(s)− γ
∑
s′

Pπ(s | s′)uπ(s
′)

(23)

which in matrix form is
p0 = uπ − γPπuπ

= (I− γPπ)uπ ,
(24)

where p0,uπ ∈ R|S| are column vectors and Pπ ∈ R|S|×|S| are matrices. Solving for uπ , we get

uπ = (I− γPπ)
−1

p0 (25)

The inverse matrix (I− γPπ)
−1 exists because for γ < 1, (I− γPπ) is a strictly diagonally domi-

nant matrix (Syed et al., 2008). Thus, (I− γPπ)
−1

=
∑∞

t=0(γP
π)t, where

∑∞
t=0(γP

π)t forms a
valid Neumann series (Ward, 2021). We let Aπ =

∑∞
t=0(γP

π)t, so Equation (24) can be written as
uπ = Aπp0. We can therefore express Equation (22) in matrix form as:

vπ = Π⊙
(
uT
π ⊗ 1

)T
= Π⊙

(
pT
0 (A

π)T ⊗ 1
)T

,
(26)

where Π,vπ ∈ R|S|×|A|, 1 ∈ R|A| is a column vector of ones, ⊗ presents the Kronecker product,
and ⊙ denotes the Hadamard product.

If we consider the case of a parameterized policy Π(θ), then the derivative of vπ with respect to θ
is

∇θvπ =∇θ

[
Π⊙

(
pT
0 (A

π)T ⊗ 1
)T ]

=∇θΠ⊙
(
pT
0 (A

π)T ⊗ 1
)T

+Π⊙∇θ

(
pT
0 (A

π)T ⊗ 1
)T

=∇θΠ⊙
(
pT
0 (A

π)T ⊗ 1
)T

+Π⊙
(
pT
0 (∇θA

π)T ⊗ 1
)T (27)
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The first term in Equation (36) is differentiable since the policy is parameterized by θ. We expand
∇θA

π as follows:

∇θA
π =

∞∑
t=0

t(γPπ)t−1γ∇θP
π

≡
∞∑
t=0

t(γPπ)t−1γ∇θ

∑
s′,a

T (s|s′, a)π(a|s′)


=

∞∑
t=0

t(γPπ)t−1γ

∑
s′,a

T (s|s′, a)∇θπ(a|s′)


=

∞∑
t=0

t(γPπ)t(Pπ)−1

∑
s′,a

T (s|s′, a)∇θπ(a|s′)



(28)

If (Pπ)−1 exists, then ∇θA
π is differentiable, and consequently so is ∇θvπ , based on Equation (36)

and Equation (37). Proceeding similarly, given the same conditions, we see that all higher derivatives
of vπ also exist with respect to θ. Thus, the space of parametrized occupancy measures vπ forms a
differentiable manifold.

A.4 PROOF OF PROPOSITION 2

Regret is a common metric for evaluating agents, that measures the total loss an agent incurs over
policy updates by using its policy in lieu of the optimal one, defined as (Osband et al., 2013),

Regret = Es∼µ

[∑
k

(V ∗(s)− Vπk
(s))

]
(29)

where V ∗ = Vπ∗ is the value function of the optimal policy π∗ while Vπk
(s) is the value function

of policy πk, and µ is the initial state distribution.

Since Jπ
µ = Es∼µ[Vπ(s)], we can conclude from Equation (29) that

Regret = Es∼µ

[∑
k

(V ∗(s)− Vπk
(s))

]
=
∑
k

[Es∼µ(V
∗(s)− Vπk

(s))]

=
∑
k

(
Jπ∗

µ − Jπk
µ

)
=
∑
k

∣∣∣Jπ∗

µ − Jπk
µ

∣∣∣
≤
∑
k

LR

ρ
W1(vπ∗ , vπk

)

(30)

The last inequality is due to Equation (18).

A.5 PROOF OF PROPOSITION 3

Let us begin the proof by defining the visitation probability at any step h ∈ [H] in an episode,
following policy π(a|s). Specifically,

qhπ(s, a) ≜ P(sh = s, ah = a) ∀h ∈ [H] and qhπ(s, a) ≜ 0 ∀h ∈ N ∧ h > H . (31)

Thus, we rewrite Equation (7) vHπ (s, a) = 1
H

∑H
h=1 q

h
π(s, a).

18
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Then, following (Kalagarla et al., 2021), we can write the Linear Programming formulation for
solving episodic MDP MH as

max
{qhπ}H

h=1

∑
h,s,a

r(s, a)qhπ(s, a)

subject to
∑
a

qhπ(s, a) =
∑
s′,a

T (s | s′, a)qh−1
π (s′, a) ∀h ∈ [H] ∧ h > 1 ,

q1π(s, a) = π(a|s)µ(s) ,
qhπ(s, a) ≥ 0 ∀h ∈ [H], (s, a) ∈ S ×A ,

(32)

where µ(s) is the initial state distribution and T (s | s′, a) is the transition probability. The con-
straints of this optimization problem are often referred to as Bellman Flow Constraints.

This implies that

H+1∑
h=2

∑
a

qhπ(s, a) =

H+1∑
h=2

∑
s′,a

T (s | s′, a)qh−1
π (s′, a)

=⇒
∑
a

q1π(s, a) +

H+1∑
h=2

∑
a

qhπ(s, a) =

H+1∑
h=2

∑
s′,a

T (s | s′, a)qh−1
π (s′, a) +

∑
a

q1π(s, a)

=⇒
∑
a

H+1∑
h=1

qhπ(s, a) =

H+1∑
h=2

∑
s′,a

T (s | s′, a)qh−1
π (s′, a) +

∑
a

q1π(s, a)

=⇒ H
∑
a

vHπ (s, a) =
∑
s′,a

T (s | s′, a)(
H+1∑
h=2

qh−1
π (s′, a)) + µ(s)

=⇒ H
∑
a

vHπ (s, a) = H
∑
s′,a

T (s | s′, a)vHπ (s′, a) + µ(s)

=⇒
∑
a

vHπ (s, a) =
∑
s′,a

T (s | s′, a)vHπ (s′, a) +
1

H
µ(s)

=⇒ uH
π (s) ≜

∑
a

vHπ (s, a) =
∑
s′,a

T (s | s′, a)π(a|s′)uH
π (s′) +

1

H
µ(s) . (33)

Now, we denote uH
π and µ̄ as corresponding column vectors and the transition matrix Pπ ≜[∑

s′,a T (s | s′, a)π(a|s′)
]
. Thus, we obtain

(I− Pπ)uH
π =

1

H
µ̄ =⇒ uH

π =
1

H
(I− Pπ)−1µ̄ . (34)

We can therefore express the finite horizon occupancy measure in matrix form as

vH
π = Π⊙

(
(uH

π )T ⊗ 1
)T

= Π⊙
(
µ̄T (Aπ

H)T ⊗ 1
)T (35)

where Π,vπ ∈ R|S|×|A|, 1 ∈ R|A| is a column vector of ones, ⊗ presents the Kronecker product,
⊙ denotes the Hadamard product, and Aπ

H ≜ 1
H (I− Pπ)−1.

If we consider the case of a parameterized policy Π(θ), the derivative of vH
π with respect to θ is

∇θv
H
π =∇θ

[
Π⊙

(
µ̄T (Aπ

H)T ⊗ 1
)T ]

=∇θΠ⊙
(
µ̄T (Aπ

H)T ⊗ 1
)T

+Π⊙∇θ

(
µ̄T (Aπ

H)T ⊗ 1
)T

=∇θΠ⊙
(
µ̄T (Aπ

H)T ⊗ 1
)T

+Π⊙
(
µ̄T (∇θA

π
H)T ⊗ 1

)T (36)
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The first term in Equation (36) is differentiable since the policy is parameterized by θ. We expand
on ∇θA

π
H as follows:

H ∇θA
π
H = ∇θ(I− Pπ)−1

= ∇θ

( ∞∑
i=0

(Pπ)i

)

=

∞∑
i=0

i(Pπ)i−1∇θPπ

=

∞∑
i=0

i(Pπ)i−1

∑
s′,a

T (s|s′, a)∇θπ(a|s′)

 .

(37)

If (Pπ)−1 exists, then ∇θA
π
H is differentiable, and consequently so is ∇θv

H
π . Proceeding similarly,

given the same conditions, we see that all higher derivatives of vH
π also exist with respect to θ. Thus,

the space of parametrized finite-horizon occupancy measures vHπ forms a differentiable manifold
MH .

A.6 OPTIMAL TRANSPORT DATASET DISTANCE (OTDD)

Suppose we have two datasets, each consisting of feature-label pairs, DA = {(tiA, ui
A)}mi=1 ∼

PA(t, u) and DB = {(tiB , ui
B)}ni=1 ∼ PB(t, u) with tA, tB ∈ T and uA, uB ∈ UA,UB. These

datasets can be used to create empirical distributions P̂A(t, u) and P̂B(t, u). OTDD is the p-
Wasserstein distance between the datasets DA and DB - which is essentially the distance between
their empirical distributions P̂A and P̂B - with the cost function defined as the metric of the joint
space T × U (Alvarez-Melis & Fusi, 2020).

Naturally, the metric on this joint space can be defined as dT U ((t, u), (t
′, u′)) =

(dT (t, t
′)p + dU (u, u

′)p)
1/p, for p ≥ 1. However, in most applications dT is readily available,

while dU might be scarce, especially in supervised learning (SL) between labels from unrelated la-
bel sets (Alvarez-Melis & Fusi, 2020). Further, we want dT and dU to have the same units to be
addable. To overcome these issues, dU is expressed in terms of dT by mapping labels u to distribu-
tions over the feature space P(T ) as u → αu(T ) ≜ P (T | U = u) ∈ P(T ). Therefore, the distance
between the labels u and u′ is defined as the p-Wasserstein distance between αu(T ) and αu′(T ),

dU (u, u
′) = Wp

p (αu(T ), αu′(T ))

= min
π∈Π(αu,αu′ )

∫
T ×T

(dT (t, t
′))p dπ(t, t′)

(38)

The metric on the joint space becomes,

dT U ((t, u), (t
′, u′)) =

(
dT (t, t

′)p +Wp
p (αu(T ), αu′(T ))

)1/p (39)

Let Z = T × U , then the p-Wasserstein distance between P̂A(t, u) and P̂B(t, u) is a ”nested”
Wasserstein distance:

Wp
p (P̂A, P̂B) = min

π∈Π(PA,PB)

∫
Z×Z

(dZ(z, z
′))p dπ

= min
π∈Π(PA,PB)

∫
T U×T U

(
dT (t, t

′)p +Wp
p (αu, αu′)

)
dπ

(40)

W p
p (P̂A, P̂B) is the OTDD between datasets DA and DB , often expressed as dOT (DA,DB). This

is used in transfer learning to determine the distance (or similarity) between datasets.
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A.7 PROOF OF PROPOSITION 4

We compute the error in occupancy measure for both the infinite and finite horizon cases. In infinite
horizon MDPs, the occupancy measure is defined as the expected discounted number of visits of
a state-action pair (s, a) in a trajectory (Laroche & des Combes, 2023): µ = (1 − γ)

∑∞
t=0 γ

tµt,
where µt = P (st, at | π, η) is the state-action probability distribution at time step t with the initial
state distribution η following the policy π. In finite horizon MDPs, the occupancy measure is the
expected number of visits of a state-action pair (s, a) in an episode of length H (Altman, 1999):
µ = 1

H

∑H
t=1 µt.

First, we derive error bounds for the infinite horizon MDP in which γ < 1 and the occupancy
measure is approximated using a finite number of samples collected up to a finite number of time
steps T . Later, we derive error bounds for the finite horizon MDP.

A.7.1 INFINITE HORIZON MDPS

Estimated Occupancy Measure. For convenience, we express the occupancy measure as µ =
(1 − γ)

∑∞
t=0 γ

tµt, where µt = P (st, at | π, η) is the state-action probability distribution at time
step t with the initial state distribution η following the policy π. To compute µ, we roll out N
episodes (each of multiple time steps) using π, and take N number of samples at t to approximate
µt. Thus, the empirical occupancy measure µ̂ is given by µ̂ = ρ

∑T
t=0 γ

tµ̂N
t , where ρ = 1∑T

t=0 γt .
Note that the total number of samples in the policy dataset Dπ is |Dπ| = N(T + 1).

Occupancy Measure Estimation Error. Consider two occupancy measures µ = (1−γ)
∑∞

t=0 γ
tµt

and ν = (1 − γ)
∑∞

t=0 γ
tνt (with estimates µ̂ = ρ

∑T
t=0 γ

tµ̂
Nµ

t and ν̂ = ρ
∑T

t=0 γ
tν̂Nν

t ). For
independent sets {µt}t≥0 and {νt}t≥0, the Wasserstein distance has the following additive property
(Panaretos & Zemel, 2019),

Wp(
∑
t

µt,
∑
t

νt) ≤
∑
t

Wp(µt, νt) (41)

While for a ∈ R (Panaretos & Zemel, 2019),

Wp(aµ, av) = |a|Wp(µ, v) (42)

Therefore, for our scenario where p = 1, the Wasserstein distance between µ and ν is given by:

W1(µ, ν) = W1((1− γ)

∞∑
t=0

γtµt, (1− γ)

∞∑
t=0

γtνt)

≤ (1− γ)

∞∑
t=0

γtW1(µt, νt)

(43)

while for µ̂ and ν̂,

W1(µ̂, ν̂) ≤ ρ

T∑
t=0

γtW1(µ̂
Nµ

t , ν̂Nν
t ) (44)

In the RL problems we consider, the state-action space Z = S×A is commonly defined as the subset
of the Euclidean space Z ∈ RB , where usually B ≥ 2. Theorems 1 and 3 in (Sommerfeld et al.,
2019) establish the following error bounds between the true and empirical probability distributions,

E[W1(µ̂
Nµ

t , µt)] ≤ E2N
− 1

2
µ

E[W1(ν̂
Nν
t , νt)] ≤ E2N

− 1
2

ν

(45)

where

E2 ≤ 4B1/2diam(Z) ·
{
2 + (1/2)log2|Z| if B = 2

|Z|1/2−1/B
[
2 + 1/(2B/2−1 − 1)

]
if B > 2
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Note that |Z| and diam(Z) denote the cardinality and diameter of Z , respectively.

Suppose a = W1(µ̂, ν̂), b = W1(µ̂, µ), c = W1(ν̂, µ), d = W1(µ, ν), and e = W1(ν̂, ν). Then by
performing two reverse triangle inequalities,

|a− c| ≤ b and |c− d| ≤ e

=⇒ |a− d| ≤ b+ e
(46)

Equation (46) implies that,

E[|W1(µ̂, ν̂)−W1(µ, ν)|] ≤ E[W1(µ̂, µ) +W1(ν̂, ν)]

= E[W1(ρ

T∑
t=0

γtµ̂
Nµ

t , µ) +W1(ρ

T∑
t=0

γtν̂Nν
t , ν)]

= E[W1(ρ

T∑
t=0

γtµ̂
Nµ

t , µ)] + E[W1(ρ

T∑
t=0

γtν̂Nν
t , ν)]

+ E[W1((1− γ)

∞∑
t=0

γtµ̂
Nµ

t , µ)−W1((1− γ)

∞∑
t=0

γtµ̂
Nµ

t , µ)]

+ E[W1((1− γ)

∞∑
t=0

γtν̂Nν
t , ν)−W1((1− γ)

∞∑
t=0

γtν̂Nν
t , ν)]

(47)

By virtue of triangle inequalities, we get

W1(ρ

T∑
t=0

γtµ̂
Nµ

t , (1− γ)

∞∑
t=0

γtµ̂
Nµ

t ) ≥ W1(ρ

T∑
t=0

γtµ̂
Nµ

t , µ)−W1((1− γ)

∞∑
t=0

γtµ̂
Nµ

t , µ)

W1(ρ

T∑
t=0

γtν̂Nν
t , (1− γ)

∞∑
t=0

γtν̂Nν
t ) ≥ W1(ρ

T∑
t=0

γtν̂Nν
t , ν)−W1((1− γ)

∞∑
t=0

γtν̂Nν
t , ν)

(48)

Therefore, the right-hand-side (R.H.S) of Equation (47) can be further simplified as

R.H.S ≤ E[W1(ρ

T∑
t=0

γtµ̂
Nµ

t , (1− γ)

∞∑
t=0

γtµ̂
Nµ

t )] + E[W1(ρ

T∑
t=0

γtν̂Nν
t , (1− γ)

∞∑
t=0

γtν̂Nν
t )]

+ E[W1((1− γ)

∞∑
t=0

γtµ̂
Nµ

t , µ)] + E[W1((1− γ)

∞∑
t=0

γtν̂Nν
t , ν)]

(49)

For simplicity, we denote µ̂∞ = (1 − γ)
∑∞

t=0 γ
tµ̂

Nµ

t (similarly ν̂∞) and µ̂T = ρ
∑T

t=0 γ
tµ̂

Nµ

t

(similarly ν̂T ), where ρ = 1∑T
t=0 γt = 1−γ

1−γT+1 . Using Theorem 4 in (Gibbs & Su, 2002), the
1-Wasserstein metric W1 and the total variation distance dTV satisfy the following,

W1(µ̂∞, µ̂T ) ≤ diam(Z) · dTV (µ̂∞, µ̂T )

= diam(Z) · 1
2

∑
z∈Z

|µ̂∞(z)− µ̂T (z)| (50)
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However,

µ̂∞ − µ̂T = (1− γ)

∞∑
t=0

γtµ̂
Nµ

t − 1− γ

1− γT+1

T∑
t=0

γtµ̂
Nµ

t

= (1− γ)

∞∑
t=0

γtµ̂
Nµ

t − 1− γ

1− γT+1

T∑
t=0

γtµ̂
Nµ

t

+ (1− γ)

T∑
t=0

γtµ̂
Nµ

t − (1− γ)

T∑
t=0

γtµ̂
Nµ

t

= (1− γ)

( ∞∑
t=0

γtµ̂
Nµ

t −
T∑

t=0

γtµ̂
Nµ

t

)
+

(
(1− γ)− 1− γ

1− γT+1

) T∑
t=0

γtµ̂
Nµ

t

= (1− γ)

∞∑
t=T+1

γtµ̂
Nµ

t − γT+1 1− γ

1− γT+1

T∑
t=0

γtµ̂
Nµ

t

≤ (1− γ)
∞∑

t=T+1

γtµ̂
Nµ

t

= γT+1 1− γ

γT+1

∞∑
t=T+1

γtµ̂
Nµ

t

= γT+1µ̂T+1,∞

(51)

where 1−γ
γT+1 normalizes

∑∞
t=T+1 γ

tµ̂
Nµ

t . We utilize Equation (51) in Equation (50) as,

W1(µ̂∞, µ̂T ) ≤ diam(Z) · 1
2

∑
z∈Z

|µ̂∞(z)− µ̂T (z)|

≤ diam(Z) · 1
2

∑
z∈Z

|γT+1µ̂T+1,∞(z)|

=
γT+1

2
diam(Z)

(52)

Equation (52) also applies for W1(ν̂∞, ν̂T ), therefore by substituting these into Equation (49),

R.H.S ≤ E[W1((1− γ)

∞∑
t=0

γtµ̂
Nµ

t , µ)] + E[W1((1− γ)

∞∑
t=0

γtν̂Nν
t , ν)] + γT+1diam(Z)

= E[W1((1− γ)

∞∑
t=0

γtµ̂
Nµ

t , (1− γ)
∞∑
t=0

γtµt)]

+ E[W1((1− γ)

∞∑
t=0

γtν̂Nν
t , (1− γ)

∞∑
t=0

γtνt)] + γT+1diam(Z)

≤ (1− γ)

∞∑
t=0

γt
(
E[W1(µ̂

Nµ

t , µt)] + E[W1(ν̂
Nµ

t , νt)]
)
+ γT+1diam(Z) .

(53)

By substituting Equation (45) into Equation (53)

R.H.S ≤ (1− γ)

∞∑
t=0

γt
(
E2N

− 1
2

µ + E2N
− 1

2
ν

)
+ γT+1diam(Z)

= E2
(
N

− 1
2

µ +N
− 1

2
ν

)
+ γT+1diam(Z)

(54)

Therefore, Equation (47) becomes:

E[|W1(µ̂, ν̂)−W1(µ, ν)|] ≤ E2
(
N

− 1
2

µ +N
− 1

2
ν

)
+ γT+1diam(Z) (55)
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Over the full trajectory in the occupancy measure space. The true distance between consec-
utive policies πi and πi+1 after an update is W1(vπi

, vπi+1
), which is induced by the ith policy

update. We estimate this distance using datasets of the policies, i.e. approximated distributions,
using W1(v̂πi

, v̂πi+1
).

For M roll out episodes of each πi, we use Equation (55), with Nµ = Nν = M , to derive the
following error bounds,

E
[∣∣W1(vπi

, vπi+1
)−W1(v̂πi

, v̂πi+1
)
∣∣] ≤ 2E2M− 1

2 + γT+1diam(Z) (56)
which is consistent with learning from Dπi and then Dπi+1 . By summing sequentially through
policies encountered during RL training, we compute the total distance over a path of N segments
obtained via policy updates:

N−1∑
i=0

E
[∣∣W1(vπi

, vπi+1
)−W1(v̂πi

, v̂πi+1
)
∣∣] ≤ 2NE2M− 1

2 +NγT+1diam(Z) (57)

Since |
∑

t xt| ≤
∑

t |xt| then,

E

[∣∣∣∣∣
N−1∑
i=0

W1(vπi
, vπi+1

)−
N−1∑
i=0

W1(v̂πi
, v̂πi+1

)

∣∣∣∣∣
]
≤ 2NE2√

M
+NγT+1diam(Z) (58)

A.7.2 FINITE HORIZON MDPS

Occupancy Measure Estimated Error. Consider two occupancy measures µ = 1
H

∑H
t=1 µt and

ν = 1
H

∑H
t=1 νt with estimates µ̂ = 1

H

∑H
t=1 µ̂

Nµ

t and ν̂ = 1
H

∑H
t=1 ν̂

Nν
t . From Equation (46), we

have

E[|W1(µ̂, ν̂)−W1(µ, ν)|]
≤ E[W1(µ̂, µ) +W1(ν̂, ν)]

= E[W1(
1

H

H∑
t=1

µ̂
Nµ

t ,
1

H

H∑
t=1

µt) +W1(
1

H

H∑
t=1

ν̂Nν
t ,

1

H

H∑
t=1

νt)]

≤ 1

H

H∑
t=1

E[W1(µ̂
Nµ

t , µt)] +
1

H

H∑
t=1

E[W1(ν̂
Nν
t , νt)]

≤ E2
(
N

− 1
2

µ +N
− 1

2
ν

)
(59)

Therefore for the total path in the occupancy measure space with M roll out episodes of each πi,
the error bound is

E

[∣∣∣∣∣
N−1∑
i=0

W1(vπi
, vπi+1

)−
N−1∑
i=0

W1(v̂πi
, v̂πi+1

)

∣∣∣∣∣
]
≤ 2NE2√

M
(60)

by assigning Nµ = Nν = M in Equation (59), which concludes the proof.

A.8 PROOF OF PROPOSITION 5

By definition of ηsub, we get

ηsub =

∑N−2
i=0 W1(vπi

, vπi+1
) +W1(vπN−1

, vπN
)

W1(vπ0
, vπN

)

=

∑N−2
i=0 W1(vπi , vπi+1) +W1(vπN−1

, vπN
)

W1(vπ0
, vπ∗)

× W1(vπ0 , vπ∗)

W1(vπ0
, vπN

)

≥
∑N−2

i=0 W1(vπi
, vπi+1

) +W1(vπN−1
, vπ∗)−W1(vπN

, vπ∗)

W1(vπ0
, vπ∗)

× W1(vπ0
, vπ∗)

W1(vπ0
, vπN

)

=

(
η − W1(vπN

, vπ∗)

W1(vπ0
, vπN

)

)
W1(vπ0

, vπ∗)

W1(vπ0
, vπN

)
. (61)
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The inequality above is true due to the triangle inequality W1(vπN−1
, vπN

) + W1(vπN
, vπ∗) ≥

W1(vπN−1
, vπ∗).

By applying triangle inequality, we also get

W1(vπ0 , vπ∗) +W1(vπN
, vπ∗) ≥ W1(vπ0 , vπN

) .

This implies that

W1(vπ0
, vπ∗)

W1(vπ0
, vπN

)
≥ 1− W1(vπN

, vπ∗)

W1(vπ0
, vπN

)
. (62)

Equation (61) and Equation (62) together yield

ηsub ≥
(
η − W1(vπN

, vπ∗)

W1(vπ0
, vπN

)

)(
1− W1(vπN

, vπ∗)

W1(vπ0
, vπN

)

)
= η − W1(vπN

, vπ∗)

W1(vπ0
, vπN

)
− η

W1(vπN
, vπ∗)

W1(vπ0
, vπN

)
+

(
W1(vπN

, vπ∗)

W1(vπ0
, vπN

)

)2

≥ η

(
1− W1(vπN

, vπ∗)

W1(vπ0
, vπN

)

)
− W1(vπN

, vπ∗)

W1(vπ0
, vπN

)

≥ η

(
1− 2W1(vπN

, vπ∗)

W1(vπ0 , vπN
)

)
.

The second last inequality is due to non-negativity of
(

W1(vπN
,vπ∗ )

W1(vπ0
,vπN

)

)2
. The last inequality is due to

the fact that η ≥ 1.

Thus, we conclude that

η − ηsub
η

≤ 2W1(vπN
, vπ∗)

W1(vπ0
, vπN

)
.

A.9 WASSERSTEIN SPACES AS GEODESIC SPACES

Given probability measures µ, ν ∈ P(X ) on a metric space X ⊂ RB with metric dX (x, x′), the
Wasserstein distance Wp(µ, ν) is the minimal transport cost for c(x, x′) = (dX (x, x′))p with p ≥
1 (Villani, 2009). The Wasserstein distance Wp(µ, ν) takes a distance on X and creates out of it
a distance on P(X )(Peyré, 2019). Proposition 5.1 in (Santambrogio, 2015) asserts that Wp is a
distance over P(X ).

Definition A.9 (Wasserstein Space). (Santambrogio, 2015) Given a Polish space X , for each p ∈
[1,∞), the space P(X ) endowed with the distance Wp is a Wasserstein space Wp of order p.

Theorem 5.27 in (Santambrogio, 2015) states that if X is a convex space, then the space Wp is a
geodesic space (length space). Thus, the geodesic (shortest path distance) between µ, ν ∈ P(X ) is
given by Wp(µ, ν) (Kolouri et al., 2017). It was mentioned in Appendix A.7.1 that the RL problems
we consider consist of the state-action space Z = S × A ∈ RB : B ≥ 2 (subsets of the Euclidean
space). Given that Euclidean spaces are convex spaces (Boyd & Vandenberghe, 2004), our space of
occupancy measures M is a Wasserstein space Wp = (M,W1) and thus a geodesic space. There-
fore, W1(µ, ν) measures the shortest path on the surface of the manifold M between probability
distributions µ and ν.
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B ADDITIONAL EXPERIMENTAL ANALYSIS AND RESULTS

B.1 ENVIRONMENT DESCRIPTION

2D-Gridworld environment of size 5x5 with actions: {up, right, down, left}. The start and goal
states are always located at top-left and bottom-right, respectively. A) Deterministic, dense rewards
setting: State transitions are deterministic. The reward function is given by ∥st − sg∥1, where st is
the agent state at timestep t and sg is the goal state. B) Deterministic, sparse rewards setting: State
transitions are deterministic and all states issue a reward of -0.04 except the goal state with reward of
1. C) Stochastic, dense rewards setting: Actions have a probability of 0.8 in the instructed direction
and 0.1 in each adjacent direction. Reward function is as defined in setting A.

2D-Gridworlds (Task Difficulty). Figure 6 depicts the configurations of the 5 tasks that were used
to assess ESL with respect to task hardness. They are all deterministic with actions: {up, right,
down, left}, and mostly have the start-state at the top-left and the goal-state at the bottom-right -
with only one task that has the goal-state at the center. In the order of appearance: a) [5x5] dense:
has size 5x5 and dense rewards, b) [5x5] sparse (hard): has size 5x5 and sparse rewards, c) [5x5]
sparse (easy): has size 5x5, sparse rewards, and goal-state at the center, d) [15x15] dense: has size
15x15 and dense rewards, and e) [15x15] sparse: has size 15x15 and sparse rewards. The reward
functions for both dense and sparse rewards are as previously described above for 2D-Gridworld.

Figure 6: Five gridworld tasks with the same action space, but different rewards, state space and
location of the goal state.

B.2 OMR(K): OMR OVER NUMBER OF UPDATES

OMR is defined for the entire policy trajectory by Equation 6 as,

κ ≜

∑
k∈K+ W1(vπk

, vπk+1
)∑N−1

k=0 W1(vπk
, vπk+1

)
.

To observe how it changes with respect to updates, we compute OMR from update i onwards till the
end of the learning trajectory, i.e. over subsequences with a decreasing number of policy updates
with increasing i, using:

κ(i) ≜

∑
k∈K+,k≥i W1(vπk

, vπk+1
)∑N−1

k=i W1(vπk
, vπk+1

)
, such that i ∈ [0, N − T ] (63)

where T ≈ 0.9N to ensure that the last subsequence of policy updates have at least 10% of the total
updates in the trajectory.
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B.3 COMPUTATION OF OCCUPANCY MEASURES

The finite-horizon occupancy measure is defined as (Altman, 1999),

vHπ (s, a) =
1

H

H∑
t=1

P(st = s, at = a | π, µ)

for which the probability of the state-action pair selected is time-dependent. If we restrict our anal-
ysis to stationary policies where π(at|st) = π(a|s), then the probability of the state-action pair
becomes time-independent and thus

vHπ (s, a) = P(s, a | π, µ)

This implies that the use of stationary policies in finite-horizon MDPs, as observed in practice with
many episodic MDPs (Memmel et al., 2022; Aleksandrowicz & Jaworek-Korjakowska, 2023; Liu,
2023), induces stationary occupancy measures - where the expected number of state-action pair
visits are independent of the time-step. Work by (Bojun, 2020) provides extensive details about the
existence of stationarity in episodic MDPs and shows (in Theorem 4) that

E(s,a)∼vH
π

[
R̄(s, a)

]
=

Eζ∼Mπ

[∑H(ζ)
t=1 R(st, at)

]
Eζ∼Mπ [H(ζ)]

(64)

where ζ is the episodic state-action pair trajectory, H(ζ) is the episode length corresponding to ζ,
and Mπ is the markov chain induced by policy π. We verified the correctness of our vHπ computation
by calculating the relative error derived from Equation 65 to check its validity. The relative error is
given as

Rel. Error % = 100 ∗
E(s,a)∼vH

π

[
R̄(s, a)

]
Eζ∼Mπ

[H(ζ)]− Eζ∼Mπ

[∑H(ζ)
t=1 R(st, at)

]
Eζ∼Mπ

[∑H(ζ)
t=1 R(st, at)

] (65)

Figure 7 depicts Rel. Error% vs number of updates in the stochastic 2D-Gridworld environment
with dense rewards. We observe that increasing the number of rollouts M reduces the estimation
error of vHπ . For M = 10, the absolute relative error can be as high as 50% with the mean less than
10%. While for M = 500, the maximum absolute relative error is 4%.
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Figure 7: Rel. Error% vs number of updates plots in the 2D-Gridworld environment where vHπ is
estimated using M = 10 rollouts (left) and M = 500 rollouts (right).

B.4 EFFECTS OF THE NUMBER OF ROLLOUTS - SAC

The policy dataset Dπi
in a deterministic environment is made up of (s,a) pairs generated from a

single episode of the policy πi. In a deterministic environment, this sequence remains the same
across repeats of episodes, for each policy πi (deterministic) at update step i. Therefore, a single
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rollout is sufficient to estimate the occupancy measure vπi
. In a stochastic environment, rollouts

are impacted by the environment’s stochasticity. Thus, multiple rollouts are needed to estimate the
occupancy measure accurately. As the number of rollouts increases, the occupancy measure should
converge and become less noisy.

Table 4 shows that, in a stochastic setting, the ESL values converge as the number of rollouts in-
creases. OMR appears to be invariant across various the number of rollouts, and the mean number of
updates appear to be consistent around 2900 (with exception for #rollouts = 1). The results indicate
that from about 6 rollouts, the estimated occupancy measures become less noisy. This aligns with
Equation (58), which shows that increasing the number of rollouts reduces estimation error.

#rollouts ESL OMR UC
1 849.1±468.5 0.500±0.004 1849±742.2
3 618.6±257.3 0.501±0.005 2413±1397
6 445.4±245.8 0.501±0.042 2462±2043
9 428.1±234.4 0.503±0.004 2281±1743

Table 4: Evaluation of SAC algorithm in the stochastic, dense-rewards setting for 5x5 gridworld
with 40 maximum steps per episode across various number of rollouts. The effects of #rollouts on
the Effort of Sequential Learning (ESL), Optimal Movement Ratio (OMR), and number of updates
to convergence (UC) are observed.

B.5 η VS ηsub

We compare ESL when the optimal policy was reached, denoted η, versus when it was not, denoted
ηsub, in Tables 5 and 6. First, we observe that the number of rollouts impacts the metric values.
Second, ηsub values are always greater than η values. Note that UCRL2 and PSRL update their
policies only at the end of each episode, whereas SAC and DQN update theirs after each time step.
Hence, UCsub = 499 for both UCRL2 and PSRL.

The ESL values (both η and ηsub) in Table 6 are lower than those in Table 5, as expected since more
data samples reduce estimation error. The distance from the initial policies to the final polices are
not so different. Using both Tables 5 and 6, we notice that comparing algorithms with ηsub yields the
same efficiency ranking (e.g. PSRL, UCRL, SAC and DQN) as η. This indicates that ηsub reliably
predicts results provided by η for comparing algorithms.

The results presented in Table 2 for stochastic dense-rewards setting are consistent with those in
Table 6 because the number of rollouts used was Nr = 6.

Algo. η ηsub d c UC UCsub

SAC
849±
468

3623±
4166

5.63±
1.50

5.26±
2.10

1850±
742

7451±
3535

UCRL2
230±
155

613±
999

5.65±
0.93

5.45±
2.15

284±
180

499±
0.0

PSRL
86.2±
44.4

389±
102

4.96±
1.26

5.29±
1.49

97.2±
52.5

499±
0.0

DQN
564±
478

3911±
1710

5.52±
1.39

6.54±
2.05

1213±
1061

9097±
1904

Table 5: Evaluation of algorithms in the stochastic, dense-rewards setting for 5x5 gridworld with
40 maximum steps per episode with the number of rollouts Nr = 1. The total number of training
episodes is 500. When the algorithm converged at optimality, η is the Effort of Sequential Learning,
d = W1(π0, π

∗) is distance from initial policy to the optimal policy, and UC is the number of
updates to convergence. When the algorithm did not converge at the optimal policy, rather a non-
optimal πN , we use ηsub, c = W1(π0, πN ), and UCsub to denote the aforementioned quantities. 40
training trials were used.
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Algo. η ηsub d c UC UCsub

SAC
445±
246

853±
127

5.63±
1.23

7.26±
1.45

2463±
2043

6293±
441

UCRL2
198±
121

510±
274

5.36±
0.84

4.58±
1.90

268±
155

499±
0.0

PSRL
55.4±
33.6

361±
43.6

4.97±
1.34

3.91±
0.48

76.1±
50.6

499±
0.0

DQN
458±
311

1971±
250

4.88±
1.06

6.52±
0.31

1586±
1077

13713±
6907

Table 6: Evaluation of algorithms in the stochastic, dense-rewards setting for 5x5 gridworld with
40 maximum steps per episode with the number of rollouts Nr = 6. The total number of training
episode is 500. When the algorithm converged at optimality, η is the Effort of Sequential Learning,
d = W1(π0, π

∗) is distance from initial policy to the optimal policy, and UC is the number of
updates to convergence. When the algorithm did not converge at the optimal policy however some
πN , we use ηsub, c = W1(π0, πN ), and UCsub to denote the aforementioned quantities. 40 training
trials were used.

B.6 EFFECTS OF HYPERPARAMETERS - UCRL2

Table 7 illustrates the effects of hyperparameter values in the UCRL2 algorithm. The environment
is deterministic dense-rewards setting with 200 training episodes. We observe that high exploration
rates (δ → 0) appear to align with high ESL and UC, while high exploitation rates (δ → 1) appear
to align with low ESL and UC. OMR appears to be invariant across various δ values.

δ ESL OMR UC SR%
0.1 47.76±7.768 0.512±0.033 62.26±9.977 100
0.3 39.29±5.860 0.515±0.034 58.08±7.746 100
0.5 38.26±6.747 0.511±0.036 56.92±9.111 100
0.7 37.48±5.094 0.507±0.029 56.68±7.460 100
0.9 36.40±5.301 0.510±0.036 54.86±7.326 100

Table 7: Evaluation of UCRL2 algorithm in the deterministic, dense-rewards setting for 5x5
gridworld with 15 maximum steps per episode. Different confidence parameter δ ∈ (0, 1) were
evaluated to see their effects on Effort of Sequential Learning (ESL), Optimal Movement Ratio
(OMR), number of updates to convergence (UC), and success rate (SR). Note that as δ → 0, the
agent approaches absolute exploration, and with δ → 1 absolute exploitation.

B.7 EXTENDED DISCUSSION OF USEFULNESS OF ESL AND OMR

The quantities like regret and number of updates (UC) are outcomes of the exploratory processes,
and thus reflect only a partial view of the underlying exploration mechanisms. We propose ESL and
OMR to complement regret and number of updates as metrics but not to replace them.

1. Complementarity of ESL and OMR with respect to UC:

a. Case 1. Let us consider two RL algorithms that reach optimality with the same number of updates,
i.e. they have the same UC. How would one be able to distinguish the exploratory processes of these
algorithms? ESL and OMR are the summary metrics of the policy trajectory during learning. These
can reveal which algorithm’s exploratory process is more direct versus meandering, smooth versus
noisy, or has large versus small coverage area in the policy space (Figures 3 and 4, top rows).
Therefore, ESL and OMR quantify with granularity the characteristics of the exploratory process of
an RL algorithm for any given environment.

b. Case 2. Let us consider the case when optimality is not reached but the maximum number
of updates is attained by two RL algorithms. How would one be able to evaluate the exploratory
processes of these algorithms and systematically uncover which exploratory process demonstrate
desired characteristics? Looking into the training trajectories of RL algorithms in an environment
and corresponding higher/lower ESLs (ηsub, Section 4.2), we can make a knowledgeable choice
of an RL algorithm exhibiting desired characteristics (e.g. high coverage, smooth exploration).
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We have shown in Section 4.2 and results in Appendix B.5 that ranking based on suboptimal ESL
is aligned with true ESL, and additionally, the visualization of the training trajectories (Figures 3
and 4) can indicate the characteristics of corresponding RL algorithms even when optimal policy is
not reached.

c. Experimental Evidence. UCRL2 is known to be provably regret-optimal and is designed to
continuously explore. SAC does not have such rigorous theoretical guarantees but is known to
be practically efficient. In Table 1, by UC, we observe that SAC is significantly suboptimal than
UCRL2. But SAC has lower ESL than UCRL2 as its exploration is smoother. Additionally, OMR
for SAC is higher than that of UCRL2. They together indicate that SAC takes smoother but larger
number of policy transitions aligned to optimal direction for exploration, while UCRL2 exhibits
bigger policy changes and in diverse manner trying to cover the environment faster.

2. Complementarity of ESL and OMR with respect to Regret:

UCRL2 and PSRL have the same order of regret bound (Osband et al., 2013). But PSRL leads to
smoother policy transitions that are much more orientated towards optimality (as shown in Figure 3),
while UCRL2 leads to less smooth policy transitions that do not taper as it approaches optimality.
This information is not evident from regret but from corresponding ESLs and OMRs (Table 1).

3. Insights for Algorithm Design:

Knowing ESL (or suboptimal ESL) and OMR can assist with developing algorithms that emphasize
certain exploratory characteristics. We can develop algorithms with grades of coverage or directness,
while also being able to visualize this. Ultimately, depending on the environment, we can choose
which characteristics of exploratory process are well suited. In contrast, looking only at the final
outcomes of RL algorithms like regret and number of updates does not include these nuances.
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C SPECIFICATIONS OF THE RL ALGORITHMS UNDER STUDY

C.1 METHODS FOR SIMULATION RESULTS (DISCRETE MDP)

Model parameter initialisation. We initialised model parameters for deep learning RL algorithms
like DQN and SAC by uniformly sampling weight values between −3 · 10−4 and 3 · 10−4 and the
biases at 0. For tabular Q-learning algorithms, we randomly initialized the Q-values between −1.0
and 1.0. For UCRL and PSRL, the policy model was randomly initialized. Note that all Wasserstein
distances were computed using a python package POT (Flamary et al., 2021). Additionally, L1
norm was used in our Wasserstein metric cost function as the ground metric for the 2D gridworld
environment.

Results in Figure 3. The problem setting was deterministic with dense-rewards and 15 maximum
number of steps per episode. The total number of episodes was 200. The convergence criterion was
satisfied when maximum returns were produced by an algorithm over 5 consecutive updates. The
results showcase a single representative run of each algorithm. The confidence parameter δ = 0.1
was utilized for UCRL2. The α parameter for SAC was autotuned using the approach in (Haarnoja
et al., 2019) along with hyperparameters described in Table 8. While DQN began with ϵ = 1.0
and the value decayed as ϵ[t + 1] = max{0.9999 × ϵ[t], 0.0001}. Table 9 shows hyperparameters
for DQN. Note that the ADAM (Kingma & Ba, 2017) optimizer was used in all the neural network
models.

Table 8: SAC Hyperparameters.
Parameter Value
learning rate 5 · 10−4

discount(γ) 0.99
replay buffer size 104

number of hidden layers (all networks) 1
number of hidden units per layer 32
number of samples per minibatch 64
nonlinearity ReLU
entropy target -4
target smoothing coefficient (τ ) 0.01
target update interval 1
gradient steps 1
initial exploration steps
before model starts updating 500

Table 9: DQN Hyperparameters.
Parameter Value
learning rate 5 · 10−2

discount(γ) 0.99
replay buffer size 104

number of hidden layers (all networks) 1
number of hidden units per layer 32
number of samples per minibatch 64
nonlinearity ReLU
target smoothing coefficient (τ ) 0.001
target update interval 1
gradient steps 1
initial exploration steps
before ϵ decays 500

Results in Tables 1 and 2. The problem settings had 40 maximum number of steps per episode, and
the convergence criterion was satisfied when maximum returns were produced by an algorithm over
5 consecutive updates. The means and standard deviations for each algorithm were computed over
50 runs. The total number of episodes was 200 for results in Table 1, and 500 in Table 2. For results
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in Figure 5, the Q-learning with decaying ϵ-greedy where ϵ = 0.9 was employed in the gridworld
tasks described in Appendix B.1. A convergence criterion of 50 consecutive model updates with
maximum returns was utilized. We aggregated the result over 40 training trials and the maximum
number of steps per episode was 60.

C.2 METHODS FOR SIMULATION RESULTS (CONTINUOUS MDP)

Model parameter initialisation. We initialised model parameters for the deep learning SAC al-
gorithm by uniformly sampling weight values between −3 · 10−4 and 3 · 10−4 and the biases at
0. For the DDPG algorithm, the output layer weight values were initialised using Xavier Initializa-
tion (Glorot & Bengio, 2010), while the rest were uniformly sampled between −3·10−3 and 3·10−3.
This was done on both the actor and critic networks. The ADAM (Kingma & Ba, 2017) optimizer
was used in all the neural network models. In both algorithms, 1) a discount factor γ = 0.99 was
used, 2) 500 initial steps were taken before updating model weights, and 3) replay buffer size was
106. Tables 10 and 11 display hyperparameters for DDPG and SAC, respectively.

Results in Figure 4. The problem setting was Mountain Car continuous (Moore, 1990) with 999
maximum number of steps per episode (Brockman et al., 2016). The total number of training
episodes was 100. The convergence criterion was satisfied when maximum returns were produced
by an algorithm over 10 consecutive updates. The results showcase a single representative run of
each algorithm. For results in Table 3, the mean and standard deviations for each algorithm were
computed over 5 runs. While RL training was conducted in a continuous state-action space, we
discretized it for Wasserstein distance calculations between occupancy measures, using 4 bins for
actions and 10 bins for states. Note that all Wasserstein distances were computed using a python
package POT (Flamary et al., 2021). Additionally, L2 norm was used in our Wasserstein metric cost
function as the ground metric for the Mountain Car environment.

Table 10: DDPG Hyperparameters.
Parameter Value
number of samples per minibatch 128
nonlinearity ReLU
target smoothing coefficients (τ ) 0.001
target update interval 1
gradient steps 1
number of hidden layers (all networks) 2
number of hidden units per layer 64
Actor learning rate 5 · 10−4

Critic learning rate 5 · 10−3

Table 11: SAC Hyperparameters.
Parameter Value
learning rate 3 · 10−3

number of hidden layers (all networks) 2
number of hidden units per layer 64
number of samples per minibatch 128
nonlinearity ReLU
target smoothing coefficient (τ ) 0.001
target update interval 1
gradient steps 1
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D SUPPLEMENTARY RESULTS

In this section we present enlarged versions of results in Figure 3 (see Section D.1) and additional
plots that support the results in the main paper (see Section D.2). Note that the Github repository of
the project is available at [link on acceptance].

D.1 ENLARGED VISUALISATION OF THE OCCUPANCY MEASURE TRAJECTORIES

Figures 8 - 10 are enlarged versions of enlarged versions of Figure 3. For each algorithm, there is a
visualisation of the policy trajectory and visualisation of the state visitation below it.

Figure 8: Top row: Scatter plots of distance-to-optimal and stepwise-distance over updates for
ϵ(=0)-greedy and ϵ(=1)-greedy Q-learning. Bottom row: State visitations.
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Figure 9: Top row: Scatter plots of distance-to-optimal and stepwise-distance over updates for
UCRL2 and PSRL. Bottom row: State visitations.

Figure 10: Top row: Scatter plots of distance-to-optimal and stepwise-distance over updates for
SAC and DQN. Bottom row: State visitations.
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D.2 EVOLUTION OF stepwise-distance, distance-to-optimal, AND OMR(k)

In this section we present 2 dimensional versions of the policy trajectories in Figures 3 and 4, along
with corresponding OMR evolution plots. These are stepwise-distance vs. updates, distance-to-
optimal vs. updates, and OMR(k) plots for the algorithms. Figure 11 presents plots for the contin-
uous environment Mountain Car, while Figure 12) presents plots for the discrete environment 2D
Gridworld.
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Figure 11: Plots in the first column are stepwise-distance vs. number of updates, second column
distance-to-optimal vs. number of updates, and third OMR(k) vs. number of updates. Top row plots
belong to DDPG algorithm, while bottom row plots belong to SAC.
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Figure 12: Plots in the first column are stepwise-distance vs. number of updates, second column
distance-to-optimal vs. number of updates, and third OMR(k) vs. number of updates. The plots in
the row belong to algorithms in the following order from top to bottom: ϵ(=0)-greedy, ϵ(=1)-greedy,
UCRL2, PSRL, SAC, and DQN.
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