
iTool: Reinforced Fine-Tuning with Dynamic Deficiency Calibration for
Advanced Tool Use

Anonymous ACL submission

Abstract001

Augmenting large language models (LLMs)002
with external tools is a promising approach to003
enhance their capabilities, especially for com-004
plex tasks. Synthesizing tool-use data through005
real-world simulations is an effective way to006
achieve this. However, our investigation re-007
veals that training gains significantly decay as008
synthetic data increases. The model struggles009
to benefit from more synthetic data, and it can010
not equip the model with advanced tool-use011
capabilities in complex scenarios. Moreover,012
we discovered that the above limitation usu-013
ally manifests as a fragment deficiency (i.e.,014
parameter errors) in response. To this end,015
we propose an iterative reinforced fine-tuning016
strategy designed to alleviate this limitation.017
This strategy involves: (1) enhancing the diver-018
sity of response for synthetic data through path019
exploration of Monte Carlo Tree Search. (2)020
iteratively pinpointing the model’s deficiency021
by constructing fine-grained preference pairs,022
and then improving it by preference optimiza-023
tion algorithms for targeted improvement. The024
experiments show that our method achieves025
13.11% better performance than the same-size026
base model. It achieves an improvement of027
6.5% in complex scenarios compared to the028
baseline, and it also outperforms larger open-029
source and closed-source models.030

1 Introduction031

Integrating LLMs with external tools significantly032

enhances their capability to tackle complex tasks033

in real-world scenarios (Li, 2025; Qu et al., 2024).034

For instance, the tool-use capability allows LLMs035

to access up-to-date information, perform precise036

calculations, and reduce the likelihood of halluci-037

nations (Singh et al., 2025). This unlocks a wide038

range of potential applications in various domains,039

such as complex reasoning tasks (Li et al., 2025;040

Manduzio et al., 2024), and the scheduling of appli-041

cations on devices (Gunter et al., 2024; Luo et al.,042

Figure 1: The training paradigm of the tool-use model
under synthetic data (a). However, as shown in (b), their
training gains decay significantly as the synthetic data
increases, especially in complex tool-use scenarios.

2025). In essence, tool use involves the following 043

process: Given one or more tools, a user presents a 044

question, and the LLM selects the appropriate tools 045

from the candidate tools and performs the tool call 046

to fulfill the user’s demands. In this paper, tools 047

are used interchangeably with APIs, functions, and 048

plugins. 049

Recent advancements have found that LLMs can 050

handle simple tool use scenarios through prompt 051

engineering (Ye et al., 2024), but they encounter 052

difficulties with more complex real-world applica- 053

tions (e.g., long contexts or extensive toolsets) (Yan 054

et al., 2024). To address this, some studies simulate 055

real-world scenarios, such as ticketing systems, to 056

mimic more realistic use cases (Lin et al., 2024) to 057

collect synthetic data. Synthetic data are used in 058

supervised fine-tuning (SFT) to improve tool use 059

in complex scenarios, as shown in Figure 1 (a). De- 060

spite these solution strides in the development of 061

tool-use models, our investigation reveals a critical 062

weakness: there is a training gains decay as the 063

synthetic tool-use data scales. 064

We conducted tests to explore how the perfor- 065

mance of the model changes when synthetic data 066

of different proportions is used, as shown in Figure 067

1 (b), We find that the model struggles to bene- 068

fit from more synthetic data with SFT in complex 069

scenarios. More analysis in Section 2.2 indicates 070

1

that this limitation reflects the failure of the model071

to extract the parameter name or infer the correct072

parameter value from the user query. This issue typ-073

ically affects only a small fragment of the response,074

differing from the ground truth response.075

Therefore, we attempt to alleviate the decay of076

training gains when using synthetic tool-use data,077

to enhance the ability of tool use in complex sce-078

narios. It is not easy because it requires equipping079

the model with advanced contextual understand-080

ing and reasoning capabilities. Fortunately, the081

success of OpenA o11 demonstrates complex rea-082

soning through step-by-step slow thinking (e.g.,083

Monte Carlo Tree Search (MCTS) (Coulom, 2006)084

) and Reinforced Fine-Tuning (ReFT) (Luong et al.,085

2024) (tailors reinforcement learning and aligns086

with user intentions to specific tasks).087

To this end, we propose a novel learning method088

involving (1) an MCTS-based path exploration089

to enhance response diversity and (2) ReFT to090

progressively correct the wrong fragment text of091

model’s response. Specifically, we propose an092

iterative reinforced fine-tuning strategy for Tool093

use, named iTool. It first iteratively identifies com-094

plex data based on feedback from a policy model. It095

then performs MCTS to help explore data diversity096

in response, and further pinpoint wrong fragment097

by collecting fine-grained preference pairs from098

search path. Finally, a reinforcement learning pol-099

icy (i.e., direct preference optimization (Rafailov100

et al., 2024)) is applied to align the model’s re-101

sponse with the ground-truth response and misalign102

it with wrong fragment. Moreover, before itera-103

tive ReFT, we propose an easy-to-hard warm-up104

SFT strategy for learning from complex scenarios.105

Following these advancements, iTool demonstrates106

~13% better performance than the base model. It107

also achieves substantial improvements in tool-use108

ability under complex scenarios. Despite having109

only 8B parameters, it outperforms larger open-110

source models and competes with top-tier closed-111

source models.112

2 Problem Statement and Analysis113

2.1 Task Overview114

In tool use, the LLM receives a user query q along115

with a set of candidate tools, represented as T =116

{t0, t1, . . . , t|T |}. The purpose of LLM is to fulfill117

the user’s intent by executing a specific sequence118

of tools. The decision process can be described119

1https://openai.com/index/learning-to-reason-with-llms/

Figure 2: An illustration of tool-use. Given a user query
with candidate tools, LLMs select the tool(s) from can-
didates, then execute the API call operation, and finally
reply with a response. In the bad response, the param-
eter errors (i.g, red font weather=’unknown’) account
for a small fragment of the response content.

as y ∼ π(y | s0, q, T), where π(·) represents the 120

policy model, s0 denotes the initial task state, and 121

y represents the actions taken by the model, such 122

as selecting or executing a specific tool call from 123

T . A case is illustrated in Figure 2. 124

2.2 Preliminary Study 125

This section presents the challenges when fine- 126

tuning models with tool-use synthetic data, and 127

clarifies the motivation for the proposed methods. 128

We fine-tune the model using synthetic tool-use 129

data of varying proportions. Specifically, train- 130

ing data: ToolACE (Liu et al., 2024) is a general 131

tool-use dataset with up to 100K samples, and 132

created through a novel self-evolution synthesis. 133

Evaluation benchmark: Berkeley Function-Calling 134

Leaderboard (BFCL) (Yan et al., 2024) provides a 135

comprehensive dataset comprising 4k+ instances 136

(updating), consisting of Non-live (with expert- 137

curated simple tools), Live (with user-contributed 138

complex tools), Multi-turn (with multi-turn & 139

multi-step tool use) and Hallucination (i.e., rele- 140

vance and irrelevance detection) samples. Here, 141

Non-live denotes simple tool use scenarios (e.g., 142

single tool), while Live represents more complex 143

tool use scenarios (e.g., multiple parallel tools). For 144

convenient understanding, in this section, we use 145

simple and complex as aliases for the Non-live and 146

Live metrics, respectively. 147

The results are depicted in Figure 1 (b). We ob- 148

serve that the model’s performance gain declines 149

significantly as the training data increases. Specif- 150

ically, with the SFT paradigm shown in Figure 1 151

2

Figure 3: Error type distribution in bad cases. In bad
cases, error types are highly concentrated in Parameter
Value & Name.

(a), The model significantly enhances tool-use abil-152

ity with small-scale supervised data by mimicking153

patterns from the training examples. However, the154

performance improvement significantly declines155

after 30% of the data is used. The model struggles156

to benefit from using more synthetic data, we ar-157

gue that insufficient data diversity is one of the key158

factors.159

To explore the manifestations of the above-160

mentioned issue, we perform a bad case analysis.161

We counts all error types in Live and Non-live of162

BFCL, and categorized the error types as shown163

in Figure 3. Here, Parameter Value error denotes164

the value of the parameter that does not match the165

ground truth. Parameter Name error denotes unable166

to identify the parameter value from the user query.167

For more details, see Appendix A. From Figure168

3, we observed that errors are highly concentrated169

in Parameter Value & Name errors. In bad cases,170

parameter error constitutes a small fragment in re-171

sponse, while the majority remains consistent with172

the ground-truth. An illustration is shown in Fig-173

ure 2. Therefore, trying to fix the fragment error174

can help alleviate the limitation of gain decay in175

training models.176

In summary, we find that training with synthetic177

tool-use data causes gain decay, and the model178

struggles to benefit from additional such data. This179

limitation is reflected in the model’s deficiency (i.e.,180

parameter errors) in responses. Motivated by this181

line, we utilize the MCTS path to explore diver-182

sity in responses for alleviating such gains decay.183

We further propose an iterative ReFT strategy to184

progressively pinpoint and optimize the model’s185

deficiencies.186

3 Method 187

In this section, we provide a detailed introduction 188

to our method. Figure 4 shows the overall architec- 189

ture. It consists of warm-up training and iterative 190

reinforcement learning. 191

3.1 Warm-up training 192

In real-world applications, the tool-use model 193

should select multiple tools from a complex can- 194

didate toolset and schedule them correctly (a.k.a., 195

hard mode), instead of directly using a single candi- 196

date tool to respond (a.k.a., easy mode). Similar to 197

human learning procedures, tool learning models 198

can benefit from an easy-to-hard curriculum during 199

model training (Xu et al., 2020). Therefore, we 200

propose an easy-to-hard SFT for warm-up training. 201

In the warm-up stage, we first divide the dataset 202

evenly into three subsets (i.e., easy, medium, hard) 203

based on difficulty levels. We follow the criteria: 204

(a) the candidate toolset number; (b) the string 205

length of the toolset; and (c) the number of tool 206

calls needed in response to split the dataset. The 207

specific definitions for each subset are as follows: 208

(1) hard: a >= 4 or b > 2000 or c >= 4. (2) 209

medium: 1 < a < 4 or b < 2000 or c < 4. (3) 210

simple: a <= 1 and b < 1000 and c <= 1. 211

D = Deasy

⋃
Dmedium

⋃
Dhard. (1) 212

Subsequently, we fine-tune the LLMM sequen- 213

tially on each subset Di using the supervised loss: 214

Li = −E(q,y)∼Di
[logPM(y | q, T)] , (2) 215

with D1 (easy), D2 (medium) and D3 (hard). 216

The total warm-up loss is: 217

Lwarm-up =

N=3∑
i=1

Li. (3) 218

3.2 MCTS-Based Iterative Reinforcement 219

Learning 220

In order to alleviate training gains decreases using 221

synthetic tool-use data for LLM, in this module, 222

we propose an Iterative Reinforcement Learning 223

scheme to continuously remedy this deficiency. As 224

shown in Figure 4, it iteratively refreshes replay 225

buffer to sample complex data and generates pref- 226

erence data for preference optimization. 227

3

Figure 4: The overall architecture of iTool consists of warm-up training and iterative reinforcement learning.
Specifically, after warm-up training ①, the policy model refreshes the replay buffer ② and then actively samples
complex data ③. Then, step-wise MCTS ④ is performed to obtain fine-grained preference pairs for pointing out
the wrong fragment in response. Finally, the models are updated via direct preference optimization ⑤ to improve
response. The fire and frozen denote parameters are updated and fixed, respectively.

Sampling complex data. Given a warm-up228

model from the previous stage, it is used to re-229

fresh the replay buffer by feeding back the com-230

plexity of samples. The replay buffer is initial-231

ized with a random 50% sample from the tool-use232

dataset. Each example in the buffer is represented233

as: xbuff = ⟨q, T , c⟩, where c is denote the com-234

plexity of sample. In practice, model generation235

perplexity h is used to measure the complexity of236

the samples, i.e., c = h. The generation perplexity237

of the target response can be factorized as follows:238

h = n

√
1

PM(y | q, T)
, (4)239

where the PM(y | q, T) is the generation proba-240

bility. Since perplexity h represents the degree of241

generation uncertainty (Gao et al., 2024), we sam-242

ples top 10% highest h data for subsequent step in243

each iteration.244

MCTS for Step-Level Preference. The suc-245

cess of OpenAI o1 provides a compelling illustra-246

tion of the effectiveness of step-by-step thinking.247

As a key algorithm, MCTS path exploration can248

fully traverse the search space and provide greater249

data diversity (Grill et al., 2020). Inspired by these,250

we propose to integrate MCTS into training for251

collecting step-level preference data.252

The step-wise MCTS is achieved by breaking253

down the expansion step into discrete steps, trans-254

forming instance-level rewards into granular step-255

level signals. Specifically, it begins from a root256

node s0 (i.e., user query), and unfolds in three iter-257

ative stages: selection, expansion, and backup:258

(1) Select. It is guided by two key variables: 259

Q(st, a) is the value of taking action a in state 260

st, and N(st) is the visitation frequency of state 261

st. We employ the Predictor+ Upper Confidence 262

bounds applied to Trees (PUCT) (Rosin, 2011) to 263

navigate the trade-off between exploring and ex- 264

ploiting ones. At node st, the subsequent node 265

follows the formula: 266

st+1 = argmax
st

[
Q(st, a) + c · p(a | st)

√
N(st)

1 +N(st+1)

]
,

(5) 267

where p(a | st) = πθ(a | q, T , st) denotes the pol- 268

icy πθ(·)’s probability distribution for generating a 269

action step a, and c is the trade-off hyperparame- 270

ter. We enforce the policy model to generate fine- 271

grained fragments (e.g., an argument assignment 272

operation, like weather=’unknown’ in Figure 2) 273

by managing the termination characters (e.g., add 274

’,.)’). 275

(2) Expand. It occurs at a leaf node during the 276

selection process to integrate new nodes and assess 277

rewards. The reward r(st, a) for executing step a 278

in state st is quantified by the reward difference 279

between states R(st) and R(st+1), showing the 280

benefit of action a in state st. As defined in Eq.6, 281

reward computation merges outcome correctnessO 282

with self-evaluation C. Following Xie et al. (2024), 283

we define self-evaluation with Eval Prompt 8 as 284

Eq.7. 285

R(st) = O(st) + C(st), (6) 286
287

C(st) = πθ(cs | prompteval, q, a, T , st), (7) 288

where cs denotes the confidence score in token- 289

level probability for correctness. Future rewards 290

4

are anticipated by simulating upcoming scenar-291

ios through roll-outs, following the selection and292

expansion process until reaching a terminal state293

(i.e., complete response or exceeds the maximum294

length).295

(3) Backup. Once a terminal state is reached, we296

carry out a bottom-up update from the terminal297

node back to the root. We update the visit count N ,298

the state value V , and the action value Q:299

V (st)←
∑
a

N(st+1)Q(st, a)/
∑
a

N(st+1), (8)300

301
Q(st, a)← r(st, a) + γV (st+1), (9)302

where γ is the discount for future state values.303

We use the action value Q to indicate the prefer-304

ence for candidate steps, with higher values show-305

ing more preferred next steps. For each node in the306

search tree, we choose the steps with the highest307

and lowest Q as the preferred and dispreferred re-308

sponses, respectively, and consider the prefix path309

as the question. See Appendix C.1 for an example.310

Iterative preference optimization. Given the311

step-level preferences collected via MCTS, we tune312

the policy model via SimPO (Meng et al., 2024), a313

variant of DPO (Rafailov et al., 2024). Because it314

reduces computational overhead by eliminating the315

need for a reference model. After optimization, we316

obtain the updated policy πθ(i) and repeat sampling317

the complex data process to iteratively update the318

policy model.319

As a variant of DPO, it eliminates the need for a320

reference model and introduces a simple reference-321

free reward aligned with generation, i.e., length-322

normalized reward:323

rSimPO(x, y) =
β

|y|

|y|∑
i=1

log πθ(yi | x, y<i), (10)324

where β is a constant that controls the scaling of325

the reward difference. Using the shorthand hywπθ =326
β

|yw| log πθ(yw|x), h
yl
πθ = β

|yl| log πθ(yl|x), at the i-327

th iteration, given a batch of preference data Di328

sampled with the latest policy πθ(i−1), we denote329

the policy objective ℓi(θ) as follows:330

ℓi(πθ) = −E(x,yw,yl)∼Di

[
log σ

(
hyw
πθ
− hyl

πθ
− γ

)]
, (11)331

where γ > 0 represents the target reward mar-332

gin, ensuring that the preferred response’s reward333

exceeds that of the dispreferred one; yw and yl334

represent the step-level preferred and dispreferred335

responses, respectively.336

4 Experiments 337

4.1 Experimental Setup 338

We take the widely used open-source LLM, 339

LLaMA3.1-8B-Instruct as our base model. We 340

use synthetic data from ToolACE for experiments, 341

90% for warm-up training, and 50% for reinforce- 342

ment learning to balance performance and cost. 343

For warm-up training, we adopt the parameter- 344

efficient training strategy LoRA (Hu et al., 2022). 345

For reinforcement learning, we employ SimPO, a 346

variant of DPO, for preference optimization, utiliz- 347

ing the QLora parameter-efficient training strategy 348

(Dettmers et al., 2024). For more implementation 349

details and preferences optimization analysis, see 350

Appendix B. 351

Evaluation Dataset. In addition to BFCL, we use 352

API-Bank (Li et al., 2023), which consists of 314 353

tool-use dialogues and 753 API calls. This dataset 354

evaluates models’ abilities to correctly invoke a 355

known API (L-1) based on a query and to retrieve 356

and call APIs from a tool list (L-2). 357

Baselines We compare the overall performance 358

with the state-of-the-art closed-source models 359

(e.g., GPT-series, Gemini and open-source models 360

(e.g., Llama-3.1-8B-Instruct, Qwen2.5-7B (Team, 361

2024)), as well as fine-tuned open-source models 362

with tool-use dataset, including ToolACE-8B (fine- 363

tuning Llama-3.1-8B-Instruct on ToolACE) model, 364

xLAM-series (Zhang et al., 2024) and Hammer- 365

series (Lin et al., 2024). 366

4.2 Overall Performance 367

The overall performance of iTool-8B and baseline 368

models are shown in Table 1 and Table 2. It shows 369

our model consistently achieves corresponding a 370

better performance at comparable scales (∼ 8B). 371

Specifically, it shows consistent advantageous per- 372

formance on API-Bank and BFCL compared with 373

open-source models, and also outperforms most 374

closed-source and larger open-source models in 375

BFCL (e.g., GPT-4-series models). For example, 376

it outperforms xLAM-8x22b-r by 5.27 in the over- 377

all accuracy metrics. Moreover, it demonstrates 378

its superiority in challenging scenarios (e.g., Live), 379

which indicates our method learn advanced tool- 380

use capabilities effectively from synthetic data. 381

This is primarily due to our iterative ReFT strategy, 382

which continuously pinpoints and optimizes the 383

model’s deficiencies. 384

5

Rank Overall Acc Model Non-live Live Multi turn Rel / Irrel

1 63.26 ♣ iTool-8B (FC) 88.82 78.29 23.84 84.90/80.72
2 62.19 ♠ GPT-4o-2024-08-06 (FC) 86.15 75.43 25.00 63.41/82.93
3 61.89 ♠ GPT-4-turbo-2024-04-09 (FC) 88.80 76.23 24.88 73.17/79.76
4 60.47 ♠ GPT-4o-mini-2024-07-18 (FC) 83.72 70.19 27.50 80.49/71.77
5 60.44 ♣ ToolACE-8B (FC) 88.94 74.99 17.38 80.49/85.71
6 58.15 ♠ GPT-4o-mini-2024-07-18 (Prompt) 88.69 74.63 11.13 75.61/81.00
7 57.99 ♣ xLAM-8x22b-r (FC) 87.51 71.97 14.50 85.37/67.29
8 57.92 ♠ Gemini-1.5-Flash-002 (Prompt) 87.60 76.28 9.88 85.37/78.54
9 57.69 ♣ Hammer2.0-7b (FC) 88.54 69.79 14.75 95.12/68.46

10 57.45 ♠ o1-mini-2024-09-12 (Prompt) 83.84 75.39 13.12 48.78/88.04
11 56.80 ♡ mistral-large-2407 (FC) 81.41 68.37 20.62 75.61/49.44
12 56.51 ♠ Gemini-1.5-Pro-002 (Prompt) 89.63 74.41 5.50 65.85/77.30
13 55.86 ♠ Gemini-1.5-Flash-001 (Prompt) 85.74 69.21 12.62 82.93/67.84
14 55.78 ♠ GPT-4-turbo-2024-04-09 (Prompt) 88.80 69.04 9.50 82.93/58.95
15 55.10 ♠ Gemini-1.5-Pro-001 (Prompt) 86.17 73.12 6.00 56.10/85.00
16 54.41 ♣ xLAM-7b-r (FC) 80.86 67.88 14.50 97.56/64.05
17 54.27 ♡ Qwen2.5-7B-Instruct (Prompt) 85.58 65.97 11.25 92.68/64.95
18 53.67 ♡ Llama-3.1-70B-Instruct (Prompt) 87.50 61.13 12.38 92.68/58.38
19 53.66 ♡ Gemma-2-27b-it (Prompt) 87.39 69.48 4.12 87.80/68.76
20 53.00 ♠ GPT-3.5-Turbo-0125 (FC) 78.52 61.22 19.25 97.56/35.16
21 52.50 ♡ Gemma-2-9b-it (Prompt) 84.52 69.21 3.75 87.80/72.45
22 51.59 ♣ Hammer2.0-1.5b (FC) 84.44 63.22 7.13 92.68/60.64
23 51.50 ♡Meta-Llama-3-70B-Instruct (Prompt) 85.10 66.15 3.25 92.68/52.78
27 50.15 ♡ Llama-3.1-8B-Instruct (Prompt) 81.15 57.93 11.38 78.05/41.62
28 49.02 ♣ xLAM-8x7b-r (FC) 73.93 69.12 4.00 87.80/68.12
29 48.82 ♡ Qwen2.5-1.5B-Instruct (Prompt) 53.99 61.71 6.62 75.61/67.17
42 42.98 ♡ Llama-3.2-3B-Instruct (Prompt) 11.11 50.91 4.00 63.41/68.81

Table 1: The leaderboard of different models in four tool-use scenarios of BFCL (v3) benchmark . The top 20
models and baselines are listed for comparison. FC denotes the model is tailored for functional calling. Rel and
Irrel denote relevance and irrelevance detection, respectively, indicating whether to call a tool or not. ♠ denotes
closed-source model, ♡ denotes open-source base model, ♣ denotes open-source fine-tuned model.

Model API-Bank API-Bank
L1 L2

♠ GPT-3.5-turbo-0125 70.43 52.59
♠ GPT-4-0613 75.94 48.89
♠ GPT-4-turbo-2024-04-09 72.43 39.26
♠ GPT-4o-mini-2024-07-18 74.69 45.93
♠ GPT-4o-2024-05-13 76.19 42.96

♡ Alpaca-7B 24.06 5.19
♡ ChatGLM-6B 23.62 13.33
♣ Lynx-7B 49.87 30.37
♣ xLAM-7b-fc-r 32.83 21.48
♡ LLaMA-3.1-8B-Instruct 71.18 37.04
♡ Qwen2.5-7B-Instruct 72.83 41.98
♣ ToolACE-8B 75.94 47.41
♣ iTool-8B 78.89 52.87

Table 2: Accuracy performance comparison on API-
Bank evaluation system. Bold values represent the high-
est performance.

4.3 Ablation Analysis385

4.3.1 Module Ablation386

To evaluate the effectiveness of the two components387

in our method, we conduct an ablation study in: (1)388

the warm-up training phase (w/o warm-up). (2)389

the Iterative Reinforcement Learning (IRT) module390

Models Non-live Live Multi-turn

Base Model 81.15 57.93 11.38
+ SFT 88.94 ↑9.6 74.99 ↑17 17.38 ↑6.0
+ warm-up 88.35 ↓0.6 75.84 ↑1.0 19.65 ↑2.3

+ IRT (iTool) 88.82 ↑0.5 78.29 ↑3.2 23.84 ↑4.2

Total ↑9.5 ↑21.2 ↑12.5

Table 3: The module ablation performance (↑ = increase,
↓ = decrease, values are relative percentage changes
from the previous row).

(w/o IRT). We adopt LLaMA-3.1-8B-Instruct as 391

the Base model for benchmarking, ensuring a con- 392

sistent baseline across all experimental conditions. 393

From Figure 3, we find that all components are 394

essential within our method. The model achieves 395

a comparable level to SFT on the Non-live metric, 396

but each module brings substantial improvements 397

on the complex-scenario metrics (Live and Multi). 398

Specifically, the warm-up training and IRT mod- 399

ules individually contribute improvements of 2.3 400

and 4.2 points, respectively, on the Multi-turn met- 401

ric. Cumulatively, it gets a 6.5 improvement over 402

SFT and a 12.5 gain relative to Base, highlighting 403

effects in complex, multi-step reasoning tasks. 404

6

Figure 5: The performance progression of easy to hard
warm-up training on Live and Overall metrics.

Figure 6: The result of ablation study on MCTS in iTool
on key metrics.

4.3.2 Deeper Ablation405

(1) In warm-up training, we conducted a study406

on the easy2hard SFT strategy. We present the407

performance progression from easy to hard and408

compare it with base model. The experimental re-409

sults are summarized in Figure 5. From the results,410

we observe that our strategy shows a gradual im-411

provement. There is a significant leap from base to412

easy, and the second largest improvement occurs413

from the medium to hard. In the synthetic data, the414

model can quickly learn the task patterns of tool415

use from the easier stages, which in turn benefits416

the harder scenario. This indicates that the model417

benefits from the curriculum learning process that418

goes from easy to hard.419

(2) In iterative reinforcement learning, we con-420

ducted a study on MCTS and iteration counts.421

The results are illustrated in Figure 6 and 7 respec-422

tively. To replace MCTS, we sample four responses423

from the policy model and select the responses with424

the highest and lowest probabilities as preference425

pairs. These pairs are then used for subsequent426

preference optimization (w/o MCTS). From Figure427

Figure 7: The performance variation of our model with
the increase of iterations.

6, we observe that the model’s performance deteri- 428

orates when MCTS is replaced. From Figure 7, we 429

observe that as iterations increase, our method ini- 430

tially shows an upward trend before declining. The 431

model performs best around 3 iterations, especially 432

in the Multi-turn and Live scenarios. This indicates 433

that MCTS can effectively mitigate the issue of 434

insufficient data diversity with a small number of it- 435

erations. However, excessive iterations can lead to 436

overfitting, resulting in a decrease in data diversity. 437

4.3.3 Base Model Analysis. 438

To further validate the effectiveness of base mod- 439

els, we applied our method to other base models. 440

Due to computational resource constraints, we com- 441

pared the following base models (< 10B): (1) 442

Llama-3.2-3B-Instruct, (2) Qwen2.5-7B-Instruct 443

(Team, 2024). From Table 4, our method exhibits 444

remarkably stable performance across different 445

base models. This highlights the robustness of our 446

method in various base models. On Llama-3.2-3B, 447

our method improved performance by 18% over 448

the base model. On Qwen2.5-7B, it achieved the 449

best performance at 63.22%. 450

4.4 Training Gains Analysis 451

To analyze the training gains of our method, as 452

detailed in Section 2.2, we test the training gains 453

of our method. From Figure 8, our method shows 454

greater training gains as the data scale increases in 455

Live and Overall. Unlike SFT, whose training bene- 456

fit curve flattens beyond 30%, our model exhibits a 457

steeper curve in the Live metric. This suggests that 458

7

Base Model Method Oveall Non-live Live Multi-turn Rel / Irrel

Llama-3.1-8B-Instruct
Vanilla 50.15 81.15 57.93 11.38 78.05 / 41.62

Baseline 60.44 88.94 74.99 17.38 80.49 / 85.71
Our 63.26 88.82 78.29 23.84 84.90 / 80.72

Llama-3.2-3B-Instruct
Vanilla 42.98 11.11 50.91 4.00 63.41 / 68.81

Baseline 58.22 89.27 73.90 11.50 84.37 / 78.20
Our 62.93 90.59 76.43 15.82 84.27 / 87.82

Qwen2.5-7B-Instruct
Vanilla 54.27 85.58 65.97 11.25 92.68 / 64.95

Baseline 60.69 90.02 76.23 15.92 73.47 / 86.98
Our 63.93 91.29 82.28 22.38 80.28 / 85.12

Table 4: The accuracy performance comparison of base models with different methods on BFCL benchmark. Vanilla
denotes source base model, Baseline denotes supervised fine-tuned base model, Our denotes iTool.

Figure 8: The change curve of training gains as the data
scale increases on key metrics.

our model can alleviate the internal decay of train-459

ing gains by enhancing its advanced capabilities in460

complex scenarios.461

5 Related Work462

5.1 Tool use of LLMs463

Pioneering works like Toolformer (Schick et al.,464

2023) and ToolAlpaca (Tang et al., 2023) have ex-465

plored the potential of LLMs in tool use. Previ-466

ously, several tuning-free methods were proposed,467

which involves manipulating prompts (e.g., (Xu468

et al., 2023; Shi et al., 2024; Qiao et al., 2024))469

or enhancing execution frameworks (e.g., ReAct470

(Yao et al., 2023), RestGPT (Song et al., 2023)) to471

unlock inherent capabilities.472

Due to the limitation of user-defined tools in473

prompts of the above methods, tuning-based meth-474

ods with synthetic data have been focused. ToolL-475

lama (Qin et al., 2023) notably expanded the toolset476

and investigated the impact of data scaling on per-477

formance. More efficient data synthesis techniques478

have been proposed for tool use (e.g., ToolACE479

(Liu et al., 2024), BUTTON (Chen et al., 2024),480

and xLAM (Zhang et al., 2024)).481

5.2 Reinforcement Learning 482

Learning from human feedback is crucial in align- 483

ing LLMs with human intentions (Leike et al., 484

2018), which is known as reinforcement learning. 485

ReFT enhances this process by combining rein- 486

forcement learning with SFT to optimize model 487

performance using reward signals. Online rein- 488

forcement learning algorithms (Schulman et al., 489

2017; Zheng et al., 2023) are complex and diffi- 490

cult to optimize. Recently, Direct Preference Opti- 491

mization (DPO) (Rafailov et al., 2024), a simpler 492

offline algorithm, reparameterizes the reward func- 493

tion to learn a policy model from preference data 494

directly, enhancing simplicity and training stabil- 495

ity. Besides, a variety of preference optimization 496

objectives have been proposed, e.g., SimPo (Meng 497

et al., 2024), IPO (Azar et al., 2024), ORPO (Hong 498

et al., 2024) and KTO (Ethayarajh et al., 2024). 499

Further studies have extended this approach to an 500

iterative training setup, by continuously updating 501

the reference model with the most recent policy 502

model or generating new preference pairs at each 503

iteration (Dong et al., 2024; Yuan et al., 2024; Kim 504

et al., 2024; Xiong et al., 2024) 505

6 Conclusion 506

Equipping LLMs with external tools is becoming a 507

viable method to enhance their capabilities. In this 508

paper, we study enhancing the advanced tool-use 509

capabilities in a complex scenario from synthetic 510

data. We find that there are training decay issues 511

when training with synthesized tool-use data. To 512

alleviate it, we propose an iterative reinforced fine- 513

tuning strategy. It can continually pinpoint the 514

model’s wrong fragments in its responses and ad- 515

dress these deficiencies by preference optimization. 516

The experimental results demonstrate the effective- 517

ness of the proposed method. 518

8

7 Limitaiton519

While our study has achieved notable advance-520

ments, it is important to acknowledge several limi-521

tations that could be addressed in future work. First,522

the iterative reinforcement learning process (partic-523

ularly the Monte Carlo Tree Search) requires sub-524

stantial computational resources to generate fine-525

grained preference data. Although it is difficult to526

solve, we have effectively implemented parame-527

ter constraints to manage computational costs effi-528

ciently (e.g., 7 hours on 8 V100 GPUs per iteration),529

achieving a balance between computational feasi-530

bility and model performance. Additionally, due531

to limited computing resources, we are not able to532

validate our method on larger 30B or 70B base mod-533

els. Finally, when analyzing the synthetic tool-use534

data, only a single dataset was tested. Testing more535

publicly available datasets would strengthen the536

validity and persuasiveness of the conclusions. We537

will address these limitations in our future work.538

References539

Mohammad Gheshlaghi Azar, Zhaohan Daniel Guo, Bi-540
lal Piot, Remi Munos, Mark Rowland, Michal Valko,541
and Daniele Calandriello. 2024. A general theoret-542
ical paradigm to understand learning from human543
preferences. In International Conference on Arti-544
ficial Intelligence and Statistics, pages 4447–4455.545
PMLR.546

Mingyang Chen, Haoze Sun, Tianpeng Li, Fan Yang,547
Hao Liang, Keer Lu, Bin Cui, Wentao Zhang, Zenan548
Zhou, and Weipeng Chen. 2024. Facilitating multi-549
turn function calling for llms via compositional in-550
struction tuning. arXiv preprint arXiv:2410.12952.551

Rémi Coulom. 2006. Efficient selectivity and backup552
operators in monte-carlo tree search. In International553
conference on computers and games, pages 72–83.554
Springer.555

Tim Dettmers, Artidoro Pagnoni, Ari Holtzman, and556
Luke Zettlemoyer. 2024. Qlora: Efficient finetuning557
of quantized llms. Advances in Neural Information558
Processing Systems, 36.559

Hanze Dong, Wei Xiong, Bo Pang, Haoxiang Wang,560
Han Zhao, Yingbo Zhou, Nan Jiang, Doyen Sahoo,561
Caiming Xiong, and Tong Zhang. 2024. Rlhf work-562
flow: From reward modeling to online rlhf. arXiv563
preprint arXiv:2405.07863.564

Kawin Ethayarajh, Winnie Xu, Niklas Muennighoff,565
Dan Jurafsky, and Douwe Kiela. 2024. Kto: Model566
alignment as prospect theoretic optimization. arXiv567
preprint arXiv:2402.01306.568

Shen Gao, Zhengliang Shi, Minghang Zhu, Bowen Fang, 569
Xin Xin, Pengjie Ren, Zhumin Chen, Jun Ma, and 570
Zhaochun Ren. 2024. Confucius: Iterative tool learn- 571
ing from introspection feedback by easy-to-difficult 572
curriculum. In Proceedings of the AAAI Conference 573
on Artificial Intelligence, volume 38, pages 18030– 574
18038. 575

Jean-Bastien Grill, Florent Altché, Yunhao Tang, 576
Thomas Hubert, Michal Valko, Ioannis Antonoglou, 577
and Rémi Munos. 2020. Monte-carlo tree search 578
as regularized policy optimization. In International 579
Conference on Machine Learning, pages 3769–3778. 580
PMLR. 581

Tom Gunter, Zirui Wang, Chong Wang, Ruoming 582
Pang, Andy Narayanan, Aonan Zhang, Bowen Zhang, 583
Chen Chen, Chung-Cheng Chiu, David Qiu, et al. 584
2024. Apple intelligence foundation language mod- 585
els. arXiv preprint arXiv:2407.21075. 586

Jiwoo Hong, Noah Lee, and James Thorne. 2024. Orpo: 587
Monolithic preference optimization without refer- 588
ence model. In Proceedings of the 2024 Conference 589
on Empirical Methods in Natural Language Process- 590
ing, pages 11170–11189. 591

Edward J Hu, Phillip Wallis, Zeyuan Allen-Zhu, 592
Yuanzhi Li, Shean Wang, Lu Wang, Weizhu Chen, 593
et al. 2022. Lora: Low-rank adaptation of large lan- 594
guage models. In International Conference on Learn- 595
ing Representations. 596

Dahyun Kim, Yungi Kim, Wonho Song, Hyeonwoo 597
Kim, Yunsu Kim, Sanghoon Kim, and Chanjun Park. 598
2024. sdpo: Don’t use your data all at once. arXiv 599
preprint arXiv:2403.19270. 600

Jan Leike, David Krueger, Tom Everitt, Miljan Martic, 601
Vishal Maini, and Shane Legg. 2018. Scalable agent 602
alignment via reward modeling: a research direction. 603
arXiv preprint arXiv:1811.07871. 604

Minghao Li, Yingxiu Zhao, Bowen Yu, Feifan Song, 605
Hangyu Li, Haiyang Yu, Zhoujun Li, Fei Huang, 606
and Yongbin Li. 2023. Api-bank: A comprehensive 607
benchmark for tool-augmented llms. In Proceedings 608
of the 2023 Conference on Empirical Methods in 609
Natural Language Processing, pages 3102–3116. 610

Wenjun Li, Dexun Li, Kuicai Dong, Cong Zhang, Hao 611
Zhang, Weiwen Liu, Yasheng Wang, Ruiming Tang, 612
and Yong Liu. 2025. Adaptive tool use in large lan- 613
guage models with meta-cognition trigger. arXiv 614
preprint arXiv:2502.12961. 615

Xinzhe Li. 2025. A review of prominent paradigms for 616
llm-based agents: Tool use, planning (including rag), 617
and feedback learning. In Proceedings of the 31st 618
International Conference on Computational Linguis- 619
tics, pages 9760–9779. 620

Qiqiang Lin, Muning Wen, Qiuying Peng, Guanyu 621
Nie, Junwei Liao, Jun Wang, Xiaoyun Mo, Jiamu 622

9

Zhou, Cheng Cheng, Yin Zhao, et al. 2024. Ham-623
mer: Robust function-calling for on-device lan-624
guage models via function masking. arXiv preprint625
arXiv:2410.04587.626

Weiwen Liu, Xu Huang, Xingshan Zeng, Xinlong Hao,627
Shuai Yu, Dexun Li, Shuai Wang, Weinan Gan,628
Zhengying Liu, Yuanqing Yu, et al. 2024. Toolace:629
Winning the points of llm function calling. arXiv630
preprint arXiv:2409.00920.631

Ne Luo, Aryo Pradipta Gema, Xuanli He, Emile632
van Krieken, Pietro Lesci, and Pasquale Minervini.633
2025. Self-training large language models for634
tool-use without demonstrations. arXiv preprint635
arXiv:2502.05867.636

Trung Quoc Luong, Xinbo Zhang, Zhanming Jie,637
Peng Sun, Xiaoran Jin, and Hang Li. 2024. Reft:638
Reasoning with reinforced fine-tuning. Preprint,639
arXiv:2401.08967.640

Graziano A Manduzio, Federico A Galatolo,641
Mario GCA Cimino, Enzo Pasquale Scilingo,642
and Lorenzo Cominelli. 2024. Improving small-643
scale large language models function calling for644
reasoning tasks. arXiv preprint arXiv:2410.18890.645

Yu Meng, Mengzhou Xia, and Danqi Chen. 2024.646
Simpo: Simple preference optimization with a647
reference-free reward. In Advances in Neural In-648
formation Processing Systems (NeurIPS).649

Shuofei Qiao, Ningyu Zhang, Runnan Fang, Yujie Luo,650
Wangchunshu Zhou, Yuchen Eleanor Jiang, Huajun651
Chen, et al. 2024. Autoact: Automatic agent learning652
from scratch for qa via self-planning. In ICLR 2024653
Workshop on Large Language Model (LLM) Agents.654

Yujia Qin, Shihao Liang, Yining Ye, Kunlun Zhu, Lan655
Yan, Yaxi Lu, Yankai Lin, Xin Cong, Xiangru Tang,656
Bill Qian, et al. 2023. Toolllm: Facilitating large657
language models to master 16000+ real-world apis.658
In The Twelfth International Conference on Learning659
Representations.660

Changle Qu, Sunhao Dai, Xiaochi Wei, Hengyi Cai,661
Shuaiqiang Wang, Dawei Yin, Jun Xu, and Ji-Rong662
Wen. 2024. Tool learning with large language mod-663
els: A survey. arXiv preprint arXiv:2405.17935.664

Rafael Rafailov, Archit Sharma, Eric Mitchell, Christo-665
pher D Manning, Stefano Ermon, and Chelsea Finn.666
2024. Direct preference optimization: Your language667
model is secretly a reward model. Advances in Neu-668
ral Information Processing Systems, 36.669

Christopher D Rosin. 2011. Multi-armed bandits with670
episode context. Annals of Mathematics and Artifi-671
cial Intelligence, 61(3):203–230.672

Timo Schick, Jane Dwivedi-Yu, Roberto Dessì, Roberta673
Raileanu, Maria Lomeli, Eric Hambro, Luke Zettle-674
moyer, Nicola Cancedda, and Thomas Scialom. 2023.675
Toolformer: Language models can teach themselves676
to use tools. Advances in Neural Information Pro-677
cessing Systems, 36:68539–68551.678

John Schulman, Filip Wolski, Prafulla Dhariwal, 679
Alec Radford, and Oleg Klimov. 2017. Proxi- 680
mal policy optimization algorithms. arXiv preprint 681
arXiv:1707.06347. 682

Zhengliang Shi, Shen Gao, Xiuyi Chen, Yue Feng, 683
Lingyong Yan, Haibo Shi, Dawei Yin, Pengjie Ren, 684
Suzan Verberne, and Zhaochun Ren. 2024. Learning 685
to use tools via cooperative and interactive agents. 686
In Findings of the Association for Computational 687
Linguistics: EMNLP 2024, pages 10642–10657, Mi- 688
ami, Florida, USA. Association for Computational 689
Linguistics. 690

Joykirat Singh, Raghav Magazine, Yash Pandya, and 691
Akshay Nambi. 2025. Agentic reasoning and tool 692
integration for llms via reinforcement learning. arXiv 693
preprint arXiv:2505.01441. 694

Yifan Song, Weimin Xiong, Dawei Zhu, Wenhao Wu, 695
Han Qian, Mingbo Song, Hailiang Huang, Cheng 696
Li, Ke Wang, Rong Yao, et al. 2023. Restgpt: Con- 697
necting large language models with real-world restful 698
apis. arXiv preprint arXiv:2306.06624. 699

Qiaoyu Tang, Ziliang Deng, Hongyu Lin, Xianpei 700
Han, Qiao Liang, Boxi Cao, and Le Sun. 2023. 701
Toolalpaca: Generalized tool learning for language 702
models with 3000 simulated cases. arXiv preprint 703
arXiv:2306.05301. 704

Qwen Team. 2024. Qwen2.5: A party of foundation 705
models. 706

Yuxi Xie, Anirudh Goyal, Wenyue Zheng, Min-Yen 707
Kan, Timothy P Lillicrap, Kenji Kawaguchi, and 708
Michael Shieh. 2024. Monte carlo tree search boosts 709
reasoning via iterative preference learning. arXiv 710
preprint arXiv:2405.00451. 711

Wei Xiong, Chengshuai Shi, Jiaming Shen, Aviv Rosen- 712
berg, Zhen Qin, Daniele Calandriello, Misha Khal- 713
man, Rishabh Joshi, Bilal Piot, Mohammad Saleh, 714
Chi Jin, Tong Zhang, and Tianqi Liu. 2024. Build- 715
ing math agents with multi-turn iterative preference 716
learning. Preprint, arXiv:2409.02392. 717

Benfeng Xu, Licheng Zhang, Zhendong Mao, Quan 718
Wang, Hongtao Xie, and Yongdong Zhang. 2020. 719
Curriculum learning for natural language understand- 720
ing. In Proceedings of the 58th Annual Meeting of 721
the Association for Computational Linguistics, pages 722
6095–6104. 723

Qiantong Xu, Fenglu Hong, Bo Li, Changran Hu, 724
Zhengyu Chen, and Jian Zhang. 2023. On the tool 725
manipulation capability of open-sourced large lan- 726
guage models. In NeurIPS 2023 Foundation Models 727
for Decision Making Workshop. 728

Fanjia Yan, Huanzhi Mao, Charlie Cheng-Jie Ji, Tianjun 729
Zhang, Shishir G. Patil, Ion Stoica, and Joseph E. 730
Gonzalez. 2024. Berkeley function calling leader- 731
board. 732

10

https://arxiv.org/abs/2401.08967
https://arxiv.org/abs/2401.08967
https://arxiv.org/abs/2401.08967
https://doi.org/10.18653/v1/2024.findings-emnlp.624
https://doi.org/10.18653/v1/2024.findings-emnlp.624
https://doi.org/10.18653/v1/2024.findings-emnlp.624
https://qwenlm.github.io/blog/qwen2.5/
https://qwenlm.github.io/blog/qwen2.5/
https://qwenlm.github.io/blog/qwen2.5/
https://arxiv.org/abs/2409.02392
https://arxiv.org/abs/2409.02392
https://arxiv.org/abs/2409.02392
https://arxiv.org/abs/2409.02392
https://arxiv.org/abs/2409.02392

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak733
Shafran, Karthik R Narasimhan, and Yuan Cao. 2023.734
React: Synergizing reasoning and acting in language735
models. In The Eleventh International Conference736
on Learning Representations.737

Junjie Ye, Yilong Wu, Sixian Li, Yuming Yang, Tao Gui,738
Qi Zhang, Xuanjing Huang, Peng Wang, Zhongchao739
Shi, Jianping Fan, et al. 2024. Tl-training: A task-740
feature-based framework for training large language741
models in tool use. arXiv preprint arXiv:2412.15495.742

Weizhe Yuan, Richard Yuanzhe Pang, Kyunghyun Cho,743
Xian Li, Sainbayar Sukhbaatar, Jing Xu, and Ja-744
son E Weston. 2024. Self-rewarding language mod-745
els. In Forty-first International Conference on Ma-746
chine Learning.747

Jianguo Zhang, Tian Lan, Ming Zhu, Zuxin Liu, Thai748
Hoang, Shirley Kokane, Weiran Yao, Juntao Tan,749
Akshara Prabhakar, Haolin Chen, et al. 2024. xlam:750
A family of large action models to empower ai agent751
systems. CoRR.752

Rui Zheng, Shihan Dou, Songyang Gao, Yuan Hua,753
Wei Shen, Binghai Wang, Yan Liu, Senjie Jin, Qin754
Liu, Yuhao Zhou, et al. 2023. Secrets of rlhf in755
large language models part i: Ppo. arXiv preprint756
arXiv:2307.04964.757

Yaowei Zheng, Richong Zhang, Junhao Zhang, Yanhan758
Ye, Zheyan Luo, Zhangchi Feng, and Yongqiang Ma.759
2024. Llamafactory: Unified efficient fine-tuning760
of 100+ language models. In Proceedings of the761
62nd Annual Meeting of the Association for Compu-762
tational Linguistics (Volume 3: System Demonstra-763
tions), Bangkok, Thailand. Association for Computa-764
tional Linguistics.765

A Details in Preliminary Study766

A.1 Descriptions of error types767

Here is the descriptions of all error types.768

• Parameter Value. The value or type of the769

parameter does not match the ground truth.770

• Parameter Name. Unable to identify the pa-771

rameter value from the user query.772

• Parameter Count. Incorrect number of pa-773

rameters; required parameters are missing.774

• Tools Count. The wrong number of tools was775

called.776

• Tool Name. There was an error when calling777

the tool name, such as calling a non-existent778

tool name or a tool name that does not match779

the ground truth.780

• Code Syntax. The tool call does not comply781

with the syntax of Python, Java, or JavaScript.782

• Other. Errors other than those mentioned 783

above. 784

B Complementary Experiments 785

B.1 More Implementation Details 786

The experiments were conducted using the pub- 787

licly available training repository, LLaMA-Factory 788

(Zheng et al., 2024). The training of our model 789

can be done within 28 hours with 8 NVIDIA Tesla 790

V100-SXM2-32GB GPUs. For the training model, 791

we take the best performance checkpoint on the 792

valid dataset. 793

The Implementation Settings. Due to resource 794

constraints, we employ a parameter-efficient train- 795

ing strategy using LoRA (with rank=16 and 796

alpha=32) during the SFT warm-up phase, and 797

QLoRA (a quantization method from the bitsand- 798

bytes 2 library with 4 bits) during the reinforcement 799

learning (RL) phase. We utilize a cosine learning 800

rate scheduler with a warm-up ratio of 0.1. More 801

detailed training settings are shown in Table 5.

Stage epoch lr batch size

SFT 3
easy: 5e-5

64medium: 2e-5
hard: 1e-5

RL 2 1e-6 64

Table 5: The detailed training settings in our method.
lr denotes learning rate. batch size denotes the total
batch size, equals 1 (per device) times 8 (accumulation
steps) times 8 (devices).

802
Implementation Settings in MCTS-base RL. 803

In Expand phase of MCTS, the prompt for self- 804

evaluation is shown in Table 8. When calculat- 805

ing the confidence score for correctness, we evalu- 806

ate the token-level probabilities of a policy model 807

across four options (A, B, C, D) with respective 808

weights of 1.0, 0.1, -1.0, and -2.0. We sample the 809

model’s responses four times and use the weighted 810

average of these samples as the final confidence 811

score. 812

To ensure the quality of the sampled preference 813

data, we exclude the following data: (1) pairs with 814

candidate step similarity above 95%, (2) pairs with 815

aQ-value difference less than 0.1, and (3) accepted 816

samples with a Q-value below 0.3. In MCTS, to 817

control algorithm overhead, we limit the following 818

parameters: (1) depth, the maximum depth of the 819

search tree, (2) width, the maximum number of 820

2https://github.com/TimDettmers/bitsandbytes

11

http://arxiv.org/abs/2403.13372
http://arxiv.org/abs/2403.13372
http://arxiv.org/abs/2403.13372

child nodes per node, (3) simulation, the maxi-821

mum number of simulation steps in Expand phase,822

and (4) iterations, the maximum number of it-823

erations to construct the MCTS search tree. We824

summarize these parameters in Table 6.825

Parameters Value Parameters Value

depth 3 c 1.0
width 3 temperature 1.5
simulation 2 seed 42
iterations 5

Table 6: The parameters setting in MCTS. c denotes the
degree of exploration in the Select phase.

B.2 Preference Algorithm Analysis826

In iterative reinforcement learning, we also explore827

different preference optimization algorithms. Be-828

sides the widely used DPO (Rafailov et al., 2024),829

we also explored SimPO (Meng et al., 2024), IPO830

(Azar et al., 2024), and ORPO (Hong et al., 2024).831

DPO reparameterizes the reward function to learn832

a policy model from preference data directly. IPO833

is a theoretically grounded approach method that834

avoids DPO’s assumption that pairwise preferences835

can be replaced with pointwise rewards. ORPO836

introduces a reference-model-free odd ratio term837

to directly contrast winning and losing responses838

with the policy model and jointly trains with the839

SFT objective. SimPO aligns the reference-free840

reward function in the preference optimization ob-841

jective with the generation metric. For fair compar-842

isons, we start these algorithms from the same SFT843

checkpoints, the reference model is initialized as844

the policy model.845

For these algorithms, we conducted a thorough846

search for the optimal hyperparameter settings to847

ensure a fair comparison. The results of hyper-848

parameter settings are shown in Table 7. The re-849

sults of different preference optimization algorithm850

with optimal hyperparameter settings are shown851

in Figure 9. From the result, we find iTool with852

SimDPO achieved the best performance. Differ-853

ent preference algorithms do not create significant854

performance gaps except for ORPO.855

C Case Analysis856

C.1 An Example of Preference Pair857

Table 9 illustrates a preference pair example. The858

chosen response correctly employs the "Get Trend-859

ing Result" tool with suitable parameters for the860

Figure 9: The performance iTool using different prefer-
ence optimization algorithms on BFCL.

user’s request. Conversely, the rejected response 861

is improperly formatted, omits necessary paren- 862

theses, and incorrectly assigns the value 1 to the 863

timeframe parameter, showcasing an erroneous 864

application of the tool. 865

Table 10 presents another case of preference 866

pair, sampled during the MCTS research tree as 867

depicted in Figure 10. In this scenario, the user’s 868

query lacks the specific details necessary for the 869

functions mentioned (i.e., reviews for ’reviewAn- 870

alytics.extractSentiment’ and metrics for ’social- 871

Trends.fetchTrendingProducts’). The assistant’s 872

chosen response correctly identifies the need for 873

these parameter values, whereas the rejected re- 874

sponse incorrectly hallucinates when recognizing 875

these parameters. 876

12

Method Objective Hyperparameters Best Setting

DPO − log σ
(
β log πθ(yw|x)

πref(yw|x) − β log πθ(yl|x)
πref(yl|x)

)
β ∈ [0.01, 0.05, 0.1] β = 0.1
lr ∈ [1e− 6, 5e− 7, 3e− 7] lr = 3e− 7

IPO
(
log πθ(yw|x)

πref(yw|x) − log πθ(yl|x)
πref(yl|x)

− 1
2τ

)2 τ ∈ [0.01, 0.05, 0.1] τ = 0.1
lr ∈ [1e− 6, 5e− 7, 3e− 7] lr = 1e− 6

ORPO − log pθ(yw|x)− λ log σ
(
log pθ(yw|x)

1−pθ(yw|x) − log pθ(yl|x)
1−pθ(yl|x)

)
, λ ∈ [0.01, 0.05, 0.1] λ = 0.1

where pθ(y|x) = exp
(

1
|y| log πθ(y|x)

)
lr ∈ [1e− 6, 5e− 7, 3e− 7] lr = 3e− 7

SimPO − log σ
(

β
|yw| log πθ(yw|x)− β

|yl|
log πθ(yl|x)− γ

) β ∈ [2.0, 2.5] β = 2.5
γ ∈ [0.5, 1.0, 1.4] γ = 0.5
lr ∈ [1e− 6, 5e− 7, 3e− 7] lr = 1e− 6

Table 7: The search for optimal hyperparameter settings of different preference optimization algorithms.

Prompt 1: Eval Prompt

Ground Truth Response: {gt_ans}
Generated Response by Model: {response}

User Instruction:
Please assess the quality of the generated response relative to the ground truth response.
Note: A generated response that is a fragment of the ground truth response is also excellent.

Evaluation Criteria:
1. Function Name: Is the name of all the function called correct?
2. Parameter Count: Is the number of parameters for all the function correct?
3. Parameter Names: Are the names of all the parameters for the function correct?
4. Parameter Value/Types: Are the value/types of all the parameters for the function correct?
5. Semantic Similarity: Is the generated response semantically close to the ground truth response?

Please directly choose from the following options to judge the overall quality:
(A) Excellent: The generated response meets all criteria and is almost identical to the ground truth response.
(B) Acceptable: The generated response meets most criteria but has minor discrepancies.
(C) Fair: The generated response meets some criteria but has significant issues.
(D) Poor: The generated response fails to meet most or all criteria.

ASSISTANT: The option of overall quality is
You are an AI specialized in tool use.
Your task is to assess the potential veracity of {placeholder}.

Table 8: The Eval Prompt for self-evaluation in Eq. 7 of Section 3.2.

Figure 10: The illustration of example 2 in Table 10 for preference pair derived from MCTS. The floating-point
values of nodes denote the Q-value in MCTS.

13

Example 1

Tool list [{
"name": "Get Trending Result",
"description": "Retrieves trending search results from Google Trends for

the United States.",
"parameters": {

"type": "dict",
"properties": {

"category": {
"description": "The category of trending results (e.g., news, entertainment, etc.)",

"type": "string"
},
"timeframe": {

"description": "The timeframe for which to retrieve trending results (e.g., today,
this week, etc.)",

"type": "string"
}

},
"required": ["category"]

},
"required": null

},{
"name": "Get Server Time",
"description": "Returns the current server time in a standardized format",
"parameters": {

"type": "dict",
"properties": {},
"required": []

},
"required": null

}]

User Can you tell me the latest trending topics in entertainment today?

Assistant

chosen [Get Trending Result(category="entertainment", timeframe="today")]
rejected [Get Trending Result category="entertainment", timeframe="1"]

Table 9: The example 1 of preference pair derived from MCTS.

14

Example 2

Tool list [{
"name": "fetchTrendingProducts",
"description": "Fetches trending products based on reviews and engagement metrics.",
"parameters": {

"metrics": {
"type": "array",
"items": {

"productID": "string",
"engagementScore": {

"likes": "int",
"shares": "int"

} } } }
},{

"name": "extractSentiment",
"description": "Extracts sentiment scores from reviews.",
"parameters": {

"reviews": {
"type": "array",
"items": {

"reviewText": "string",
"reviewDate": {

"type": "string",
"pattern": "^\\w+ \\d{1,2}, \\d{4}$"

} } } }
}]

User I’m running a marketing campaign and need sentiment analysis from this month’s reviews of our main product.
We had 300 likes and 50 shares yesterday. Please analyze trends and sentiment for our competitor’s product
too; they had 450 likes and 75 shares.

Assistant
chosen You need to provide the reviews for the sentiment analysis of the flagship product and

the competitor’s product.
rejected [reviewAnalytics.extractSentiment(reviews={"reviewText": "product_name ticks the check

for everything."}),

Table 10: The example 2 of preference pair derived from MCTS.

15

	Introduction
	Problem Statement and Analysis
	Task Overview
	Preliminary Study

	Method
	Warm-up training
	MCTS-Based Iterative Reinforcement Learning

	Experiments
	Experimental Setup
	Overall Performance
	Ablation Analysis
	Module Ablation
	Deeper Ablation
	Base Model Analysis.

	Training Gains Analysis

	Related Work
	Tool use of LLMs
	Reinforcement Learning

	Conclusion
	Limitaiton
	Details in Preliminary Study
	Descriptions of error types

	Complementary Experiments
	More Implementation Details
	Preference Algorithm Analysis

	Case Analysis
	An Example of Preference Pair

