iTool: Reinforced Fine-Tuning with Dynamic Deficiency Calibration for
Advanced Tool Use

Anonymous ACL submission

Abstract

Augmenting large language models (LLMs)
with external tools is a promising approach to
enhance their capabilities, especially for com-
plex tasks. Synthesizing tool-use data through
real-world simulations is an effective way to
achieve this. However, our investigation re-
veals that training gains significantly decay as
synthetic data increases. The model struggles
to benefit from more synthetic data, and it can
not equip the model with advanced tool-use
capabilities in complex scenarios. Moreover,
we discovered that the above limitation usu-
ally manifests as a fragment deficiency (i.e.,
parameter errors) in response. To this end,
we propose an iterative reinforced fine-tuning
strategy designed to alleviate this limitation.
This strategy involves: (1) enhancing the diver-
sity of response for synthetic data through path
exploration of Monte Carlo Tree Search. (2)
iteratively pinpointing the model’s deficiency
by constructing fine-grained preference pairs,
and then improving it by preference optimiza-
tion algorithms for targeted improvement. The
experiments show that our method achieves
13.11% better performance than the same-size
base model. It achieves an improvement of
6.5% in complex scenarios compared to the
baseline, and it also outperforms larger open-
source and closed-source models.

1 Introduction

Integrating LLMs with external tools significantly
enhances their capability to tackle complex tasks
in real-world scenarios (Li, 2025; Qu et al., 2024).
For instance, the tool-use capability allows LLMs
to access up-to-date information, perform precise
calculations, and reduce the likelihood of halluci-
nations (Singh et al., 2025). This unlocks a wide
range of potential applications in various domains,
such as complex reasoning tasks (Li et al., 2025;
Manduzio et al., 2024), and the scheduling of appli-
cations on devices (Gunter et al., 2024; Luo et al.,

Seed Tool & Data Tool Use Data ——t%

200 @5e iy o o

0 ~#— overall
—e— simple
50 complex

@ - @
% 0 20 40 60 80 100

Used Data Percentage (%)
(b) Training gains with synthetic data

Accuracy

(a) SFT on synthetic data

Figure 1: The training paradigm of the tool-use model
under synthetic data (a). However, as shown in (b), their
training gains decay significantly as the synthetic data
increases, especially in complex tool-use scenarios.

2025). In essence, tool use involves the following
process: Given one or more tools, a user presents a
question, and the LLM selects the appropriate tools
from the candidate tools and performs the tool call
to fulfill the user’s demands. In this paper, ¢ tools
are used interchangeably with APIs, functions, and
plugins.

Recent advancements have found that LLMs can
handle simple tool use scenarios through prompt
engineering (Ye et al., 2024), but they encounter
difficulties with more complex real-world applica-
tions (e.g., long contexts or extensive toolsets) (Yan
et al., 2024). To address this, some studies simulate
real-world scenarios, such as ticketing systems, to
mimic more realistic use cases (Lin et al., 2024) to
collect synthetic data. Synthetic data are used in
supervised fine-tuning (SFT) to improve tool use
in complex scenarios, as shown in Figure 1 (a). De-
spite these solution strides in the development of
tool-use models, our investigation reveals a critical
weakness: there is a training gains decay as the
synthetic tool-use data scales.

We conducted tests to explore how the perfor-
mance of the model changes when synthetic data
of different proportions is used, as shown in Figure
1 (b), We find that the model struggles to bene-
fit from more synthetic data with SFT in complex
scenarios. More analysis in Section 2.2 indicates

that this limitation reflects the failure of the model
to extract the parameter name or infer the correct
parameter value from the user query. This issue typ-
ically affects only a small fragment of the response,
differing from the ground truth response.

Therefore, we attempt to alleviate the decay of
training gains when using synthetic tool-use data,
to enhance the ability of tool use in complex sce-
narios. It is not easy because it requires equipping
the model with advanced contextual understand-
ing and reasoning capabilities. Fortunately, the
success of OpenA ol' demonstrates complex rea-
soning through step-by-step slow thinking (e.g.,
Monte Carlo Tree Search (MCTS) (Coulom, 2006)
) and Reinforced Fine-Tuning (ReFT) (Luong et al.,
2024) (tailors reinforcement learning and aligns
with user intentions to specific tasks).

To this end, we propose a novel learning method
involving (1) an MCTS-based path exploration
to enhance response diversity and (2) ReFT to
progressively correct the wrong fragment text of
model’s response. Specifically, we propose an
iterative reinforced fine-tuning strategy for Tool
use, named i7ool. It first iteratively identifies com-
plex data based on feedback from a policy model. It
then performs MCTS to help explore data diversity
in response, and further pinpoint wrong fragment
by collecting fine-grained preference pairs from
search path. Finally, a reinforcement learning pol-
icy (i.e., direct preference optimization (Rafailov
et al., 2024)) is applied to align the model’s re-
sponse with the ground-truth response and misalign
it with wrong fragment. Moreover, before itera-
tive ReFT, we propose an easy-to-hard warm-up
SFT strategy for learning from complex scenarios.
Following these advancements, i7ool demonstrates
~13% better performance than the base model. It
also achieves substantial improvements in tool-use
ability under complex scenarios. Despite having
only 8B parameters, it outperforms larger open-
source models and competes with top-tier closed-
source models.

2 Problem Statement and Analysis

2.1 Task Overview

In tool use, the LLM receives a user query ¢ along
with a set of candidate tools, represented as 7 =
{to,t1, ..., t}7}. The purpose of LLM is to fulfill
the user’s intent by executing a specific sequence
of tools. The decision process can be described

"https://openai.com/index/learning-to-reason-with-1lms/

% get_weather, required:[‘location’, ‘date’]
get_live_events_count_by_sport, required: ['sport’, ‘location’]

Tool list | get_popular_outdoor_activities, required: [‘location’, ‘date’, ‘weather’]
O ; — ;
A What will the weather be like in San Francisco on May 1, 2025?]
User
[[get_weather(location="San Francisco', date='2025-05-01")] F !!A Z
3
@ Querying the weather information by calling the API interface. LLM

[The weather is sunny.

&

} LLM

O Thanks! Could you let me know how many live tennis matches will
-\ be in San Francisco on May 1, 2025? Also, any suggestions for

User outdoor activities depending on the weather that day?

[get_live_events_count_by_sport(sport="tennis’, location="San ﬂ
Francisco’), get_popular_outdoor_activities(location="San R
Francisco’, date='2025-05-01’, weather=‘unknown’)] LLM

Figure 2: An illustration of tool-use. Given a user query
with candidate tools, LLMs select the tool(s) from can-
didates, then execute the API call operation, and finally
reply with a response. In the bad response, the param-
eter errors (i.g, red font weather="unknown’) account
for a small fragment of the response content.

asy ~ w(y | so,q,T), where 7(-) represents the
policy model, sy denotes the initial task state, and
y represents the actions taken by the model, such
as selecting or executing a specific tool call from
T. A case is illustrated in Figure 2.

2.2 Preliminary Study

This section presents the challenges when fine-
tuning models with tool-use synthetic data, and
clarifies the motivation for the proposed methods.

We fine-tune the model using synthetic tool-use
data of varying proportions. Specifically, train-
ing data: ToolACE (Liu et al., 2024) is a general
tool-use dataset with up to 100K samples, and
created through a novel self-evolution synthesis.
Evaluation benchmark: Berkeley Function-Calling
Leaderboard (BFCL) (Yan et al., 2024) provides a
comprehensive dataset comprising 4k+ instances
(updating), consisting of Non-live (with expert-
curated simple tools), Live (with user-contributed
complex tools), Multi-turn (with multi-turn &
multi-step tool use) and Hallucination (i.e., rele-
vance and irrelevance detection) samples. Here,
Non-live denotes simple tool use scenarios (e.g.,
single tool), while Live represents more complex
tool use scenarios (e.g., multiple parallel tools). For
convenient understanding, in this section, we use
simple and complex as aliases for the Non-live and
Live metrics, respectively.

The results are depicted in Figure 1 (b). We ob-
serve that the model’s performance gain declines
significantly as the training data increases. Specif-
ically, with the SFT paradigm shown in Figure 1

(a) Error Type Percentage

(b) Error Type Count
300 294

k]
§ 150 120
z
100
50 4 A
20 10 16
0
Error Types
[Parameter Value 3 Parameter Count 3 Code Syntax
[Parameter Name [Tool Name [Other

3 Tools Count

Figure 3: Error type distribution in bad cases. In bad
cases, error types are highly concentrated in Parameter
Value & Name.

(a), The model significantly enhances tool-use abil-
ity with small-scale supervised data by mimicking
patterns from the training examples. However, the
performance improvement significantly declines
after 30% of the data is used. The model struggles
to benefit from using more synthetic data, we ar-
gue that insufficient data diversity is one of the key
factors.

To explore the manifestations of the above-
mentioned issue, we perform a bad case analysis.
We counts all error types in Live and Non-live of
BFCL, and categorized the error types as shown
in Figure 3. Here, Parameter Value error denotes
the value of the parameter that does not match the
ground truth. Parameter Name error denotes unable
to identify the parameter value from the user query.
For more details, see Appendix A. From Figure
3, we observed that errors are highly concentrated
in Parameter Value & Name errors. In bad cases,
parameter error constitutes a small fragment in re-
sponse, while the majority remains consistent with
the ground-truth. An illustration is shown in Fig-
ure 2. Therefore, trying to fix the fragment error
can help alleviate the limitation of gain decay in
training models.

In summary, we find that training with synthetic
tool-use data causes gain decay, and the model
struggles to benefit from additional such data. This
limitation is reflected in the model’s deficiency (i.e.,
parameter errors) in responses. Motivated by this
line, we utilize the MCTS path to explore diver-
sity in responses for alleviating such gains decay.
We further propose an iterative ReFT strategy to
progressively pinpoint and optimize the model’s
deficiencies.

3 Method

In this section, we provide a detailed introduction
to our method. Figure 4 shows the overall architec-
ture. It consists of warm-up training and iterative
reinforcement learning.

3.1 Warm-up training

In real-world applications, the tool-use model
should select multiple tools from a complex can-
didate toolset and schedule them correctly (a.k.a.,
hard mode), instead of directly using a single candi-
date tool to respond (a.k.a., easy mode). Similar to
human learning procedures, tool learning models
can benefit from an easy-to-hard curriculum during
model training (Xu et al., 2020). Therefore, we
propose an easy-to-hard SFT for warm-up training.
In the warm-up stage, we first divide the dataset
evenly into three subsets (i.e., easy, medium, hard)
based on difficulty levels. We follow the criteria:
(a) the candidate toolset number; (b) the string
length of the toolset; and (c) the number of tool
calls needed in response to split the dataset. The
specific definitions for each subset are as follows:
() hard: a >= 4 or b > 2000 or c >= 4. (2)
medium: 1 < a < 4 or b < 2000 or c < 4.(3)
simple: a <= 1 and b < 1000 and c <= 1.

D= Deasy U Dmedium U Dhard- (1)

Subsequently, we fine-tune the LLM M sequen-
tially on each subset D; using the supervised loss:

with Dy (easy), D2 (medium) and D3 (hard).
The total warm-up loss is:

N=3
/:'warm-up = Z Ez (3)
=1

3.2 MCTS-Based Iterative Reinforcement
Learning

In order to alleviate training gains decreases using
synthetic tool-use data for LLM, in this module,
we propose an Iterative Reinforcement Learning
scheme to continuously remedy this deficiency. As
shown in Figure 4, it iteratively refreshes replay
buffer to sample complex data and generates pref-
erence data for preference optimization.

Tool Dataset
The Main Procedure:

©>@>@>@>® p R

= e e

@ Easy to Hard SFT
Policy Model (1) Warm-Up Training

Replay Buffer

Step-wised MCTS

AV ® Sampliné ™ L

ko

ST © 0P @
257 &

(2) Iterative Reinforcement Learning

[o)

Preference Pairs

Figure 4: The overall architecture of i7ool consists of warm-up training and iterative reinforcement learning.
Specifically, after warm-up training @, the policy model refreshes the replay buffer @ and then actively samples
complex data ®. Then, step-wise MCTS @ is performed to obtain fine-grained preference pairs for pointing out
the wrong fragment in response. Finally, the models are updated via direct preference optimization ® to improve
response. The fire © and frozen # denote parameters are updated and fixed, respectively.

Sampling complex data. Given a warm-up
model from the previous stage, it is used to re-
fresh the replay buffer by feeding back the com-
plexity of samples. The replay buffer is initial-
ized with a random 50% sample from the tool-use
dataset. Each example in the buffer is represented
as: Tpurfr = (¢, T, c), where c is denote the com-
plexity of sample. In practice, model generation
perplexity h is used to measure the complexity of
the samples, i.e., ¢ = h. The generation perplexity
of the target response can be factorized as follows:

1
[. — 4
{PutTam @

where the Puq(y | g, T) is the generation proba-
bility. Since perplexity h represents the degree of
generation uncertainty (Gao et al., 2024), we sam-
ples top 10% highest h data for subsequent step in
each iteration.

MCTS for Step-Level Preference. The suc-
cess of OpenAl ol provides a compelling illustra-
tion of the effectiveness of step-by-step thinking.
As a key algorithm, MCTS path exploration can
fully traverse the search space and provide greater
data diversity (Grill et al., 2020). Inspired by these,
we propose to integrate MCTS into training for
collecting step-level preference data.

The step-wise MCTS is achieved by breaking
down the expansion step into discrete steps, trans-
forming instance-level rewards into granular step-
level signals. Specifically, it begins from a root
node sq (i.e., user query), and unfolds in three iter-
ative stages: selection, expansion, and backup:

(1) Select. It is guided by two key variables:
Q(s¢,a) is the value of taking action a in state
st, and N (s;) is the visitation frequency of state
s¢. We employ the Predictor+ Upper Confidence
bounds applied to Trees (PUCT) (Rosin, 2011) to
navigate the trade-off between exploring and ex-
ploiting ones. At node s;, the subsequent node
follows the formula:

N(st)
T+ N(se) |
&)
where p(a | s¢) = mp(a | g, T, s¢) denotes the pol-
icy 7y (+)’s probability distribution for generating a
action step a, and c is the trade-off hyperparame-
ter. We enforce the policy model to generate fine-
grained fragments (e.g., an argument assignment
operation, like weather="unknown’ in Figure 2)
by managing the termination characters (e.g., add
o))

(2) Expand. It occurs at a leaf node during the
selection process to integrate new nodes and assess
rewards. The reward r(s;, a) for executing step a
in state s; is quantified by the reward difference
between states R(s;) and R(s;+1), showing the
benefit of action a in state s;. As defined in Eq.6,
reward computation merges outcome correctness O
with self-evaluation C. Following Xie et al. (2024),
we define self-evaluation with Eval Prompt 8 as
Eq.7.

st41 = argmax | Q(s,a) +c-pla| st)
St

R(st) = O(st) +C(s1), (6)
C(St) = W@(CS ’ promptevalv q,a, Tv St)v (7)

where cs denotes the confidence score in token-
level probability for correctness. Future rewards

are anticipated by simulating upcoming scenar-
ios through roll-outs, following the selection and
expansion process until reaching a terminal state
(i.e., complete response or exceeds the maximum
length).

(3) Backup. Once a terminal state is reached, we
carry out a bottom-up update from the terminal
node back to the root. We update the visit count NV,
the state value V', and the action value Q):

V(st) < Y N(ser1)Q(st,0)/ Y N(ser1), (8)

Q(st,a) < r(s,a) + 9V (se41), 9

where -y is the discount for future state values.

We use the action value Q to indicate the prefer-
ence for candidate steps, with higher values show-
ing more preferred next steps. For each node in the
search tree, we choose the steps with the highest
and lowest Q as the preferred and dispreferred re-
sponses, respectively, and consider the prefix path
as the question. See Appendix C.1 for an example.

Iterative preference optimization. Given the
step-level preferences collected via MCTS, we tune
the policy model via SimPO (Meng et al., 2024), a
variant of DPO (Rafailov et al., 2024). Because it
reduces computational overhead by eliminating the
need for a reference model. After optimization, we
obtain the updated policy my(;) and repeat sampling
the complex data process to iteratively update the
policy model.

As a variant of DPO, it eliminates the need for a
reference model and introduces a simple reference-
free reward aligned with generation, i.e., length-
normalized reward:

|yl

rsimpo(2,y) = > logmo(yi | 2,y<i), (10)
i=1

where 3 is a constant that controls the scaling of
the reward difference. Using the shorthand h%Y =
n%‘ log 79 (yw|z), iy = % log 7 (y;|), at the i-
th iteration, given a batch of preference data D;
sampled with the latest policy mg(;_1), we denote

the policy objective ¢;(6) as follows:
ti(0) = ~E(a y y)~p, [logo (hzy — bz —7)], (1D

where v > 0 represents the target reward mar-
gin, ensuring that the preferred response’s reward
exceeds that of the dispreferred one; ¥, and y;
represent the step-level preferred and dispreferred
responses, respectively.

4 Experiments

4.1 Experimental Setup

We take the widely used open-source LLM,
LLaMA3.1-8B-Instruct as our base model. We
use synthetic data from ToolACE for experiments,
90% for warm-up training, and 50% for reinforce-
ment learning to balance performance and cost.
For warm-up training, we adopt the parameter-
efficient training strategy LoRA (Hu et al., 2022).
For reinforcement learning, we employ SimPO, a
variant of DPO, for preference optimization, utiliz-
ing the QLora parameter-efficient training strategy
(Dettmers et al., 2024). For more implementation
details and preferences optimization analysis, see
Appendix B.

Evaluation Dataset. In addition to BFCL, we use
API-Bank (Li et al., 2023), which consists of 314
tool-use dialogues and 753 API calls. This dataset
evaluates models’ abilities to correctly invoke a
known API (L-1) based on a query and to retrieve
and call APIs from a tool list (L-2).

Baselines We compare the overall performance
with the state-of-the-art closed-source models
(e.g., GPT-series, Gemini and open-source models
(e.g., Llama-3.1-8B-Instruct, Qwen2.5-7B (Team,
2024)), as well as fine-tuned open-source models
with tool-use dataset, including ToolACE-8B (fine-
tuning Llama-3.1-8B-Instruct on ToolACE) model,
xLAM-series (Zhang et al., 2024) and Hammer-
series (Lin et al., 2024).

4.2 Overall Performance

The overall performance of iTool-8B and baseline
models are shown in Table 1 and Table 2. It shows
our model consistently achieves corresponding a
better performance at comparable scales (~ 8B).
Specifically, it shows consistent advantageous per-
formance on API-Bank and BFCL compared with
open-source models, and also outperforms most
closed-source and larger open-source models in
BFCL (e.g., GPT-4-series models). For example,
it outperforms xXLAM-8x22b-r by 5.27 in the over-
all accuracy metrics. Moreover, it demonstrates
its superiority in challenging scenarios (e.g., Live),
which indicates our method learn advanced tool-
use capabilities effectively from synthetic data.
This is primarily due to our iterative ReFT strategy,
which continuously pinpoints and optimizes the
model’s deficiencies.

Rank Overall Acc | Model | Non-live Live Multiturn | Rel/Irrel
1 63.26 & iTool-8B (FC) 88.82 78.29 23.84 84.90/80.72
2 62.19 & GPT-40-2024-08-06 (FC) 86.15 75.43 25.00 63.41/82.93
3 61.89 & GPT-4-turbo-2024-04-09 (FC) 88.80 76.23 24.88 73.17/79.76
4 60.47 & GPT-40-mini-2024-07-18 (FC) 83.72 70.19 27.50 80.49/71.77
5 60.44 & ToolACE-8B (FC) 88.94 74.99 17.38 80.49/85.71
6 58.15 & GPT-40-mini-2024-07-18 (Prompt) 88.69 74.63 11.13 75.61/81.00
7 57.99 & xLAM-8x22b-r (FC) 87.51 71.97 14.50 85.37/67.29
8 57.92 & Gemini-1.5-Flash-002 (Prompt) 87.60 76.28 9.88 85.37/78.54
9 57.69 & Hammer2.0-7b (FC) 88.54 69.79 14.75 95.12/68.46
10 57.45 & 01-mini-2024-09-12 (Prompt) 83.84 75.39 13.12 48.78/88.04
11 56.80 Q mistral-large-2407 (FC) 81.41 68.37 20.62 75.61/49.44
12 56.51 & Gemini-1.5-Pro-002 (Prompt) 89.63 74.41 5.50 65.85/77.30
13 55.86 & Gemini-1.5-Flash-001 (Prompt) 85.74 69.21 12.62 82.93/67.84
14 55.78 & GPT-4-turbo-2024-04-09 (Prompt) 88.80 69.04 9.50 82.93/58.95
15 55.10 & Gemini-1.5-Pro-001 (Prompt) 86.17 73.12 6.00 56.10/85.00
16 54.41 & xLAM-7b-r (FC) 80.86 67.88 14.50 97.56/64.05
17 54.27 Q Qwen2.5-7B-Instruct (Prompt) 85.58 65.97 11.25 92.68/64.95
18 53.67 Q Llama-3.1-70B-Instruct (Prompt) 87.50 61.13 12.38 92.68/58.38
19 53.66 Q Gemma-2-27b-it (Prompt) 87.39 69.48 4.12 87.80/68.76
20 53.00 & GPT-3.5-Turbo-0125 (FC) 78.52 61.22 19.25 97.56/35.16
21 52.50 QO Gemma-2-9b-it (Prompt) 84.52 69.21 3.75 87.80/72.45
22 51.59 & Hammer2.0-1.5b (FC) 84.44 63.22 7.13 92.68/60.64
23 51.50 Q Meta-Llama-3-70B-Instruct (Prompt) 85.10 66.15 3.25 92.68/52.78
27 50.15 Q Llama-3.1-8B-Instruct (Prompt) 81.15 57.93 11.38 78.05/41.62
28 49.02 & xLAM-8x7b-r (FC) 73.93 69.12 4.00 87.80/68.12
29 48.82 Q Qwen2.5-1.5B-Instruct (Prompt) 53.99 61.71 6.62 75.61/67.17
42 42.98 Q Llama-3.2-3B-Instruct (Prompt) 11.11 50.91 4.00 63.41/68.81

Table 1: The leaderboard of different models in four tool-use scenarios of BFCL (v3) benchmark . The top 20
models and baselines are listed for comparison. FC denotes the model is tailored for functional calling. Rel and
Irrel denote relevance and irrelevance detection, respectively, indicating whether to call a tool or not. & denotes
closed-source model, © denotes open-source base model, & denotes open-source fine-tuned model.

API-Bank API-Bank

Model L1 L2

& GPT-3.5-turbo-0125 70.43 52.59
& GPT-4-0613 75.94 48.89
& GPT-4-turbo-2024-04-09 72.43 39.26
& GPT-40-mini-2024-07-18 74.69 4593
& GPT-40-2024-05-13 76.19 42.96
Q Alpaca-7B 24.06 5.19
Q ChatGLM-6B 23.62 13.33
& Lynx-7B 49.87 30.37
& xLAM-7b-fc-r 32.83 21.48
QO LLaMA-3.1-8B-Instruct 71.18 37.04
Q© Qwen2.5-7B-Instruct 72.83 41.98
& ToolACE-8B 75.94 4741
& iTool-8B 78.89 52.87

Table 2: Accuracy performance comparison on API-
Bank evaluation system. Bold values represent the high-
est performance.

4.3 Ablation Analysis

4.3.1 Module Ablation

To evaluate the effectiveness of the two components
in our method, we conduct an ablation study in: (1)
the warm-up training phase (W/o warm-up). (2)
the Iterative Reinforcement Learning (IRT) module

Models | Non-live Live Multi-turn
Base Model 81.15 57.93 11.38
+ SFT 88.9419.6 7499 717 17.38 16.0
+ warm-up 88.3510.6 7584 11.0 19.6512.3
+ IRT (iTool) | 88.8210.5 7829713.2 23.8414.2
Total | 195 121.2 +12.5

Table 3: The module ablation performance (T = increase,
1 = decrease, values are relative percentage changes
from the previous row).

(w/o IRT). We adopt LLaMA-3.1-8B-Instruct as
the Base model for benchmarking, ensuring a con-
sistent baseline across all experimental conditions.
From Figure 3, we find that all components are
essential within our method. The model achieves
a comparable level to SFT on the Non-live metric,
but each module brings substantial improvements
on the complex-scenario metrics (Live and Multi).
Specifically, the warm-up training and IRT mod-
ules individually contribute improvements of 2.3
and 4.2 points, respectively, on the Multi-turn met-
ric. Cumulatively, it gets a 6.5 improvement over
SFT and a 12.5 gain relative to Base, highlighting
effects in complex, multi-step reasoning tasks.

75.8%

75 73.68% _——=""
722% __ e
=
70 II
—_— ,’
& /
§55 I, 61.7%
5 K L2
S8 519 0%~
g]
572% -4~
9 é }1
-
55 prg
51.5%"
) ’
45
Base Easy Medium Hard

=Jde - Easy2Hard SFT (Overall)
—e- Easy2Hard SFT (Live)

[Overall Metric
Live Metric

Figure 5: The performance progression of easy to hard
warm-up training on Live and Overall metrics.

80 A: 5.66%

78.29%

72.63%

65 Ar257%
63.26%

Accuracy (%)

60 60.69%

Overall Live
[w/o MCTS 3 w/ MCTS (iTool)

Figure 6: The result of ablation study on MCTS in i7ool
on key metrics.

4.3.2 Deeper Ablation

(1) In warm-up training, we conducted a study
on the easy2hard SFT strategy. We present the
performance progression from easy to hard and
compare it with base model. The experimental re-
sults are summarized in Figure 5. From the results,
we observe that our strategy shows a gradual im-
provement. There is a significant leap from base to
easy, and the second largest improvement occurs
from the medium to hard. In the synthetic data, the
model can quickly learn the task patterns of tool
use from the easier stages, which in turn benefits
the harder scenario. This indicates that the model
benefits from the curriculum learning process that
goes from easy to hard.

(2) In iterative reinforcement learning, we con-
ducted a study on MCTS and iteration counts.
The results are illustrated in Figure 6 and 7 respec-
tively. To replace MCTS, we sample four responses
from the policy model and select the responses with
the highest and lowest probabilities as preference
pairs. These pairs are then used for subsequent
preference optimization (w/o MCTS). From Figure

(1) Non-live (2) Live
9.0 79 78.52
89.5 78
Ea90 8%,‘35
= O y 88.69 76.84
© 2 T o % 77
S aggosah ek kK
g 3
g x 7675.80
@ 88.0
o
87.5 s
87.0 74
(3) Multi-turn (4) Overall
25 64
o 23.84 6?;{26
7 62.92
Fo 2291 63 ,* ‘* 3¢ Kk
Y *
j=2] V4
2 6261.71
] w
5 21
o 61
2019.65
19 60
0 2 4 6 0 2 4 6

Iterations Iterations

Figure 7: The performance variation of our model with
the increase of iterations.

6, we observe that the model’s performance deteri-
orates when MCTS is replaced. From Figure 7, we
observe that as iterations increase, our method ini-
tially shows an upward trend before declining. The
model performs best around 3 iterations, especially
in the Multi-turn and Live scenarios. This indicates
that MCTS can effectively mitigate the issue of
insufficient data diversity with a small number of it-
erations. However, excessive iterations can lead to
overfitting, resulting in a decrease in data diversity.

4.3.3 Base Model Analysis.

To further validate the effectiveness of base mod-
els, we applied our method to other base models.
Due to computational resource constraints, we com-
pared the following base models (< 10B): (1)
Llama-3.2-3B-Instruct, (2) Qwen2.5-7B-Instruct
(Team, 2024). From Table 4, our method exhibits
remarkably stable performance across different
base models. This highlights the robustness of our
method in various base models. On Llama-3.2-3B,
our method improved performance by 18% over
the base model. On Qwen2.5-7B, it achieved the
best performance at 63.22%.

4.4 Training Gains Analysis

To analyze the training gains of our method, as
detailed in Section 2.2, we test the training gains
of our method. From Figure 8, our method shows
greater training gains as the data scale increases in
Live and Overall. Unlike SFT, whose training bene-
fit curve flattens beyond 30%, our model exhibits a
steeper curve in the Live metric. This suggests that

Base Model Method [Oveall Non-live Live Multi-turn [Rel / Irrel
Vanilla 50.15 81.15 57.93 11.38 78.05/41.62
Llama-3.1-8B-Instruct Baseline | 60.44 88.94 74.99 17.38 80.49/85.71
Our 63.26 88.82 78.29 23.84 84.90/80.72
Vanilla 42.98 11.11 50.91 4.00 63.41/68.81
Llama-3.2-3B-Instruct Baseline | 58.22 89.27 73.90 11.50 84.37/78.20
Our 62.93 90.59 76.43 15.82 84.27/87.82
Vanilla 54.27 85.58 65.97 11.25 92.68 /64.95
Qwen2.5-7B-Instruct Baseline | 60.69 90.02 76.23 15.92 73.47 1 86.98
Our 63.93 91.29 82.28 22.38 80.28 / 85.12

Table 4: The accuracy performance comparison of base models with different methods on BFCL benchmark. Vanilla
denotes source base model, Baseline denotes supervised fine-tuned base model, Our denotes iTool.

80 70

/>—>

U

_~

P e -
- S|

@ <—‘</
- g 60 P ET ati)
j
[

»

~
o

~
=]

Accuracy (%)
&
\
A

Accuracy (%)

=) @
S o

o
o

40
0 25 50 75 100 0 25 50 75 100
Data Percentage (%) Data Percentage (%)

—< OverallSFT) =<~ Overall(Our)

Figure 8: The change curve of training gains as the data
scale increases on key metrics.

our model can alleviate the internal decay of train-
ing gains by enhancing its advanced capabilities in
complex scenarios.

5 Related Work

5.1 Tool use of LLMs

Pioneering works like Toolformer (Schick et al.,
2023) and ToolAlpaca (Tang et al., 2023) have ex-
plored the potential of LLMs in tool use. Previ-
ously, several tuning-free methods were proposed,
which involves manipulating prompts (e.g., (Xu
et al., 2023; Shi et al., 2024; Qiao et al., 2024))
or enhancing execution frameworks (e.g., ReAct
(Yao et al., 2023), RestGPT (Song et al., 2023)) to
unlock inherent capabilities.

Due to the limitation of user-defined tools in
prompts of the above methods, tuning-based meth-
ods with synthetic data have been focused. ToolL-
lama (Qin et al., 2023) notably expanded the toolset
and investigated the impact of data scaling on per-
formance. More efficient data synthesis techniques
have been proposed for tool use (e.g., ToolACE
(Liu et al., 2024), BUTTON (Chen et al., 2024),
and xLAM (Zhang et al., 2024)).

5.2 Reinforcement Learning

Learning from human feedback is crucial in align-
ing LL.Ms with human intentions (Leike et al.,
2018), which is known as reinforcement learning.
ReFT enhances this process by combining rein-
forcement learning with SFT to optimize model
performance using reward signals. Online rein-
forcement learning algorithms (Schulman et al.,
2017; Zheng et al., 2023) are complex and diffi-
cult to optimize. Recently, Direct Preference Opti-
mization (DPO) (Rafailov et al., 2024), a simpler
offline algorithm, reparameterizes the reward func-
tion to learn a policy model from preference data
directly, enhancing simplicity and training stabil-
ity. Besides, a variety of preference optimization
objectives have been proposed, e.g., SimPo (Meng
et al., 2024), IPO (Azar et al., 2024), ORPO (Hong
et al., 2024) and KTO (Ethayarajh et al., 2024).

Further studies have extended this approach to an
iterative training setup, by continuously updating
the reference model with the most recent policy
model or generating new preference pairs at each
iteration (Dong et al., 2024; Yuan et al., 2024; Kim
et al., 2024; Xiong et al., 2024)

6 Conclusion

Equipping LLMs with external tools is becoming a
viable method to enhance their capabilities. In this
paper, we study enhancing the advanced tool-use
capabilities in a complex scenario from synthetic
data. We find that there are training decay issues
when training with synthesized tool-use data. To
alleviate it, we propose an iterative reinforced fine-
tuning strategy. It can continually pinpoint the
model’s wrong fragments in its responses and ad-
dress these deficiencies by preference optimization.
The experimental results demonstrate the effective-
ness of the proposed method.

7 Limitaiton

While our study has achieved notable advance-
ments, it is important to acknowledge several limi-
tations that could be addressed in future work. First,
the iterative reinforcement learning process (partic-
ularly the Monte Carlo Tree Search) requires sub-
stantial computational resources to generate fine-
grained preference data. Although it is difficult to
solve, we have effectively implemented parame-
ter constraints to manage computational costs effi-
ciently (e.g., 7 hours on 8 V100 GPUs per iteration),
achieving a balance between computational feasi-
bility and model performance. Additionally, due
to limited computing resources, we are not able to
validate our method on larger 30B or 70B base mod-
els. Finally, when analyzing the synthetic tool-use
data, only a single dataset was tested. Testing more
publicly available datasets would strengthen the
validity and persuasiveness of the conclusions. We
will address these limitations in our future work.

References

Mohammad Gheshlaghi Azar, Zhaohan Daniel Guo, Bi-
lal Piot, Remi Munos, Mark Rowland, Michal Valko,
and Daniele Calandriello. 2024. A general theoret-
ical paradigm to understand learning from human
preferences. In International Conference on Arti-
ficial Intelligence and Statistics, pages 4447—4455.
PMLR.

Mingyang Chen, Haoze Sun, Tianpeng Li, Fan Yang,
Hao Liang, Keer Lu, Bin Cui, Wentao Zhang, Zenan
Zhou, and Weipeng Chen. 2024. Facilitating multi-
turn function calling for 1lms via compositional in-
struction tuning. arXiv preprint arXiv:2410.12952.

Rémi Coulom. 2006. Efficient selectivity and backup
operators in monte-carlo tree search. In International
conference on computers and games, pages 72—83.
Springer.

Tim Dettmers, Artidoro Pagnoni, Ari Holtzman, and
Luke Zettlemoyer. 2024. Qlora: Efficient finetuning
of quantized llms. Advances in Neural Information
Processing Systems, 36.

Hanze Dong, Wei Xiong, Bo Pang, Haoxiang Wang,
Han Zhao, Yingbo Zhou, Nan Jiang, Doyen Sahoo,
Caiming Xiong, and Tong Zhang. 2024. Rlhf work-
flow: From reward modeling to online rlhf. arXiv
preprint arXiv:2405.07863.

Kawin Ethayarajh, Winnie Xu, Niklas Muennighoff,
Dan Jurafsky, and Douwe Kiela. 2024. Kto: Model
alignment as prospect theoretic optimization. arXiv
preprint arXiv:2402.01306.

Shen Gao, Zhengliang Shi, Minghang Zhu, Bowen Fang,
Xin Xin, Pengjie Ren, Zhumin Chen, Jun Ma, and
Zhaochun Ren. 2024. Confucius: Iterative tool learn-
ing from introspection feedback by easy-to-difficult
curriculum. In Proceedings of the AAAI Conference
on Artificial Intelligence, volume 38, pages 18030—
18038.

Jean-Bastien Grill, Florent Altché, Yunhao Tang,
Thomas Hubert, Michal Valko, loannis Antonoglou,
and Rémi Munos. 2020. Monte-carlo tree search
as regularized policy optimization. In International
Conference on Machine Learning, pages 3769-3778.
PMLR.

Tom Gunter, Zirui Wang, Chong Wang, Ruoming
Pang, Andy Narayanan, Aonan Zhang, Bowen Zhang,
Chen Chen, Chung-Cheng Chiu, David Qiu, et al.
2024. Apple intelligence foundation language mod-
els. arXiv preprint arXiv:2407.21075.

Jiwoo Hong, Noah Lee, and James Thorne. 2024. Orpo:
Monolithic preference optimization without refer-
ence model. In Proceedings of the 2024 Conference
on Empirical Methods in Natural Language Process-
ing, pages 11170-11189.

Edward J Hu, Phillip Wallis, Zeyuan Allen-Zhu,
Yuanzhi Li, Shean Wang, Lu Wang, Weizhu Chen,
et al. 2022. Lora: Low-rank adaptation of large lan-
guage models. In International Conference on Learn-
ing Representations.

Dahyun Kim, Yungi Kim, Wonho Song, Hyeonwoo
Kim, Yunsu Kim, Sanghoon Kim, and Chanjun Park.
2024. sdpo: Don’t use your data all at once. arXiv
preprint arXiv:2403.19270.

Jan Leike, David Krueger, Tom Everitt, Miljan Martic,
Vishal Maini, and Shane Legg. 2018. Scalable agent
alignment via reward modeling: a research direction.
arXiv preprint arXiv:1811.07871.

Minghao Li, Yingxiu Zhao, Bowen Yu, Feifan Song,
Hangyu Li, Haiyang Yu, Zhoujun Li, Fei Huang,
and Yongbin Li. 2023. Api-bank: A comprehensive
benchmark for tool-augmented llms. In Proceedings
of the 2023 Conference on Empirical Methods in
Natural Language Processing, pages 3102-3116.

Wenjun Li, Dexun Li, Kuicai Dong, Cong Zhang, Hao
Zhang, Weiwen Liu, Yasheng Wang, Ruiming Tang,
and Yong Liu. 2025. Adaptive tool use in large lan-
guage models with meta-cognition trigger. arXiv
preprint arXiv:2502.12961.

Xinzhe Li. 2025. A review of prominent paradigms for
IIm-based agents: Tool use, planning (including rag),
and feedback learning. In Proceedings of the 31st
International Conference on Computational Linguis-
tics, pages 9760-9779.

Qigiang Lin, Muning Wen, Qiuying Peng, Guanyu
Nie, Junwei Liao, Jun Wang, Xiaoyun Mo, Jiamu

Zhou, Cheng Cheng, Yin Zhao, et al. 2024. Ham-
mer: Robust function-calling for on-device lan-
guage models via function masking. arXiv preprint
arXiv:2410.04587.

Weiwen Liu, Xu Huang, Xingshan Zeng, Xinlong Hao,
Shuai Yu, Dexun Li, Shuai Wang, Weinan Gan,
Zhengying Liu, Yuanqing Yu, et al. 2024. Toolace:
Winning the points of llm function calling. arXiv
preprint arXiv:2409.00920.

Ne Luo, Aryo Pradipta Gema, Xuanli He, Emile
van Krieken, Pietro Lesci, and Pasquale Minervini.
2025. Self-training large language models for
tool-use without demonstrations. arXiv preprint
arXiv:2502.05867.

Trung Quoc Luong, Xinbo Zhang, Zhanming lJie,
Peng Sun, Xiaoran Jin, and Hang Li. 2024. Reft:
Reasoning with reinforced fine-tuning. Preprint,
arXiv:2401.08967.

Graziano A Manduzio, Federico A Galatolo,
Mario GCA Cimino, Enzo Pasquale Scilingo,
and Lorenzo Cominelli. 2024. Improving small-
scale large language models function calling for
reasoning tasks. arXiv preprint arXiv:2410.18890.

Yu Meng, Mengzhou Xia, and Danqi Chen. 2024.
Simpo: Simple preference optimization with a
reference-free reward. In Advances in Neural In-
formation Processing Systems (NeurIPS).

Shuofei Qiao, Ningyu Zhang, Runnan Fang, Yujie Luo,
Wangchunshu Zhou, Yuchen Eleanor Jiang, Huajun
Chen, et al. 2024. Autoact: Automatic agent learning
from scratch for qa via self-planning. In ICLR 2024
Workshop on Large Language Model (LLM) Agents.

Yujia Qin, Shihao Liang, Yining Ye, Kunlun Zhu, Lan
Yan, Yaxi Lu, Yankai Lin, Xin Cong, Xiangru Tang,
Bill Qian, et al. 2023. Toolllm: Facilitating large
language models to master 16000+ real-world apis.
In The Twelfth International Conference on Learning
Representations.

Changle Qu, Sunhao Dai, Xiaochi Wei, Hengyi Cai,
Shuaigiang Wang, Dawei Yin, Jun Xu, and Ji-Rong
Wen. 2024. Tool learning with large language mod-
els: A survey. arXiv preprint arXiv:2405.17935.

Rafael Rafailov, Archit Sharma, Eric Mitchell, Christo-
pher D Manning, Stefano Ermon, and Chelsea Finn.
2024. Direct preference optimization: Your language
model is secretly a reward model. Advances in Neu-
ral Information Processing Systems, 36.

Christopher D Rosin. 2011. Multi-armed bandits with
episode context. Annals of Mathematics and Artifi-
cial Intelligence, 61(3):203-230.

Timo Schick, Jane Dwivedi-Yu, Roberto Dessi, Roberta
Raileanu, Maria Lomeli, Eric Hambro, Luke Zettle-
moyer, Nicola Cancedda, and Thomas Scialom. 2023.
Toolformer: Language models can teach themselves
to use tools. Advances in Neural Information Pro-
cessing Systems, 36:68539-68551.

10

John Schulman, Filip Wolski, Prafulla Dhariwal,
Alec Radford, and Oleg Klimov. 2017. Proxi-
mal policy optimization algorithms. arXiv preprint
arXiv:1707.06347.

Zhengliang Shi, Shen Gao, Xiuyi Chen, Yue Feng,
Lingyong Yan, Haibo Shi, Dawei Yin, Pengjie Ren,
Suzan Verberne, and Zhaochun Ren. 2024. Learning
to use tools via cooperative and interactive agents.
In Findings of the Association for Computational
Linguistics: EMNLP 2024, pages 10642-10657, Mi-
ami, Florida, USA. Association for Computational
Linguistics.

Joykirat Singh, Raghav Magazine, Yash Pandya, and
Akshay Nambi. 2025. Agentic reasoning and tool
integration for llms via reinforcement learning. arXiv
preprint arXiv:2505.01441.

Yifan Song, Weimin Xiong, Dawei Zhu, Wenhao Wu,
Han Qian, Mingbo Song, Hailiang Huang, Cheng
Li, Ke Wang, Rong Yao, et al. 2023. Restgpt: Con-
necting large language models with real-world restful
apis. arXiv preprint arXiv:2306.06624.

Qiaoyu Tang, Ziliang Deng, Hongyu Lin, Xianpei
Han, Qiao Liang, Boxi Cao, and Le Sun. 2023.
Toolalpaca: Generalized tool learning for language
models with 3000 simulated cases. arXiv preprint
arXiv:2306.05301.

Qwen Team. 2024. Qwen2.5: A party of foundation
models.

Yuxi Xie, Anirudh Goyal, Wenyue Zheng, Min-Yen
Kan, Timothy P Lillicrap, Kenji Kawaguchi, and
Michael Shieh. 2024. Monte carlo tree search boosts
reasoning via iterative preference learning. arXiv
preprint arXiv:2405.00451.

Wei Xiong, Chengshuai Shi, Jiaming Shen, Aviv Rosen-
berg, Zhen Qin, Daniele Calandriello, Misha Khal-
man, Rishabh Joshi, Bilal Piot, Mohammad Saleh,
Chi Jin, Tong Zhang, and Tianqi Liu. 2024. Build-
ing math agents with multi-turn iterative preference
learning. Preprint, arXiv:2409.02392.

Benfeng Xu, Licheng Zhang, Zhendong Mao, Quan
Wang, Hongtao Xie, and Yongdong Zhang. 2020.
Curriculum learning for natural language understand-
ing. In Proceedings of the 58th Annual Meeting of
the Association for Computational Linguistics, pages
6095-6104.

Qiantong Xu, Fenglu Hong, Bo Li, Changran Hu,
Zhengyu Chen, and Jian Zhang. 2023. On the tool
manipulation capability of open-sourced large lan-
guage models. In NeurIPS 2023 Foundation Models
for Decision Making Workshop.

Fanjia Yan, Huanzhi Mao, Charlie Cheng-Jie Ji, Tianjun
Zhang, Shishir G. Patil, Ion Stoica, and Joseph E.
Gonzalez. 2024. Berkeley function calling leader-
board.

https://arxiv.org/abs/2401.08967
https://arxiv.org/abs/2401.08967
https://arxiv.org/abs/2401.08967
https://doi.org/10.18653/v1/2024.findings-emnlp.624
https://doi.org/10.18653/v1/2024.findings-emnlp.624
https://doi.org/10.18653/v1/2024.findings-emnlp.624
https://qwenlm.github.io/blog/qwen2.5/
https://qwenlm.github.io/blog/qwen2.5/
https://qwenlm.github.io/blog/qwen2.5/
https://arxiv.org/abs/2409.02392
https://arxiv.org/abs/2409.02392
https://arxiv.org/abs/2409.02392
https://arxiv.org/abs/2409.02392
https://arxiv.org/abs/2409.02392

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak
Shafran, Karthik R Narasimhan, and Yuan Cao. 2023.
React: Synergizing reasoning and acting in language
models. In The Eleventh International Conference
on Learning Representations.

Junjie Ye, Yilong Wu, Sixian Li, Yuming Yang, Tao Gui,
Qi Zhang, Xuanjing Huang, Peng Wang, Zhongchao
Shi, Jianping Fan, et al. 2024. Tl-training: A task-
feature-based framework for training large language
models in tool use. arXiv preprint arXiv:2412.15495.

Weizhe Yuan, Richard Yuanzhe Pang, Kyunghyun Cho,
Xian Li, Sainbayar Sukhbaatar, Jing Xu, and Ja-
son E Weston. 2024. Self-rewarding language mod-
els. In Forty-first International Conference on Ma-
chine Learning.

Jianguo Zhang, Tian Lan, Ming Zhu, Zuxin Liu, Thai
Hoang, Shirley Kokane, Weiran Yao, Juntao Tan,
Akshara Prabhakar, Haolin Chen, et al. 2024. xlam:
A family of large action models to empower ai agent
systems. CoRR.

Rui Zheng, Shihan Dou, Songyang Gao, Yuan Hua,
Wei Shen, Binghai Wang, Yan Liu, Senjie Jin, Qin
Liu, Yuhao Zhou, et al. 2023. Secrets of rlhf in
large language models part i: Ppo. arXiv preprint
arXiv:2307.04964.

Yaowei Zheng, Richong Zhang, Junhao Zhang, Yanhan
Ye, Zheyan Luo, Zhangchi Feng, and Yongqiang Ma.
2024. Llamafactory: Unified efficient fine-tuning
of 100+ language models. In Proceedings of the
62nd Annual Meeting of the Association for Compu-
tational Linguistics (Volume 3: System Demonstra-
tions), Bangkok, Thailand. Association for Computa-
tional Linguistics.

A Details in Preliminary Study
A.1 Descriptions of error types
Here is the descriptions of all error types.

* Parameter Value. The value or type of the
parameter does not match the ground truth.

* Parameter Name. Unable to identify the pa-
rameter value from the user query.

* Parameter Count. Incorrect number of pa-
rameters; required parameters are missing.

* Tools Count. The wrong number of tools was
called.

* Tool Name. There was an error when calling
the tool name, such as calling a non-existent
tool name or a tool name that does not match
the ground truth.

* Code Syntax. The tool call does not comply
with the syntax of Python, Java, or JavaScript.

11

e Other. Errors other than those mentioned
above.

B Complementary Experiments

B.1 More Implementation Details

The experiments were conducted using the pub-
licly available training repository, LLaMA-Factory
(Zheng et al., 2024). The training of our model
can be done within 28 hours with 8 NVIDIA Tesla
V100-SXM2-32GB GPUs. For the training model,
we take the best performance checkpoint on the
valid dataset.

The Implementation Settings. Due to resource
constraints, we employ a parameter-efficient train-
ing strategy using LoRA (with rank=16 and
alpha=32) during the SFT warm-up phase, and
QLoRA (a quantization method from the bitsand-
bytes 2 library with 4 bits) during the reinforcement
learning (RL) phase. We utilize a cosine learning
rate scheduler with a warm-up ratio of 0.1. More
detailed training settings are shown in Table 5.

Stage | epoch Ir batch size
easy: 5e-5

SFT 3 medium: 2e-5 64
hard: 1e-5

RL | 2 le6 64

Table 5: The detailed training settings in our method.
1r denotes learning rate. batch size denotes the total
batch size, equals 1 (per device) times 8 (accumulation
steps) times 8 (devices).

Implementation Settings in MCTS-base RL.
In Expand phase of MCTS, the prompt for self-
evaluation is shown in Table 8. When calculat-
ing the confidence score for correctness, we evalu-
ate the token-level probabilities of a policy model
across four options (A, B, C, D) with respective
weights of 1.0, 0.1, -1.0, and -2.0. We sample the
model’s responses four times and use the weighted
average of these samples as the final confidence
score.

To ensure the quality of the sampled preference
data, we exclude the following data: (1) pairs with
candidate step similarity above 95%, (2) pairs with
a Q-value difference less than 0.1, and (3) accepted
samples with a Q-value below 0.3. In MCTS, to
control algorithm overhead, we limit the following
parameters: (1) depth, the maximum depth of the
search tree, (2) width, the maximum number of

*https://github.com/TimDettmers/bitsandbytes

http://arxiv.org/abs/2403.13372
http://arxiv.org/abs/2403.13372
http://arxiv.org/abs/2403.13372

child nodes per node, (3) simulation, the maxi-
mum number of simulation steps in Expand phase,
and (4) iterations, the maximum number of it-
erations to construct the MCTS search tree. We
summarize these parameters in Table 6.

Parameters Value ‘ Parameters Value
depth 3 c 1.0
width 3 temperature 1.5
simulation 2 seed 42
iterations 5

Table 6: The parameters setting in MCTS. ¢ denotes the
degree of exploration in the Select phase.

B.2 Preference Algorithm Analysis

In iterative reinforcement learning, we also explore
different preference optimization algorithms. Be-
sides the widely used DPO (Rafailov et al., 2024),
we also explored SimPO (Meng et al., 2024), IPO
(Azar et al., 2024), and ORPO (Hong et al., 2024).
DPO reparameterizes the reward function to learn
a policy model from preference data directly. IPO
is a theoretically grounded approach method that
avoids DPQO’s assumption that pairwise preferences
can be replaced with pointwise rewards. ORPO
introduces a reference-model-free odd ratio term
to directly contrast winning and losing responses
with the policy model and jointly trains with the
SFT objective. SimPO aligns the reference-free
reward function in the preference optimization ob-
jective with the generation metric. For fair compar-
isons, we start these algorithms from the same SFT
checkpoints, the reference model is initialized as
the policy model.

For these algorithms, we conducted a thorough
search for the optimal hyperparameter settings to
ensure a fair comparison. The results of hyper-
parameter settings are shown in Table 7. The re-
sults of different preference optimization algorithm
with optimal hyperparameter settings are shown
in Figure 9. From the result, we find i7ool with
SimDPO achieved the best performance. Differ-
ent preference algorithms do not create significant
performance gaps except for ORPO.

C Case Analysis

C.1 An Example of Preference Pair

Table 9 illustrates a preference pair example. The
chosen response correctly employs the "Get Trend-
ing Result" tool with suitable parameters for the

12

64 63.26%
62.12% B =. . 62.49%
B -
= 62 ~4
S ~ §0.54%
=
& 60
5
3
< 58
56
DPO SimPO IPO ORPO

Figure 9: The performance iTool using different prefer-
ence optimization algorithms on BFCL.

user’s request. Conversely, the rejected response
is improperly formatted, omits necessary paren-
theses, and incorrectly assigns the value 1 to the
timeframe parameter, showcasing an erroneous
application of the tool.

Table 10 presents another case of preference
pair, sampled during the MCTS research tree as
depicted in Figure 10. In this scenario, the user’s
query lacks the specific details necessary for the
functions mentioned (i.e., reviews for ‘reviewAn-
alytics.extractSentiment’” and metrics for ’social-
Trends.fetchTrendingProducts’). The assistant’s
chosen response correctly identifies the need for
these parameter values, whereas the rejected re-
sponse incorrectly hallucinates when recognizing
these parameters.

Method Objective Hyperparameters Best Setting
_ mo(ywle) _ LACIEN 4 €10.01,0.05,0.1] f=01
DPO logo (/B log Tref (Yuw [2) B log Wret-(yz\m)> Irele—6,5e—7,3e—7] | lIr=3e—7
2 —
o (yulz) ro(ule) 1 7 € [0.01,0.05,0.1] =01
PO (1og Tollult) _ Jog Tolultl _ 27) Ir€lle—6,5¢e—T,3¢—7] | Ir=1e—6
(Ywlz) (Wilz) _
orRPO — l0gpo(yulz) — Mogo (log [Zelsls)og 1{;9@”1)), X € [0.01,0.05,0.1] A=0.1
where po (y|z) = exp (ﬁ log 7r9(y|:c)) Irele—6,5e—7,3e—=7] | lIr=3e—7
B € 20,25 F=25
SimPO —logo (% log 7o (Yw|z) — ‘57 log 7o (yi|z) — 'y) v €[0.5,1.0,1.4] v=0.5
Irele—6,5e—7,3e—7] | Ir=1e—6

Table 7: The search for optimal hyperparameter settings of different preference optimization algorithms.

Prompt 1: Eval Prompt

Ground Truth Response: {gt_ans}
Generated Response by Model: {response}

User Instruction:
Please assess the quality of the generated response relative to the ground truth response.
Note: A generated response that is a fragment of the ground truth response is also excellent.

Evaluation Criteria:

1. Function Name: Is the name of all the function called correct?

2. Parameter Count: Is the number of parameters for all the function correct?

3. Parameter Names: Are the names of all the parameters for the function correct?

4. Parameter Value/Types: Are the value/types of all the parameters for the function correct?

5. Semantic Similarity: Is the generated response semantically close to the ground truth response?

Please directly choose from the following options to judge the overall quality:

(A) Excellent: The generated response meets all criteria and is almost identical to the ground truth response.
(B) Acceptable: The generated response meets most criteria but has minor discrepancies.

(C) Fair: The generated response meets some criteria but has significant issues.

(D) Poor: The generated response fails to meet most or all criteria.

ASSISTANT: The option of overall quality is
You are an Al specialized in tool use.
Your task is to assess the potential veracity of {placeholder}.

Table 8: The Eval Prompt for self-evaluation in Eq. 7 of Section 3.2.

[reviewAnalytics.extractSentiment(reviews
={"reviewText": "product_name ticks the
check for everything."}),

You need to provide
the reviews for ...
VI

You also need to provide
the required engagement

metrics for fetchTrendingProducts(metrics=...)]
"/ 0.17 -0.09 -0.17-0.14 0.15 -0.03 -0.18

Figure 10: The illustration of example 2 in Table 10 for preference pair derived from MCTS. The floating-point
values of nodes denote the Q-value in MCTS.

13

Example 1

Tool list [{
"name"”: "Get Trending Result”,
"description”: "Retrieves trending search results from Google Trends for
the United States.”,
"parameters”: {

"type”: "dict”,
"properties”: {
"category”: {

"description”: "The category of trending results (e.g., news, entertainment, etc.)"”,
"type": "string"
b
"timeframe": {
"description”: "The timeframe for which to retrieve trending results (e.g., today,
this week, etc.)"”,
"type": "string"

}
1,
"required”: ["category"]
1,
"required”: null
3{
"name": "Get Server Time",
"description”: "Returns the current server time in a standardized format”,
"parameters”: {
"type": "dict",
"properties”: {3},
"required”: []
}’
"required”: null
3]
User Can you tell me the latest trending topics in entertainment today?
Assistant
chosen [Get Trending Result(category="entertainment", timeframe="today")]
rejected [Get Trending Result category="entertainment", timeframe="1"]

Table 9: The example 1 of preference pair derived from MCTS.

14

Example 2

Tool list

{
"name”: "fetchTrendingProducts”,
"description”: "Fetches trending products based on reviews and engagement metrics.”,
"parameters”: {
"metrics”: {
"type": "array"”,
"items": {
"productID”: "string",
"engagementScore”: {
"likes": "int",
"shares”: "int"
}r1r}
1A
"name"”: "extractSentiment”,
"description”: "Extracts sentiment scores from reviews."”,
"parameters”: {
"reviews": {
"type": "array"”,
"items": {
"reviewText"”: "string",
"reviewDate”: {
"type": "string",
"pattern”: "A\\w+ \\d{1,23}, \\d{4}$"
Y1}
}]

User

I’'m running a marketing campaign and need sentiment analysis from this month’s reviews of our main product.
We had 300 likes and 50 shares yesterday. Please analyze trends and sentiment for our competitor’s product
too; they had 450 likes and 75 shares.

Assistant

chosen

rejected

You need to provide the reviews for the sentiment analysis of the flagship product and
the competitor’s product.

[reviewAnalytics.extractSentiment(reviews={"reviewText"”: "product_name ticks the check
for everything."}),

Table 10: The example 2 of preference pair derived from MCTS.

15

	Introduction
	Problem Statement and Analysis
	Task Overview
	Preliminary Study

	Method
	Warm-up training
	MCTS-Based Iterative Reinforcement Learning

	Experiments
	Experimental Setup
	Overall Performance
	Ablation Analysis
	Module Ablation
	Deeper Ablation
	Base Model Analysis.

	Training Gains Analysis

	Related Work
	Tool use of LLMs
	Reinforcement Learning

	Conclusion
	Limitaiton
	Details in Preliminary Study
	Descriptions of error types

	Complementary Experiments
	More Implementation Details
	Preference Algorithm Analysis

	Case Analysis
	An Example of Preference Pair

