
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

SYMBOLIC PLANNING USING LLM AGENTS: A CUT-
BASED REPROMPTING APPROACH

Anonymous authors
Paper under double-blind review

ABSTRACT

Large Language Models (LLMs) are increasingly used for symbolic planning, yet
their stochastic outputs can lead to invalid results. We study propose–validate
tasks where candidate checking is cheap – e.g., a single traversal of a finite state
machine (FSM), or a short simulator rollout – but finding a valid plan is non-
trivial. We pair an LLM decision maker with a symbolic validator via cut-based
reprompting: the model proposes a plan; the validator checks it and returns struc-
tured cuts that forbid the observed failure patterns; the model is reprompted with
the accumulated cuts. We formalize LLM planning as sampling from a context-
conditioned stochastic policy and show that symbolic cuts monotonically reduce
policy entropy and guarantee finite-step convergence under mild assumptions in-
herent to FSM modeling. We empirically assess cut-based reprompting on FSM
traversal problems and MiniGrid, observing higher success probability and faster
convergence (fewer reprompts) than vanilla reprompting for GPT-4o-mini and
LLaMA3-8. Beyond accuracy, this pattern offers zero-shot flexibility relative to
bespoke search: evolving exceptions and task-specific rules can be injected as tex-
tual input without modifying a solver. Overall, cut-based reprompting provides a
general, plan-level mechanism for making LLM planners more fault-tolerant, in-
terpretable, and controllable.

1 INTRODUCTION

Large Language Models (LLMs) excel at compositional reasoning and planning but remain inher-
ently stochastic: identical queries can yield divergent outputs, many violating hard constraints. This
unreliability limits their deployment in structured domains such as graph traversal, symbolic reason-
ing, and sequential decision-making, where correctness is essential. Existing prompting strategies—
chain-of-thought, tree-of-thought, self-reflection—offer partial improvements but operate at the to-
ken level and rely on self-critique, which is unreliable for smaller models.

Classical planners excel when specifications are fixed and fully encoded, but real-world task defi-
nitions accumulate exceptions (“never pass through locked nodes except after key-pickup,” “avoid
revisiting hazard states unless sensor X is true,” “respect temporary maintenance blocks”). Encoding
and maintaining these bespoke rules inside a search stack can be brittle and costly. Our approach
keeps the planner generic and pushes exceptions into textual, zero-shot constraints (cuts) that the
validator can generate automatically, preserving flexibility while retaining symbolic guarantees.

We take a different view by modeling LLMs as context-conditioned stochastic policies. The prompt
defines a distribution over candidate plans, and decoding corresponds to sampling from it. A persis-
tent challenge is that non-trivial probability mass is assigned to invalid solutions, leading to repeated
errors. To address this, we introduce cut-based reprompting, a lightweight context-engineering
method inspired by cutting-plane techniques. After each invalid attempt, an external validator ex-
tracts symbolic constraints (cuts) that forbid incorrect transitions and appends them to the prompt.
Each iteration shrinks the policy’s support, reduces entropy, and steers the model toward valid com-
pletions. Stronger cuts generalize feedback by pruning all invalid successors of a state, accelerating
convergence.

We develop a theoretical framework showing that symbolic cuts monotonically reduce support size
(Hartley entropy), guarantee convergence within a bounded number of iterations, and sharpen the
posterior distribution over feasible plans. Empirically, we evaluate across synthetic DAGs, grids,
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and task graphs (10–100 nodes). With GPT-4o-mini and LLaMA-3-8B, cut-based strategies consis-
tently improve solve rates over vanilla prompting and naive reprompting. Entropy analysis confirms
monotone convergence, while smaller models reveal a bias–capacity tradeoff in exploiting symbolic
feedback.

FSMs as a General Abstraction. Although our experiments focus on FSM traversal and MiniGrid
Chevalier-Boisvert et al. (2023), the underlying abstraction is deliberately broad. A wide range of
planning problems can be cast as state machines, where nodes represent world configurations and
edges encode feasible actions. This includes domains such as robotics task execution, workflow
scheduling, web navigation, software verification, and program synthesis. Thus, our formulation
is not restricted to synthetic graphs: FSM traversal serves as a canonical testbed that isolates the
reasoning dynamics while retaining relevance to real-world sequential decision-making.

2 RELATED WORK

LLMs as Planners. Prior work has applied LLMs to structured planning tasks with strict precon-
ditions. Systems such as PROGPROMPT Singh et al. (2023), LLM-GENPLAN Silver et al. (2024),
and ADAPLANNER Sun et al. (2023) synthesize plans from declarative specifications, often lever-
aging domain knowledge or explicit transition models. Other works ground outputs symbolically
(G-PLANET Lin et al. (2023), PLAG Lin et al. (2024)) or emphasize symbolic execution (CHAIN-
OF-SYMBOLS Hu et al. (2024), PPNL Aghzal et al. (2023)), aligning with our FSM traversal setting
but without feedback-driven correction.

Constrained and Structured Decoding. Grammar- and schema-constrained decoding restricts
outputs to CFGs or schema-valid forms Geng et al. (2023); Park et al. (2024). These ensure local
syntactic validity but require task-specific grammars and cannot guarantee global path feasibility.
Cut-based reprompting instead enforces plan-level validity by pruning infeasible transitions, making
it complementary to constrained decoding.

Feedback and Repair Loops. Iterative prompting methods such as REFLEXION Shinn et al.
(2023), SELF-REFINE Madaan et al. (2023), and INSTRUCT-OF-REFLECTION Liu et al. (2025)
rely on self-critique, which is often unreliable for smaller models. Verifier-guided and repair-based
methods Li et al. (2023); Yao et al. (2023) use external checks but act locally at the token or edit
level. Our approach differs by validating entire plans and injecting symbolic constraints, yielding
monotone entropy reduction.

LLMs as Heuristics for Search. Recent work Valmeekam et al. (2023); Wang et al. (2024) uses
LLMs as heuristics to guide classical planners. While effective, these approaches rely on external
solvers. In contrast, cut-based reprompting is solver-free, lightweight, and model-agnostic, yet still
provides convergence guarantees.

Policy Shaping and Entropy Control. In reinforcement learning, policy shaping and entropy
regularization balance exploration and convergence Abdolmaleki et al. (2018). We connect this
perspective to LLM planning: symbolic cuts act as entropy filters that monotonically reduce support
size and sharpen distributions toward feasible solutions.

Why not just decode with constraints? A natural question is whether constrained decoding alone
suffices. While it enforces syntax, it cannot capture task-specific feasibility constraints (e.g., graph
reachability, avoiding dead ends), and is brittle when constraints depend on dynamic context. Cut-
based reprompting, by contrast, is prompt-based, model-agnostic, and generalizes across domains
by pruning infeasible plans iteratively.

Our Contribution. We differ from prior work in three respects: (1) we introduce cut-based re-
prompting, a lightweight feedback loop that enforces symbolic feasibility at the plan level; (2) we
provide a theoretical framework proving monotone entropy reduction and bounded convergence; and
(3) we demonstrate applicability across FSM traversal and MiniGrid, highlighting both performance
gains and diagnostic insights into LLM reasoning limits.
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3 THEORETICAL FRAMEWORK

We analyze cut-based reprompting through the lens of entropy reduction in stochastic policies. At
iteration t, an LLM defines a probability distribution πθ(P | Ct) over candidate paths P , conditioned
on context Ct. Let St ⊆ P denote the feasible support after t iterations, where P is the set of all
paths from s0 to sG.

Definition 1 (Cut). A cut c is a symbolic constraint that removes a subset of paths from St. For-
mally,

St+1 = {P ∈ St : P /∈ c},
where P ∈ c means that path P violates the constraint. For example, forbidding edge (si, sj)
removes all paths containing that edge. Weak cuts forbid only specific invalid transitions, while
strong cuts enumerate valid successors of a node and forbid all other outgoing edges.

Assumptions. Our analysis relies on the following: (A1) Sound validator: inherent to FSM
modeling, feasibility of a path can always be checked by traversing the transition structure. (A2)
Stable prompts: cuts are faithfully incorporated into the context. (A3) Consistency: cuts do not
eliminate all valid solutions (or a recovery mechanism exists).

Remark. The critical modeling choice is to cast planning problems as FSMs or state-transition
systems. Under this abstraction, the existence of a validator is not an external assumption but an in-
herent property: path validity can always be determined by traversing the FSM. The key assumption
is therefore that the task of interest admits a tractable FSM representation.

Why Hartley entropy? A natural measure of uncertainty is Shannon entropy. However, remov-
ing low-probability paths can paradoxically increase Shannon entropy after renormalization, since
the remaining distribution may become more uniform (Appendix A gives a counterexample). In
contrast, Hartley entropy

H0(St) = log |St|
depends only on support size. Since cuts strictly reduce or preserve St, Hartley entropy is guaranteed
to decrease monotonically. This makes H0 the right quantity for our convergence analysis, while
Shannon entropy will serve as an empirical diagnostic in experiments.

Proposition 1 (Support Reduction). Cuts are cumulative: St+1 ⊆ St. Therefore

H0(St+1) ≤ H0(St),
showing monotone entropy reduction.

Remark (Shannon entropy as a diagnostic). For the renormalized distribution, the Shannon en-
tropy

H1(St) = −
∑
P∈St

πθ(P | Ct) log πθ(P | Ct)

may increase if high-probability invalid modes are removed. Thus H1 and more general Rényi
entropies Hα are best viewed as empirical diagnostics, while H0 provides the strict monotonicity
guarantee.

Witness sets and hitting sets. Let E be the set of edges. For any invalid path P , let W (P ) ⊆ E
denote a witness set of edges such that every path containing W (P ) is invalid. LetW = {W (P ) :
P invalid}. A set H ⊆ E is a hitting set if H ∩W ̸= ∅ for all W ∈ W . Let H⋆ be a minimum
hitting set.

Proposition 2 (Convergence via hitting sets). Define Ut as the number of uncovered witnesses
at time t:

Ut = |{W ∈ W : W ∩ Eforbid
t = ∅}|,

where Eforbid
t is the set of edges forbidden so far. If each cut Rt intersects at least one uncovered

witness, then Ut decreases monotonically and satisfies UT = 0 in at most |H⋆| iterations. At that
point either (i) a valid path is generated, or (ii) no invalid path remains feasible.
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Corollary (Cut strength). If a cut Rt hits rt ≥ 1 uncovered witnesses, then

Ut+1 ≤ Ut − rt,

so the number of iterations is bounded by

T ≤
⌈ |H⋆|
mint rt

⌉
.

Stronger cuts (larger rt) accelerate convergence by eliminating multiple witnesses at once.

Complexity and token costs Each attempt incurs L0 (base prompt) + Lgen (genera-
tion). Our reprompt header ‘‘Avoid the following transitions in your next
attempt:’’ costs 19 tokens, and each weak cut u->v, costs 4 tokens (calibrated with the model
tokenizer). Thus at round t: naive (print only new cuts) costs 19 + 4ut, while cumulative cut-based
(reprint all cuts) costs 19 + 4Ut with Ut =

∑
k≤t uk. Combining with Prop. 2 (T ≤ |H⋆|/r̄) gives

Toknaive = O(T (L0+Lgen)+|H⋆|) and Tokcum = O(T (L0+Lgen)+|H⋆|T ) =O(|H⋆|2/r̄) in the
worst case (cuts spread across rounds). For strong (node-level) cuts the per-round overhead scales
with out-degree; constants and full derivations are in App. B.

Failure modes and remedies. If the model generates a path that is constraint-valid but does not
reach sG (e.g., loops or subgoal divergence), then no witness in W is triggered and the process
may stall. This can be mitigated by adding progress witnesses—constraints such as “no repeated
states beyond k visits” or “must reduce heuristic distance-to-go.” Other remedies include escalating
from weak to strong cuts when repeated failures occur, or hybridizing with heuristic search to bias
exploration toward promising regions. These extensions are compatible with our framework and we
leave a systematic study to future work.

4 METHODOLOGY

4.1 PROBLEM SETUP

We cast symbolic planning as path generation over a finite state machine (FSM). Formally, let G =
(V,E, s0, sG) denote a directed graph with state set V , edges E ⊆ V × V , start s0, and goal sG. A
valid plan is a path

P = [s0, s1, . . . , sG] such that (si, si+1) ∈ E ∀i,
that connects the start to the goal without violating the transition structure. Transitions are treated
as abstract actions, so planning reduces to generating a valid sequence of states.

We model the LLM as a stochastic policy πθ, conditioned on a context C that encodes the task:

P ∼ πθ(· | C),
where C includes the FSM structure, start/goal nodes, and (optionally) feedback from prior attempts.
This framing connects symbolic planning with sequence modeling: valid plans correspond to feasi-
ble trajectories under πθ.

4.2 CUT-BASED REPROMPTING

Single-shot prompting often fails on large graphs because the search space grows exponentially. To
improve reliability, we introduce a cut-based feedback loop (Figure 1).

At each iteration, the LLM proposes a candidate path. A validator checks its validity: - If valid, the
process halts successfully. - If invalid, the validator extracts offending edges and converts them into
symbolic constraints (cuts), which are appended to the prompt.

The updated context conditions the next generation:

Ct+1 = Ct ∪MAKECUTS(Ft), P (t+1) ∼ πθ(· | Ct+1),

where Ft is the set of invalid edges at round t. This feedback loop progressively shrinks the fea-
sible space and steers the model toward valid completions. The full procedure is summarized in
Algorithm 1.
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Figure 1: Cut-based reprompting loop. The LLM (black arrows) generates candidate paths. A
validator checks validity; if invalid, symbolic cuts are extracted (orange arrows) and injected back
into the prompt. This loop prevents repeated errors and progressively narrows the search space.

Algorithm 1 Cut-Based Reprompting
Input: FSM G = (V,E), start s0, goal sG, LLM πθ, budget T
Output: Valid path P or failure

1: Initialize context C ← PROMPT(G, s0, sG)
2: for t = 1 to T do
3: Sample P ∼ πθ(· | C)
4: if P valid then
5: return P
6: end if
7: C ← C ∪MAKECUTS(INVALIDEDGES(P,E))
8: end for
9: return failure

4.3 WEAK VS. STRONG CUTS

A central design choice is how aggressively to prune the search space once an invalid path is de-
tected. We study two regimes:

Weak cuts. A weak cut eliminates only the specific invalid transition observed in a failed path.
For example, if the model proposes 2 → 1 but (2, 1) /∈ E, the validator appends the instruction
‘‘Do not choose 2 → 1’’. Weak cuts are highly precise but conservative: the model may
still attempt other invalid successors from the same node in later rounds.

Strong cuts. A strong cut generalizes feedback at the node level. Instead of forbidding one invalid
edge at a time, the prompt enumerates the valid successors of a node and forbids all others. Formally,
for state si:

“From node si, only transitions to ValidNext(si) are allowed.”

This prunes entire families of invalid paths in one step, at the cost of slightly longer prompts.

Illustrative Example. Consider the FSM {0 : [1, 2], 1 : [3], 2 : [3], 3 : []}. If the model outputs
the invalid path [0, 3]: - A weak cut forbids only (0, 3), preventing that exact error but leaving other
invalid successors from node 0 untouched. - A strong cut enforces ‘‘Node 0 only connects
to [1,2]’’, which removes all spurious transitions from node 0 at once.

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

In practice, weak cuts minimize feedback length, while strong cuts reduce the number of reprompts
by eliminating multiple potential errors per iteration. This tradeoff underlies the complexity analysis
in Section 3.

5 RESULTS

We evaluate cut-based reprompting on two case studies: (i) synthetic FSM traversal tasks, where
we generate DAGs without isolated nodes to probe reasoning dynamics at scale, and (ii) MiniGrid
navigation, a standard planning benchmark for embodied agents that tests generalization to spatial
layouts and sequential dependencies.

5.1 ACCURACY ACROSS GRAPH SIZES

We measure planning accuracy as the percentage of valid paths successfully generated under differ-
ent prompting and reprompting strategies. Results are shown in Figure 2.

Impact of Graph Size. Reprompting substantially improves accuracy compared to single-shot
prompting, with cut-based strategies yielding the largest gains. On 100-node graphs, GPT-4o-mini
rises from 26% (no reprompt) to 62% (Strong Cut) and 78% (CoT+Strong). Naive reprompting adds
little benefit and often fails to converge on large graphs.

Model Dependence. Performance strongly depends on base model capacity. LLaMA-3-8B col-
lapses beyond ∼30 nodes regardless of strategy, while GPT-4o-mini continues to benefit from re-
prompting. This shows that cuts amplify reasoning when the base model is capable, but cannot
compensate for weak models.

(a) LLaMA-3, Vanilla (b) LLaMA-3, CoT

(c) GPT-4o-mini, Vanilla (d) GPT-4o-mini, CoT

Figure 2: Accuracy vs. graph size across models and prompting strategies. Results are averaged
over 10 runs per instance.
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5.2 ENTROPY REDUCTION AND CONVERGENCE

To study convergence dynamics, we measure path diversity—the number of unique trajectories gen-
erated per reprompt step—as a proxy for entropy in the model’s sampling distribution. Figures 3
plot diversity over 15 reprompt steps.

• Naive reprompting fails to reduce entropy: diversity remains high (∼8–10 distinct paths)
even after 15 steps.

• Cut-based strategies rapidly reduce entropy, collapsing to 2–3 consistent paths within 3–4
steps on 30-node FSMs.

• Vanilla vs. CoT: CoT produces smoother entropy decay and interacts synergistically with
cuts; Vanilla sometimes plateaus at higher diversity.

• Plateaus: All methods stabilize after ∼8–10 iterations, reflecting persistent reasoning er-
rors that reprompting alone cannot eliminate.

These dynamics confirm our theoretical claim: cuts act as an entropy filter, concentrating probability
mass on feasible paths. CoT amplifies this effect, but convergence ultimately depends on base model
capacity.

Figure 3: Entropy reduction across reprompting steps. Top: LLaMA-3. Bottom: GPT-4o-mini. Cut-
based strategies consistently collapse path diversity, while naive reprompting leaves entropy high.

5.3 MINIGRID PATHFINDING

To test generalization beyond FSM traversal, we evaluate on MiniGrid navigation tasks of increasing
grid size (5× 5, 6× 6, 8× 8, 16× 16). Table 1 reports success rates for GPT-4o-mini and LLaMA-
3-8B under Vanilla prompting with different reprompting strategies.

Small grids (5× 5). Both models benefit strongly from cuts. GPT-4o-mini achieves perfect accu-
racy (1.0) under any reprompting strategy, while LLaMA-3 rises only modestly (0.3→ 0.5). This
mirrors our FSM findings: entropy collapses effectively, but absolute success depends on base model
strength.

Medium grids (6×6). GPT-4o-mini continues to improve with stronger cuts (0.4→ 0.9), whereas
LLaMA-3 plateaus at or below 0.3 regardless of strategy. This highlights a synergy with base ca-
pacity: cuts can amplify competent reasoning but cannot rescue weaker policies.
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Larger grids (8×8 and 16×16). GPT-4o-mini maintains partial performance (≈0.2–0.3 for 8×8,
≈0.1 for 16×16), while LLaMA-3 collapses to chance. Entropy still decreases monotonically under
cuts, but the concentrated distribution is over incorrect paths. In other words, MiniGrid exposes a
capability ceiling: cuts enforce symbolic consistency but cannot supply the missing spatial inductive
biases required at larger scales.

Model Grid No Reprompt Naive Cut-Based Strong-Cut

LLaMA-3-8B 5× 5 0.30 0.40 0.50 0.50
6× 6 0.20 0.30 0.30 0.30
8× 8 0.10 0.10 0.10 0.10
16× 16 0.00 0.00 0.00 0.00

GPT-4o-mini 5× 5 0.80 1.00 1.00 1.00
6× 6 0.40 0.70 0.80 0.90
8× 8 0.20 0.20 0.30 0.30
16× 16 0.00 0.00 0.00 0.10

Table 1: MiniGrid success rates across grid sizes, reprompting strategies, and models. Reprompting
substantially improves GPT-4o-mini on small/medium grids but fails to rescue LLaMA-3 beyond
trivial cases.

5.4 ANALYSIS AND INSIGHTS

Symbolic reliability. Across both models, cuts consistently improve accuracy when the base pol-
icy has enough capacity, confirming our theoretical predictions. They act as an entropy filter that
prunes incorrect transitions and concentrates mass on feasible regions.

Feedback tradeoffs. Weak cuts reduce redundancy gradually, while strong cuts eliminate entire
families of errors in one iteration. GPT-4o-mini leverages these aggressively, but for LLaMA-3 the
same cuts plateau early, reflecting insufficient base reasoning.

Capability ceilings. MiniGrid highlights a model-dependent ceiling. GPT-4o-mini solves up to
6×6 grids robustly but collapses beyond 8×8. LLaMA-3 collapses far earlier, at 5×5–6×6. Entropy
shrinks monotonically in all cases, but the residual distribution concentrates on wrong solutions
when inductive biases are missing.

Diagnostic value and hybridization. We interpret this as diagnostic, not failure: symbolic cuts
expose exactly where LLMs’ reasoning suffices and where it breaks down. Beyond this ceiling,
external grounding becomes essential. A natural next step is to hybridize with explicit planners
(e.g., A*, value iteration) or learned transition models, where cuts enforce feasibility while the
planner supplies missing spatial competence.

6 DISCUSSION AND LIMITATIONS

Cut-based reprompting provides a lightweight, model-agnostic reliability layer: by pruning invalid
transitions, it reduces entropy monotonically and sharpens distributions toward valid solutions. This
complements prompting strategies such as chain-of-thought while avoiding task-specific infrastruc-
ture.

Capability ceilings. Cuts enforce symbolic consistency but do not inject new semantic knowledge.
As MiniGrid illustrates, when tasks depend on implicit world models (e.g., spatial layouts or key–
door dependencies), accuracy collapses despite entropy reduction. In such cases, cuts converge to
incorrect but consistent solutions—revealing the ceiling of the base model’s reasoning ability. This
diagnostic role is a feature: it makes clear when symbolic scaffolding suffices and when external
grounding or inductive biases are necessary.

8
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Efficiency tradeoffs. Weak cuts conserve tokens but require more reprompts; strong cuts acceler-
ate convergence at the cost of longer prompts. Adaptive strategies that balance these costs dynami-
cally remain open, and our token-cost analysis (Appendix B) is a first step.

Beyond symbolic costs. Symbolic pruning ensures feasibility but cannot capture qualitative dis-
tinctions between valid plans—for example, two routes of equal length where one is smooth and
the other bumpy. Classical planning requires a hand-designed reward or cost function to encode
such distinctions. LLMs, however, bring contextual priors and can often infer plausible preferences
directly from descriptions. Cut-based reprompting complements this strength: cuts guarantee struc-
tural validity, while LLMs can supply reward-like judgments without explicit cost engineering.

Baseline scope. We do not compare against grammar- or schema-constrained decoding, nor
solver-in-the-loop hybrids. Our focus here was to isolate the general dynamics of reprompting via
cuts in a model-agnostic setting. Constrained decoding is effective when low-level decoding hooks
are exposed, but such methods are tied to local implementations and often unavailable in API-only
models. In contrast, cut-based reprompting operates purely at the prompt–response level, requiring
no architectural access. Solver hybrids offer stronger guarantees but change the problem by injecting
explicit search; we defer such integrations to future work, focusing here on establishing reprompting
as a stand-alone primitive.

Real-world implementation. The framework hinges on the existence of a validator that can check
a plan and generate cuts. For the tested FSM and MiniGrid problems, this is straightforward. How-
ever, for more complex, real-world planning problems this could present a challenge. That said
many real-world applications are moving towards creating digital twins and simulation environ-
ments. These simulations are well-fit to play the role of a validator and have the same synergy with
LLMs, where the forward problem of running a simulator is easy and the inverse-problem of coming
up with the simulation inputs are non-trivial.

Path forward. Scaling beyond controlled benchmarks will require hybridization with explicit
planners (e.g., A*, value iteration) or learned transition models. In such settings, cuts ensure fea-
sibility while planners supply optimality and semantic depth. Thus, the method is valuable both
for improving reliability in symbolic domains and for probing the reasoning boundaries of current
LLMs.

7 CONCLUSION

We framed large language models as stochastic policies for symbolic planning over finite state ma-
chines and introduced cut-based reprompting, a context-engineering technique that iteratively prunes
invalid paths. Our theoretical analysis showed that symbolic cuts monotonically reduce entropy and
guarantee bounded convergence under mild assumptions.

Empirically, cut-based reprompting improves planning accuracy and convergence across FSMs, with
substantial gains for GPT-4o-mini, and entropy analysis confirmed that our method sharpens the dis-
tribution toward valid plans. Beyond improvements, our framework also served as a diagnostic lens:
in MiniGrid, cuts reduced entropy yet revealed a capability ceiling, showing that spatial reasoning
requires explicit world models rather than symbolic pruning alone.

Despite its simplicity, the method is robust, model-agnostic, and complementary to prompting strate-
gies like chain-of-thought. Limitations include possible over-pruning and diminished benefits for
weaker models. Future directions include adaptive cut strategies, hybridization with search and
planning algorithms, and attention-based interpretability to better understand constrained decision-
making.

By formalizing reprompting as entropy-based policy shaping and exposing capability boundaries,
this work advances context engineering as a foundation for fault-tolerant reasoning and points to-
ward hybrid symbolic–neural systems that combine the reliability of cuts with the semantic depth of
planners.
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A SUCCESS BY OPTIMAL PATH LENGTH (L∗)

Setup. We group instances by their optimal (shortest) path length L∗ and report the fraction solved
in each bucket (Success@L∗). An attempt counts as a success for bucket L∗ whenever the instance
whose shortest path is L∗ is solved, regardless of the produced plan length. This evaluates robustness
as a function of task difficulty rather than model behavior.

Computation. For each strategy (None, Naive, Cut, Strong) and prompt type (Vanilla, CoT), we
average binary success over all instances with the same L∗. Buckets with very few instances (e.g.,
L∗≥12) are sparse and thus noisier.

Findings. Table 2 shows clear length sensitivity. (1) GPT-4o-mini remains strong on short plans
(L∗≤6) across settings, and cut-based reprompting substantially slows the decay with length; Strong
consistently dominates Cut at longer horizons. (2) LLaMA-3-8B benefits from cuts at small L∗ but
collapses beyond ∼ 6 steps, indicating a capacity ceiling that reprompting cannot overcome. (3)
CoT synergy: CoT shifts the curve upward for both models, especially when combined with Strong
cuts. (4) For L∗ ≥ 10, only GPT-4o-mini with cut-based strategies maintains non-trivial accuracy,
highlighting current LLM limitations for long-horizon symbolic plans.

Table 2: Accuracy (%) by optimal path length L∗, model, prompt, and reprompting strategy. Deeper
greens indicate higher success rates.

Path LLaMA 3:8B (Vanilla) LLaMA 3:8B (CoT) GPT-4o-mini (Vanilla) GPT-4o-mini (CoT)
Length None Naive Cut Strong None Naive Cut Strong None Naive Cut Strong None Naive Cut Strong

2 25.0 55.0 70.0 85.0 25.0 62.5 72.5 80.0 85.0 85.0 92.5 95.0 97.5 100.0 100.0 97.5
3 55.5 95.0 100.0 100.0 15.5 65.0 75.0 70.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
4 0.0 25.0 45.0 50.0 0.0 30.0 45.0 50.0 50.9 60.0 75.0 85.0 60.0 90.0 100.0 95.0
5 5.0 10.0 15.0 25.0 0.0 25.0 35.0 45.0 50.0 100.0 85.0 90.0 90.0 100.0 95.0 100.0
6 10.0 26.6 43.3 30.0 13.3 23.3 46.6 36.6 63.3 73.3 86.6 93.3 73.3 93.3 93.3 90.0
7 0.0 0.0 3.3 3.3 0.0 0.0 13.3 16.6 3.3 46.6 60.0 50.0 13.3 73.3 63.3 70.0
8 0.0 0.0 3.3 3.3 0.0 0.0 3.3 3.3 6.6 23.3 16.6 43.3 23.3 53.3 53.3 70.0
9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 50.0 20.0 10.0 10.0 20.0 20.0 10.0
10 0.0 0.0 0.0 10.0 0.0 0.0 0.0 0.0 20.0 85.0 80.0 90.0 50.0 95.0 100.0 100.0
12 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 30.0 10.0 10.0 10.0 20.0 50.0 40.0
13 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 10.0 20.0 20.0 20.0
15 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

B TOKEN ACCOUNTING AND COMPLEXITY: FULL DERIVATIONS

We count tokens with the model’s tokenizer. Each attempt (first try + reprompts) contains: (i) the
base prompt L0 (task, graph, etc.), (ii) the reprompt header, (iii) the cut text, and (iv) an average
generation of Lgen tokens.

Fixed strings and per-cut cost. Our reprompt header

‘‘Avoid the following transitions in your next attempt:’’

consumes a fixed c0 = 19 tokens. Each weak cut is printed as u->v, at a calibrated cost cw = 4
tokens. We denote by ut the number of new weak cuts added at round t, and by

Ut =

t∑
k=1

uk

the cumulative number of distinct weak cuts by the start of round t+1. Let T be the number of
attempts (first attempt counted as t=1).

B.1 WEAK CUTS: NAIVE VS. CUMULATIVE PRINTING

Naive reprompting (new cuts only). At round t, the reprompt overhead is

Lnaive
weak(t) = c0 + cw ut = 19 + 4ut.

12
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The total token budget over T attempts is

Toknaive =

T∑
t=1

(
L0 + Lnaive

weak(t)
)
+ T Lgen = T (L0+Lgen) +

T∑
t=1

(
19 + 4ut

)
. (1)

Cumulative cut-based (all cuts discovered so far). At round t, the reprompt overhead is

Lcum
weak(t) = c0 + cw Ut = 19 + 4Ut.

The total is

Tokcum =

T∑
t=1

(
L0 + Lcum

weak(t)
)
+ T Lgen = T (L0+Lgen+19) + 4

T∑
t=1

Ut. (2)

Reordering the double sum gives the useful identity
T∑

t=1

Ut =

T∑
t=1

t∑
k=1

uk =

T∑
k=1

uk (T − k + 1). (3)

Hence

Tokcum = T (L0+Lgen+19) + 4

T∑
k=1

uk (T − k + 1). (4)

Subtracting equation 1 from equation 4 yields the overhead relative to naive:

Tokcum − Toknaive = 4

T∑
k=1

uk (T − k) ≥ 0. (5)

If cuts are added roughly uniformly across rounds, each cut is reprinted on average ≈ (T+1)/2
times.

B.2 HITTING-SET CONVERGENCE⇒ TOKEN BOUNDS

Let H⋆ be a minimum hitting set over witnesses (§3). If each cut hits at least r̄ ≥ 1 previously
uncovered witnesses, Prop. 2 gives the attempt bound

T ≤
⌈
|H⋆|
r̄

⌉
.

Moreover, because each weak cut covers at least one witness,
T∑

k=1

uk ≥ |H⋆|.

Naive (new cuts only). From equation 1,

Toknaive ≤ T (L0+Lgen+19) + 4 |H⋆| = O
(
T (L0+Lgen) + |H⋆|

)
.

With T ≤ |H⋆|/r̄, this is linear in |H⋆|.

Cumulative (all cuts discovered so far). Using equation 4 and the fact that (T−k+1) ≤ T ,

T∑
k=1

uk (T − k + 1) ≤ T

T∑
k=1

uk ≤ T |H⋆|.

Thus,

Tokcum ≤ T (L0+Lgen+19) + 4T |H⋆| = O
(
T (L0+Lgen) + |H⋆|T

)
= O

(
|H⋆|2/r̄

)
in the worst case (cuts spread across rounds). If most cuts arrive late (large k), the overhead factor
in equation 5 is smaller; if most arrive early, it is larger (upper bounded by T per cut).

13
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B.3 STRONG (NODE-LEVEL) CUTS

A strong cut enumerates valid successors for a node i:

From node i, only transitions to [v1, . . . , vdi
].

Let di be the out-degree of i. The per-node cost can be parameterized as

cs(i) ≈ c(0)s + c(1)s di,

where c
(0)
s is the fixed phrase cost and c

(1)
s the per-successor cost (identifier + separator). If Nt is

the set of nodes newly strong-cut at round t, the added text at t is

Lstrong(t) = c0 +
∑
i∈Nt

(
c(0)s + c(1)s di

)
.

In graphs with maximum out-degree ∆, cs(i) ≤ c
(0)
s + c

(1)
s ∆, so

Lstrong(t) ≤ c0 + |Nt|
(
c(0)s + c(1)s ∆

)
.

If each strong cut covers at least g≥ 2 witnesses (node-level coverage), then T ≤ |H⋆|/g, and the
total token cost satisfies

Tokstrong ≤ T (L0+Lgen+19) +
∑
t

∑
i∈Nt

(
c(0)s + c(1)s di

)
,

exhibiting the trade-off: larger per-round cost offset by fewer rounds T (improved coverage g).
In mixed policies (weak + strong), if U =

∑
t ut and S =

∑
t |Nt|, then gS + U ≥ |H⋆| and

T ≤ U + S, making the cost/coverage trade-off explicit.

B.4 CONSTANTS AND CALIBRATION

We calibrated c0=19 (header) and cw=4 (weak cut) with the model tokenizer using the exact strings
above and verified them in logs. For strong cuts, we estimate (c

(0)
s , c

(1)
s ) by regressing per-iteration

prompt growth on the number of newly strong-cut nodes and their out-degrees; the fitted values can
be treated as constants for a fixed phrasing and tokenizer.

C REPRODUCIBILITY STATEMENT

Our experiments involve stochastic language model outputs (sampling with temperature = 1), so
individual trajectories may vary across runs. To ensure reproducibility, we (1) release all code, FSM
benchmarks, and MiniGrid configurations in the supplementary material, to be made public upon
acceptance; (2) report results averaged over 10 instances; and (3) document all prompt templates
and validation rules in the code. While exact outputs cannot be reproduced deterministically, the
aggregated results and code allow independent researchers to replicate our findings within statistical
variance.

D LLM USAGE DISCLOSURE

Large language models (LLMs) were used during the preparation of this paper in the following
ways:

Writing assistance: LLMs were used to help with editing, phrasing suggestions, and polishing for
clarity and concision.

Reviewer simulation: LLMs were used to generate mock peer reviews to anticipate possible reviewer
concerns.

No role in experiments or analysis: All experiments, data generation, theoretical derivations, and
result analysis were conducted entirely by the authors.

The final content, claims, and conclusions are the responsibility of the authors.
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