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Abstract

As an effective alternative to the direct fine-001
tuning on target tasks in specific languages,002
cross-lingual transfer addresses the challenges003
of limited training data by decoupling “task004
ability” and “language ability”, achieved by005
fine-tuning on the target task in the source lan-006
guage and another selected task in the target007
language, respectively. However, they fail to008
fully separate the task ability from the source009
language or the language ability from the cho-010
sen task. In this paper, we acknowledge the011
mutual reliance between task ability and lan-012
guage ability and direct our attention toward013
the gap between the target language and the014
source language on tasks. As the gap removes015
the impact of tasks, we assume that it remains016
consistent across tasks. Based on this assump-017
tion, we propose a new cross-lingual transfer018
method called AdaMergeX that utilizes adaptive019
adapter merging. By introducing a reference020
task, we can determine that the divergence of021
adapters fine-tuned on the reference task in both022
languages follows the same distribution as the023
divergence of adapters fine-tuned on the target024
task in both languages. Hence, we can obtain025
target adapters by combining the other three026
adapters. Furthermore, we propose a structure-027
adaptive adapter merging method. Our empiri-028
cal results demonstrate that our approach yields029
new and effective cross-lingual transfer, outper-030
forming existing methods across all settings.1031

1 Introduction032

Recent advancements in multilingual large lan-033

guage models (LLMs) (OpenAI, 2022, 2023; Gem-034

ini Team et al., 2023; AI@Meta, 2024) have gained035

significant attention given the growing need for036

multilingual requirements. To further enhance037

the model’s multilingual capability, particularly in038

cases where training data of certain tasks for low-039

resource languages is scarce and fine-tuning be-040

comes impractical (Ma et al., 2023), cross-lingual041

1Code will be publicly available.

transfer is introduced to extend the task-solving 042

ability from a source language to various target 043

languages (Lin et al., 2019; Chen et al., 2022). 044

Essentially, cross-lingual transfer aims to trans- 045

fer the ability to solve a certain task (“task-ability”) 046

from a source language to a particular target lan- 047

guage (“language ability”). However, some cross- 048

lingual transfer techniques fail to directly improve 049

the language ability in specific languages. As a 050

compromise, they reply on the language ability in 051

English for multilingual tasks, employing meth- 052

ods like translation (Liang et al., 2023; Huang 053

et al., 2023b), representation alignment (Nguyen 054

et al., 2023; Gao et al., 2023), or prompting method 055

specifically developed for LLMs (Tanwar et al., 056

2023; Zhang et al., 2023b). On the contrary, some 057

studies aim to enhance the language abilities in tar- 058

get languages, so they endeavor to decouple task 059

ability and language ability, enhance them sepa- 060

rately, and subsequently merge them (Pfeiffer et al., 061

2020; Ansell et al., 2022; Ponti et al., 2023). How- 062

ever, this approach overlooks the intrinsic interde- 063

pendence between task ability and language ability. 064

Given that any specific task would be expressed in 065

a particular language, these two abilities cannot be 066

distinctly isolated from one another. 067

In this work, we argue that language ability and 068

task ability are inherently interconnected. Instead 069

of separating one from another, they should fol- 070

low that task ability is affiliated with the source 071

language while language ability refers to the ca- 072

pacity gap between the target language and the 073

source language. In line with the famous equation 074

“king−queen = man−woman” in the word em- 075

bedding space (Mikolov et al., 2013), we assume 076

that the divergences between LLMs fine-tuned in 077

different languages on a particular task follow the 078

same distribution across diverse tasks. In the case 079

of parameter-efficient fine-tuning, the equation be- 080

comes read fr − read en = math fr −math en in 081

the adapter space, where read and math refers to 082
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Figure 1: An overview of invariants of the language ability gap among different tasks in the adapter space, where by
employing any three we can get the remaining one. In light of this observation, we propose AdaMergeX.

two tasks, and fr and en indicates two languages083

of the corresponding tasks. As shown in the left084

side of Figure 1, in the adapter space, the diver-085

gence between the target language and source lan-086

guage on the target task follows the same distribu-087

tion as the divergence on the reference task.088

Therefore, we propose to accomplish the cross-089

lingual transfer through adapter merging with such090

a relation as shown in the right side of Figure 1.091

Specifically, we introduce a reference task from092

which we obtain the divergence between the tar-093

get language and source language, thereby cap-094

turing “language ability”. It is worth noting that095

the reference task can be an easily accessible task096

for both high-resource and low-resource languages,097

such as causal language modeling. In addition, we098

fine-tune LLMs on the target task in the source lan-099

guage, from which we obtain “task ability”. Finally,100

by merging these two abilities, we can obtain the101

adapter for the target task in the target language.102

Furthermore, in contrast to previous studies that103

combine models or adapters through a linear com-104

bination (Ilharco et al., 2022; Zhang et al., 2023a;105

Ponti et al., 2023), we argue that the adapter106

merging method should consider the manner in107

which adapters are integrated with language mod-108

els, specifically the structure of adapters. There-109

fore, we design a structure-adaptive adapter merg-110

ing method, which can adaptively select merging111

methods for LoRA (Hu et al., 2021), (IA)3 (Liu112

et al., 2022), Adapter (Houlsby et al., 2019), Prefix-113

Tuning (Li and Liang, 2021) etc. Combined with114

the cross-lingual transfer method proposed in Fig-115

ure 1, we propose an Adaptive Adapter Merging116

approach for cross-lingual transfer ( AdaMergeX).117

We evaluate the proposed AdaMergeX method on118

a wide range of multilingual tasks spanning 12 lan-119

guages, covering a broad resource spectrum from120

high-resource to low-resource languages. Our eval-121

uation demonstrates that AdaMergeX consistently122

outperforms other state-of-the-art methods includ- 123

ing model merging, prompting, and general adapter 124

merging methods. Notably, compared to MAD- 125

X (Pfeiffer et al., 2020) which separates the task 126

and language ability with two adapters, AdaMergeX 127

achieves 8.0% and 15.9% absolute improvement 128

on XCOPA and XQuAD respectively with XLM- 129

R. In the case of state-of-the-art adapter merging 130

method Arimerge (Zhang et al., 2023a), AdaMergeX 131

achieves 31.1% relative improvement on average 132

in all languages and all tasks with Llama2. More- 133

over, the ablation analysis shows that AdaMergeX 134

performs consistently well with different backbone 135

models, source languages, and reference tasks. 136

2 Background 137

Given a pre-trained model, fine-tuning is often 138

employed to improve the performance on specific 139

tasks. Specifically, for a layer h = W0x, where 140

x ∈ Rk is input, h ∈ Rd is output and W0 ∈ Rd×k 141

is pre-trained parameters, fine-tuning updates pa- 142

rameters from W0 to W ′ and the layer becomes 143

h = W ′x. However, full fine-tuning requires 144

many training data points and computing resources, 145

which inspires the design of adapters (Houlsby 146

et al., 2019). With adapters, the layer is changed 147

to h = (W0 ◦ WA)x, where WA denotes the pa- 148

rameters of adapters and ◦ denotes the combination 149

operation of pre-trained parameters and adapter 150

parameters. During such parameter-efficient fine- 151

tuning, pre-trained parameters W0 are fixed and 152

only adapter parameters WA are updated. With 153

the number of parameters growing much bigger 154

for LLMs, adapters become more widely used in 155

the current practice of fine-tuning LLMs (Hu et al., 156

2021; Li and Liang, 2021; Liu et al., 2022) 157

Various combination methods ◦ have been de- 158

signed for different adapters. In this paper, we 159

focus on two main widely used combination meth- 160

ods: addition and multiplication, corresponding to 161
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LoRA (Hu et al., 2021) and (IA)3 (Liu et al., 2022),162

respectively. We also involve Adapter (Houlsby163

et al., 2019) and Prefix-Tuning (Li and Liang, 2021)164

in to guarantee the generaliability.165

LoRA Specializing the combination method “◦”166

to element-wise addition denoted as “⊕”, LoRA167

employs low-rank decomposition to reduce training168

complexity. The layer is thus changed to169

h = (W0 ⊕WA)x = (W0 ⊕BA)x, (1)170

where B ∈ Rd×r and A ∈ Rr×k are low-rank171

decomposed matrices, and the rank r ≪ min(d, k).172

Specifically, the LoRA can be implemented in any173

layer of the Transformer (Vaswani et al., 2017)174

architecture, including the attention layer and the175

feed-forward layer.176

(IA)3 (IA)3 specializes the combination method177

to element-wise multiplication “⊙”:178

h = (W0 ⊙WA)x, (2)179

where WA ∈ Rk is element-wise multiplied to180

each row of W0. Furthermore, (IA)3 can only be181

implemented to the key and value neuron in the at-182

tention layer and dimension reduction neuron in the183

feed-forward layer of the Transformer architecture.184

Adapter & Prefix-Tuning By inserting layers185

and prefix tokens into the model, combination186

methods of Adapter and Prefix-Tuning can be for-187

mulated as188

h = ([W0,WA])x, (3)189

where [·, ·] represents concatenation to original190

layer or original pre-trained parameters.191

3 AdaMergeX: Adaptive Adapter192

Merging for Cross-lingual Transfer193

3.1 Cross-Lingual Transfer via Adapter194

Merging195

Generally, the ability of a model in a particular task196

and language can be seen as a composite of two197

abilities, namely, “task ability” and “language abil-198

ity”. The former denotes the model’s competence199

in performing a certain task (e.g., text classification,200

sentence completion), whereas the latter signifies201

their general proficiency in the given language (e.g.,202

English, Chinese, German). Built on the premise203

that language ability and task proficiency are inher-204

ently intertwined, it is advocated that rather than205

isolating one from the other, the inference should 206

be drawn that task ability is associated with the 207

source language, whereas language ability refers to 208

the capacity difference between the target language 209

and the source language. In line with the famous 210

equation “king − queen = man − woman” in 211

the word embedding space, we assume that the di- 212

vergences between LLMs fine-tuned in different 213

languages on a particular task follow the same dis- 214

tribution across diverse tasks. 215

Formally speaking, Alitj denotes the adapter of 216

task tj in language li, then for any two languages 217

l1, l2 and two NLP tasks t1, t2, we have 218

Al1t1∥Al2t1 ∼ Al1t2∥Al2t2 , (4) 219

where ∥ denotes the divergence among two 220

adapters. For example, let’s consider l1 and l2 as 221

English and German, respectively, and t1 and t2 as 222

the text classification task and question answering 223

task, respectively. Assuming we have training data 224

for each task in both languages, we can fine-tune 225

LLMs to obtain four adapters: text classification 226

in English, text classification in German, question 227

answering in English, and question answering in 228

German. We assume that the divergence between 229

adapters for the text classification task in English 230

and German, as well as the divergence between 231

adapters for the question answering task in English 232

and German, follows the same distribution. This 233

divergence represents the “language ability” that is 234

independent of specific tasks. 235

In the context of cross-lingual transfer, we aim to 236

solve the task t1 for the target language l1, with the 237

knowledge transferred from a source language l2, 238

which is often a high-resource language such as En- 239

glish. By imposing the condition of cross-lingual 240

transfer, where labeled data is available only for 241

the target task in the source language and there is 242

unlabeled data in both the source and target lan- 243

guages, we can introduce another “reference task” 244

t2. This task can be easily constructed using un- 245

labeled data, and language ability can be obtained 246

by Al1t2∥Al2t2 . Moreover, to obtain the ability of 247

performing target task t1 in the target language l1, 248

we can further transform Equation (4) as: 249

Al1t1 = Al2t1 ∥R (Al1t2∥Al2t2), (5) 250

where ∥R is the reverse function of ∥. Intuitively, 251

Al2t1 represents the “task ability” in the source lan- 252

guage, while Al1t2∥Al2t2 represents the “language 253
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ability”. Through merging these two terms, we can254

transfer the “task ability” of t1 from l2 to l1.255

To transfer the knowledge from labeled data in256

the high-resource language (i.e., given Al2t1), the257

next step is to specify the reference task t2. We258

observe that there are many easily obtained cor-259

pora of low-resource languages, such as Wikipedia,260

online blogs, etc. These corpora can be used to261

construct intuitive tasks such as causal language262

modeling, which can serve as the reference task263

t2. Simultaneously, we can also construct such264

tasks for the high-resource language l2. Therefore,265

adapters can be fine-tuned on such easily accessi-266

ble reference tasks in different languages to obtain267

Al1t2 and Al2t2 . Cross-lingual transfer thus can be268

achieved by merging these three adapters.269

3.2 Structure-Adaptive Adapter Merging270

As introduced in Section 2, adapters have different271

structures, which inspires us to devise different272

adapter merging methods. We propose that the273

adapter merging approach must align with the way274

that the adapter combined with the original model,275

as illustrated in Figure 2.276

LoRA In the fine-tuning process of LoRA, where277

the method involves element-wise addition to the278

original parameters, the merging method used to279

combine task ability and language ability should280

also employ element-wise addition. Additionally,281

since the divergence calculation approach ∥ is in-282

tended to be the inverse function of the merging283

method, it should be carried out through element-284

wise subtraction in this scenario. Therefore, Equa-285

tion (4) is equivalently transferred to286

Al1t1 ⊖Al2t1 ∼ Al1t2 ⊖Al2t2 , (6)287

where ⊖ denotes element-wise subtraction, and288

Equation (5) is equivalently transferred to289

Al1t1 = Al2t1 ⊕ t · (Al1t2 ⊖Al2t2), (7)290

where ⊕ denotes element-wise addition and t is291

the hyper-parameter that adapts the scale of two292

distributions in the same family of distributions.293

(IA)3 Similarly, the fine-tuning method of (IA)3294

is element-wise multiplication to the original pa-295

rameters, and the merging method should also be296

element-wise multiplication. Furthermore, we need297

to employ element-wise division to obtain the diver-298

gence between Al1t2 and Al2t2 . Therefore, Equa-299

tion (4) is equivalently transferred to300

Al1t1 ⊘Al2t1 ∼ Al1t2 ⊘Al2t2 , (8)301

Figure 2: Structure-adaptive adapter merging method
aligns with the manner in which adapters are inte-
grated with language models. For example, “addition”
for LoRA, “multiplication” for (IA)3, and “MLP” for
Adapter and Prefix-Tuning.

where ⊘ denotes element-wise devision, and Equa- 302

tion (5) is equivalently transferred to 303

Al1t1 = Al2t1⊙
(
(t·(Al1t2⊘Al2t2)−1)+1

)
, (9) 304

where ⊙ denotes element-wise multiplication and t 305

is the hyper-parameter determining the scale of two 306

distributions in the same family of distributions. 307

308

Adapter & Prefix-Tuning In the case of other 309

adapter structures such as Adapter and Prefix- 310

Tuning, which involve the insertion of layers and 311

prefix tokens into the model, the merging process 312

necessitates transferring adapters within the same 313

space, such as MLP. Formally, the adaptive merg- 314

ing method is 315

Al1t1 = t · (Al1t2 ∗A
−1
l2t2

) ∗Al2t1 , (10) 316

where ∗ represents matrix multiplication and A−1
l2t2

317

represents Moore-Penrose pseudo-inverse of the 318

matrix. For Prefix-Tuning, Alt represents the pre- 319

fix tokens, while for Adapter Alt represents corre- 320

sponding layers. In this paper, we mainly focus 321

on LoRA and (IA)3 when Llama2 is the backbone 322

model due to the lack of training data in the target 323

language for the Adapter and the subpar perfor- 324

mance of prefix-tuning on fine-tuning (He et al., 325

2021). On the contrary, in the case of smaller lan- 326

guage models such as mT5 (Xue et al., 2021), we 327

implement AdaMergeX on it with prefix-tuning. 328

The experiment results are shown in Appendix A.1. 329

3.3 AdaMergeX 330

Following notations in Section 3.1, to solve a tar- 331

get task t1 in a target language l1, i.e., obtain the 332
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Task Zero-Shot Prompt

MGSM Let’s think step by step. Question: {question}

XCOPA Here is a premise and a question. Help me pick the more plausible option. Premise: {premise} Question:
What is the {question}? (A) {choice1} (B) {choice2}

XNLI You should judge whether the hypothesis is true (entailment), false (contradiction), or undetermined
(neutral) given the premise. Premise: {premise} Hypothesis: {hypothesis}

XQuAD {context} Question: {question}

XLSum Summarize the context in one sentence. Title: {title} Context: {article}

Table 1: Zero-shot prompts for each dataset.

adapter Al1t1 , we need to fine-tune another three333

adapters: adapters on the target task in the source334

language (Al2t1), adapters on the reference task in335

the target language (Al1t2), and adapters on the ref-336

erence task in the source language (Al2t2). Note337

that Al1t2 and Al2t2 are easily obtainable, as we338

can choose any task in the target and source lan-339

guage. As mentioned earlier, the task can even340

be causal language modeling, which only requires341

unlabeled text corpora. Therefore, with only un-342

labeled data in both source and target language,343

our proposed AdaMergeX effectively transfers the344

target task proficiency from the source language to345

the target language. Moreover, given that the ref-346

erence task remains constant, fine-tuning LLMs in347

the source language on the target task is the sole re-348

quirement for each new target task. This efficiency349

characterizes AdaMergeX.350

In the case of LoRA, which fine-tunes LLMs351

by tuning {B,A} in tuned layers of LLMs as in-352

troduced in Equation (1), adapters are merged fol-353

lowing Equation (7) by element-wise addition and354

subtraction on {B,A} in the corresponding layers355

of Al2t1 , Al1t2 , and Al2t2 . On the other hand, in the356

case of (IA)3, the fine-tuning parameters are WA357

in tuned layers as depicted in Equation (2). Thus358

the merging method follows Equation (9), which359

involves performing element-wise multiplication360

and division of the corresponding layers of Al2t1 ,361

Al1t2 , and Al2t2 .362

4 Experiments363

4.1 Experimental Setup364

Datasets and Language To evaluate the effec-365

tiveness of our method, we conduct experiments366

on a wide variety of multilingual tasks in three367

main categories: reasoning tasks, natural language368

understanding (NLU) tasks, and natural language369

generation (NLG) tasks. For reasoning tasks, we370

test on multilingual arithmetic reasoning dataset371

XGSM (Shi et al., 2022) and multilingual com- 372

monsense reasoning dataset XCOPA (Ponti et al., 373

2020). For NLU tasks, we test on the multilin- 374

gual natural language inference dataset XNLI (Con- 375

neau et al., 2018), and question-answering dataset 376

XQuAD (Artetxe et al., 2020). For NLG tasks, 377

we test on multilingual summarization dataset XL- 378

Sum (Hasan et al., 2021). We choose 12 languages 379

that appear in more than once in the above datasets, 380

including German (de), Russian (ru), French (fr), 381

Spanish (es), Chinese (zh), Vietnamese (vi), Turk- 382

ish (tr), Arabic (ar), Greek (el), Thai (th), Hindi (hi), 383

and Swahili (sw). Detailed settings of zero-shot 384

prompts are shown in Table 1. We utilize intuitive 385

prompting methods for all tasks except for XCOPA 386

and XNLI, where we employ prompts from Huang 387

et al. (2023b). Detailed examples of the prompt- 388

ing approach can be found in Appendix A.2. For 389

MGSM, XCOPA and XQuAD, we adopt the whole 390

testset, while for XNLI and XLSum we randomly 391

sample 1000 and 500 data points from the whole 392

testset respectively. 393

Baselines We conduct comparisons between our 394

proposed method, which utilizes model merging 395

for achieving cross-lingual transfer, and seven com- 396

peting techniques: (i) Vanilla zero-shot prompt- 397

ing (“Vanilla”), which directly assesses target lan- 398

guages using the pre-trained LLM. (ii) English 399

Tuning (“Eng-FT”), which involves fine-tuning 400

the model in English for target tasks and sub- 401

sequently transferring it directly to target lan- 402

guages. (iii) Cross-Lingual-Thought Prompting 403

(“XLT (Vanilla)”) (Huang et al., 2023b) achieves 404

state-of-the-art results on cross-lingual transfer 405

with LLMs through carefully designed prompt tem- 406

plate, which involves explicit translation from the 407

target to the source language, reasoning in the 408

source language, and translating back to the tar- 409

get language. (iv) “XLT (Eng-FT)”, where XLT 410

approach is applied to the Eng-FT model. (v) 411

5



Arithmetic Merging (“AriMerge”) (Zhang et al.,412

2023a), which is the state-of-the-art adapter merg-413

ing method by arithmetic addition. (vi) MAD-414

X (Pfeiffer et al., 2020) decomposes language and415

task via independent invertible adapters. (vii) LF-416

SFT (Ansell et al., 2022) adopts sparse fine-tuning417

on language and task respectively and directly418

merging via addition.419

Evaluation Metrics For reasoning and NLU420

tasks, we use accuracy scores as our evaluation421

metric. For the summarization task, we evaluate422

the performance by ROUGE-L score (Lin, 2004).423

Experiment Details The backbone model that424

we use to test AdaMergeX is Llama2-7b (Touvron425

et al., 2023) for LoRA and (IA)3, and XLM-R for426

Prefix-Tuning. To fine-tune Llama2 using LoRA427

and (IA)3, we configure the target modules to in-428

clude all available layers. We employ conventional429

causal language modeling as the reference task,430

where the prediction of the subsequent token is431

based on preceding inputs. Specifically, we gen-432

erate the training set from the corpora provided433

by Wikimedia Foundation2 by dividing them into434

segments with a length of 512. There is only one435

hyperparameter in our method, which is t in Equa-436

tion (7), (9), and (10). When tuning this hyperpa-437

rameter, for each task, we select the validation set438

from French and then extend it to encompass all439

other languages, for those tasks that do not contain440

French validation set, we adopt Vietnamese instead.441

For XLT method (Huang et al., 2023b), we adopt442

the same zero-shot prompts as in the original paper.443

4.2 Main Results444

Table 2 presents our main experimental results on445

5 representative cross-lingual tasks with LlaMa2,446

where we report the average scores across all lan-447

guages. Detailed results of each language are448

shown in Table 8 and 9 in Appendix A.3 for LoRA449

and (IA)3 respectively. Table 3 presents the results450

on XLM-R, where we compare with MAD-X and451

LF-SFT on XCOPA and XQuAD3.452

AdaMergeX outperforms direct transfer and453

prompting methods When comparing to fine-454

tuning on the task in English and direct transfer to455

the target language, AdaMergX outperforms it on456

2https://dumps.wikimedia.org/
3We only test XCOPA and XQuAD because encoder-only

models can only be applied to classification tasks.

all settings and achieves 1.4% absolute improve- 457

ment with LoRA and 1.5% absolute improvement 458

with (IA)3. When comparing to the state-of-the- 459

art method for cross-lingual transfer in LLMs via 460

prompting, XLT with Vanilla Llama2 model (“XLT 461

(Vanilla)”) and model fine-tuned on target task 462

in English (“XLT (Eng-FT)”), AdaMergeX outper- 463

forms it on all settings and achieves 3.4% absolute 464

improvement with LoRA and 7.3% absolute im- 465

provement with (IA)3. This achievement proves 466

that the introduction of adapter merging to achieve 467

cross-lingual transfer is effective, especially in the 468

circumstance of LLMs. 469

AdaMergeX outperforms decoupling task ability 470

and language ability method As shown in Ta- 471

ble 3, compared to MAD-X and LF-SFT, which 472

struggle to fully separate task ability from language 473

ability, AdaMergeX demonstrates remarkable en- 474

hancements. In particular, AdaMergeX showcases 475

an impressive absolute improvement of 8.0% and 476

15.9% on XCOPA and XQuAD, respectively, in 477

comparison to MAD-X. Additionally, it achieves a 478

significant 4.6% absolute improvement on XQuAD 479

when compared to LF-SFT. Therefore, our pro- 480

posed new decoupling method is much more effec- 481

tive than others. 482

AdaMergeX outperforms general adapter merg- 483

ing methods Compared with the state-of-the-art 484

method for adapter merging namely Arimerge, 485

AdaMergeX outperforms it on all settings and 486

achieves 6.9% absolute improvement with LoRA 487

and 2.3% absolute improvement with (IA)3. There- 488

fore, AdaMergeX, which adaptively considers the 489

structure of adapters, outperforms all previous gen- 490

eral adapter merging methods that adopt arithmetic 491

addition for all kinds of adapters. 492

AdaMergeX performances consistently well with 493

LoRA and (IA)3 LoRA achieves higher absolute 494

performance than (IA)3, which shows the effec- 495

tiveness of LoRA on fine-tuning. However, com- 496

pared to the absolute improvement of AdaMergeX 497

on LoRA and (IA)3, they are comparable. For 498

example, for MGSM, LoRA and (IA)3 get the 499

same absolute improvement 1.1%, and for XNLI, 500

on which LoRA and (IA)3 both achieve the high- 501

est absolute improvement, their performance are 502

comparable. This proves that AdaMergeX performs 503

consistently well on different adapters. 504
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Adapters Method Reasoning NLU NLG Avg.MGSM XCOPA XNLI XQuAD XLSum

LoRA

Vanilla 2.7 52.3 28.8 0.0 20.9 20.9
Eng-FT 17.4 58.1 39.6 31.0 22.9 33.8
XLT(Vanilla) 2.8 52.6 30.7 19.3 1.3 21.3
XLT(Eng-FT) 18.1 58.2 39.4 26.4 19.1 32.2
AriMerge 6.0 57.9 42.7 30.1 19.5 31.2
AdaMergeX 19.2 61.5 46.2 33.8 23.3 36.8

(IA)3

Vanilla 2.7 52.3 28.8 0.0 20.9 18.1
Eng-FT 2.3 55.7 36.4 34.0 17.4 29.2
XLT(Vanilla) 2.8 52.6 30.7 19.3 1.3 21.3
XLT(Eng-FT) 2.8 56.2 38.3 21.3 1.4 24.0
AriMerge 0.7 51.5 27.1 32.4 15.5 25.4
AdaMergeX 3.9 59.2 43.9 35.5 21.4 32.8

Table 2: Main experimental results on 5 representative cross-lingual tasks. Details of the selected zero-shot prompt,
the baselines, and hyperparameters are described in Section 4.1.

Task Method tr vi th sw el ru Avg.

XCOPA MAD-X 60.3 66.1 61.8 56.3 - - 59.5
AdaMergeX 69.4 70.5 66.9 63.2 - - 67.5

XQuAD
MAD-X - - 54.3 57.8 55.7 51.1 54.7
LF-SFT - - 65.5 64.6 75.2 58.6 66.0
AdaMergeX - - 70.2 70.4 77.9 63.8 70.6

Table 3: Results on XCOPA and XQuAD with XLM-R,
where AdaMergeX is implemented on LoRA.

4.3 Detailed Analysis505

In this section, we validate the generalizability of506

our proposed method across various aspects includ-507

ing the source language, reference task, backbone508

model, and target modules. Furthermore, we per-509

form an ablation analysis to assess the essentiality510

of the adaptive merging method.511

Source Language To prove the generalizability512

of AdaMergeX on the source language, we explore513

its performance with different source languages in514

Table 4. We test on five source languages including515

German, French, Spanish, Thai, and Vietnamese.516

We find that the performance is highly related to the517

source language, which depends on the language518

ability of the corresponding language. However,519

the improvements are consistent across languages.520

For example, the improvement was most significant521

with Vietnamese as the source language, with an ab-522

solute improvement of 3.4% with LoRA and 3.8%523

with (IA)3. Therefore, AdaMergeX consistently per-524

forms well with different source languages.525

Reference Task To prove the generalizability of526

AdaMergeX on the reference task, we explore its527

performance with different reference task in Table528

5. We test on three different reference tasks, in-529

Method Reasoning NLU NLG Avg.MGSM XCOPA XNLI XQuAD XLSum

L
oR

A
De-Tune 20.9 − 48.3 44.4 − 37.9
AdaMergeX 22.3 − 50.9 46.5 − 39.9

Fr-Tune 19.9 − 52.9 − 24.1 32.3
AdaMergeX 22.2 − 57.1 − 24.8 34.7

Es-Tune 19.2 − 33.9 45.4 22.1 30.2
AdaMergeX 18.7 − 35.1 49.1 23.7 31.7

Th-Tune 3.2 49.3 1.9 39.8 20.3 22.9
AdaMergeX 4.5 48.9 6.2 44.2 20.1 24.8

Vi-Tune − 63.8 49.1 36.2 21.7 42.7
AdaMergeX − 64.2 53.2 38.9 22.3 44.7

(I
A

)3

De-Tune 2.9 − 43.5 45.6 − 30.7
AdaMergeX 6.3 − 44.0 47.1 − 32.5

Fr-Tune 2.5 − 48.7 − 19.8 23.7
AdaMergeX 4.1 − 47.9 − 21.6 24.5

Es-Tune 3.5 − 49.2 45.9 18.2 29.2
AdaMergeX 5.3 − 50.9 44.6 20.1 30.2

Th-Tune 1.2 49.8 0.0 27.7 20.2 19.8
AdaMergeX 1.9 50.4 0.0 28.9 24.1 21.1

Vi-Tune − 49.8 45.5 33.2 20.1 37.2
AdaMergeX − 48.7 50.2 36.1 22.5 39.4

Table 4: Ablation study on source language.

cluding XCOPA, XNLI, XQuAD, while the source 530

language is English. The dataset was tested on the 531

corresponding available languages among German, 532

French, Spanish, Thai, and Vietnamese. Specifi- 533

cally, the improvement was most significant with 534

XQuAD as the reference task, with an absolute 535

improvement of 1.3% with LoRA and 1.7% with 536

(IA)3. Thus, it verifies that AdaMergeX is general 537

to any reference task. 538

Backbone Models Not limited to Decode-only 539

Models such as Llama2, we do further analy- 540

sis on Encoder-Decoder model T5-base (Raffel 541

et al., 2020) to prove its universal effectiveness. 542
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Ref. Task Method MGSM XCOPA XNLI XQuAD XLSum Avg.
L

oR
A

− Eng-Tune 14.4 59.9 44.6 42.3 16.1 35.1

XCOPA AdaMergeX 15.2 60.2 45.1 43.8 18.2 36.5

XNLI AdaMergeX 14.5 60.9 46.7 44.1 18.4 36.9

XQuAD AdaMergeX 14.9 61.8 45.4 44.4 18.1 36.9

(I
A

)3

− Eng-Tune 2.6 52.7 40.0 39.2 10.8 29.1

XCOPA AdaMergeX 4.9 54.3 40.5 40.4 12.4 30.5

XNLI AdaMergeX 3.6 54.6 41.2 39.9 13.1 30.5

XQuAD AdaMergeX 4.1 53.9 42.1 41.0 12.9 30.8

Table 5: Ablation study on reference Task.

AdaMergeX achieves consistently the best perfor-543

mance compared to fine-tuning on English and544

AriMerge as shown in Table 10 of Appendix A.4.545

Furthermore, we also implement our method on546

Encoder-only model XLM-R and compare with547

MAD-X and LF-SFT as shown in Table 3. This548

shows the flexibility of choosing the backbone549

model when implementing AdaMergeX.550

Merging Method We conduct an ablation analy-551

sis on merging method to ascertain the indispens-552

ability and the effectiveness of adaptive merging in553

AdaMergeX. Table 11 in Appendix A.5 shows the554

detailed results, where AdaMergeX (adaptive) repre-555

sents AdaMergeX with adaptive merging methods,556

while AdaMergeX (cross) represents AdaMergeX557

with cross merging methods, i.e., LoRA with merg-558

ing method of (IA)3 and vice versa. We find that559

when applying the merging method of (IA)3 to560

LoRA, the performance is reduced much, and vice561

versa. As a result, the adaptive merging method is562

crucial for adapter merging.563

5 Related Work564

Cross-Lingual Transfer The emergence of mul-565

tilingual systems (Kenton and Toutanova, 2019;566

Conneau and Lample, 2019; Conneau et al., 2020;567

OpenAI, 2022; Anil et al., 2023; Touvron et al.,568

2023) has sparked interest in cross-lingual trans-569

fer (Kim et al., 2017; Lin et al., 2019; Schuster570

et al., 2019; Pfeiffer et al., 2020). Fine-tuning on571

the target language and target task is an intuitive572

way to make models obtain the ability of this task,573

but it is too costly in the era of LLMs as we al-574

ways lack enough training data (Ma et al., 2023).575

Alternatively, some researchers explore realigning576

representations among languages (Nguyen et al.,577

2023; Salesky et al., 2023; Gao et al., 2023). How-578

ever, Gaschi et al. (2023) demonstrates that aligned579

representations do not significantly benefit cross-580

lingual transfer. To address this issue, some works 581

adopt explicit translation to achieve cross-lingual 582

transfer (Liang et al., 2023; Huang et al., 2023b). 583

However, they rely on translation ability which is 584

not guaranteed. In addition, Pfeiffer et al. (2020) 585

and Ansell et al. (2022) decouple language ability 586

and task ability, but they ignore the interconnection 587

of these two abilities. Furthermore, in the era of 588

in-context learning (Brown et al., 2020; Chowd- 589

hery et al., 2022; Touvron et al., 2023; OpenAI, 590

2023), Li et al. (2023) and Tanwar et al. (2023) uti- 591

lize prompt tuning to achieve cross-lingual transfer. 592

Nevertheless, the performance remains limited for 593

low-resource languages, which is often not care- 594

fully considered in the pre-training of LLMs. 595

Model Merging Model merging has been widely 596

used in image identification (Wortsman et al., 597

2022; Matena and Raffel, 2022), knowledge edit- 598

ing (Mitchell et al., 2022; Meng et al., 2022) and 599

task combination (Ilharco et al., 2022). In the era 600

of PEFT, researchers have started exploring differ- 601

ent approaches to merging adapters (Zhang et al., 602

2023a; Yadav et al., 2023; Huang et al., 2023a; 603

Chronopoulou et al., 2023; Ponti et al., 2023). 604

These studies, however, have primarily focused 605

on task transfer and have solely utilized linear com- 606

binations of different adapters, which may not be 607

applicable to all types of adapters. Moreover, the 608

utilization of model merging for cross-lingual trans- 609

fer is under-studied. 610

6 Conclusion 611

In this work, we propose a new cross-lingual trans- 612

fer method AdaMergeX. We split target task abil- 613

ity in the target language into two parts: “task 614

ability” and “language ability”. In the context of 615

PEFT, task ability can be obtained by tuning on 616

the target task in the source language. To achieve 617

cross-lingual transfer, which aims to transfer task 618

ability from the source language to the target lan- 619

guage, we introduce a reference task from which 620

we obtain language ability and further merge it to 621

task ability by adapter merging. Different from 622

all previous adapter merging methods, we propose 623

a structure adaptive adapter merging method that 624

aligns the adapter merging method with the way 625

adapters combined to LLMs. Experiment results 626

show that AdaMergeX performs well among all 627

settings. Moreover, ablation analysis proves that 628

AdaMergeX is robust to backbone models, source 629

languages, and source tasks. 630
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Limitations631

Our research primarily utilizes models with around632

7 billion parameters, specifically Llama2-7b, due633

to limitations in computational resources. Explor-634

ing our methodologies on larger-scale models may635

offer further valuable perspectives. Furthermore,636

although the training set for the reference task is637

easily accessible, fine-tuning the parameters of the638

entire model necessitates a certain investment of639

time. However, this training time can be signif-640

icantly reduced by integrating language-specific641

adapters or employing language-specific Mixture642

of Experts (MoE) techniques, which ultimately low-643

ers the overall training cost.644
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Jonas Pfeiffer, Ivan Vulić, Iryna Gurevych, and Se- 828
bastian Ruder. 2020. Mad-x: An adapter-based 829
framework for multi-task cross-lingual transfer. In 830
Proceedings of the 2020 Conference on Empirical 831
Methods in Natural Language Processing (EMNLP), 832
pages 7654–7673. 833

Edoardo Maria Ponti, Goran Glavaš, Olga Majewska, 834
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A Appendix 909

A.1 AdaMergeX on Prefic-Tuning 910

The results demonstrate that AdaMergeX excels re- 911

markably within the realm of prefix-tuning, a dis- 912

tinct and separate approach to fine-tuning. Results 913

on XNLI task with mT5 (Xue et al., 2021) are 914

shown as follows in Table 6. 915

A.2 Prompts 916

Detailed prompts of tasks in each language are 917

listed in Table 7. 918

A.3 Detailed Results 919

We present detailed results in Table 8 and Table 9. 920

A.4 AdaMergeX on T5-base 921

Because T5-base only supports Spanish and French 922

in chosen languages, we only test these two lan- 923

guages. In the case of LoRA on XNLI, AdaMergeX 924

obtains 4.2% absolute improvements in Spanish 925

and 2.8% absolute improvements in French. For 926

(IA)3, the improvements are 1.1% and 4.0% re- 927

spectively. 928

A.5 Ablation on Adaptive Merging 929

We find that when applying the merging method of 930

(IA)3 to LoRA, the performance is reduced much. 931

Specifically, on XNLI the performance gets 39.5% 932

absolute reduction, while for XQuAD the reduction 933

is 45.9% absolute value. When applying the merg- 934

ing method of LoRA to (IA)3, the performance also 935

decreases compared to that of the adaptive merging 936

method. For XNLI the reduction is 2.4%, while for 937

XQuAD the reduction is 0.7%. The reduction is 938

smaller than that for LoRA. This can be attributed 939

to the fact that the fine-tuning of (IA)3 is not as ef- 940

fective as that of LoRA and has a relatively minor 941

impact on the overall model performance. 942

A.6 Ablation on Merging Modules 943

We present ablation on merging methods in Table 944

12 and Table 13. 945

11



Task Method es fr ru tr vi th sw el Avg.

XCOPA Eng-FT − − − − 69.5 57.4 62.8 − 65.2
AriMerge − − − − 65.4 59.7 64.1 − 63.1
AdaMergeX − − − − 71.3 63.2 65.6 − 66.7

XNLI
Eng-FT 31.2 29.7 30.4 19.8 43.1 11.6 13.2 16.3 24.4
AriMerge 29.8 28.3 33.2 21.4 42.9 11.8 14.6 21.8 25.5
AdaMergeX 34.1 31.4 34.2 20.9 44.8 20.3 16.7 25.3 28.5

XLSum
Eng-FT 13.4 14.2 12.7 14.1 18.9 14.9 7.8 − 13.7
AriMerge 14.5 15.2 15.6 13.9 20.2 15.6 8.6 − 14.8
AdaMergeX 14.9 16.1 17.4 16.1 19.8 17.1 10.3 − 16.0

Table 6: Results of AdaMergeX on Prefix-tuning with mT5.

MGSM (French)

Let’s think step by step.

Question: Les canes de Janet pondent 16 œufs par jour. Chaque matin, elle en mange trois au petit déjeuner et en utilise quatre autres pour préparer des muffins pour
ses amis. Ce qui reste, elle le vend quotidiennement au marché fermier, au prix de 2 $ l’œuf de cane frais. Combien (en dollars) gagne-t-elle chaque jour au marché
fermier ?
Answer:

XCOPA (Vietnamese)

Here is a premise and a question. Help me pick the more plausible option. Answer with (A) or (B).

Premise: Các mt hàng d̄ã d̄c d̄óng gói trong bc bong bóng.
Question: What is the cause?
(A) Nó d v.
(B) Nó nh.
Answer:

XNLI (French)

You should judge whether the hypothesis is true (entailment), false (contradiction), or undetermined (neutral) given the premise. The relationship can be chosen from
entailment, contradiction, and neutral.

Premise: Cela fait 17 ans que je suis affilié à l’IRT.
Hypothesis: Je n’ai rien à voir avec l’IRT.
Relationship:

XLSum (Vietnamese)

Summarize the context in one sentence.

Title: Côte d’Ivoire : le groupe Magic System fête ses 20 ans
Context: Formé en 1997, le groupe a connu la consécration deux ans plus tard avec son tube P̈remier Gaou.̈ Le groupe ivoirien fête ses 20 ans avec une tournée
africaine et une autobiographie. N̈ous célébrons 20 ans d’amitiés, de collaboration, de moments de joies et de tristesses,̈ raconte A’Salfo, le leader du groupe qui a
su ouvrir les portes du marché africain et international au genre zouglou mais aussi aux autres genres ivoiriens, dont le coupé-décalé. A’Salfo, Manadja, Tino et
Goudé, les quatre boys d’Anoumabo, quartier déshérités d’Abidjan, aux ruelles boueuses et sablonneuses, ont joué partout, des stades africains aux salles mythiques
comme l’Apollo à New York ou l’Olympia à Paris et jusqu’au Louvre, le 7 mai, pour le concert célébrant la victoire du président français Emmanuel Macron. Magic
System a bénéficié de conseils avisés d’Alpha Blondy. Formé en 1997, le groupe a connu la consécration deux ans plus tard avec son tube P̈remier Gaou,̈ fable sur
les déboires sentimentaux d’un jeune homme naïf - le gaou est un homme crédule en nouchi, l’argot abidjanais. Le tube va propulser les quatre amis sur la scène
mondiale. Magic System a multiplié les succès, enchaînant les albums, sans oublier l’amitié. M̈agic System est aussi un groupe qui a toujours voulu relever les défis,
après Premier Gaou, nos détracteurs ont parlé de coup de chance! On a donc relevé ce défi,̈ explique Manadja, le g̈rosd̈u groupe. Le groupe reconnaît avoir bénéficié
de conseils avisés, dont ceux de la star ivoirienne du reggae, Alpha Blondy.
Summary:

XQuAD (French)

Ni mà din tích mt ct ngang liên quan d̄n khi lng mà ten-x ng sut d̄c tính toán. Hình thc này bao gm thut ng áp sut gn lin vi các lc hot d̄ng bình thng d̄i vi khu vc ct
ngang (d̄ng chéo ma trn ca tenx) cũng nh các thut ng ct gn lin vi các lc tác d̄ng song song vi din tích mt ct ngang (các yu t ngoài d̄ng chéo). Máy ten-x ng sut liên quan
d̄n các lc gây ra tt c các bin dng (bin dng) bao gm c ng sut kéo và nén.:133–134:38-1–38-11

Question: Ðiu gì d̄c s dng d̄ tính din tích mt ct trong th tích ca mt vt th?
Answer:

Table 7: One-shot prompting examples of tested datasets.
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Models Method de ru fr es zh vi tr ar el th hi sw

MGSM
Vanilla 2.4 3.6 3.6 3.2 2.4 − − − − 2.0 − 2.0
Eng-FT 22.4 24.8 20.4 22.4 22.8 − − − − 6.8 − 2.4
XLT(Vanilla) 2.0 2.8 2.8 3.2 2.8 − − − − 2.0 − 3.2
XLT(Eng-FT) 22.0 24.0 22.8 24.4 24.2 − − − − 5.2 − 4.4
AriMerge 6.4 8.0 2.4 10.4 3.2 − − − − 11.6 − 0.0
AdaMergeX 24.8 26.2 23.6 22.4 22.0 − − − − 8.0 − 7.2

XCOPA
Vanilla − − − − 54.4 54.0 − − − 51.8 − 49.0
Eng-FT − − − − 61.8 67.2 − − − 52.6 − 50.6
XLT(Vanilla) − − − − 56.8 52.4 − − − 51.0 − 50.0
XLT(Eng-FT) − − − − 60.6 70.0 − − − 51.6 − 50.4
AriMerge − − − − 61.0 69.8 − − − 50.6 − 50.0
AdaMergeX − − − − 65.6 72.3 − − − 54.3 − 53.9

XNLI
Vanilla 43.1 43.9 35.8 39.6 21.8 39.6 29.5 16.3 18.1 10.9 14.3 33.0
Eng-FT 54.0 54.0 58.2 60.5 33.5 47.0 29.6 23.6 35.4 21.8 25.8 31.8
XLT(Vanilla) 44.7 44.4 39 36.9 25.7 36.3 20.6 27.4 20.8 13.9 15.7 42.6
XLT(Eng-FT) 54.1 44.3 44.6 58.6 34.0 43.0 34.6 28.9 36.3 23.7 36.7 33.9
AriMerge 58.6 57.4 51.3 51.7 40.6 47.2 35.8 34.3 32.9 29.8 30.5 42.8
AdaMergeX 62.3 63.7 63.1 62.8 36.7 49.2 31.6 40.3 38.5 23.4 39.1 43.1

XLSum
Vanilla − 13.4 12.5 11.4 56.0 22.1 15.7 23.5 − 14.8 31.6 8.1
Eng-FT − 21.7 16.1 11.3 58.4 21.2 16.4 25.8 − 15.6 32.9 9.9
XLT(Vanilla) − 0.6 2.3 1.8 0.5 1.3 2.5 0.8 − 0.2 0.8 2.1
XLT(Eng-FT) − 17.8 5.0 6.6 56.8 13.5 10.8 28.9 − 13.5 33.9 3.9
AriMerge − 14.5 8.7 9.8 49.8 12.6 11.7 29.8 − 17.2 34.2 6.5
AdaMergeX − 21.6 16.2 11.9 58.4 21.6 16.7 25.6 − 15.5 33.9 11.4

XQuAD
Vanilla 0.0 0.0 − 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 −
Eng-FT 49.0 34.1 − 48.2 53.5 40.9 17.3 10.2 13.9 31.0 11.8 −
XLT(Vanilla) 34.8 14.0 − 29.8 33.1 21.8 20.2 12.0 8.6 7.1 12.1 −
XLT(Eng-FT) 39.1 26.3 − 40.7 41.2 33.9 19.0 13.8 13.0 23.8 13.2 −
AriMerge 50.7 31.8 − 49.1 50.2 42.3 15.9 10.4 12.6 28.7 9.7 −
AdaMergeX 53.4 34.1 − 54.2 59.3 43.9 20.6 12.4 14.6 31.8 13.1 −

Table 8: Comprehensive experimental results for both baselines and AdaMergeX are obtained across all datasets in
corresponding available languages. The fine-tuning method employed was LoRA, with Llama2-7b serving as the
backbone model.
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Models Method de ru fr es zh vi tr ar el th hi sw

MGSM
Vanilla 2.4 3.6 3.6 3.2 2.4 − − − − 2.0 − 2.0
Eng-FT 2.0 2.0 3.6 2.4 1.6 − − − − 2.4 − 2.0
XLT(Vanilla) 2.0 2.8 2.8 3.2 2.8 − − − − 2.0 − 3.2
XLT(Eng-FT) 0.8 1.6 4.8 4.0 3.2 − − − − 2.8 − 2.4
AriMerge 0.0 0.4 0.4 0.0 1.6 − − − − 2.0 − 0.4
AdaMergeX 4.4 3.6 4.8 6.0 3.6 − − − − 2.8 − 2.0

XCOPA
Vanilla − − − − 54.4 54.0 − − − 51.8 − 49.0
Eng-FT − − − − 59.3 58.6 − − − 54.9 − 49.8
XLT(Vanilla) − − − − 56.8 52.4 − − − 51.0 − 50.0
XLT(Eng-FT) − − − − 60.4 59.2 − − − 55.4 − 49.8
AriMerge − − − − 53.0 50.6 − − − 52.2 − 50.2
AdaMergeX − − − − 64.2 59.4 − − − 60.2 − 53.1

XNLI
Vanilla 43.1 43.9 35.8 39.6 21.8 39.6 29.5 16.3 18.1 10.9 14.3 33.0
Eng-FT 46.4 45.3 51.9 50.7 24.6 51.0 31.4 22.1 34.6 20.8 23.9 34.3
XLT(Vanilla) 44.7 44.4 39 36.9 25.7 36.3 20.6 27.4 20.8 13.9 15.7 42.6
XLT(Eng-FT) 49.8 46.3 51.8 52.4 27.8 50.8 33.4 24.1 36.6 20.9 27.2 38.9
AriMerge 42.4 47.2 48.6 49.3 40.6 46.3 32.4 29.1 31.8 21.2 20.8 35.6
AdaMergeX 59.7 58.6 56.8 58.3 32.3 52.7 31.6 37.6 37.9 23.2 34.1 43.4

XLSum
Vanilla − 13.4 12.5 11.4 56.0 22.1 15.7 23.5 − 14.8 31.6 8.1
Eng-FT − 4.2 9.0 6.8 56.6 14.7 13.6 16.6 − 12.5 32.3 7.6
XLT(Vanilla) − 0.6 2.3 1.8 0.5 1.3 2.5 0.8 − 0.2 0.8 2.1
XLT(Eng-FT) − 0.6 3.1 1.8 0.4 1.3 2.5 1.1 − 0.3 0.8 2.1
AriMerge − 4.8 6.3 7.6 44.1 9.9 11.8 15.4 − 13.1 32.3 9.4
AdaMergeX − 14.5 13.1 11.5 55.2 24.4 15.3 23.5 − 13.6 33.4 9.2

XQuAD
Vanilla 0.0 0.0 − 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 −
Eng-FT 47.3 32.8 − 47.6 53.7 35.1 28.9 22.8 21.9 26.9 23.2 −
XLT(Vanilla) 34.8 14.0 − 29.8 33.1 21.8 20.2 12.0 8.6 7.1 12.1 −
XLT(Eng-FT) 37.1 16.8 − 32.4 37.6 25.1 19.3 14.0 10.0 7.0 14.1 −
AriMerge 46.0 32.2 − 44.5 51.2 35.4 28.2 23.4 20.6 21.6 20.7 −
AdaMergeX 48.6 33.0 − 48.2 56.0 35.7 29.3 25.4 24.5 29.2 24.6 −

Table 9: Comprehensive experimental results for both baselines and AdaMergeX are obtained across all datasets in
corresponding available languages. The fine-tuning method employed was (IA)3, with Llama2-7b serving as the
backbone model.

Table 10: Ablation study on backbone models. Results are evaluated on T5-base.

Adapters Task Method es fr Avg.

LoRA

XNLI
Eng-FT 33.0 32.9 33.0
AriMerge 34.1 30.1 32.1
AdaMergeX 37.2 35.7 36.5

XLSum
Eng-FT 12.4 15.3 13.9
AriMerge 13.1 16.5 14.8
AdaMergeX 14.9 16.6 15.8

(IA)3
XNLI

Eng-FT 38.2 38.4 38.3
AriMerge 35.6 36.1 35.9
AdaMergeX 39.3 42.4 40.8

XLSum
Eng-FT 13.2 14.7 14.0
AriMerge 14.3 15.1 14.7
AdaMergeX 14.2 16.7 15.5
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Table 11: Ablation study on adaptive merging method. AdaMergeX (adaptive) represents AdaMergeX with adaptive
merging methods, while AdaMergeX (cross) represents AdaMergeX with cross merging methods, i.e., LoRA with
merging method of (IA)3 and vice versa. Increase ↑ and decrease ↓ are both compared to the baseline method
Eng-Tune.

Adapters Tasks Method es vi Avg.

LoRA

XNLI
Eng-Tune 60.5 47.0 53.8
AdaMergeX (adaptive) 62.8 ↑ 2.3 49.2 ↑ 2.2 56.0 ↑ 2.2
AdaMergeX (cross) 17.6 ↓ 42.9 15.4 ↓ 31.6 16.5 ↓ 37.3

XQUAD
Eng-Tune 48.2 40.9 44.6
AdaMergeX (adaptive) 50.0 ↑ 1.8 41.7 ↑ 0.8 45.9 ↑ 1.3
AdaMergeX (cross) 0.0 ↓ 48.2 0.0 ↓ 40.9 0.0 ↓ 44.6

(IA)3
XNLI

Eng-Tune 50.7 51.0 50.9
AdaMergeX (adaptive) 54.3 ↑ 3.6 58.8 ↑ 7.8 56.4 ↑ 5.5
AdaMergeX (cross) 50.9 ↑ 0.2 57.4 ↑ 6.4 54.2 ↑ 3.1

XQUAD
Eng-Tune 47.6 35.1 41.4
AdaMergeX (adaptive) 48.2 ↑ 0.6 35.7 ↑ 0.6 42.0 ↑ 0.6
AdaMergeX (cross) 47.5 ↓ 0.1 34.9 ↓ 0.2 41.3 ↓ 0.1

Models Method de ru fr es th sw Avg.

XNLI
Eng-Tune 63.3 56.4 56.6 58.6 4.1 41.5 46.8
AdaMergeX 63.8 57.2 58.2 58.9 3.7 41.8 47.3↑ 0.5

XQuAD
Eng-Tune 9.8 8.7 − 15.2 4.4 − 9.5
AdaMergeX 10.4 7.8 − 21.4 5.4 − 11.2↑ 1.7

Table 12: Llama2-7b on LoRA with fine-tuning target modules as WQ, WV and merging target modules as WQ,
WV .

Models Method de ru fr es th sw Avg.

XNLI
Eng-Tune 54.0 54.0 58.2 60.5 3.3 31.8 43.6
AdaMergeX 53.7 55.6 60.5 62.7 4.9 33.6 45.2↑ 1.6

XQuAD
Eng-Tune 49.0 34.1 − 48.2 31.0 − 40.6
AdaMergeX 50.2 32.9 − 48.9 31.3 − 40.8 ↑ 0.2

Table 13: Llama2-7b on LoRA with fine-tuning target modules as WQ, WK , WV , WO, W1, W2 and merging
target modules as WQ, WK , WV , WO, W1, W2.
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