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Abstract

As an effective alternative to the direct fine-
tuning on target tasks in specific languages,
cross-lingual transfer addresses the challenges
of limited training data by decoupling “task
ability” and “language ability”, achieved by
fine-tuning on the target task in the source lan-
guage and another selected task in the target
language, respectively. However, they fail to
fully separate the task ability from the source
language or the language ability from the cho-
sen task. In this paper, we acknowledge the
mutual reliance between task ability and lan-
guage ability and direct our attention toward
the gap between the target language and the
source language on tasks. As the gap removes
the impact of tasks, we assume that it remains
consistent across tasks. Based on this assump-
tion, we propose a new cross-lingual transfer
method called AdaMergeX that utilizes adaptive
adapter merging. By introducing a reference
task, we can determine that the divergence of
adapters fine-tuned on the reference task in both
languages follows the same distribution as the
divergence of adapters fine-tuned on the target
task in both languages. Hence, we can obtain
target adapters by combining the other three
adapters. Furthermore, we propose a structure-
adaptive adapter merging method. Our empiri-
cal results demonstrate that our approach yields
new and effective cross-lingual transfer, outper-
forming existing methods across all settings.!

1 Introduction

Recent advancements in multilingual large lan-
guage models (LLMs) (OpenAl, 2022, 2023; Gem-
ini Team et al., 2023; Al@Meta, 2024) have gained
significant attention given the growing need for
multilingual requirements. To further enhance
the model’s multilingual capability, particularly in
cases where training data of certain tasks for low-
resource languages is scarce and fine-tuning be-
comes impractical (Ma et al., 2023), cross-lingual

!Code will be publicly available.

transfer is introduced to extend the task-solving
ability from a source language to various target
languages (Lin et al., 2019; Chen et al., 2022).

Essentially, cross-lingual transfer aims to trans-
fer the ability to solve a certain task (“task-ability™)
from a source language to a particular target lan-
guage (“language ability”’). However, some cross-
lingual transfer techniques fail to directly improve
the language ability in specific languages. As a
compromise, they reply on the language ability in
English for multilingual tasks, employing meth-
ods like translation (Liang et al., 2023; Huang
et al., 2023b), representation alignment (Nguyen
et al., 2023; Gao et al., 2023), or prompting method
specifically developed for LLMs (Tanwar et al.,
2023; Zhang et al., 2023b). On the contrary, some
studies aim to enhance the language abilities in tar-
get languages, so they endeavor to decouple task
ability and language ability, enhance them sepa-
rately, and subsequently merge them (Pfeiffer et al.,
2020; Ansell et al., 2022; Ponti et al., 2023). How-
ever, this approach overlooks the intrinsic interde-
pendence between task ability and language ability.
Given that any specific task would be expressed in
a particular language, these two abilities cannot be
distinctly isolated from one another.

In this work, we argue that language ability and
task ability are inherently interconnected. Instead
of separating one from another, they should fol-
low that task ability is affiliated with the source
language while language ability refers to the ca-
pacity gap between the target language and the
source language. In line with the famous equation
“king — queen = man —woman’ in the word em-
bedding space (Mikolov et al., 2013), we assume
that the divergences between LLMs fine-tuned in
different languages on a particular task follow the
same distribution across diverse tasks. In the case
of parameter-efficient fine-tuning, the equation be-
comes read!” — read ™ = math’" — math®" in
the adapter space, where read and math refers to
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Figure 1: An overview of invariants of the language ability gap among different tasks in the adapter space, where by
employing any three we can get the remaining one. In light of this observation, we propose AdaMergeX.

two tasks, and fr and en indicates two languages
of the corresponding tasks. As shown in the left
side of Figure 1, in the adapter space, the diver-
gence between the target language and source lan-
guage on the target task follows the same distribu-
tion as the divergence on the reference task.

Therefore, we propose to accomplish the cross-
lingual transfer through adapter merging with such
a relation as shown in the right side of Figure 1.
Specifically, we introduce a reference task from
which we obtain the divergence between the tar-
get language and source language, thereby cap-
turing “language ability”. It is worth noting that
the reference task can be an easily accessible task
for both high-resource and low-resource languages,
such as causal language modeling. In addition, we
fine-tune LLMs on the target task in the source lan-
guage, from which we obtain “task ability”. Finally,
by merging these two abilities, we can obtain the
adapter for the target task in the target language.

Furthermore, in contrast to previous studies that
combine models or adapters through a linear com-
bination (Ilharco et al., 2022; Zhang et al., 2023a;
Ponti et al., 2023), we argue that the adapter
merging method should consider the manner in
which adapters are integrated with language mod-
els, specifically the structure of adapters. There-
fore, we design a structure-adaptive adapter merg-
ing method, which can adaptively select merging
methods for LoORA (Hu et al., 2021), (IA)? (Liu
et al., 2022), Adapter (Houlsby et al., 2019), Prefix-
Tuning (Li and Liang, 2021) etc. Combined with
the cross-lingual transfer method proposed in Fig-
ure 1, we propose an Adaptive Adapter Merging
approach for cross-lingual transfer ( AdaMergeX).

We evaluate the proposed AdaMergeX method on
a wide range of multilingual tasks spanning 12 lan-
guages, covering a broad resource spectrum from
high-resource to low-resource languages. Our eval-
uation demonstrates that AdaMergeX consistently

outperforms other state-of-the-art methods includ-
ing model merging, prompting, and general adapter
merging methods. Notably, compared to MAD-
X (Pfeiffer et al., 2020) which separates the task
and language ability with two adapters, AdaMergeX
achieves 8.0% and 15.9% absolute improvement
on XCOPA and XQuAD respectively with XILM-
R. In the case of state-of-the-art adapter merging
method Arimerge (Zhang et al., 2023a), AdaMergeX
achieves 31.1% relative improvement on average
in all languages and all tasks with Llama2. More-
over, the ablation analysis shows that AdaMergeX
performs consistently well with different backbone
models, source languages, and reference tasks.

2 Background

Given a pre-trained model, fine-tuning is often
employed to improve the performance on specific
tasks. Specifically, for a layer h = Wyz, where
r € RF is input, h € R? is output and Wy € R¥*¥
is pre-trained parameters, fine-tuning updates pa-
rameters from Wy to W' and the layer becomes
h = W'z. However, full fine-tuning requires
many training data points and computing resources,
which inspires the design of adapters (Houlsby
et al., 2019). With adapters, the layer is changed
to h = (Wy o Wa)x, where W4 denotes the pa-
rameters of adapters and o denotes the combination
operation of pre-trained parameters and adapter
parameters. During such parameter-efficient fine-
tuning, pre-trained parameters W) are fixed and
only adapter parameters W4 are updated. With
the number of parameters growing much bigger
for LLMs, adapters become more widely used in
the current practice of fine-tuning LLMs (Hu et al.,
2021; Li and Liang, 2021; Liu et al., 2022)
Various combination methods o have been de-
signed for different adapters. In this paper, we
focus on two main widely used combination meth-
ods: addition and multiplication, corresponding to



LoRA (Hu et al., 2021) and (IA)? (Liu et al., 2022),
respectively. We also involve Adapter (Houlsby
etal., 2019) and Prefix-Tuning (Li and Liang, 2021)
in to guarantee the generaliability.

LoRA Specializing the combination method “o”
to element-wise addition denoted as “@”, LoRA
employs low-rank decomposition to reduce training
complexity. The layer is thus changed to

h=Wy@Wy)z=Wyd BA)z, (1)

where B € R¥" and A € R"™* are low-rank
decomposed matrices, and the rank r < min(d, k).
Specifically, the LoRA can be implemented in any
layer of the Transformer (Vaswani et al., 2017)
architecture, including the attention layer and the
feed-forward layer.

(IA)> (IA)3 specializes the combination method
to element-wise multiplication “®”:

h=(Wo® W)z, 2)

where W4 € R* is element-wise multiplied to
each row of Wy. Furthermore, (IA)? can only be
implemented to the key and value neuron in the at-
tention layer and dimension reduction neuron in the
feed-forward layer of the Transformer architecture.

Adapter & Prefix-Tuning By inserting layers
and prefix tokens into the model, combination
methods of Adapter and Prefix-Tuning can be for-
mulated as

h = (W, Wa))e, )

where |-, -] represents concatenation to original
layer or original pre-trained parameters.

3 AdaMergeX: Adaptive Adapter
Merging for Cross-lingual Transfer

3.1 Cross-Lingual Transfer via Adapter
Merging

Generally, the ability of a model in a particular task
and language can be seen as a composite of two
abilities, namely, “task ability” and “language abil-
ity”. The former denotes the model’s competence
in performing a certain task (e.g., text classification,
sentence completion), whereas the latter signifies
their general proficiency in the given language (e.g.,
English, Chinese, German). Built on the premise
that language ability and task proficiency are inher-
ently intertwined, it is advocated that rather than

isolating one from the other, the inference should
be drawn that task ability is associated with the
source language, whereas language ability refers to
the capacity difference between the target language
and the source language. In line with the famous
equation “king — queen = man — woman’ in
the word embedding space, we assume that the di-
vergences between LLMs fine-tuned in different
languages on a particular task follow the same dis-
tribution across diverse tasks.

Formally speaking, Ay, denotes the adapter of
task ¢, in language [;, then for any two languages
l1, l5 and two NLP tasks t1, to, we have

Alltl ||Al2t1 ~ Alltz HAlgt2> (4)

where || denotes the divergence among two
adapters. For example, let’s consider /1 and /5 as
English and German, respectively, and ¢; and ¢, as
the text classification task and question answering
task, respectively. Assuming we have training data
for each task in both languages, we can fine-tune
LLMs to obtain four adapters: text classification
in English, text classification in German, question
answering in English, and question answering in
German. We assume that the divergence between
adapters for the text classification task in English
and German, as well as the divergence between
adapters for the question answering task in English
and German, follows the same distribution. This
divergence represents the “language ability” that is
independent of specific tasks.

In the context of cross-lingual transfer, we aim to
solve the task ¢; for the target language /1, with the
knowledge transferred from a source language Is,
which is often a high-resource language such as En-
glish. By imposing the condition of cross-lingual
transfer, where labeled data is available only for
the target task in the source language and there is
unlabeled data in both the source and target lan-
guages, we can introduce another “reference task”
to. This task can be easily constructed using un-
labeled data, and language ability can be obtained
by A1, || Ai,t,- Moreover, to obtain the ability of
performing target task ¢; in the target language /1,
we can further transform Equation (4) as:

Al1t1 = Al2t1 HR (AhtzHAlztz)a (5)

where || is the reverse function of ||. Intuitively,
Ay, represents the “task ability” in the source lan-
guage, while A;, ., || A, represents the “language



ability”. Through merging these two terms, we can
transfer the “task ability” of ¢; from ls to [;.

To transfer the knowledge from labeled data in
the high-resource language (i.e., given A;,;, ), the
next step is to specify the reference task to. We
observe that there are many easily obtained cor-
pora of low-resource languages, such as Wikipedia,
online blogs, etc. These corpora can be used to
construct intuitive tasks such as causal language
modeling, which can serve as the reference task
to. Simultaneously, we can also construct such
tasks for the high-resource language [o. Therefore,
adapters can be fine-tuned on such easily accessi-
ble reference tasks in different languages to obtain
Aj,t, and Ay, . Cross-lingual transfer thus can be
achieved by merging these three adapters.

3.2 Structure-Adaptive Adapter Merging

As introduced in Section 2, adapters have different
structures, which inspires us to devise different
adapter merging methods. We propose that the
adapter merging approach must align with the way
that the adapter combined with the original model,
as illustrated in Figure 2.

LoRA In the fine-tuning process of LoRA, where
the method involves element-wise addition to the
original parameters, the merging method used to
combine task ability and language ability should
also employ element-wise addition. Additionally,
since the divergence calculation approach || is in-
tended to be the inverse function of the merging
method, it should be carried out through element-
wise subtraction in this scenario. Therefore, Equa-
tion (4) is equivalently transferred to

Alltl S/ Alztl ~ Al1t2 S/ A12t27 (6)

where © denotes element-wise subtraction, and
Equation (5) is equivalently transferred to

Alltl = Al2t1 S t- (Al1t2 © Algtg)a (7)

where @ denotes element-wise addition and ¢ is
the hyper-parameter that adapts the scale of two
distributions in the same family of distributions.

(IA)?  Similarly, the fine-tuning method of (IA)?
is element-wise multiplication to the original pa-
rameters, and the merging method should also be
element-wise multiplication. Furthermore, we need
to employ element-wise division to obtain the diver-
gence between A;,+, and A;,;,. Therefore, Equa-
tion (4) is equivalently transferred to

Alltl %) Alztl ~ Alltg %) A12t27 (8)

Structure-Adaptive Merging

[LoRA] ® [LoRA]

(143) © (z23)

==

@ @ [Adapter'] [Adaph:r]

Figure 2: Structure-adaptive adapter merging method
aligns with the manner in which adapters are inte-
grated with language models. For example, “addition”
for LoRA, “multiplication” for (IA)3, and “MLP” for
Adapter and Prefix-Tuning.

I
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where © denotes element-wise devision, and Equa-
tion (5) is equivalently transferred to

Al1t1 = A12t1@<(t'("4l1t2 ®Al2t2)_1)+1>7 )

where © denotes element-wise multiplication and ¢
is the hyper-parameter determining the scale of two
distributions in the same family of distributions.

Adapter & Prefix-Tuning In the case of other
adapter structures such as Adapter and Prefix-
Tuning, which involve the insertion of layers and
prefix tokens into the model, the merging process
necessitates transferring adapters within the same
space, such as MLP. Formally, the adaptive merg-
ing method is

Apy, =t (Al1t2 *x Al ) * Alyty

loto

(10)

where * represents matrix multiplication and Al;tlQ
represents Moore-Penrose pseudo-inverse of the
matrix. For Prefix-Tuning, A;; represents the pre-
fix tokens, while for Adapter A;; represents corre-
sponding layers. In this paper, we mainly focus
on LoRA and (IA)? when Llama? is the backbone
model due to the lack of training data in the target
language for the Adapter and the subpar perfor-
mance of prefix-tuning on fine-tuning (He et al.,
2021). On the contrary, in the case of smaller lan-
guage models such as mT5 (Xue et al., 2021), we
implement AdaMergeX on it with prefix-tuning.

The experiment results are shown in Appendix A.1.

3.3 AdaMergeX

Following notations in Section 3.1, to solve a tar-
get task ¢; in a target language /1, i.e., obtain the



Task Zero-Shot Prompt

MGSM  Let’s think step by step. Question: {question}

XCOPA  Here is a premise and a question. Help me pick the more plausible option. Premise: {premise} Question:
What is the {question}? (A) {choicel} (B) {choice2}

XNLI You should judge whether the hypothesis is true (entailment), false (contradiction), or undetermined
(neutral) given the premise. Premise: {premise} Hypothesis: {hypothesis}

XQuAD  {context} Question: {question}

XLSum  Summarize the context in one sentence. Title: {title} Context: {article}

Table 1: Zero-shot prompts for each dataset.

adapter A; ;,, we need to fine-tune another three
adapters: adapters on the target task in the source
language (A;,¢, ), adapters on the reference task in
the target language (A;,+,), and adapters on the ref-
erence task in the source language (A;,:,). Note
that A;,;, and A;,;, are easily obtainable, as we
can choose any task in the target and source lan-
guage. As mentioned earlier, the task can even
be causal language modeling, which only requires
unlabeled text corpora. Therefore, with only un-
labeled data in both source and target language,
our proposed AdaMergeX effectively transfers the
target task proficiency from the source language to
the target language. Moreover, given that the ref-
erence task remains constant, fine-tuning LLMs in
the source language on the target task is the sole re-
quirement for each new target task. This efficiency
characterizes AdaMergeX.

In the case of LoRA, which fine-tunes LLMs
by tuning {B, A} in tuned layers of LLMs as in-
troduced in Equation (1), adapters are merged fol-
lowing Equation (7) by element-wise addition and
subtraction on { B, A} in the corresponding layers
of Aj,t,, Aijt,, and Ajye,. On the other hand, in the
case of (IA)3, the fine-tuning parameters are W4
in tuned layers as depicted in Equation (2). Thus
the merging method follows Equation (9), which
involves performing element-wise multiplication
and division of the corresponding layers of A;,;,,
Alth , and Al2t2 .

4 Experiments

4.1 Experimental Setup

Datasets and Language To evaluate the effec-
tiveness of our method, we conduct experiments
on a wide variety of multilingual tasks in three
main categories: reasoning tasks, natural language
understanding (NLU) tasks, and natural language
generation (NLG) tasks. For reasoning tasks, we
test on multilingual arithmetic reasoning dataset

XGSM (Shi et al., 2022) and multilingual com-
monsense reasoning dataset XCOPA (Ponti et al.,
2020). For NLU tasks, we test on the multilin-
gual natural language inference dataset XNLI (Con-
neau et al., 2018), and question-answering dataset
XQuAD (Artetxe et al., 2020). For NLG tasks,
we test on multilingual summarization dataset XL-
Sum (Hasan et al., 2021). We choose 12 languages
that appear in more than once in the above datasets,
including German (de), Russian (ru), French (fr),
Spanish (es), Chinese (zh), Vietnamese (vi), Turk-
ish (tr), Arabic (ar), Greek (el), Thai (th), Hindi (hi),
and Swahili (sw). Detailed settings of zero-shot
prompts are shown in Table 1. We utilize intuitive
prompting methods for all tasks except for XCOPA
and XNLI, where we employ prompts from Huang
et al. (2023b). Detailed examples of the prompt-
ing approach can be found in Appendix A.2. For
MGSM, XCOPA and XQuAD, we adopt the whole
testset, while for XNLI and XLSum we randomly
sample 1000 and 500 data points from the whole
testset respectively.

Baselines We conduct comparisons between our
proposed method, which utilizes model merging
for achieving cross-lingual transfer, and seven com-
peting techniques: (i) Vanilla zero-shot prompt-
ing (“Vanilla”), which directly assesses target lan-
guages using the pre-trained LLM. (ii) English
Tuning (“Eng-FT”), which involves fine-tuning
the model in English for target tasks and sub-
sequently transferring it directly to target lan-
guages. (iii) Cross-Lingual-Thought Prompting
(“XLT (Vanilla)”’) (Huang et al., 2023b) achieves
state-of-the-art results on cross-lingual transfer
with LLMs through carefully designed prompt tem-
plate, which involves explicit translation from the
target to the source language, reasoning in the
source language, and translating back to the tar-
get language. (iv) “XLT (Eng-FT)”, where XLT
approach is applied to the Eng-FT model. (v)



Arithmetic Merging (“AriMerge”) (Zhang et al.,
2023a), which is the state-of-the-art adapter merg-
ing method by arithmetic addition. (vi) MAD-
X (Pfeiffer et al., 2020) decomposes language and
task via independent invertible adapters. (vii) LF-
SFT (Ansell et al., 2022) adopts sparse fine-tuning
on language and task respectively and directly
merging via addition.

Evaluation Metrics For reasoning and NLU
tasks, we use accuracy scores as our evaluation
metric. For the summarization task, we evaluate
the performance by ROUGE-L score (Lin, 2004).

Experiment Details The backbone model that
we use to test AdaMergeX is Llama2-7b (Touvron
et al., 2023) for LoRA and (IA)?, and XLM-R for
Prefix-Tuning. To fine-tune Llama2 using LoRA
and (IA)3, we configure the target modules to in-
clude all available layers. We employ conventional
causal language modeling as the reference task,
where the prediction of the subsequent token is
based on preceding inputs. Specifically, we gen-
erate the training set from the corpora provided
by Wikimedia Foundation? by dividing them into
segments with a length of 512. There is only one
hyperparameter in our method, which is ¢ in Equa-
tion (7), (9), and (10). When tuning this hyperpa-
rameter, for each task, we select the validation set
from French and then extend it to encompass all
other languages, for those tasks that do not contain
French validation set, we adopt Vietnamese instead.
For XLT method (Huang et al., 2023b), we adopt
the same zero-shot prompts as in the original paper.

4.2 Main Results

Table 2 presents our main experimental results on
5 representative cross-lingual tasks with LlaMa2,
where we report the average scores across all lan-
guages. Detailed results of each language are
shown in Table 8 and 9 in Appendix A.3 for LoRA
and (IA)? respectively. Table 3 presents the results
on XLM-R, where we compare with MAD-X and
LF-SFT on XCOPA and XQuAD?>.

AdaMergeX outperforms direct transfer and
prompting methods When comparing to fine-
tuning on the task in English and direct transfer to
the target language, AdaMergX outperforms it on

Zhttps://dumps.wikimedia.org/
*We only test XCOPA and XQuAD because encoder-only
models can only be applied to classification tasks.

all settings and achieves 1.4% absolute improve-
ment with LoRA and 1.5% absolute improvement
with (IA)3. When comparing to the state-of-the-
art method for cross-lingual transfer in LLMs via
prompting, XLT with Vanilla Llama2 model (“XLT
(Vanilla)”) and model fine-tuned on target task
in English (“XLT (Eng-FT)”), AdaMergeX outper-
forms it on all settings and achieves 3.4% absolute
improvement with LoRA and 7.3% absolute im-
provement with (IA)3. This achievement proves
that the introduction of adapter merging to achieve
cross-lingual transfer is effective, especially in the
circumstance of LLMs.

AdaMergeX outperforms decoupling task ability
and language ability method As shown in Ta-
ble 3, compared to MAD-X and LF-SFT, which
struggle to fully separate task ability from language
ability, AdaMergeX demonstrates remarkable en-
hancements. In particular, AdaMergeX showcases
an impressive absolute improvement of 8.0% and
15.9% on XCOPA and XQuAD, respectively, in
comparison to MAD-X. Additionally, it achieves a
significant 4.6% absolute improvement on XQuAD
when compared to LF-SFT. Therefore, our pro-
posed new decoupling method is much more effec-
tive than others.

AdaMergeX outperforms general adapter merg-
ing methods Compared with the state-of-the-art
method for adapter merging namely Arimerge,
AdaMergeX outperforms it on all settings and
achieves 6.9% absolute improvement with LoRA
and 2.3% absolute improvement with (IA)3. There-
fore, AdaMergeX, which adaptively considers the
structure of adapters, outperforms all previous gen-
eral adapter merging methods that adopt arithmetic
addition for all kinds of adapters.

AdaMergeX performances consistently well with
LoRA and (IA)? LoRA achieves higher absolute
performance than (IA)3, which shows the effec-
tiveness of LoRA on fine-tuning. However, com-
pared to the absolute improvement of AdaMergeX
on LoRA and (IA)3, they are comparable. For
example, for MGSM, LoRA and (IA)? get the
same absolute improvement 1.1%, and for XNLI,
on which LoRA and (IA)? both achieve the high-
est absolute improvement, their performance are
comparable. This proves that AdaMergeX performs
consistently well on different adapters.


https://dumps.wikimedia.org/

Reasoning

NLU

NLG

Adapters  Method MGSM  XCOPA | XNLI XQuAD | XLSum | A&
Vanilla 2.7 523 | 288 0.0 209 | 209
Eng-FT 174 581 | 396 310 29 | 338
LoRA XLT(Vanilla) | 2.8 526 | 307 193 13 | 213
XLT(Eng-FT) | 18.1 582 | 394 264 9.1 | 322
AriMerge 6.0 579 | 427 301 195 | 312
AdaMergeX 192 615 | 462 338 233 | 368
Vanilla 27 523 | 288 0.0 209 | 18.1
Eng-FT 23 557 | 364 340 174 | 292
" XLT(Vanilla) | 2.8 526 | 307 193 13 | 213
XLT(Eng-FT) | 2.8 562 | 383 213 14 | 240
AriMerge 0.7 515 | 271 324 155 | 25.4
AdaMergeX 3.9 592 | 439 355 214 | 328

Table 2: Main experimental results on 5 representative cross-lingual tasks. Details of the selected zero-shot prompt,
the baselines, and hyperparameters are described in Section 4.1.

Task |Method | tr | vi | th | sw | el | ru |Avg.
MAD-X 60.3/66.1|61.8(56.3| - - 1595
XCOPA | ) daMergex 69.4‘70.5‘66.9‘63.2‘ - ‘ - ‘67.5
MAD-X - - |54.3|57.8|55.7|51.1|54.7
XQuAD | LF-SFT - - 165.5|64.6|75.2|58.6|66.0
AdaMergeX | - - 170.2170.4|77.9|63.8|70.6

Table 3: Results on XCOPA and XQuAD with XLM-R,
where AdaMergeX is implemented on LoRA.

4.3 Detailed Analysis

In this section, we validate the generalizability of
our proposed method across various aspects includ-
ing the source language, reference task, backbone
model, and target modules. Furthermore, we per-
form an ablation analysis to assess the essentiality
of the adaptive merging method.

Source Language To prove the generalizability
of AdaMergeX on the source language, we explore
its performance with different source languages in
Table 4. We test on five source languages including
German, French, Spanish, Thai, and Vietnamese.
We find that the performance is highly related to the
source language, which depends on the language
ability of the corresponding language. However,
the improvements are consistent across languages.
For example, the improvement was most significant
with Vietnamese as the source language, with an ab-
solute improvement of 3.4% with LoRA and 3.8%
with (IA)3. Therefore, AdaMergeX consistently per-
forms well with different source languages.

Reference Task To prove the generalizability of
AdaMergeX on the reference task, we explore its
performance with different reference task in Table
5. We test on three different reference tasks, in-

Reasoning NLU NLG
Method |\ 1 56M XCOPA [XNLI XQuAD|XLSum|AY8:
De-Tune 20.9 - 48.3 444 - 37.9
AdaMergeX| 22.3 — 509 465 39.9
Fr-Tune 19.9 — 52.9 — 24.1 |32.3
AdaMergeX| 22.2 — 57.1 — 24.8 |34.7
é Es-Tune 19.2 — 339 454 22.1 |30.2
S AdaMergeX| 18.7 - 351  49.1 23.7 |31.7
Th-Tune 32 49.3 1.9 39.8 20.3 |229
AdaMergeX| 4.5 48.9 6.2 44.2 20.1 |24.8
Vi-Tune - 63.8 |49.1 362 21.7 |42.7
AdaMergeX| — 642 | 532 389 22.3 |44.7
De-Tune 2.9 — 435 45.6 30.7
AdaMergeX| 6.3 — 440 47.1 — 32.5
Fr-Tune 2.5 — 48.7 — 19.8 |23.7
AdaMergeX| 4.1 — 47.9 - 21.6 |24.5
'EE\ Es-Tune 3.5 - 49.2 459 18.2 |29.2
<= AdaMergeX| 5.3 — 509 446 20.1 |30.2
Th-Tune 1.2 49.8 0.0 27.7 20.2 |19.8
AdaMergeX| 1.9 50.4 0.0 28.9 24.1 |21.1
Vi-Tune — 49.8 455 332 20.1 |37.2
AdaMergeX| — 48.7 1502 36.1 22.5 (394

Table 4: Ablation study on source language.

cluding XCOPA, XNLI, XQuAD, while the source
language is English. The dataset was tested on the
corresponding available languages among German,
French, Spanish, Thai, and Vietnamese. Specifi-
cally, the improvement was most significant with
XQuAD as the reference task, with an absolute
improvement of 1.3% with LoRA and 1.7% with
(IA)3. Thus, it verifies that AdaMergeX is general
to any reference task.

Backbone Models Not limited to Decode-only
Models such as Llama2, we do further analy-
sis on Encoder-Decoder model T5-base (Raffel
et al., 2020) to prove its universal effectiveness.



Ref. Task Method ‘MGSM XCOPA XNLI XQuAD XLSum Avg.

— Eng-Tune | 14.4 599 446 423 16.1 35.1

é XCOPA  AdaMergeX| 15.2 60.2 451 438 182 365
S XNLI AdaMergeX| 14.5 60.9 467 44.1 184 369
XQuAD AdaMergeX\ 14.9 61.8 454 444 18.1 36.9
— Eng-Tune | 2.6 527 400 392 10.8  29.1
= XCOPA AdaMergeX| 4.9 543 405 404 124 305
é XNLI AdaMergeX| 3.6 546 412 399 13.1 305
XQuAD AdaMergeX| 4.1 539 421 410 129 308

Table 5: Ablation study on reference Task.

AdaMergeX achieves consistently the best perfor-
mance compared to fine-tuning on English and
AriMerge as shown in Table 10 of Appendix A.4.
Furthermore, we also implement our method on
Encoder-only model XILM-R and compare with
MAD-X and LF-SFT as shown in Table 3. This
shows the flexibility of choosing the backbone
model when implementing AdaMergeX.

Merging Method We conduct an ablation analy-
sis on merging method to ascertain the indispens-
ability and the effectiveness of adaptive merging in
AdaMergeX. Table 11 in Appendix A.5 shows the
detailed results, where AdaMergeX (adaptive) repre-
sents AdaMergeX with adaptive merging methods,
while AdaMergeX (cross) represents AdaMergeX
with cross merging methods, i.e., LORA with merg-
ing method of (IA)? and vice versa. We find that
when applying the merging method of (IA)? to
LoRA, the performance is reduced much, and vice
versa. As a result, the adaptive merging method is
crucial for adapter merging.

5 Related Work

Cross-Lingual Transfer The emergence of mul-
tilingual systems (Kenton and Toutanova, 2019;
Conneau and Lample, 2019; Conneau et al., 2020;
OpenAl, 2022; Anil et al., 2023; Touvron et al.,
2023) has sparked interest in cross-lingual trans-
fer (Kim et al., 2017; Lin et al., 2019; Schuster
et al., 2019; Pfeiffer et al., 2020). Fine-tuning on
the target language and target task is an intuitive
way to make models obtain the ability of this task,
but it is too costly in the era of LLMs as we al-
ways lack enough training data (Ma et al., 2023).
Alternatively, some researchers explore realigning
representations among languages (Nguyen et al.,
2023; Salesky et al., 2023; Gao et al., 2023). How-
ever, Gaschi et al. (2023) demonstrates that aligned
representations do not significantly benefit cross-

lingual transfer. To address this issue, some works
adopt explicit translation to achieve cross-lingual
transfer (Liang et al., 2023; Huang et al., 2023b).
However, they rely on translation ability which is
not guaranteed. In addition, Pfeiffer et al. (2020)
and Ansell et al. (2022) decouple language ability
and task ability, but they ignore the interconnection
of these two abilities. Furthermore, in the era of
in-context learning (Brown et al., 2020; Chowd-
hery et al., 2022; Touvron et al., 2023; OpenAl,
2023), Li et al. (2023) and Tanwar et al. (2023) uti-
lize prompt tuning to achieve cross-lingual transfer.
Nevertheless, the performance remains limited for
low-resource languages, which is often not care-
fully considered in the pre-training of LLMs.

Model Merging Model merging has been widely
used in image identification (Wortsman et al.,
2022; Matena and Raffel, 2022), knowledge edit-
ing (Mitchell et al., 2022; Meng et al., 2022) and
task combination (Ilharco et al., 2022). In the era
of PEFT, researchers have started exploring differ-
ent approaches to merging adapters (Zhang et al.,
2023a; Yadav et al., 2023; Huang et al., 2023a;
Chronopoulou et al., 2023; Ponti et al., 2023).
These studies, however, have primarily focused
on task transfer and have solely utilized linear com-
binations of different adapters, which may not be
applicable to all types of adapters. Moreover, the
utilization of model merging for cross-lingual trans-
fer is under-studied.

6 Conclusion

In this work, we propose a new cross-lingual trans-
fer method AdaMergeX. We split target task abil-
ity in the target language into two parts: “task
ability” and “language ability”. In the context of
PEFT, task ability can be obtained by tuning on
the target task in the source language. To achieve
cross-lingual transfer, which aims to transfer task
ability from the source language to the target lan-
guage, we introduce a reference task from which
we obtain language ability and further merge it to
task ability by adapter merging. Different from
all previous adapter merging methods, we propose
a structure adaptive adapter merging method that
aligns the adapter merging method with the way
adapters combined to LLMs. Experiment results
show that AdaMergeX performs well among all
settings. Moreover, ablation analysis proves that
AdaMergeX is robust to backbone models, source
languages, and source tasks.



Limitations

Our research primarily utilizes models with around
7 billion parameters, specifically Llama2-7b, due
to limitations in computational resources. Explor-
ing our methodologies on larger-scale models may
offer further valuable perspectives. Furthermore,
although the training set for the reference task is
easily accessible, fine-tuning the parameters of the
entire model necessitates a certain investment of
time. However, this training time can be signif-
icantly reduced by integrating language-specific
adapters or employing language-specific Mixture
of Experts (MoE) techniques, which ultimately low-
ers the overall training cost.
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A Appendix

A.1 AdaMergeX on Prefic-Tuning

The results demonstrate that AdaMergeX excels re-
markably within the realm of prefix-tuning, a dis-
tinct and separate approach to fine-tuning. Results
on XNLI task with mT5 (Xue et al., 2021) are
shown as follows in Table 6.

A.2 Prompts

Detailed prompts of tasks in each language are
listed in Table 7.

A.3 Detailed Results
We present detailed results in Table 8 and Table 9.

A.4 AdaMergeX on T5-base

Because T5-base only supports Spanish and French
in chosen languages, we only test these two lan-
guages. In the case of LoRA on XNLI, AdaMergeX
obtains 4.2% absolute improvements in Spanish
and 2.8% absolute improvements in French. For
(IA)3, the improvements are 1.1% and 4.0% re-
spectively.

A.5 Ablation on Adaptive Merging

We find that when applying the merging method of
(IA)? to LoRA, the performance is reduced much.
Specifically, on XNLI the performance gets 39.5%
absolute reduction, while for XQuAD the reduction
is 45.9% absolute value. When applying the merg-
ing method of LoRA to (IA)?, the performance also
decreases compared to that of the adaptive merging
method. For XNLI the reduction is 2.4%, while for
XQuAD the reduction is 0.7%. The reduction is
smaller than that for LoRA. This can be attributed
to the fact that the fine-tuning of (IA)? is not as ef-
fective as that of LoRA and has a relatively minor
impact on the overall model performance.

A.6 Ablation on Merging Modules

We present ablation on merging methods in Table
12 and Table 13.



Task | Method | es | fr | ru | tr | vi | th | sw | el | Avg.

Eng-FT — | — | = | = | 695|574 628 — | 652
XCOPA | A riMerge o = =] = | 654|597 |64l | — | 631
AdaMergeX | — | — | — | — | 713 | 632|656 | — | 667
Eng-FT 312 | 297 | 304 | 198 | 43.1 | 116 | 132 | 163 | 244

XNLI AriMerge 29.8 | 283 | 332 | 214 | 429 | 11.8 | 146 | 21.8 | 255
AdaMergeX | 34.1 | 314 | 342 | 209 | 448 | 203 | 16.7 | 253 | 28.5

Eng-FT 134 | 142 | 127 | 141 | 189 | 149 | 7.8 — 13.7
XLSum | AriMerge 145 | 152 | 15.6 | 139 | 202 | 156 | 8.6 — 14.8
AdaMergeX | 149 | 16.1 | 174 | 16.1 | 19.8 | 17.1 | 10.3 — 16.0

Table 6: Results of AdaMergeX on Prefix-tuning with mT5.

MGSM (French)

Let’s think step by step.

Question: Les canes de Janet pondent 16 ceufs par jour. Chaque matin, elle en mange trois au petit déjeuner et en utilise quatre autres pour préparer des muffins pour
ses amis. Ce qui reste, elle le vend quotidiennement au marché fermier, au prix de 2 $ I'ceuf de cane frais. Combien (en dollars) gagne-t-elle chaque jour au marché
fermier ?

Answer:

XCOPA (Vietnamese)

Here is a premise and a question. Help me pick the more plausible option. Answer with (A) or (B).

Premise: Cdc mt hang da dc déng géi trong be bong béng.
Question: What is the cause?

(A)N6dv.

(B) N6 nh.

Answer:

XNLI (French)

You should judge whether the hypothesis is true (entailment), false (contradiction), or undetermined (neutral) given the premise. The relationship can be chosen from
entailment, contradiction, and neutral.

Premise: Cela fait 17 ans que je suis affilié¢ a I'IRT.
Hypothesis: Je n’ai rien a voir avec I'IRT.
Relationship:

XLSum (Vietnamese)

Summarize the context in one sentence.

Title: Cote d’Ivoire : le groupe Magic System féte ses 20 ans

Context: Formé en 1997, le groupe a connu la consécration deux ans plus tard avec son tube Premier Gaou: Le groupe ivoirien féte ses 20 ans avec une tournée
africaine et une autobiographie. Nous célébrons 20 ans d’amitiés, de collaboration, de moments de joies et de tristessesy raconte A’Salfo, le leader du groupe qui a
su ouvrir les portes du marché africain et international au genre zouglou mais aussi aux autres genres ivoiriens, dont le coupé-décalé. A’Salfo, Manadja, Tino et
Goudé, les quatre boys d’ Anoumabo, quartier déshérités d’ Abidjan, aux ruelles boueuses et sablonneuses, ont joué partout, des stades africains aux salles mythiques
comme I’ Apollo a2 New York ou I’Olympia a Paris et jusqu’au Louvre, le 7 mai, pour le concert célébrant la victoire du président frangais Emmanuel Macron. Magic
System a bénéficié de conseils avisés d’ Alpha Blondy. Formé en 1997, le groupe a connu la consécration deux ans plus tard avec son tube Premier Gaous fable sur
les déboires sentimentaux d’un jeune homme naif - le gaou est un homme crédule en nouchi, I’argot abidjanais. Le tube va propulser les quatre amis sur la scéne
mondiale. Magic System a multiplié les succés, enchainant les albums, sans oublier I’amitié. Magic System est aussi un groupe qui a toujours voulu relever les défis,
aprés Premier Gaou, nos détracteurs ont parlé de coup de chance! On a donc relevé ce défi; explique Manadja, le grosdu groupe. Le groupe reconnait avoir bénéficié
de conseils avisés, dont ceux de la star ivoirienne du reggae, Alpha Blondy.

Summary:

XQuAD (French)

Ni ma din tich mt ct ngang lién quan dn khi Ing ma ten-x ng sut dc tinh todn. Hinh thc nay bao gm thut ng ép sut gn lin vi cdc Ic hot dng binh thng di vi khu vc ct
ngang (dng chéo ma trn ca tenx) cling nh cdc thut ng ct gn lin vi cdc lc tdc dng song song vi din tich mt ct ngang (cdc yu t ngoai dng chéo). Mdy ten-x ng sut lién quan
dn cdc Ic gy ra tt ¢ céc bin dng (bin dng) bao gm ¢ ng sut kéo va nén.:133-134:38-1-38-11

Question: Diu gi dc s dng d tinh din tich mt ct trong th tich ca mt vt th?
Answer:

Table 7: One-shot prompting examples of tested datasets.
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Models  Method | de ru fr es zh vi tr ar el th hi sw

Vanilla 24 36 36 32 24 — - - - 2.0 - 2.0
MGSM  Eng-FT 224 248 204 224 228 — — — — 6.8 — 2.4
XLT(Vanillay | 20 28 28 32 28 — - - — 2.0 - 3.2
XLT(Eng-FT) | 22.0 240 228 244 242 — — — — 52 — 4.4
AriMerge 64 80 24 104 32 - - — - 11.6 — 0.0
AdaMergeX 248 262 236 224 220 -— - - — 8.0 - 7.2
Vanilla - — - - 544 540 — — - 51.8 — 49.0
XCOPA  Eng-FT — - — 61.8 672 — - — 526 — 50.6
XLT(Vanilla) | — - — - 56.8 524 — - - 51.0 - 50.0
XLT(Eng-FT) | — — - 60.6 700 — - - 51.6 — 50.4
AriMerge - - - 610 69.8 — - - 506 — 50.0
AdaMergeX — — - - 656 723 — — - 543 — 53.9
Vanilla 431 439 358 396 21.8 396 295 163 181 109 143 33.0
XNLI Eng-FT 540 540 582 605 335 470 296 236 354 218 258 318

XLT(Vanilla) | 44.7 444 39 369 257 363 206 274 208 139 157 426
XLT(Eng-FT) | 54.1 443 446 586 340 430 346 289 363 237 367 339

AriMerge 586 574 513 517 406 472 358 343 329 298 305 428
AdaMergeX 623 6377 63.1 628 367 492 31.6 403 385 234 39.1 431
Vanilla - 134 125 114 560 221 157 235 - 148 31.6 8.1
XLSum  Eng-FT - 217 161 113 584 212 164 258 — 156 329 99
XLT(Vanilla) | — 0.6 23 1.8 0.5 1.3 2.5 0.8 - 0.2 0.8 2.1
XLT(Eng-FT) | — 17.8 5.0 6.6 56.8 135 108 289 — 13,5 339 39
AriMerge - 145 87 9.8 498 126 11.7 298 — 172 342 6.5
AdaMergeX - 216 162 119 584 216 167 256 - 155 339 114
Vanilla 0.0 0.0 - 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 -
XQuAD  Eng-FT 49.0 341 - 482 535 409 173 102 139 310 11.8 —
XLT(Vanilla) | 34.8 14.0 29.8 331 21.8 202 120 8.6 7.1 2.1 —
XLT(Eng-FT) | 39.1 263 — 40.7 412 339 190 138 130 238 132 —

AriMerge 50.7 31.8
AdaMergeX 534 34.1

49.1 502 423 159 104 126 287 9.7 —
542 593 439 206 124 146 318 131 —

Table 8: Comprehensive experimental results for both baselines and AdaMergeX are obtained across all datasets in
corresponding available languages. The fine-tuning method employed was LoRA, with Llama2-7b serving as the
backbone model.
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Models  Method \ de ru fr es zh vi tr ar el th hi SW

Vanilla 2.4 3.6 3.6 32 2.4 — — — — 2.0 — 2.0
MGSM  Eng-FT 2.0 2.0 3.6 24 1.6 — — - — 24 - 2.0
XLT(Vanilla) | 2.0 2.8 2.8 32 2.8 — — - — 2.0 — 3.2
XLT(Eng-FT) | 0.8 1.6 48 4.0 32 — — — — 2.8 — 24
AriMerge 00 04 04 0.0 1.6 — — — — 2.0 — 0.4
AdaMergeX 44 36 48 6.0 3.6 — — — — 2.8 — 2.0
Vanilla — — — — 544 540 -— — — 51.8 — 49.0
XCOPA  Eng-FT — — — — 593 586 -— — — 549 - 49.8
XLT(Vanilla) | — — - - 56.8 524 — — — 51.0 - 50.0
XLT(Eng-FT) | — — — — 604 592 -— - — 554 - 49.8
AriMerge — — — — 53.0 506 — — — 522 — 50.2
AdaMergeX - - - - 642 594 — - — 60.2 — 53.1
Vanilla 43.1 439 358 396 21.8 396 295 163 181 109 143 33.0
XNLI Eng-FT 464 453 519 507 246 51.0 314 221 346 208 239 343

XLT(Vanilla) | 44.7 444 39 369 257 363 206 274 208 139 157 426
XLT(Eng-FT) | 49.8 463 51.8 524 278 50.8 334 241 366 209 272 389

AriMerge 424 472 486 493 406 463 324 291 318 212 208 356
AdaMergeX 597 586 568 583 323 527 316 37.6 37.9 232 341 434
Vanilla - 134 125 114 560 221 157 235 ~— 148 316 8.

XLSum  Eng-FT — 42 90 68 566 147 136 166 — 125 323 76
XLT(Vanilla) | — 06 23 18 05 13 25 08 — 02 08 21
XLT(EngFT) | - 06 31 18 04 13 25 11 — 03 08 21
AriMerge - 48 63 76 441 99 118 154 - 131 323 94
AdaMergeX - 145 131 115 552 244 153 235 - 136 334 92
Vanilla 00 00 — 00 00 00 00 00 00 00 00 -

XQuAD  Eng-FT 473 328 — 476 537 351 289 228 219 269 232 —
XLT(Vanilla) | 348 140 — 298 331 218 202 120 86 7.1 121 —
XLT(Eng-FT) | 37.1 168 — 324 376 251 193 140 100 7.0 141 —
AriMerge 460 322 — 445 512 354 282 234 206 21.6 207 —
AdaMergeX 486 330 — 482 560 357 293 254 245 292 246 —

Table 9: Comprehensive experimental results for both baselines and AdaMergeX are obtained across all datasets in
corresponding available languages. The fine-tuning method employed was (IA)3, with Llama2-7b serving as the
backbone model.

Table 10: Ablation study on backbone models. Results are evaluated on T5-base.

Adapters Task | Method | es | fr | Avg.

Eng-FT 33.0 | 329 | 33.0
XNLI AriMerge 34.1 | 30.1 | 32.1
AdaMergeX | 37.2 | 35.7 | 36.5

LoRA
Eng-FT 12.4 | 15.3 | 13.9
XLSum | AriMerge 13.1 | 16.5 | 14.8
AdaMergeX | 14.9 | 16.6 | 15.8
Eng-FT 382 | 384 | 383
XNLI AriMerge 35.6 | 36.1 | 35.9
(1A)? AdaMergeX | 39.3 | 42.4 | 40.8

Eng-FT 13.2 | 14.7 | 14.0
XLSum | AriMerge 14.3 | 15.1 | 14.7
AdaMergeX | 14.2 | 16.7 | 15.5
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Table 11: Ablation study on adaptive merging method. AdaMergeX (adaptive) represents AdaMergeX with adaptive
merging methods, while AdaMergeX (cross) represents AdaMergeX with cross merging methods, i.e., LoORA with
merging method of (IA)? and vice versa. Increase | and decrease | are both compared to the baseline method
Eng-Tune.

Adapters  Tasks Method | es vi Avg.
Eng-Tune 60.5 47.0 53.8
XNLI AdaMergeX (adaptive) | 62.8 1 2.3 4921 2.2 56.0 1 2.2
LoRA AdaMergeX (cross) 17.6 L 42.9 1541 31.6 16.5] 37.3
Eng-Tune 48.2 40.9 44.6
XQUAD  AdaMergeX (adaptive) | 50.0 T 1.8 41.77 0.8 4591 1.3
AdaMergeX (cross) 0.0 ] 48.2 0.0 ] 40.9 0.0 ] 44.6
Eng-Tune 50.7 51.0 50.9
XNLI AdaMergeX (adaptive) | 54.3 1 3.6 58871 7.8 5641 5.5
(IA)? AdaMergeX (cross) 50971 0.2 5741 6.4 54271 3.1
Eng-Tune 47.6 35.1 41.4
XQUAD  AdaMergeX (adaptive) | 48.21 0.6 35771 0.6 42.01 0.6
AdaMergeX (cross) 47.5 1 0.1 349 0.2 41.3 [ 0.1

Models  Method | de ru fr es th  sw  Avg.

Eng-Tune 633 564 56.6 586 4.1 415 4638
XNLI AdaMergeX | 63.8 57.2 582 589 3.7 418 47.3710.5

Eng-Tune 9.8 8.7 — 152 44 — 9.5
XQuAD AdaMergex | 104 7.8 — 214 54 — 11.27 1.7

Table 12: Llama2-7b on LoRA with fine-tuning target modules as W&, WV and merging target modules as W<,
wVv.

Models  Method | de ru fr es th SW Avg.

Eng-Tune 540 540 582 605 33 31.8 43.6
XNLI AdaMergeX | 53.7 556 605 627 49 336 4521 1.6

Eng-Tune 49.0 341 - 482 31.0 — 40.6
XQuAD AdaMergeX | 502 329 — 489 313 -— 40.8 1 0.2

Table 13: Llama2-7b on LoRA with fine-tuning target modules as we, wk wV, we, wy, W, and merging
target modules as W&, WX, WV, WO Wy, Ws.
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