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Abstract

This paper examines gradient flow dynamics of two-homogeneous neural networks for small
initializations, where all weights are initialized near the origin. For both square and logistic
losses, it is shown that for sufficiently small initializations, the gradient flow dynamics spend
sufficient time in the neighborhood of the origin to allow the weights of the neural network to
approximately converge in direction to the Karush-Kuhn-Tucker (KKT) points of a neural
correlation function that quantifies the correlation between the output of the neural network
and corresponding labels in the training data set. For square loss, it has been observed that
neural networks undergo saddle-to-saddle dynamics when initialized close to the origin.
Motivated by this, this paper also shows a similar directional convergence among weights of
small magnitude in the neighborhood of certain saddle points.

1 Introduction

Massively overparameterized deep neural networks trained with (stochastic) gradient descent are widely
known to be immensely successful architectures for inference. Recent works have attributed this success to
the implicit regularization of gradient descent – the mysterious ability of gradient descent to find a solution
that generalizes well despite the non-convexity of the loss landscape, the presence of spurious optima, and
no explicit regularization (Neyshabur et al., 2015; Soudry et al., 2018).

To resolve this mystery, several works have studied the dynamics of gradient descent during training of neural
networks (Jacot et al., 2018; Chizat et al., 2019; Mei et al., 2019; Chizat & Bach, 2018). An important
observation emerging from these studies has been the effect of initialization on the trajectory of gradient
descent. For large initialization, the gradient descent dynamics are approximately linear and can be described
by the so-called Neural Tangent Kernel (NTK) (Jacot et al., 2018; Arora et al., 2019b). This regime is also
referred to as lazy training (Chizat et al., 2019), since the weights of the neural networks do not change much
and remain near their initializations throughout training, preventing the neural networks from learning the
underlying features from the data.

In contrast, for small initializations, gradient descent dynamics is highly non-linear and exhibits feature learn-
ing (Geiger et al., 2020; Yang & Hu, 2021; Mei et al., 2019). Additionally, the benefit of small initializations
over large in terms of generalization performance has also been observed under various settings (Geiger et al.,
2020). For example, Chizat et al. (2019) train deep convolutional neural networks with varying scales of
initialization while keeping other aspects of the neural network fixed, and a significant drop in performance
is observed upon increasing the scale of initialization. In other recent works such as Jacot et al. (2022);
Boursier et al. (2022); Pesme & Flammarion (2023), a phenomenon termed saddle-to-saddle dynamics has
been observed during training. These works reveal that the trajectory of gradient descent passes through
a sequence of saddle points during training, in stark contrast to the linear dynamics observed in the NTK
regime.

The investigation into the gradient descent dynamics of neural networks with small initializations has spurred
numerous inquiries, yet a comprehensive theoretical framework remains elusive. The study of linear neural
networks has led to valuable insights into the sparsity-inducing tendencies of gradient descent (Woodworth
et al., 2020; Arora et al., 2019a). These tendencies also appear to be present in non-linear neural networks
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(Chizat et al., 2019; Chizat & Bach, 2018), however, rigorous results are limited to two-layer Rectified
Linear Unit (ReLU) and Leaky-ReLU networks under various simple data-specific assumptions such as
orthogonal inputs (Boursier et al., 2022), linearly separable data (Min et al., 2024; Lyu et al., 2021; Wang
& Ma, 2023), the XOR mapping (Brutzkus & Globerson, 2019) or univariate data (Williams et al., 2019).
Another important line of work has uncovered an intriguing phenomenon of directional convergence among
neural network weights during the initial training stages (Maennel et al., 2018; Luo et al., 2021; Brutzkus &
Globerson, 2019; Atanasov et al., 2022). In Maennel et al. (2018), it is shown that the weights of two-layer
ReLU neural networks, trained using gradient flow with small initialization, converge in direction early in
the training process while maintaining small norm. Although this result primarily describes dynamics near
initialization, it constitutes a crucial step towards a comprehensive understanding of neural network training
dynamics and has contributed significantly towards understanding the training dynamics in some of the
aforementioned works (Boursier et al., 2022; Min et al., 2024; Wang & Ma, 2023; Lyu et al., 2021). However,
the work of Maennel et al. (2018) is limited to two-layer ReLU networks and raises the question of whether
this phenomenon holds for other neural networks.

2 Our Contributions

This work establishes the phenomenon of directional convergence in a more general setting. Specifically, we
study the gradient flow dynamics resulting from training of two-homogeneous neural networks near small
initializations and also at certain saddle points.

A neural network H, where H(x; w) is the real-valued output of the neural network, x is the input, and w
is a vector containing all the weights, is defined here to be two-(positively) homogeneous if

H(x; cw) = c2H(x; w), for all c ≥ 0.

While this class does not encompass deep neural networks, it is broad enough to include several interesting
types of neural networks. Let σ(x) denote the ReLU (or Leaky-ReLU) function, then, some examples of
two-homogeneous neural networks include

• Two-layer ReLU networks: H(x; {vk,uk}Hk=1) =
∑H
k=1 vkσ(x>uk).

• Single-layer squared ReLU networks: H(x; {uk}Hk=1) =
∑H
k=1 σ(x>uk)2.

• Deep ReLU networks with only two trainable layers, for example H(x; W1,W2) =
v>σ(W2σ(W1x)), where v is a fixed vector. We emphasize that this class includes any L−layer
deep ReLU network with exactly two trainable layers (not necessarily two consecutive layers).

We consider a supervised learning setup for training and assume that {xi, yi}ni=1 is the training dataset,
X = [x1, . . . ,xn] ∈ Rd×n, y = [y1, . . . , yn]> ∈ Rn, and H(X; w) = [H(x1; w), . . . ,H(xn; w)]> ∈ Rn is the
vector containing the output of neural network for all inputs, where w ∈ Rk. We do not make any structural
assumptions on the training dataset.

In describing our results, a vital role is played by a quantity we refer to as the neural correlation function
(NCF), which for a fixed vector z ∈ Rn and neural network H as above is defined as

Nz,H(w) = z>H(X; w).

The NCF is a measure of the correlation between the vector z and the output of the neural network. For a
given NCF, we refer to the following constrained optimization problem as a constrained NCF :

max
‖w‖2

2=1
Nz,H(w).

Our first main result (Theorem 5.1) shows that, for square and logistic loss, if the initialization is sufficiently
small, then, the gradient dynamics spends sufficient time near the origin such that the weights w are either
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Figure 1: A two-dimensional scenario where a single-layer squared ReLU neural network with 20 hid-
den neurons is trained by gradient descent. The network architecture is defined as H(x1, x2; {ui}20

i=1) =∑20
i=1 max(0,u1ix1 + u2ix2)2, where ui represents the weights for the ith neuron. For training, we use 50

unit norm inputs and corresponding labels are generated using the function H∗(x1, x2) = 5 max(0, x1)2 +
4 max(0,−x1)2. We use square loss and optimize using gradient descent for 50000 iterations with step-size
5 · 10−5 . At initialization, the weights of each hidden neuron are drawn from Gaussian distribution with
standard deviation 10−5. Panel (a): the evolution of training loss and the `2-norm of all the weights with
iterations. Panel (b): the evolution of arctan(u2i(t)/u1i(t)) (the angle ui(t) makes with the positive x−axis)
for all hidden neurons. We see that the norm of the weights remain small and loss barely changes, though
the weight vectors converge in direction to their final location (denoted with red dots).

approximately 0, or approximately converge in direction to non-negative Karush-Kuhn-Tucker (KKT) points
of the constrained NCF

max
‖w‖2

2=1
Ny,H(w).

Our next main result (Theorem 5.4) shows a similar directional convergence near certain saddle points for
square loss. Specifically, we show that if initialized in a sufficiently small neighborhood of that saddle point,
then the gradient dynamics spends sufficient time near the saddle point such that the weights with small
magnitude either approximately converge in direction to non-negative KKT points of the constrained NCF
defined with respect to the residual error at that saddle point, or are approximately 0.

For illustration, we provide a brief “toy” example showing the phenomenon of directional convergence near
small initialization. We train a single-layer squared ReLU neural network using gradient descent and small
initialization, and provide in Figure 1 a visual depiction of (a) the overall loss and the `2 norm of the network
weights, and (b) the angle the weight vectors make with the positive horizontal axis, all as a function of the
number of training iterations. (See the figure caption for more specific experimental details.) It is evident
that the training loss barely changes, and the norm of all the weights remains small, indicating that gradient
dynamics is still near the origin. This is not surprising since the origin is a saddle point. However, the direc-
tions of the individual weight vectors for the neurons undergo significant changes. This experiment suggests
that while the gradient dynamics may not significantly change the weight vector magnitudes, it does change
their directions. Further, and perhaps more interestingly, these directions not only change but also appear to
converge. The objective of this paper is to explain how such a phenomenon could occur by just minimizing
the loss using gradient descent, and also characterize the directions along which the weights converge.

Probably the most related existing work to our effort here is Maennel et al. (2018), which exclusively focuses
on two-layer ReLU neural networks. Compared to that work, ours establishes directional convergence near
small initializations for two-homogeneous neural networks, a much wider class of neural networks, highlighting
the inherent importance of homogeneity for these types of phenomena. As alluded above, this class also
includes deep ReLU networks with only two trainable layers (not necessarily two consecutive layers), for
which the results of Maennel et al. (2018) are inapplicable. Further, while Maennel et al. (2018) only focuses
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on initialization, we also establish directional convergence near certain saddle points. This extension is
particularly pertinent because it has been observed in previous works that neural networks exhibit saddle-
to-saddle dynamics under small initialization. Consequently, our result describing dynamics near small
initialization and saddle points could be important for a better understanding of the training dynamics in
the future.

Finally, while the result of Maennel et al. (2018) has certainly advanced our understanding, their analysis
near small initializations relies on heuristic arguments and are not completely rigorous; see Min et al. (2024,
Section 2.2) for specific details. Our proof technique is rigorous and fundamentally different from Maennel
et al. (2018) to handle a wider class of neural networks.

3 Preliminaries

In this section, we briefly describe some preliminary concepts that will be useful in rigorously describing the
problem.

Throughout the paper, ‖ · ‖2 denotes the `2 norm for a vector and the spectral norm for a matrix. For any
N ∈ N, we let [N ] = {1, 2, . . . , N} denote the set of positive integers less than or equal to N . We denote
derivatives by ẋ(t) = dx(t)

dt , and for the sake of brevity we may remove the dependent variable t if it is clear
from the context. For a vector x, xi denotes its i-th entry. Throughout the paper, the k-dimensional sphere
is denoted by Sk−1, and we define

β := sup{‖H(X; w)‖2 : w ∈ Sk−1} and β̃ := max(2‖y‖2, ‖y‖2 + β),

where recall that X and y denote the training examples and labels.

A function f : X → R is called locally Lipschitz continuous if for every x ∈ X there exists a neighborhood
U of x such that f restricted to U is Lipschitz continuous. A locally Lipschitz continuous function is
differentiable almost everywhere (Borwein & Lewis, 2000, Theorem 9.1.2).

For any locally Lipschitz continuous function, f : X → R , its Clarke subdifferential at a point x ∈ X is the
set

∂f(x) = conv
{

lim
i→∞

∇f(xi) : lim
i→∞

xi = x,xi ∈ Ω
}
,

where Ω is any full-measure subset of X such that f is differentiable for all x ∈ Ω. The set ∂f(x) is nonempty,
convex, and compact for all x ∈ X, and the mapping x → ∂f(x) is upper-semicontinuous (Clarke et al.,
1998, Proposition 1.5). We denote by ∂f(x) the unique minimum norm subgradient.

Since the neural networks considered in this paper may be non-smooth (as a function of w), to rigorously
define the gradient flow for such functions we use the notion of o-minimal structures (Coste, 2000). In
particular, we consider neural networks that are definable under some o-minimal structure, a mild technical
assumption that is satisfied by almost all modern neural networks (Ji & Telgarsky, 2020), including the
examples presented in Section 2. Formally, an o-minimal structure is a collection S = {Sn}∞n=1 where
each Sn is set of subsets of Rn containing all algebraic subsets of Rn and is closed under finite union and
intersection, complement, projection, and Cartesian product. The elements of S1 are the finite unions of
points and intervals. For a given o-minimal structure S, a set A ⊂ Rn is definable if A ∈ Sn. A function
f : D → Rm with D ⊂ Rn is definable if the graph of f is in Sn+m. Since a set remains definable
under projection, the domain D is also definable; see Coste (2000) for a detailed introduction of o-minimal
structures.

Using the notion of definability under o-minimal structures, we define gradient flow for non-smooth functions
following Davis et al. (2018); Ji & Telgarsky (2020); Lyu & Li (2020). A function z : I → Rd on the interval
I is an arc if it is absolutely continuous for any compact sub-interval of I. An arc is differentiable almost
everywhere, and the composition of an arc with a locally Lipschitz function is also an arc. For any locally
Lipschitz and definable function f(x), x(t) evolves under gradient flow of f(x) if it is an arc, and

ẋ(t) ∈ −∂f(x(t)), for a.e. t ≥ 0. (1)
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If x(t) evolves under positive gradient flow of f(x), i.e., ẋ(t) ∈ ∂f(x(t)), for a.e. t ≥ 0, we still call x(t) a
gradient flow of f(x). In what follows, it will be clear from the context whether it is positive or negative
gradient flow.

4 Problem Setup

Within the framework introduced above, we consider the minimization of

L (w) =
n∑
i=1

` (H(xi; w), yi) , (2)

where `(ŷ, y) is a loss function; in this work, we consider square loss, `(ŷ, y) = (ŷ − y)2/2, and logistic loss,
`(ŷ, y) = 2 ln(1 + e−ŷy).

As alluded above, we also assume that the neural networks under consideration are two-homogeneous, a
property we formalize via the following assumption.
Assumption 1. For any fixed x, H(x; w) is locally Lipschitz and definable under some o-minimal structure
that includes polynomials and exponential, and for all c ≥ 0, H(x; cw) = c2H(x; w).

In Wilkie (1996), it was shown that there exists an o-minimal structure in which polynomials and exponential
functions are definable. Also, the definability of a function is stable under algebraic operations, composition,
inverse, maximum, and minimum. Since ReLU/Leaky-ReLU is a maximum of two polynomials, typical
neural networks involving ReLU activation function are definable (Ji & Telgarsky, 2020). Also, under the
above assumption, L (w) is definable for both square and logistic loss. Finally, we also require H to be
two-homogeneous for our results to hold, which rules out deep neural networks such as deep ReLU networks
with more than 2 trainable layers.

Next, since L (w) is definable, the gradient flow w(t) is an arc that satisfies for a.e. t ≥ 0

ẇ(t) ∈ −∂L(w(t)),w(0) = δw0, (3)

where w0 is a vector and δ is a positive scalar that controls the scale of initialization.

For differential inclusions, it is possible to have multiple solutions for the same initialization. This leads to
technical difficulties in proving our results. We will address this difficulty by making use of the following
definition which is inspired by Lyu et al. (2021) and will be discussed in more detail in the later sections.
Definition 4.1. Suppose g(w) : Rk → R is locally Lipschitz and definable under some o-minimal structure,
and consider the following differential inclusion with initialization w̃

dw
dt
∈ ∂g(w),w(0) = w̃, for a.e. t ≥ 0.

We say w̃ is a non-branching initialization if the differential inclusion has a unique solution for all t ≥ 0.

5 Main Results

5.1 Directional Convergence Near Initialization

We are now in position to state our first main result establishing approximate directional convergence of the
weights near small initialization.
Theorem 5.1. Let w0 be a unit norm vector and a non-branching initialization of the differential inclusion

u̇ ∈ ∂Ny,H(u),u(0) = w0. (4)

For any ε ∈ (0, η), where η is a positive constant1, there exist C > 1 and δ > 0 such that the following holds:
for any δ ∈ (0, δ) and solution w(t) of eq. (3) for square or logistic loss with initialization w(0) = δw0, we

1Here, η depends on the solution of eq. (4), which solely relies on X,y,H,w0, and is independent of δ. See Lemma C.7 and
the proof for more details.
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have
‖w(t)‖2 ≤

√
Cδ, for all t ∈

[
0, T

]
,

where T = ln(C)
4ββ̃ . Further, either

‖w(T )‖2 ≥ δη, and w(T )>û
‖w(T )‖2

≥ 1−
(

1 + 3
2η

)
ε,

where û is a non-negative KKT point of

max
‖u‖2

2=1
Ny,H(u) = y>H(X; u),

or
‖w(T )‖2 ≤ 2δε.

Here, ε represents the level of directional convergence of the weight, and C represents how long gradient flow
needs to stay near the origin to ensure the desired level of directional convergence.

In words, the first part of the result establishes that for a given choice of ε > 0, we can choose δ sufficiently
small such that the norm of the weights remains small for all t ∈ [0, T ], indicating that gradient flow remains
near the origin. The second part quantifies what happens at the time T ; there are two possible outcomes.
In one scenario, the weights approximately converge in direction towards a non-negative KKT point of the
constrained NCF defined with respect to y and neural network H (additionally, ‖w(T )‖2 ≥ δη, where η is
a constant that does not depend on δ.) In contrast, in the second scenario ‖w(T )‖2 ≤ 2δε, where we can
choose ε and δ both to be arbitrarily small. Thus, compared to the first scenario, in the second scenario,
the weights get much closer to the origin. In fact, as it will become more clear from the proof sketch later,
this happens because the gradient dynamics of the NCF can converge to 0.

Note that we require w0 to be a non-branching initialization of eq. (4). The necessity for such a requirement
essentially arises because there could exist multiple solutions for differential inclusions. We discuss it in more
detail after providing the proof sketch of the above theorem. However, we note that if the neural network
H(x; w) has locally Lipschitz gradients then this requirement is always satisfied, since in that case eq. (4)
always has a unique solution. This would include, for example, the squared ReLU neural network.

5.1.1 Proof Sketch of Theorem 5.1

We provide a brief proof sketch for Theorem 5.1 here; the complete proof can be found in Appendix C. The
proof ultimately relies upon two lemmas. The first one describes the approximate dynamics of w(t) in the
initial stages of training for small initialization.
Lemma 5.2. Let C > 1 be an arbitrarily large constant and w(t) be any solution of eq. (3) for square or
logistic loss with initialization w(0) = δw0, where δ ≤

√
1
C and ‖w0‖2 = 1. Then, for all t ∈

[
0, ln(C)

4ββ̃

]
,

‖w(t)‖2 ≤
√
Cδ. (5)

Further, for the differential inclusion

u̇ ∈ ∂Ny,H(u),u(0) = w0, (6)

and any ε > 0 there exists a small enough δ > 0 such that for any δ ∈ (0, δ),∥∥∥∥w(t)
δ
− u(t)

∥∥∥∥
2
≤ ε, for all t ∈

[
0, ln(C)

4ββ̃

]
, (7)

where u(t) is a certain solution of eq. (6).
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The first part of the lemma shows that for sufficiently small δ the gradient dynamics can spend an arbitrarily
large time near the origin. To understand the implications of the second part, let us first focus on the
differential inclusion in eq. (6), which is the positive gradient flow of the NCF defined with respect to y and
neural network H. From eq. (7), we observe that for small initialization, in the initial stages of the dynamics,
w(t)/δ is approximately equal to u(t).

Now, since δ is a positive scalar, dividing w(t) by it does not change the direction of w(t). Further, note
that the dynamics of u(t) do not depend on δ and the approximation in eq. (7) can be made to hold for
an arbitrarily long time by choosing sufficiently small δ. Thus, if we choose C large enough such that
the approximation in eq. (7) is valid for a sufficiently long time in which u(t) approximately converges in
direction, then by virtue of eq. (7), w(t) would also approximately converge in direction.

Thus, our aim is to establish approximate directional convergence of u(t) within some finite time. For this,
we turn towards analyzing the gradient flow dynamics of the NCF. Recall that, for a given vector z, the
NCF is defined as

Nz,H(u) = z>H(X; u), (8)

and gradient flow will satisfy for a.e. t ≥ 0

du
dt
∈ ∂Nz,H(u),u(0) = u0, (9)

where u0 is the initialization.

Since the function value increases along the gradient flow trajectory and Nz,H(u) may not be bounded from
above, the gradient flow trajectory can potentially diverge to infinity and take Ny,H(u) to infinity along with
it. However, in the following lemma we show that the gradient flow will always converge in direction, and
also characterize those directions.
Lemma 5.3. For any solution u(t) of eq. (9), either limt→∞Nz,H(u(t)) = ∞ or limt→∞Nz,H(u(t)) = 0.
Also, either limt→∞

u(t)
‖u(t)‖2

exists or limt→∞ u(t) = 0. If limt→∞
u(t)
‖u(t)‖2

exists then its value, say u∗, must
be a non-negative KKT point of the optimization problem

max
‖u‖2

2=1
Nz,H(u) = z>H(X; u). (10)

The above lemma states that any solution of eq. (9) will either converge to 0 or converge in direction to a
KKT point of the constrained NCF. To establish directional convergence in the above lemma, we follow a
similar technique as in Ji & Telgarsky (2020, Theorem 3.1).

To prove Theorem 5.1 from here, we combine Lemma 5.2 and Lemma 5.3. From a given initialization δw0,
we get w0. Then, for the solution u(t) of the differential inclusion in eq. (6), using Lemma 5.3, we choose T
large enough such that u(T ) either approximately converges in direction to the KKT point of the NCF or
gets close to 0. Then, based on that T , using Lemma 5.2, we choose δ sufficiently small such that w(t)/δ is
close to u(t), for all t ∈ [0, T ]. The result follows.

There is, however, one issue with the above argument. The differential inclusions could have multiple
solutions, and in eq. (7), the approximation holds for some solution of eq. (6); it is not known beforehand
which solution it would be. Therefore, we would need to choose T large enough such that all solutions of
equation 6 have approximately converged in direction. However, this may not be possible for all initializations
w0. To illustrate this we consider a simple example.

Consider the function f(u1, u2) = u1|u2| that satisfies Assumption 1, and is differentiable everywhere except
along the line u2 = 0. In Figure 2 we plot its gradient field. Note that ũ = [1, 0]> is a critical point for
f(u1, u2), i.e., 0 ∈ ∂f(ũ). Thus, if initialized at ũ, one possible gradient flow solution is to stay at ũ for all
t ≥ 0. However, ∂f(ũ) contains other vectors which could lead to gradient flow escaping from ũ. Moreover,
one could construct a gradient flow solution that can spend arbitrary amount of time at ũ before escaping
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Figure 2: The gradient field of f(u1, u2) = u1|u2|.

it. Specifically, for any finite T ,

uT (t) =


[
1
0

]
, for all t ∈ [0, T ][

cosh (t− T )
sinh (t− T )

]
, for all t ≥ T,

is a possible gradient flow solution. We note that limt→∞ uT (t)/‖uT (t)‖2 = [1/
√

2, 1/
√

2]>, however, clearly
for any finite time T we can choose T large such that uT (T )/‖uT (T )‖2 stays away from [1/

√
2, 1/
√

2]>.
Thus, we can not establish finite time approximate directional convergence for all possible gradient flow
solutions. Complete details for this example can be found in Appendix E.

To address this issue, we only consider initialization which leads to a unique solution. In particular, we
assume w0 to be a non-branching initialization of eq. (4). As noted earlier, if the neural network has locally
Lipschitz gradients, then this requirement is always satisfied. However, for more general networks such as
two-layer ReLU neural networks the above assumption may appear somewhat restrictive. That said, it is
worth noting that a similar assumption was also made in Lyu et al. (2021), where the full training dynamics
of two-layer Leaky-ReLU neural networks were investigated in a simple setting involving linearly separable
data. Furthermore, Maennel et al. (2018) addresses this challenge of non-uniqueness by asserting that the
differential inclusion resulting from the gradient flow of the loss function will have a unique solution in
“almost all” cases, but do not provide a formal proof. We leave it as an important future research direction
to handle more general initializations.

5.1.2 A Corollary for Separable Neural Networks

We next consider the case when H(x; w) is separable and can be divided into smaller neural networks. In the
following lemma, we describe the directional convergence for such neural networks near small initialization.
Corollary 5.3.1. Suppose we can write w = [w1, . . . ,wH ]> such that H(x; w) =

∑H
i=1Hi(x; wi), for all x.

Consider the same setting as in Theorem 5.1, then, for any ε ∈ (0, η), where η is a positive constant, there
exist C > 1 and δ > 0 such that for any δ ∈ (0, δ), and for all i ∈ [H], either

√
Cδ ≥ ‖wi(T )‖2 ≥ δη, and wi(T )>ûi

‖wi(T )‖2
≥ 1−

(
1 + 3

2η

)
ε,

where ûi is a non-negative KKT point of

max
‖u‖2

2=1
Ny,Hi(u) = y>Hi(X; u), (11)

or
‖wi(T )‖2 ≤ 2δε, where T = ln(C)

4ββ̃
.
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Figure 3: The lower part shows the content of Figure 1b with the horizontal and vertical axes interchanged.
The top plot shows the constrained NCF Ny,H(θ) =

∑n
i=1 yi max(0, [cos(θ), sin(θ)]>xi)2. As predicted by

Corollary 5.3.1, the neuron weights converge in direction to the KKT points of the NCF.

The above result establishes that for separable neural networks, the weights of smaller neural networks ap-
proximately converge in direction to the KKT points of the optimization problem in eq. (11), the constrained
NCF defined with respect to the output of smaller neural networks.

Indeed, this is precisely what we observed for the “toy” experiments depicted in Figure 1. Recall, in that case,
the neural network was the sum of squared ReLU functions and hence satisfies the setting of Corollary 5.3.1.
In the bottom of Figure 3, we again plot the evolution of the direction of the weights for each hidden neuron.
On the top, we plot the constrained NCF with respect to the output of each neuron, which will be identical
for each neuron. We clearly observe that the weights of each neuron converge in direction towards KKT
points of the constrained NCF.

5.2 Directional Convergence Near Saddle Points

Several theoretical and empirical works have observed a saddle-to-saddle dynamics during training of neural
networks with small initialization and square loss (Jacot et al., 2022; Pesme & Flammarion, 2023; Boursier
et al., 2022; Jin et al., 2023). The evolution of loss alternates between being stagnant and decreasing
sharply, almost like a piecewise constant function. This indicates that weights move from one saddle of the
loss function to another during training. Some theoretical works further show that at each saddle point only
certain number of weights are non-zero. For example, Pesme & Flammarion (2023) proves saddle-to-saddle
dynamics in two-homogeneous diagonal linear networks, where at each saddle points only few weights are
non-zero. The authors of Boursier et al. (2022) study two-layer ReLU network with orthogonal inputs, and
show that gradient flow enters neighborhood of a saddle point where one set of neurons have high norm
while others have zero norm.

In this section, we show that the directional convergence near initialization described in the previous section
also occurs near certain saddle points for square loss. However, there could be different kinds of saddle
points throughout the loss landscape. The choice of saddle points considered here is motivated by the above
observations, such as only a certain number of weights being non-zero at the saddle points.

We assume that the weights of neural network w can be divided into two sets, w = [wn,wz], such that
H(x; w) = Hn(x; wn) +Hz(x; wz), where Hn(x; wn) and Hz(x; wz) each satisfy Assumption 1. For square
loss, we minimize

L (wn,wz) = 1
2

n∑
i=1
‖Hn(xi; wn) +Hz(xi; wz)− yi‖2 = 1

2 ‖Hn(X; wn) +Hz(X; wz)− y‖2
. (12)

The saddle point of eq. (12) that we consider here satisfies the following.

9
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Assumption 2. We assume {wn,wz} is a saddle point of eq. (12) such that

‖wn‖2 ∈ [m,M ], and ‖wz‖2 = 0, (13)

where m,M are positive constants. Further, if Hn(x; wn) does not have a locally Lipschitz gradient, then we
assume that there exists γ > 0 such that for all wn satisfying ‖wn −wn‖2 ≤ γ it holds that

〈wn −wn, s〉 ≥ 0,where s ∈ −∂wnL(wn,0). (14)

In the above assumption, wn is the set of weights with high norm while wz contains sets of weights with
zero norm. Due to homogeneity, Hz(x; wz) = 0, and thus Hn(x; wn) is effectively the output of the neural
network at {wn,wz}.

When Hn(x; wn) does not have locally Lipschitz gradient, we require eq. (14) to ensure that if wn initialized
near wn, then it stays near it for a sufficiently long time. We discuss the motivation for this inequality after
discussing our main theorem of this section, stated below.
Theorem 5.4. Let {wn,wz} satisfy Assumption 2, and define y = y − Hn(X; wn). Suppose ζz is a unit
norm vector and a non-branching initialization of the differential inclusion

u̇ ∈ ∂Ny,Hz
(u),u(0) = ζz. (15)

For any ε ∈ (0, η), where η is a positive constant2, there exist C > 1 and δ > 0 such that the following holds:
for any δ ∈ (0, δ) and gradient flow solution {wn(t),wz(t)} of eq. (12) that satisfies for a.e. t ≥ 0[

ẇn

ẇz

]
∈ −

[
∂wnL (wn,wz)
∂wzL (wn,wz)

]
,

[
wn(0)
wz(0)

]
=
[
wn + δζn
wz + δζz

]
, (16)

where ‖ζn‖2 is a unit norm vector, we have

‖wn(t)−wn‖2
2 + ‖wz(t)−wz‖2

2 ≤ Cδ2, for all t ∈
[
0, T

]
, (17)

where T = 1
M2

ln (C), and M2 is a constan3. Further, either

‖wz(T )‖2 ≥ δη, and wz(T )>û
‖wz(T )‖2

≥ 1−
(

1 + 3
2η

)
ε,

where û is a non-negative KKT point of

max
‖u‖2

2=1
Ny,Hz

(u) = y>Hz(X; u),

or
‖wz(T )‖2 ≤ 2δε.

In the above theorem, the initialization is near a saddle point which satisfies Assumption 2, and δ controls
how far the initialization is from the saddle point. The vector y represents the residual error at the saddle
point and plays the same role as y did in Theorem 5.1. Provided ζz is a non-branching initialization of
eq. (15), we show that for sufficiently small δ, the gradient flow spends enough time near the saddle point
such that weights of small magnitude wz either approximately converge in direction to the KKT point of the
NCF defined with respect to y and Hz, or gets close to 0. The above theorem, similar to Theorem 5.1, shows
directional convergence among weights of small magnitude. The proof technique is similar to the proof of
Theorem 5.1; for details see Appendix D.

We next explain the motivation for eq. (14) in Assumption 2 when Hn(x; wn) does not have locally Lipschitz
gradients. Our proof of the above theorem crucially relies on showing that wn(t) remains close to wn and
wz(t) remains small for a sufficiently long time; i.e., eq. (17) holds. Suppose wz(t) remains small, then the
evolution of wn(t) is approximately governed by the gradient flow of L (wn, 0). To understand the gradient
flow dynamics of L (wn, 0) near wn, we use the following lemma.

2Here, η depends on the solution of eq. (15), which solely relies on X, ȳ,Hz , ζz , and is independent of δ. See the proof for
more details.

3M2 depends on β, ‖y‖2 and various parameters associated with Hz and Hn near {wn,wz} such as their Lipschitz constant,
maximum value etc. Importantly, it does not depend on ε and δ.

10
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Lemma 5.5. Suppose {wn,wz} is a saddle point of eq. (12) such that ‖wn‖2 ∈ [m,M ], and ‖wz‖2 = 0.
Then,

0 ∈ ∂wnL (wn, 0) .

If Hn(x; wn) has locally Lipschitz gradients, then ∇wnL (wn, 0) would be small and vary smoothly in the
neighborhood of wn. This suffices to ensure that if wn(0) is close to wn, then wn(t) remains close to wn

for a sufficiently long time.

However, if Hn(x; wn) does not have locally Lipschitz gradients, then 0 ∈ ∂wnL (wn, 0) but ∂wnL (wn, 0)
may be large near wn and, more importantly, point away from wn. This prevents us from ensuring wn(t)
remains near wn . For example consider g(u) = (u1|u2| − 1)2 and let ũ = [1, 0]T . Then, 0 ∈ ∂g(ũ). Let
uδ = [1 + δ, δ]T . Then, for any δ ∈ (0, 0.1) and s ∈ −∂g(uδ), ‖s‖2 ≥ 1 and s>(ũ − uδ) < 0. Therefore, no
matter how close uδ is to ũ, the gradient flow will quickly get away from ũ (see the Appendix F for details).

Hence, we require the elements in −∂wn
L(wn,0) to be positively correlated with wn −wn to ensure wn(t)

remains near wn. The following lemma further clarifies the impact of eq. (14).
Lemma 5.6. Suppose {wn,wz} is a saddle point of eq. (12) such that ‖wn‖2 ∈ [m,M ], and ‖wz‖2 = 0.
Then, wn is a saddle point of L (wn, 0). Further, if there exists γ > 0 such that eq. (14) holds for all wn

satisfying ‖wn −wn‖2 ≤ γ, then wn is a local minima of L (wn, 0).

In words, if eq. (14) holds in some neighborhood of wn, then wn is a local minima of L(wn,0). Thus, if
wn(0) is close to wn, then one can expect wn(t) to remain near wn.

6 Conclusions and Future Directions

In this work, we studied the gradient flow dynamics of two-homogeneous neural networks near small ini-
tializations and saddle points, and showed the approximate directional convergence of their weights in the
initial stages of training.

An important future direction is, of course, to study the entire gradient flow dynamics of neural networks,
and our work could be an important step towards a comprehensive understanding of training dynamics of
neural networks. Particularly, for successful training under small initialization, the gradient dynamics will
have to eventually escape the origin. The escape direction may be determined by the directions to which
the weights converge while the dynamics is near the origin. This also holds true while escaping other saddle
points encountered by gradient dynamics during the training process, which notably is known to undergo
saddle-to-saddle dynamics.

Another possible future direction is to investigate similar directional convergence in deeper neural networks.
For non-smooth neural networks, we required an additional assumption on the initialization to ensure unique-
ness. It would be interesting to analyze scenarios when such assumptions do not hold. We defer that to a
future investigation.
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Appendices
A Key Properties of o-minimal Structures and Clarke Subdifferentials

In this section we give a brief overview of o-minimal structures, and the relevant properties of Clarke
subdifferentials that are used in the proofs of our results. We borrow much of the discussion below from Ji
& Telgarsky (2020); Davis et al. (2018)

An o-minimal structure is a collection S = {Sn}∞n=1, where each Sn is set of subsets of Rn, that satisfies
following axioms:

• The elements of S1 are finite unions of points and intervals.

• All algebraic subsets of Rn are in Sn.

• For all n, Sn is a Boolean subalgebra of the power set of Rn.

• If A ∈ Sn, B ∈ Sm, then A×B ∈ Sn+m

• If P : Rn+1 → Rn is the projection on first n coordinates and A ∈ Sn+1, then P(A) ∈ Sn.

For a given o-minimal structure S, a set A ⊂ Rn is definable if A ∈ Sn. A function f : D → Rm with
D ⊂ Rn is definable if the graph of f is in Sn+m. Since a set remains definable under projection, the domain
D is also definable.
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In Wilkie (1996), it was shown that there exists an o-minimal structure in which polynomials and exponential
functions are definable. Also, the definability of a function is stable under algebraic operations, composition,
inverse, maximum, and minimum. Since ReLU and Leaky-ReLU can each be expressed as maximums of two
polynomials, it can be shown that the functions we will consider in this paper are definable.

It is also true that deep neural networks with ReLU or Leaky-ReLU activation, and different kinds of layers,
are definable. For completeness, we state that result here as a lemma.
Lemma A.1. (Ji & Telgarsky, 2020, Lemma B.2) Suppose there exist k, d0, d1, ..., dL > 0 and L definable
functions (g1, ..., gL) where gj : Rd0 × . . .×Rdj−1 ×Rk → Rdj . Let h1(x,w) := g1(x,w), and for 2 ≤ j ≤ L,

hj(x,w) := gj(x, h1(x,w), ..., hj−1(x,w),w)

then all hj are definable. (It suffices if each output coordinate of gj is the minimum or maximum over
some finite set of polynomials, which allows for linear, convolutional, ReLU, max-pooling layers and skip
connections.)

We also note that, since definability is stable under composition, the objective functions arising for quadratic
loss and logistic loss are also definable.

A.1 Chain Rules for Non-differentiable Functions

Recall that for any locally Lipschitz continuous function f : X → R, its Clarke subdifferential at a point
x ∈ X is the set

∂f(x) = conv
{

lim
i→∞

∇f(xi) : lim
i→∞

xi = x,xi ∈ Ω
}
,

where Ω is any full-measure subset of X such that f is differentiable at each of its points, and ∂f(x) denotes
the unique minimum norm subgradient.

The functions considered in this paper can be compositions of non-differentiable functions. We use Clarke’s
chain rule of differentiation, described in the following lemma, to compute the Clarke subdifferentials in such
cases.
Lemma A.2. (Clarke, 1983, Theorem 2.3.9 ) Let h1, . . . , hn : Rd → R and g : Rn → R be locally Lipschitz
functions, and f(x) = g(h1(x), . . . , hn(x)), then,

∂f(x) ⊆ conv
{

n∑
i=1

αiζi : ζi ∈ ∂hi(x), α ∈ ∂g(h1(x), . . . , hn(x))
}
.

The chain rule for gradient flow described in the next lemma, which is crucial for our analysis, essentially
implies that for differential inclusions ∂f(x) plays the same role as ∇f(x) does for differential equations.
Lemma A.3. (Davis et al., 2018, Lemma 5.2)(Ji & Telgarsky, 2020, Lemma B.9) Given a locally Lipschitz
definable function f : D → R with an open domain D, for any interval I and any arc x : I → D, it holds
for a.e. t ∈ I that

d(f(x(t)))
dt

= 〈x∗(t), ẋ(t)〉, for all x∗(t) ∈ ∂f(x(t)).

Further, if x : I → D satisfies
ẋ ∈ ∂f(x), for a.e. t ≥ 0,

then, it holds for a.e. t ≥ 0 that

ẋ(t) = ∂f(x(t)), and d(f(x(t)))
dt

= ‖∂f(x(t))‖2
2,

and therefore,

f(x(t))− f(x(0)) =
∫ t

0
‖∂f(x(s))‖2

2ds,∀t ≥ 0.
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A.2 The Kurdyka-Lojasiewicz Inequality

For gradient flow trajectories that are bounded, the Kurdyka-Lojasiewicz Inequality is useful for showing
convergence, essentially by establishing the existence of a desingularizing function, which is formally defined
as follows.
Definition A.1. A function Ψ : [0, ν) → R is called a desingularizing function when Ψ is continuous on
[0, ν) with Ψ(0) = 0, and it is continuously differentiable on (0, ν) with Ψ′ > 0.

The following lemma, which can be seen as an unbounded version of the Kurdyka-Lojasiewicz Inequality,
plays an important role in establishing the directional convergence of gradient flow trajectories of the neural
correlation function where the trajectories can be unbounded.
Lemma A.4. (Ji & Telgarsky, 2020, Lemma 3.6) Given a locally Lipschitz definable function f with an
open domain D ⊂ {x|‖x‖2 > 1}, for any c, η > 0, there exists a ν > 0 and a definable desingularizing
function Ψ on [0, ν) such that

Ψ′(f(x))‖x‖2‖∂f(x)‖2 ≥ 1, if f(x) ∈ (0, ν) and ‖∂⊥f(x)‖2 ≥ c‖x‖η2‖∂rf(x)‖2,

where ∂rf(x) =
〈
∂f(x), x

‖x‖2

〉
x
‖x‖2

and ∂⊥f(x) = ∂f(x)− ∂rf(x).

B Additional Notation and Some Preliminary Lemmata

For notational convenience when dealing with Clarke subdifferentials, we introduce the following notation
for sets containing vectors.

• ∀A,B ⊆ Rd, A±B := {x± y : x ∈ A,y ∈ B}

• ∀B ⊆ Rd, and c ∈ R, cB := {cy : y ∈ B}

• ∀B ⊆ Rd, and p ∈ Rd, 〈p, B〉 := {p>y : y ∈ B} ⊆ R

• For any norm ‖ · ‖ on Rd, ‖B‖ := {‖y‖,y ∈ B} ⊆ R

The following lemma states two important properties of homogeneous functions.
Lemma B.1. ((Lyu & Li, 2020, Theorem B.2), (Ji & Telgarsky, 2020, Lemma C.1)) Let F : Rk → R be a
locally Lipschitz and L−positively homogeneous for some L > 0, then:

1. For any w ∈ Rk and c ≥ 0,
∂F (cw) = cL−1∂F (w).

2. For any w ∈ Rk,
w>s = LF (w), for all s ∈ ∂F (w).

This result gives rise to the following corollary, which we use frequently in our analysis.
Corollary B.1.1. For any w ∈ Rk and c ≥ 0,

w>s = 2H(x; w), for all s ∈ ∂H(x; w),

and
∂H(x; cw) = c∂H(x; w).

C Proofs Omitted from Section 5.1

In this section we first prove Lemma 5.2 and Lemma 5.3, and then use them to ultimately prove Theorem 5.1.
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C.1 Proof of Lemma 5.2

To prove Lemma 5.2, we make use of the following lemma. It shows that if two differential inclusions
are initialized at the same point, and the difference between them is small in a bounded interval, then the
difference between their solutions is also small. This is a well-known stability result (Filippov, 1988, Theorem
1, Section 8); we provide a proof in Appendix G for completeness.
Lemma C.1. Consider the following differential inclusions for t ∈ [0, T ]:

dũ
dt
∈

n∑
i=1

zi∂H(xi; ũ), ũ(0) = u0, (18)

and

du
dt
∈

n∑
i=1

(zi + fi(t))∂H(xi; u),u(0) = u0, (19)

where T is finite, and |fi(t)|2 ≤ δ for all i ∈ [n] and t ∈ [0, T ]. Then, for any ε > 0 there exists a δ > 0,
such that for each solution u(t) of eq. (19) there exists a solution ũ(t) of eq. (18) satisfying

max
t∈[0,T ]

‖u(t)− ũ(t)‖2 ≤ ε. (20)

Proof of Lemma 5.2. Using the chain rule from Lemma A.2, the gradient flow dynamics are

ẇ ∈ −
n∑
i=1

ei∂H(xi; w),w(0) = δw0, (21)

where ei := ∂ŷ` (H(xi; w), yi). Let e be the n−dimensional vector containing as its ith elements the values
ei, for all i. For square loss, ∂ŷ`(ŷ, y) = ŷ − y, and for logistic loss, ∂ŷ`(ŷ, y) = −(2ye−ŷy)/(1 + e−ŷy). Note
that, for logistic loss, ‖e(t)‖2 ≤ 2‖y‖2. Next, recall that

β := sup{‖H(X; w)‖2 : w ∈ Sk−1},

so from two-homogeneity of H(x; w), we have ‖H(x; w)‖2 ≤ β‖w‖2
2. Therefore, for square loss, since

loss always decreases, ‖e(t)‖2 ≤ ‖e(0)‖2 = ‖y − H(X; δw0)‖2 ≤ ‖y‖2 + δ2β ≤ ‖y‖2 + β, where we used
δ2 ≤ 1/C < 1. Also, recall that β̃ = max(2‖y‖2, ‖y‖2 + β), thus, for both losses, ‖e(t)‖2 ≤ β̃.

Now, we define z(t) = ‖w(t)‖2
2 and note that z(0) = δ2 ≤ 1/C < 1. Since w(t) is a continuous function, so

is z(t). Hence, there exists some γ > 0, such that for all t ∈ (0, γ), z(t) < 1. We define T̂ to be the smallest
t > 0 such that z(T̂ ) = 1. It follows that for all t ∈ [0, T̂ ], z(t) ≤ 1. Using Corollary B.1.1,

ż = 2w>ẇ = −4
n∑
i=1

eiH(xi; w) = −4H(X; w)>e ≤ 4β‖w‖2
2β̃ = 4ββ̃z, (22)

and so z(t) ≤ δ2e4ββ̃t implies

T̂ ≥ 1
4ββ̃

ln
(

1
δ2

)
.

Further, since δ ≤ 1√
C
, we have that 1

4ββ̃ ln (C) ≤ T̂ implies

z(t) ≤ Cδ2,∀t ∈
[
0, ln (C)

4ββ̃

]
. (23)
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Now, we consider t ∈
[
0, ln(C)

4ββ̃

]
. Note that

‖H(X; w(t))‖2 ≤ β‖w(t)‖2
2 ≤ βCδ2. (24)

Define ξ(t) := e(t) + y; then, for square loss,

‖ξ(t)‖2 = ‖H(X; w(t))‖2 ≤ βCδ2.

For logistic loss

|ξi(t)| =
∣∣∣∣yi(1− e−yiH(xi;w(t))

1 + e−yiH(xi;w(t))

)∣∣∣∣ ≤ |yi||1− e−yiH(xi;w(t))| ≤ e|yi|β ||yi||yiH(xi; w(t))| ≤ βe|yi|β |yi|2δ2C,

where in the first inequality we use |1+ex| ≥ 1. The second inequality follows from |H(xi; w(t))| ≤ βδ2C ≤ β
and then using the following first-order Taylor approximation,

|1− e−yiH(xi;w(t))| ≤ e|yi|β |yiH(xi; w(t))|.

Hence, ‖ξ(t)‖2 ≤ βe‖y‖β‖y‖2
2δ

2C for logistic loss.

Next, the dynamics of w(t) can be written as

ẇ ∈ −
n∑
i=1

ei∂H(xi; w) =
n∑
i=1

(yi − ξi(t))∂H(xi; w). (25)

Dividing eq. (25) by δ, from 1-homogeneity of ∂H(x; w) (corollary B.1.1) we have

ẇ
δ
∈ 1
δ

n∑
i=1

(yi − ξi(t))∂H(xi; w) =
n∑
i=1

(yi − ξi(t))∂H(xi; w/δ). (26)

Now, consider the differential inclusion

dw̃
dt
∈

n∑
i=1

yi∂H(xi; w̃), w̃(0) = w0. (27)

Using the fact that for all t ∈
[
0, ln(C)

4ββ̃

]
, for square loss ‖ξ(t)‖2 ≤ δ2βC, and for logistic loss ‖ξ(t)‖2 ≤

βe‖y‖β‖y‖2
2δ

2C, and using Lemma C.1, we have that there exists a small enough δ such that for all δ ≤ δ,∥∥∥∥w̃(t)− w(t)
δ

∥∥∥∥
2
≤ ε,

where w̃(t) is a solution of eq. (27).

C.2 Proof of Lemma 5.3

Recall that Nz,H(u) = z>H (X; u). Throughout this section, for the sake of brevity, we will use N (u) instead
of Nz,H(u). The gradient flow u(t) satisfies, for a.e. t ≥ 0,

du
dt
∈ ∂N (u) ⊆

n∑
i=1

zi∂H(xi; u),u(0) = u0. (28)

We will first prove some auxiliary lemmata. The first follows simply from two-homogeneity of N (u) and
Lemma B.1.
Lemma C.2. For any s ∈ ∂N (u), s>u = 2N (u). For any c ≥ 0, ∂N (cu) = c∂N (u)

17
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The next lemma states that if the initialization is non-zero, then gradient flow stays away from the origin
for all finite time.
Lemma C.3. Suppose u(t) is a solution of eq. (28), where u0 is a non-zero vector. Then, for all finite
t > 0, ‖u(t)‖2 > 0.

Proof. Since ‖u(0)‖2 > 0, from continuity of u(t), there exists some γ > 0 such that ‖u(t)‖2 > 0, for all
t ∈ (0, γ). For the sake of contradiction, suppose there exists some finite T > 0 such that ‖u(T )‖2 = 0 for
the first time. Then, for all t ∈ [0, T ), ‖u(t)‖2 > 0. Since for a.e. t ∈ [0, T )

dlog(‖u‖2
2)

dt
= 1
‖u‖2

2

d‖u‖2
2

dt
= 2z>H(X; u)

‖u‖2
2

≥ −β‖z‖2,

it follows that for all t ∈ (0, T ),
‖u(t)‖2

2 ≥ ‖u0‖2
2e
−tβ‖z‖2 .

Taking t→ T , we have ‖u(T )‖2
2 ≥ ‖u0‖2

2e
−Tβ‖z‖2 > 0 which leads to a contradiction.

Lemma C.4. If N (u(t0)) ≥ 0, for any t0 ≥ 0, then, N (u(t)) ≥ 0 and ‖u(t)‖2 ≥ ‖u(t0)‖2, for all t ≥ t0.

Proof. Since, using Lemma A.3,

N (u(t))−N (u(t0)) =
∫ t

t0

‖u̇(s)‖2
2ds,

we have that for t ≥ t0, N (u(t)) ≥ N (u(t0)) ≥ 0. The second claim is true since for a.e. t ≥ 0, d‖u‖
2
2

dt = 4N (u)
implies

‖u(t)‖2
2 − ‖u(t0)‖2

2 = 4
∫ t

t0

N (u(s))ds ≥ 0.

The following lemma states the conditions for first-order KKT point of the constrained NCF.
Lemma C.5. If a vector u∗ ∈ Rk×1 is a first-order KKT point of

max
‖u‖2

2=1
N (u) = z>H(X; u), (29)

then
n∑
i=1

zi∂H(xi; u∗) = λ∗u∗, ‖u∗‖2
2 = 1, (30)

where λ∗ ∈ R is the Lagrange multiplier. Also, 2N (u∗) = λ∗ and hence, for a non-negative KKT point
λ∗ ≥ 0.

Proof. The Lagrangian is equal to

L(u, λ) = N (u) + λ(‖u‖2
2 − 1).

If u∗ is a first-order KKT point then it must satisfy the constraint set and, for some λ,

0 ∈ ∂N (u∗) + 2λu∗,

implying

0 ∈
n∑
i=1

zi∂H(xi; u∗) + 2λu∗.

18
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Choosing λ∗ = −2λ we get eq. (30). By Lemma C.2,

λ∗ = λ∗‖u∗‖2
2 = u∗>∂N (u∗) = 2N (u∗)

In the following lemma we define Ñ (u), which is central to our proof, and its minimum norm Clarke
subdifferential.
Lemma C.6. For any nonzero u ∈ Rk we define Ñ (u) = N (u)/‖u‖2

2, then,

∂Ñ (u) =
{

s
‖u‖2

2
− 2N (u)u
‖u‖4

2

∣∣∣∣s ∈ ∂N (u)
}

=
{(

I− uu>

‖u‖2
2

)
s
‖u‖2

2

∣∣∣∣s ∈ ∂N (u)
}
,

and
∂Ñ (u) =

(
I− uu>

‖u‖2
2

)
∂N (u)
‖u‖2

2
.

Proof. First, note that Ñ (u) is differentiable if and only if N (u) is differentiable. Therefore, for any non-zero
u such that N (u) is differentiable,

∇Ñ (u) = ∇N (u)
‖u‖2

2
− 2N (u)u
‖u‖4

2
.

The first claim follows from the definition of Clarke subdifferential and Lemma C.2. For the second claim,
note that ∥∥∥∥ s

‖u‖2
2
− 2N (u)u
‖u‖4

2

∥∥∥∥2

2
= ‖s‖

2
2

‖u‖4
2
− 4N (u)2

‖u‖6
2

+ 4N (u)2

‖u‖8
2
,

where we use s>u = 2N (u), for all s ∈ ∂N (u). Hence, for the minimum norm subdifferential of Ñ (u), we
must choose the minimum norm subdifferential of N (u).

We now proceed to proving Lemma 5.3. We begin by showing that either u(t) converges to 0 or
limt→∞ u(t)/‖u(t)‖2 exists. We consider two cases.

Case 1: N (u(0)) > 0.
In this case, we show that limt→∞ u(t)/‖u(t)‖2 exists using a similar technique as in Ji & Telgarsky (2020).
Specifically, we show that the length of the curve swept by u(t)/‖u(t)‖2, which is defined as∫ ∞

0

∥∥∥∥ ddt
(

u
‖u‖2

)∥∥∥∥
2
dt,

has finite length, and thus limt→∞ u(t)/‖u(t)‖2 exists.

We assume N (u(0)) = γ > 0, and thus ‖u(0)‖2 > 0. From Lemma C.4, for all t ≥ 0,

N (u(t)) ≥ N (u(0)) = γ,

implying

1
2
d‖u‖2

2
dt

= u>u̇ = 2N (u(t)) ≥ 2γ, for a.e. t ≥ 0,

which in turn implies

‖u(t)‖2
2 ≥ ‖u(0)‖2

2 + 4γt, for all t ≥ 0. (31)
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Recall that Ñ (u) = N (u)/‖u‖2
2. Since ‖u(t)‖2 > 0, Ñ (u(t)) is defined for all t ≥ 0. Also, by Lemma A.3,

for a.e. t ≥ 0,

dN (u)
dt

= ‖u̇‖2
2, and u̇ = ∂N (u).

Therefore, using the chain rule from Lemma A.3, for a.e. t ≥ 0 we have

dÑ (u)
dt

= u̇>
(

I− uuT

‖u‖2
2

)
∂N (u)
‖u‖2

2
= ∂N (u)>
‖u‖2

2

(
I− uuT

‖u‖2
2

)
∂N (u) ≥ 0, (32)

where in the second equality we used that u̇ = ∂N (u), for a.e. t ≥ 0. Hence, for all t2 ≥ t1 ≥ 0,

Ñ (u(t2))− Ñ (u(t1)) =
∫ t2

t1

∂N (u)>
‖u‖2

2

(
I− uuT

‖u‖2
2

)>
∂N (u)dt ≥ 0.

Therefore, Ñ (u(t))) is an increasing function, and hence, for any t ≥ 0, that Ñ (u(t)) ≥ Ñ (u(0)) implies

N (u(t)) ≥ Ñ (u(0))‖u(t)‖2
2.

From the above inequality and eq. (31), we have limt→∞N (u(t)) =∞.

Now, since N (u) ≤ ‖z‖2‖H(X; u)‖2 ≤ β‖z‖2‖u‖2
2, we have that Ñ (u) is bounded. Hence, by monotone

convergence theorem, limt→∞ Ñ (u(t)) exists; here, we suppose it is equal to f .

Note that, by the chain rule, for a.e. t ≥ 0,

d

dt

(
u
‖u‖2

)
=
(

I− uuT

‖u‖2
2

)
u̇
‖u‖2

=
(

I− uuT

‖u‖2
2

)
∂N (u)
‖u‖2

implies ∥∥∥∥ ddt
(

u
‖u‖2

)∥∥∥∥
2

=
∥∥∥∥(I− uuT

‖u‖2
2

)
∂N (u)

∥∥∥∥
2

1
‖u‖2

. (33)

Suppose Ñ (u(t)) converges to f in finite time, i.e., Ñ (u(T )) = f for some finite T . Then, for a.e. t ≥ T ,
dÑ (u)
dt = 0 implies ∥∥∥∥(I− u(t)u(t)T

‖u(t)‖2
2

)
∂N (u(t))

∥∥∥∥
2

= 0.

Therefore, from eq. (33), we have
d

dt

(
u
‖u‖2

)
= 0, for a.e. t ≥ T,

and hence, limt→∞
u(t)
‖u(t)‖2

exists and is equal to u(T )
‖u(T )‖2

.

Thus, we may assume f − Ñ (u(t)) > 0, for all finite t. Define g(u) = f − Ñ (u). Then, since

‖∂rÑ (u)‖2 = 0,

we have that
‖∂⊥g(u)‖2 ≥ ‖u‖2‖∂rg(u)‖2 = 0.

Hence, from Theorem A.4, there exists a ν > 0 and a desingularizing function Ψ(·) defined on [0, ν) such
that if ‖u‖2 > 1 and g(u) < ν, then

1 ≥ Ψ′(g(u))‖u‖2‖∂g(u)‖2 = Ψ′(f − Ñ (u))‖u‖2‖∂Ñ (u)‖2. (34)
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Since limt→∞ Ñ (u(t)) = f , and eq. (31) holds, we may choose T large enough such that ‖u(t)‖2 > 1, and
g(u(t)) < ν, for all t ≥ T . Hence, for a.e. t ≥ T ,

dÑ (u)
dt

= ∂N (u)>
‖u‖2

2

(
I− uuT

‖u‖2
2

)>
∂N (u) =

∥∥∥∥(I− uuT

‖u‖2
2

)
∂N (u)
‖u‖2

∥∥∥∥2

2

=
∥∥∥∥(I− uuT

‖u‖2
2

)
∂N (u)
‖u‖2

∥∥∥∥
2

∥∥∥∥ ddt
(

u
‖u‖2

)∥∥∥∥
2

= ‖u‖2
∥∥∂Ñ (u)

∥∥
2

∥∥∥∥ ddt
(

u
‖u‖2

)∥∥∥∥
2

≥ 1
Ψ′(f − Ñ (u))

∥∥∥∥ ddt
(

u
‖u‖2

)∥∥∥∥
2

implying ∥∥∥∥ ddt
(

u
‖u‖2

)∥∥∥∥
2
≤ −dΨ(f − Ñ (u))

dt
.

In the chain of equalities and inequalities above, we used Lemma C.6 for the fourth equality, and for the
first inequality we used eq. (34). Now, integrating both sides of the above from T to any t1 ≥ T , we have∫ t1

T

∥∥∥∥ ddt
(

u
‖u‖2

)∥∥∥∥
2
dt ≤ Ψ(f − Ñ (u(T ))−Ψ(f − Ñ (u(t1)) ≤ Ψ(f − Ñ (u(T ))) <∞,

which implies ∫ ∞
0

∥∥∥∥ ddt
(

u
‖u‖2

)∥∥∥∥
2
dt =

∫ T

0

∥∥∥∥ ddt
(

u
‖u‖2

)∥∥∥∥
2
dt+

∫ ∞
T

∥∥∥∥ ddt
(

u
‖u‖2

)∥∥∥∥
2
dt

≤
∫ T

0

∥∥∥∥ ddt
(

u
‖u‖2

)∥∥∥∥
2
dt+ Ψ(f − Ñ (u(T ))) <∞,

completing the proof.

Case 2: N (u(0)) ≤ 0.
In this case, we may further assume that N (u(t)) ≤ 0, for all t ≥ 0, since if for some finite t, N (u(t)) > 0,
we can use the proof for Case 1 by choosing t as the starting time to prove the claim. Thus, we assume
N (u(t)) ≤ 0, for all t ≥ 0. Now, since

1
2
d‖u‖2

2
dt

= u>u̇ = 2N (u(t)) ≤ 0, for a.e. t ≥ 0,

it follows that ‖u(t)‖2 decreases with time. Hence, limt→∞ ‖u(t)‖2 exists. If limt→∞ ‖u(t)‖2 = 0, then
limt→∞ u(t) = 0 and limt→∞N (u(t)) = 0 and we are done.

Otherwise, assume that limt→∞ ‖u(t)‖2 = η > 0. In this case, since ‖u(t)‖2 is a decreasing function,
‖u(t)‖2 ≥ η, for all t ≥ 0. Since by Lemma A.3, for a.e. t ≥ 0,

dN (u)
dt

= ‖u̇‖2
2,

we have that N (u(t)) increases with time. But, we also assume N (u(t)) ≤ 0, and so by the monotone
convergence theorem, N (u(t)) converges. We further claim that limt→∞N (u(t)) = 0. Suppose for the sake
of contradiction limt→∞N (u(t)) = −γ < 0. Since N (u(t)) increases with time, we have N (u(t)) ≤ −γ, for
all t ≥ 0. Hence,

1
2
d‖u‖2

2
dt

= u>u̇ = 2N (u(t)) ≤ −2γ, for a.e. t ≥ 0.
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The above equation implies that ‖u(t)‖2 will become less than η within a finite time, which leads to a
contradiction, and therefore, limt→∞N (u(t)) = 0.

We next show that limt→∞ u(t)/‖u(t)‖2 exists. We can do this in same way in the proof of Case 1. Define
û(t) = 2u(t)/η, and note that if û(t) converges in direction, then u(t) also converges in direction. We make
this transformation because to use Lemma A.4 we require ‖u(t)‖2 > 1 after some time T . While u(t) may
never exceed 1, we do have ‖û(t)‖2 ≥ 2 > 1, for all t ≥ 0.

Next, Ñ (u(t)) is defined for all t ≥ 0, since ‖u(t)‖2 > 0 for all t ≥ 0. Also, since N (u(t)) converges to
0, Ñ (u(t)) also converges to 0. Also, Ñ (u(t)) = Ñ (û(t)), thus Ñ (û(t)) converges to 0 as well. From here
to prove directional convergence of û(t) we can use the the same approach as in Case 1, specifically from
eq. (33) onward.

We next turn towards showing that if limt→∞
u(t)
‖u(t)‖2

exists, then the limit must be a non-negative KKT
point of the constrained NCF. Suppose u∗ is the limit. We have already shown that N (u∗) = Ñ (u∗) ≥ 0.
Thus, we only need to prove that u∗ is a KKT point, i.e., from eq. (30), it must satisfy

2N (u∗)u∗ ∈ ∂N (u∗), (35)

Assume for the sake of contradiction that there exists some γ > 0 such that for all s ∈ ∂N (u∗), we have

‖s− 2N (u∗)u∗‖2 ≥ γ. (36)

Define uε = {u : ‖u − u∗‖ ≤ ε}. Given γ, by upper semi-continuity of the Clarke subdifferential, we may
choose ε ∈ (0, 1) sufficiently small such that for all u ∈ uε, we have

∂N (u) ⊆ {p : p = q + r,q ∈ ∂N (u∗), ‖r‖2 ≤ γ/4}. (37)

Since u(t)
‖u(t)‖2

converges to u∗, and N (u) is continuous, we can choose T large enough such that for all t ≥ T∥∥∥∥ u(t)
‖u(t)‖2

− u∗
∥∥∥∥

2
≤ ε, and

∥∥∥∥ 2u(t)
‖u(t)‖2

N
(

u(t)
‖u(t)‖2

)
− 2u∗N (u∗)

∥∥∥∥
2
≤ γ/4. (38)

Suppose s ∈ ∂N (u∗), then, for all u ∈ Rk\{0} we have∥∥∥∥(I− uu>

‖u‖2
2

)
∂N (u)
‖u‖2

∥∥∥∥
2

=
∥∥∥∥(∂N (u)
‖u‖2

− 2uN (u)
‖u‖3

2

)∥∥∥∥
2

=
∥∥∥∥∂N ( u

‖u‖2

)
− 2u
‖u‖2

N
(

u
‖u‖2

)∥∥∥∥
2

≥
∥∥∥∥s− 2u

‖u‖2
N
(

u
‖u‖2

)∥∥∥∥
2
−
∥∥∥∥∂N ( u

‖u‖2

)
− s
∥∥∥∥

2

≥ ‖s− 2u∗N (u∗)‖2 −
∥∥∥∥∂N ( u

‖u‖2

)
− s
∥∥∥∥

2
−
∥∥∥∥2u∗N (u∗)− 2u

‖u‖2
N
(

u
‖u‖2

)∥∥∥∥
2
,

where in the second equality we used 1−homogeneity of ∂N (u) and 2−homogeneity of N (u), and the
inequalities follow from triangle inequality of norms. Hence, for a.e. t ≥ T , using eq. (36), eq. (37) and
eq. (38) we have ∥∥∥∥(I− u(t)u(t)>

‖u(t)‖2
2

)
∂N (u(t))
‖u(t)‖2

∥∥∥∥
2
≥ γ − γ/4− γ/4 = γ/2,

implying

d

dt

(
N
(

u(t)
‖u(t)‖2

))
=
∥∥∥∥(I− u(t)u(t)>

‖u(t)‖2
2

)
∂N (u(t))
‖u(t)‖2

∥∥∥∥2

2
≥ γ2/4,

which contradicts the fact that limt→∞N
(

u(t)
‖u(t)‖2

)
converges, thus proving our claim.

Now, before we turn to prove Theorem 5.1, we state another useful lemma.
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Lemma C.7. If limt→∞ u(t) 6= 0, then there exists η > 0 and T ≥ 0 such that ‖u(t)‖2 ≥ η, for all t ≥ T .

Proof. The proof is built using the argument already presented in the proof of Lemma 5.3, and we consider
two cases.

Case 1: N (u(0)) > 0.
We assume N (u(0)) = γ > 0, and therefore, ‖u(0)‖2 > 0. From Lemma C.4, for all t ≥ 0, we have
N (u(t)) ≥ N (u(0)) = γ, which implies

1
2
d‖u‖2

2
dt

= u>u̇ = 2N (u(t)) ≥ 2γ, for a.e. t ≥ 0, (39)

which in turn implies

‖u(t)‖2 ≥ ‖u(0)‖2 for all t ≥ 0. (40)

Thus, we can choose η = ‖u(0)‖2, and T = 0.

Case 2: N (u(0)) ≤ 0.
For this case we may further assume that N (u(t)) ≤ 0, for all t ≥ 0, since if for some t, N (u(t)) > 0, then
using Lemma C.4, we have ‖u(t)‖2 ≥ ‖u(t)‖2, for all t ≥ t. Then, since N (u(t)) > 0 implies ‖u(t)‖2 > 0,
we may choose η = ‖u(t)‖2 and T = t.

So, let us assume that N (u(t)) ≤ 0, for all t ≥ 0. Then,

1
2
d‖u‖2

2
dt

= u>u̇ = 2N (u(t)) ≤ 0, for a.e. t ≥ 0.

Therefore, ‖u(t)‖2 decreases with time, and hence, limt→∞ ‖u(t)‖2 exists and ‖u(t)‖2 ≥
limt→∞ ‖u(t)‖2, for all t ≥ 0. Since we have assumed limt→∞ u(t) 6= 0, we have limt→∞ ‖u(t)‖2 > 0.
Thus, we may choose η = limt→∞ ‖u(t)‖2, and T = 0.

C.3 Proof of Theorem 5.1

Consider the differential inclusion

u̇ ∈ ∂Ny,H(u) ⊆
n∑
i=1

yi∂H(xi; u),u(0) = w0, (41)

and let u(t) be its unique solution. By Lemma 5.3, either limt→∞ u(t) = 0 or limt→∞
u(t)
‖u(t)‖2

exists.

We first consider the case when limt→∞ u(t) = 0. Here, we define η = 1 and fix an ε ∈ (0, η). Then, we
choose T large enough such that

‖u(t)‖2 ≤ ε, for all t ≥ T . (42)
Next, if limt→∞ u(t) 6= 0, then from Lemma C.7, there exists η > 0 and T ≥ 0 such that ‖u(t)‖2 ≥ 2η, for
all t ≥ T . Also, from Lemma 5.3,

lim
t→∞

u(t)/‖u(t)‖2 = û,

where û is a non-negative KKT point of

max
‖u‖2

2=1
Ny,H(u) = H(X; u)>y. (43)

For a fixed ε ∈ (0, η), we choose T > T such that

u(t)>û
‖u(t)‖2

≥ 1− ε, for all t ≥ T . (44)
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Having chosen T for a fixed ε ∈ (0, η) in both cases, we next choose C such that ln(C)
4ββ̃ = T . From Lemma 5.2,

there exists δ such that for any δ ≤ δ

‖w(t)‖2 ≤
√
Cδ, for all t ∈

[
0, ln(C)

4ββ̃

]
,

and ∥∥∥∥w(T )
δ
− u(T )

∥∥∥∥
2
≤ ε. (45)

Thus, we may write w(T )
δ = u(T ) + ζ, where ‖ζ‖2 ≤ ε. If limt→∞ u(t) = 0, then, using eq. (42),

‖w(T )‖2 ≤ 2δε.

Else, since ε ∈ (0, η), and ‖u(T )‖2 ≥ 2η, we have ‖u(T ) + ζ‖2 ≥ η. Hence,

w(T )
‖w(T )‖2

= u(T ) + ζ

‖u(T ) + ζ‖2
,

which implies

w(T )>û
‖w(T )‖2

= u(T )>û + ζ>û
‖u(T ) + ζ‖2

=
(

u(T )>û
‖u(T )‖2

)
‖u(T )‖2

‖u(T ) + ζ‖2
+ ζ>û
‖u(T ) + ζ‖2

.

Now, since
‖u(T )‖2

‖u(T ) + ζ‖2
≥ ‖u(T )‖2

‖u(T )‖2 + ‖ζ‖2
= 1

1 + ‖ζ‖2

‖u(T )‖2

≥ 1
1 + ε

2η
≥ 1− ε

2η ,

and
ζ>û

‖u(T ) + ζ‖2
≥ −ε

η
,

we have
w(T )>û
‖w(T )‖2

≥ (1− ε)
(

1− ε

2η

)
− ε

η
≥ 1−

(
1 + 3

2η

)
ε.

C.4 Proof of Corollary 5.3.1

Consider the differential inclusion

u̇ ∈ ∂Ny,H(u) ⊆
n∑
i=1

yi∂H(xi; u),u(0) = w0, (46)

and let u(t) be its unique solution. From separability, we can write u(t) = [u1(t), . . . ,uH(t)] such that for
all j ∈ [H] we have

u̇j ∈ ∂Ny,Hj
(uj) ⊆

n∑
i=1

yi∂Hj(xi; uj),uj(0) = w0j , (47)

where w0 = [w01, . . . ,w0H ]>. By Lemma 5.3, for all j ∈ [H] , either limt→∞ uj(t) = 0 or limt→∞
uj(t)
‖uj(t)‖2

exists.
Let Z be the collection of all indices such that limt→∞ uj(t) = 0, for all j ∈ Z, and Zc be the complement
of Z in [H]. For all j ∈ Zc, from Lemma C.7, there exists ηj > 0 and Tj ≥ 0 such that ‖uj(t)‖2 ≥ 2ηj , for
all t ≥ Tj . Define η = min(1,minj∈Zc ηj) and T = maxj∈Zc Tj , and fix an ε ∈ (0, η).
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From Lemma 5.3, for all j ∈ Zc we have

lim
t→∞

uj(t)/‖uj(t)‖2 = ûj ,

where ûj is a non-negative KKT point of

max
‖uj‖2

2=1
Ny,Hj

(uj) = Hj(X; uj)>y. (48)

Then, for a given ε, we choose T 1 > T such that

uj(t)>ûj
‖uj(t)‖2

≥ 1− ε, for all t ≥ T 1, and all j ∈ Zc. (49)

For all j ∈ Z, we choose T 2 large enough such that

‖uj(t)‖2 ≤ ε, for all t ≥ T 2 and all j ∈ Z. (50)

Define T = max(T 1, T 2) and choose C such that ln(C)
4ββ̃ = T . From Lemma 5.2, there exists δ such that for

any δ ≤ δ

‖w(t)‖2 ≤
√
Cδ, for all t ∈

[
0, ln(C)

4ββ̃

]
,

and ∥∥∥∥w(T )
δ
− u(T )

∥∥∥∥
2
≤ ε. (51)

By separability, we may write wj(T )
δ = uj(T ) + ζj , where ‖ζj‖2 ≤ ε. If j ∈ Zc, then, using eq. (50) we have

‖wj(T )‖2 ≤ 2δε.

Else, since ε ∈ (0, η), and ‖uj(T )‖2 ≥ 2η, we have ‖uj(T ) + ζj‖2 ≥ η. Hence, using similar reasoning as in
the later part of the proof of Theorem 5.1 we get for all j ∈ Zc,

wj(T )>ûj
‖wj(T )‖2

≥ 1−
(

1 + 3
2η

)
ε.

D Proofs Omitted from Section 5.2

We first prove Lemma 5.5 and Lemma 5.6.

D.1 Proof of Lemma 5.5 and Lemma 5.6

We note that since {wn,wz} is a saddle point of

L (wn,wz) = 1
2 ‖Hn(X; wn) +Hz(X; wz)− y‖2

, (52)

and wz = 0, we have [
0
0

]
∈
[
∂wnL (wn,0)
∂wzL (wn,0)

]
, (53)

which establishes 0 ∈ ∂wnL (wn,0).
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Using the mean value theorem (Clarke et al., 1998, Theorem 2.4), we next show that if there exists γ > 0
such that for all wn satisfying ‖wn −wn‖2 ≤ γ it holds that

〈wn −wn, s〉 ≥ 0,where s ∈ −∂wnL(wn,0), (54)

then, wn is a local minima of L (wn, 0).

Let wk satisfy ‖wk −wn‖2 ≤ γ. Then, using the mean value theorem,

L (wk, 0)− L (wn, 0) ∈ ∂wn
L (u, 0)> (wk −wn),

where u = twk + (1− t)wn for some t ∈ (0, 1). Note that wk −wn = (u−wn)/t. Thus,

L (wk, 0)− L (wn, 0) ∈ ∂wnL (u, 0)> (u−wn)/t.

Since ‖u−wn‖2 = (1− t)‖wk −wn‖2 ≤ γ, using eq. (54) we get

L (wk, 0)− L (wn, 0) ≥ 0,

proving wn is a local minima of L (wn, 0).

To prove theorem 5.4, we first describe the approximate dynamics of {wn(t),wz(t)} near the saddle point
in the following lemma.
Lemma D.1. Let {wn,wz} satisfy Assumption 2, and define y = y − Hn(X; wn). Let C > 1 be an
arbitrarily large constant and {wn(t),wz(t)} satisfy for a.e. t ≥ 0[

ẇn

ẇz

]
∈ −

[
∂wn

L (wn,wz)
∂wzL (wn,wz)

]
,

[
wn(0)
wz(0)

]
=
[
wn + δζn
wz + δζz

]
, (55)

where δ2 ≤ min( 1
2C ,

γ2

4 ) and ‖ζn‖2 = ‖ζz‖2 = 1. Then

‖wn(t)−wn‖2
2 + ‖wz(t)−wz‖2

2 ≤ 2Cδ2, for all t ∈
[
0, 1
M2

ln (C)
]
, (56)

where M2 is a positive constant4. Further, for the differential inclusion

u̇ ∈ ∂Ny,Hz
(u),u(0) = ζz, (57)

and for any ε > 0 there exists a small enough δ > 0 such that for any δ ≤ δ,∥∥∥∥wz(t)
δ
− u(t)

∥∥∥∥
2
≤ ε, for all t ∈

[
0, ln(C)

M2

]
, (58)

where u(t) is a certain solution of eq. (57).

Proof. We note that since {wn,wz} is a saddle point of

L (wn,wz) = 1
2 ‖Hn(X; wn) +Hz(X; wz)− y‖2

, (59)

we have [
0
0

]
∈
[∑n

i=1 yi∂Hn(xi; wn)∑n
i=1 yi∂Hz(xi; wz)

]
. (60)

We now define

∆n(t) = Hn(X; wn(t))−Hn(X; wn),∆z(t) = Hz(X; wz(t)), and Z(t) = ‖wn(t)−wn‖2
2 + ‖wz(t)‖2

2.

4M2 here is same as in Theorem 5.4. See the statement of Theorem 5.4 and the the proof of Lemma D.1 for more details.
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Since (wn(t),wz(t)) is a continuous curve, Z(t) is also a continuous curve. Note that Z(0) = 2δ2 ≤
min(1/C, γ2/2) < min(1, γ2). Therefore, there exists some t > 0, such that Z(t) ≤ min(1, γ2), for
all t ∈ [0, t]. Let T ∗ be the smallest t > 0 such that Z(T ∗) = min(1, γ2). Hence, for all t ∈ [0, T ∗],
Z(t) ≤ min(1, γ2). Our next goal is to find a lower bound for T ∗. We operate in [0, T ∗].

Recall that

‖Hz(X; wz)‖2 ≤ β‖wz‖2
2. (61)

Moreover, by the locally Lipschitz property of Hn(X; wn), there exists µ1 > 0 such that

‖∆N (t)‖2 ≤ µ1‖wn(t)−wn‖2, for all t ∈ [0, T ∗]. (62)

Using Z(t) ≤ 1,we have

‖e(t)‖2 = ‖Hn(X; wn(t)) +Hz(X; wz(t))− y‖2

≤ ‖y‖2 + ‖∆N (t)‖2 + ‖Hz(X; wz(t))‖2 ≤ ‖y‖2 + µ1 + β := M1,

where in the last inequality we used eq. (62) and eq. (61). Using Corollary B.1.1, we have

1
2
d ‖wz(t)‖2

2
dt

= −2Hz(X; wz)>e ≤ 2βM1 ‖wz(t)‖2
2 . (63)

We first consider the case when Hn(x; wn) has a locally Lipschitz gradient. Let

J(wn) =: [∇Hn(x1; wn), . . . ,∇Hn(xn; wn)] ∈ Rd×n.

From eq. (60), we have

0 =
n∑
i=1

yi∇Hn(xi; wn) = J(wn)y. (64)

By the locally Lipschitz property of ∇Hn(x; wn), we may assume that there exists µ2 > 0 such that

‖J(wn(t))y− J(wn)y‖2 ≤ µ2‖wn(t)−wn‖2. (65)

Further, since wn(t) is bounded for all t ∈ [0, T ∗], we may assume there exists µ3 > 0 such that

‖J(wn(t))‖2 ≤ µ3. (66)

Thus,

1
2
d ‖wn −wn‖2

2
dt

= −〈wn −wn,J(wn)e〉

= −〈wn −wn,J(wn) (Hn(X; wn) +Hz(X; wz)− y)〉
= −〈wn −wn,J(wn) (∆n(t) + ∆z(t)− y)〉
= 〈wn −wn,J(wn)y〉 − 〈wn −wn,J(wn) (∆n(t) + ∆z(t))〉
= 〈wn −wn,J(wn)y− J(wn)y〉 − 〈wn −wn,J(wn) (∆n(t) + ∆z(t))〉
≤ µ2‖wn −wn‖2

2 + ‖wn −wn‖2‖J(wn)‖2 (‖∆n(t)‖2 + ‖∆z(t)‖2)
≤ µ2‖wn −wn‖2

2 + µ1µ3‖wn −wn‖2
2 + βµ3‖wn −wn‖2‖wz‖2

2

≤ (µ2 + µ1µ3)‖wn −wn‖2
2 + βµ3‖wz‖2

2.

The third equality follows from definition of ∆n(t) and ∆z(t). In last equality, we use eq. (64). The first
inequality follows from Cauchy-Schwartz and eq. (65). We get second inequality from eq. (66),eq. (62) and
eq. (61). In the final inequality, we use ‖wn(t)−wn‖2 ≤ 1, for all t ∈ [0, T ∗].
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Combining the above inequality with eq. (63), we obtain

1
2
dZ(t)
dt

≤ (µ2 + µ1µ3)‖wn(t)−wn‖2
2 + β(2M1 + µ3)‖wz(t)‖2

2 ≤M2Z(t),

where M2 := max(µ2 + µ1µ3, β(2M1 + µ3)). Therefore, for all t ∈ [0, T ∗], Z(t) ≤ Z(0)etM2 implies

T ∗ ≥ 1
M2

ln
(

1
Z(0)

)
= 1
M2

ln
(

1
2δ2

)
.

Since we assume 2δ2 ≤ 1
C , we have that T ∗ ≥ 1

M2
ln (C). Thus, for all t ∈

[
0, 1

M2
ln (C)

]
,

Z(t) ≤ CZ(0) ≤ 2Cδ2,

proving eq. (56).

We next consider the case when Hn(X; wn) does not have a locally Lipschitz gradient. Recall that if
‖wn −wn‖2 ≤ γ, then

〈wn −wn, s〉 ≥ 0,where s ∈ −∂wnL(wn,0). (67)
Further, we may assume that there exists a constant µ3 > 0 such that if ‖wn −wn‖2 ≤ γ, then

max
i∈[n]
‖pi‖2 ≤ µ3, where pi ∈ ∂H(xi; wn). (68)

Using the chain rule, we also have

∂wn
L(wn,wz) ⊆ ∂wn

(L(wn,wz)− L(wn,0)) + ∂wn
L(wn,0). (69)

Note that ∂wn
(L(wn,wz)− L(wn,0)) ⊆

∑n
i=1Hz(xi; wz)∂Hn(xi; wn). Therefore, if ‖wn−wn‖2 ≤ γ, then,

using eq. (68), for any wz, and p ∈ ∂wn
(L(wn,wz)− L(wn,0)), we have

‖p‖2 ≤ µ3‖Hn(X; wz)‖1 ≤ µ3
√
n‖Hn(X; wz)‖2 ≤ µ3

√
nβ‖wz‖2

2. (70)

Next, using eq. (69) we have

1
2
d ‖wn −wn‖2

2
dt

= 〈wn −wn, ẇn〉 ∈ − 〈wn −wn, ∂wn
L(wn,wz)〉

∈ − 〈wn −wn, ∂wn (L(wn,wz)− L(wn,0)) + ∂wnL(wn,0)〉 .

Since ‖wn(t)−wn‖2 ≤ γ for all t ∈ [0, T ∗], using eq. (67) and eq. (70), we have

1
2
d ‖wn −wn‖2

2
dt

≤ µ3
√
nβ‖wn −wn‖2‖wz‖2

2 ≤ µ3
√
nβ‖wz‖2

2,

where in the last inequality we use ‖wn(t)−wn‖2 ≤ 1, for all t ∈ [0, T ∗]. Combining above inequality with
eq. (63), we have

1
2
dZ(t)
dt

≤ β(2M1 + µ3
√
n)‖wz(t)‖2

2 ≤M2Z(t),

where M2 := β(2M1 + µ3
√
n). Therefore, for all t ∈ [0, T ∗], we have that Z(t) ≤ Z(0)etM2 implies

T ∗ ≥ 1
M2

ln
(

1
Z(0)

)
= 1
M2

ln
(

1
2δ2

)
.

Since we assume 2δ2 ≤ 1
C , we have that T ∗ ≥ 1

M2
ln (C). Thus, for all t ∈

[
0, 1

M2
ln (C)

]
,

Z(t) ≤ CZ(0) ≤ 2Cδ2,
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proving eq. (56).

We now move towards proving the second part. We use a similar technique as in the proof of Lemma 5.2.
We define ξ(t) = e(t) + y. Then,

‖ξ(t)‖2 = ‖y +Hn(X; wn(t)) +Hz(X; wz(t))− y‖2

= ‖Hn(X; wn(t))−Hn(X; wn) +Hz(X; wz(t))‖2

≤ µ1‖wn(t)−wn‖2 + β‖wz(t)‖2
2

≤ µ1
√
Cδ + βCδ2.

Thus, the dynamics of wz(t) can be written as

ẇz ∈ −
n∑
i=1

ei∂Hz(xi; wz) =
n∑
i=1

(yi − ξ(t))∂Hz(xi; wz). (71)

Dividing eq. (71) by δ, and using 1-homogeneity of ∂H(x; w) (Corollary B.1.1), we have

ẇz

δ
∈ 1
δ

n∑
i=1

(yi − ξ(t))∂Hz(xi; wz) =
n∑
i=1

(yi − ξ(t))∂Hz(xi; wz/δ). (72)

Now, consider the differential inclusion

dw̃z

dt
∈

n∑
i=1

yi∂Hz(xi; w̃z), w̃z(0) = ζz. (73)

Since for all t ∈
[
0, 1

M2
ln (C)

]
, ‖ξ(t)‖2 ≤ µ1

√
Cδ + βCδ2, using Lemma C.1, there exists a small enough δ

such that for all δ ≤ δ, ∥∥∥∥w̃z(t)−
wz(t)
δ

∥∥∥∥
2
≤ ε,

where w̃(t) is a solution of eq. (73).

D.2 Proof of Theorem 5.4

Consider the differential inclusion

u̇ ∈
n∑
i=1

yi∂Hz(xi; u),u(0) = ζz, (74)

and let u(t) be its unique solution. By Lemma 5.3, either limt→∞ u(t) = 0 or limt→∞
u(t)
‖u(t)‖2

exists.

We first consider the case when limt→∞ u(t) = 0. Here, we define η = 1 and fix an ε ∈ (0, η). Then, we
choose T large enough such that

‖u(t)‖2 ≤ ε,∀t ≥ T . (75)

We next consider the case when limt→∞ u(t) 6= 0. Then, from Lemma C.7, there exists η > 0 and T ≥ 0
such that ‖u(t)‖2 ≥ 2η, for all t ≥ T . Also, from Lemma 5.3,

lim
t→∞

u(t)/‖u(t)‖2 = û,

where û is a non-negative KKT point of

maxHz(X; u)>y, such that ‖u‖2
2 = 1. (76)

29



Under review as submission to TMLR

For a fixed ε ∈ (0, η), we choose T > T such that

u(t)>û
‖u(t)‖2

≥ 1− ε, for all t ≥ T . (77)

Having chosen T for a fixed ε ∈ (0, η) in both cases, we next choose C such that ln(C)
M2

= T . From Lemma D.1,
there exists δ such that for any δ ≤ δ

‖wn(t)−wn‖2
2 + ‖wz(t)−wz‖2

2 ≤ 2Cδ2, for all t ∈
[
0, ln(C)

M2

]
,

and ∥∥∥∥wz(T )
δ
− u(T )

∥∥∥∥
2
≤ ε. (78)

Thus, we may write wz(T )
δ = u(T ) + ζ, where ‖ζ‖2 ≤ ε. If limt→∞ u(t) = 0, then, using eq. (75),

‖wz(T )‖2 ≤ 2δε.

Else, since ε ∈ (0, η), and ‖u(T )‖2 ≥ 2η, we have ‖u(T ) + ζ‖2 ≥ η. Hence,

wz(T )
‖wz(T )‖2

= u(T ) + ζ

‖u(T ) + ζ‖2

which implies

wz(T )>û
‖wz(T )‖2

= u(T )>û + ζ>û
‖u(T ) + ζ‖2

=
(

u(T )>û
‖u(T )‖2

)
‖u(T )‖2

‖u(T ) + ζ‖2
+ ζ>û
‖u(T ) + ζ‖2

.

Since
‖u(T )‖2

‖u(T ) + ζ‖2
≥ ‖u(T )‖2

‖u(T )‖2 + ‖ζ‖2
= 1

1 + ‖ζ‖2

‖u(T )‖2

≥ 1
1 + ε

2η
≥ 1− ε

2η ,

and
ζ>û

‖u(T ) + ζ‖2
≥ −ε

η
,

we have that
wz(T )>û
‖wz(T )‖2

≥ (1− ε)
(

1− ε

2η

)
− ε

η
≥ 1−

(
1 + 3

2η

)
ε.

E Gradient Flow Dynamics of f(u1, u2) = u1|u2|

In the following lemma, we describe the gradient flow solutions of f(u1, u2) = u1|u2| when initialized at
[1, 0]>.
Lemma E.1. For any T > 0, consider the following time-varying function

uT (t) =
[
u1T (t)
u2T (t)

]
=


[
1
0

]
, for all t ∈ [0, T ][

cosh (t− T )
sinh (t− T )

]
, for all t ≥ T,

(79)

then, for a.e. t ≥ 0, uT (t) satisfies[
u̇1
u̇2

]
∈
[
∂u1f(u1, u2)
∂u2f(u1, u2)

]
=
[
|u2|

u1∂|u2|

]
,

[
u1(0)
u2(0)

]
=
[
1
0

]
, (80)

where

∂|u2| ∈

[−1, 1], if u2 = 0
1, if u2 > 0,
−1, if u2 < 0

.
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Proof. For t ∈ [0, T ), uT (t) is a constant, hence,[
u̇1T
u̇2T

]
=
[
0
0

]
.

Since u1T (t) = 1 and u2T (t) = 0, for all t ∈ [0, T ), we have[
|u2T (t)|

u1T (t)∂|u2T (t)|

]
=
[

0
[−1, 1]

]
3
[
0
0

]
.

For t > T , u1T (t) and u2T (t) are continuous and differentiable functions, thus,[
u̇1T
u̇2T

]
=
[

sinh(t− T )
cosh(t− T )

]
.

Since u2T (t) > 0, hence, for all t > T , we have[
|u2T (t)|

u1T (t)∂|u2T (t)|

]
=
[

sinh(t− T )
cosh(t− T )

]
,

completing the proof.

The above lemma shows that for any T > 0, uT (t) defined in eq. (79) is a gradient flow solution of f(u1, u2)
when initialized at [1, 0]>. For any finite T , it is easy to see that limt→∞ uT (t)/‖uT (t)‖2 = [1/

√
2, 1/
√

2]>.
Hence, for a fixed T and any ε > 0, we can choose T such that∥∥∥∥ uT (T )

‖uT (T )‖2
−
[
1/
√

2
1/
√

2

]∥∥∥∥ ≥ ε.
F Gradient Flow Dynamics of g(u) = (u1|u2| − 1)2

We first describe the gradient field of g(u) = (u1|u2| − 1)2 near [1, 0]T .
Lemma F.1. Let ũ = [1, 0]T , then, 0 ∈ ∂g(ũ). Further, for any δ ∈ (0, 0.1), let uδ = [1 + δ, δ]>. Then, for
any s ∈ −∂g(uδ)

‖s‖2 ≥ 1, and s>(ũ− uδ) < 0.

Proof. Since [
∂u1g(u1, u2)
∂u2g(u1, u2)

]
=
[

2|u2|(u1|u2| − 1)
2u1∂|u2|(u1|u2| − 1)

]
,

it is easy to show 0 ∈ ∂g(ũ). Next,[
∂u1g(uδ)
∂u2g(uδ)

]
=
[
−2δ(1− δ(1 + δ))

−2(1 + δ)(1− δ(1 + δ)),

]
,

and so for any s ∈ −∂g(uδ) we have that

‖s‖2 ≥ 2(1 + δ)(1− δ(1 + δ)) ≥ 2(1− 0.1 · 1.1) ≥ 1.

In addition,
s>(ũ− uδ) = −2δ2(1− δ(1 + δ))− 2δ(1 + δ)(1− δ(1 + δ)) < 0.

The lemma above establishes that there exist points in any arbitrarily small neighborhood of the saddle
point ũ where the gradient of g(u) has large norm. Further, the gradient at those points will “point away”
from ũ.

In the next lemma we describe the gradient flow dynamics of g(u) = (u1|u2|−1)2 near [1, 0]T , and show that
gradient flow will escape from any arbitrarily small neighborhood of the saddle point ũ in a constant time.
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Lemma F.2. Let ũ = [1, 0]T , and uδ(t) be a solution of the differential inclusion[
u̇1
u̇2

]
∈ −

[
∂u1g(u1, u2)
∂u2g(u1, u2)

]
,

[
u1(0)
u2(0)

]
=
[
1 + δ
δ

]
. (81)

Then, for any δ ∈ (0, 0.1), ‖uδ(0.1)− ũ‖2 ≥ 0.09.

We show that no matter how close the initialization is to the saddle point ũ, the gradient flow will escape
from it within constant time. Here, ‖uδ(0) − ũ‖2 ≤

√
2δ where δ can be arbitrarily small and positive.

However, ‖uδ(0.1) − ũ‖2 ≥ 0.09, thus, uδ(t) escapes from the neighborhood of ũ within constant time for
any arbitrarily small δ.

Proof. Choose δ ∈ (0.0.1) and let S := {(u1, u2) : u1 ∈ [0.8, 1.2], u2 ∈ [δ/2, 0.35]}. Note that for any u ∈ S,
we have

δ/2 ≤ δ(1− 1.2 · 0.35) ≤ −2|u2|(u1|u2| − 1) ≤ 2 · 0.35 · (1− 0.8 · δ/2) ≤ 1, and (82)
0.9 ≤ 2 · 0.8(1− 1.2 · 0.35) ≤ −2u1(u1|u2| − 1) ≤ 2 · 1.2 · (1− 0.8 · δ/2) ≤ 2.4. (83)

Let uδ(t) be a solution of eq. (81). For the sake of brevity, we use u(t) instead of uδ(t). Note that u(0) ∈ S.
Let T be the smallest t ≥ 0 such that u(T ) /∈ S. For all t ∈ [0, T ], u2(t) > 0, thus, u(t) satisfies[

u̇1
u̇2

]
=
[
−2|u2|(u1|u2| − 1)
−2u1(u1|u2| − 1)

]
, for all t ∈ [0, T ]. (84)

From eq. (82) and eq. (83), for any t ∈ [0, T ], we have

u̇1 ∈ [δ/2, 1], and u̇2 ∈ [0.9, 2.4]. (85)

Using these bounds, we next show that T > 0.1. Assume for the sake of contradiction, T ≤ 0.1. Then, from
eq. (85), for any t ∈ [0, T ], we have

0.8 < u1(0) ≤ u1(0) + δt/2 ≤ u1(t) ≤ u1(0) + t ≤ 1 + δ + 0.1 < 1.2, and
δ/2 < u2(0) ≤ u2(0) + 0.9t ≤ u2(t) ≤ u2(0) + 2.4t ≤ δ + 0.24 ≤ 0.34

From the above equation, we observe that u(T ) ∈ S, which leads to a contradiction. Thus, T > 0.1. Hence,
using the lower bound on u̇2 in eq. (85), we have

u2(0.1) ≥ u2(0) + 0.9 · 0.1 ≥ 0.09.

Thus,
‖u(0.1)− ũ‖2 ≥ |u2(0.1)| ≥ 0.09.

G Proof of Lemma C.1

We prove Lemma C.1 in a similar way as in (Filippov, 1988), though that proof considers a more general
case. For our problem, the proof can be slightly shortened.

To prove Lemma C.1 we make use fo the following lemma
Lemma G.1. (Filippov, 1988, Lemma 13, Section 5) Let for all t ∈ [a, b] the vector-valued function xk(t)
be absolutely continuous, xk(t) → x(t) as k → ∞, and for each k = 1, 2, . . . the functions ẋk(t) ∈ M
almost everywhere on t ∈ (a, b), with M being a bounded closed set. Then the vector-valued function x(t) is
absolutely continuous and ẋ(t) ∈ conv(M) almost everywhere on t ∈ (a, b).
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Proof of Lemma C.1. For the sake of contradiction, we assume that the statement in Lemma C.1 is not true.
Thus, for some ε > 0 there exists a sequence of solutions uj(t) of

du
dt
∈

n∑
i=1

(zi + f ji (t))∂H(xi; u),u(0) = u0, j = 1, 2, . . . , (86)

where |f ji (t)| ≤ δj , for all i ∈ [n] and j ≥ 1, and δj → 0, such that for any solution ũ(t) of

dũ
dt
∈

n∑
i=1

zi∂H(xi; ũ), ũ(0) = u0, (87)

we have
max
t∈[0,T ]

‖uj(t)− ũ(t)‖2 > ε. (88)

We also assume that δj ≤ B/
√
n, for some positive constant B and for all j ≥ 1. We first show that

{uj(t)}∞j=1 has a convergent subsequence. Note that for any t ∈ [0, T ], uj(t) is bounded since

d‖uj‖2
2

dt
= 4

n∑
i=1

(zi + f ji (t))H(xi; uj) ≤ 4β‖uj‖2
2(‖z‖2 +B),

which implies

‖uj(t)‖2
2 ≤ ‖u0‖2

2e
4tβ(‖z‖2+B) ≤ ‖u0‖2

2e
4Tβ(‖z‖2+B) := B2

1 .

We next define
χ := sup{‖∂H(x; w)‖2 : w ∈ Sk−1}.

We note that {uj(t)}∞i=1 is equicontinuous, since for any t1, t2 ∈ [0, T ] and j ≥ 1,

‖uj(t1)− uj(t2)‖2 =
∥∥∥∥∥
∫ t2

t1

n∑
i=1

(zi + f ji (s))∂H(xi; uj)ds
∥∥∥∥∥

2

≤
∫ t2

t1

n∑
i=1
|(zi + f ji (s))|χ‖uj‖2ds

≤ |t2 − t1|B1χ
√
n(‖z‖2 +B).

Therefore, using the Arzelà–Ascoli Theorem, there exists a subsequence {ujk
(t)}∞k=1 that converges uniformly.

We denote the limiting function by û(t). We complete our proof by showing û(t) is a solution of eq. (87)
since that will lead to a contradiction.

For any vector u, we define F(u) =
∑n
i=1 zi∂H(xi; u). For any γ > 0, the γ−neighborhood of F (u), denoted

by F γ(u), is defined as
F γ(u) = {v : v = h + q,h ∈ F (u), ‖q‖2 ≤ γ} .

It is easy to show that for any finite γ, F γ(u) is a nonempty, convex, and compact set. Also, we define

ûη =: {u : ‖u− û‖2 ≤ η}, t̂α =: {t : |t− t̂| ≤ α}

Choose any t̂ ∈ [0, T ]. Since, F (u) is upper semicontinuous, for any γ > 0, there exist a small enough η > 0
such that for all u ∈ ûη(t̂), F (u) ⊆ F γ(û(t̂)). Further, since û(t) is continuous, there exists a small enough
α such that, for all t ∈ t̂α, û(t) ∈ ûη(t̂). Hence, for any γ > 0, there exist a small enough α > 0, such that
for all t ∈ t̂α, F (û(t)) ⊆ F γ(û(t̂)).

Next, since {ujk
(t)}∞k=1 converges uniformly to û(t), we can choose k1 large enough such that ‖ujk

(t) −
û(t)‖2 ≤ η

2 , for all k > k1 and t ∈ t̂α. Since û(t) is continuous, there exist β > 0, such that ‖û(t)−û(t̂)‖2 ≤ η
2 ,

for all t ∈ t̂β . Thus, for all t ∈ t̂α ∩ t̂β and k > k1,

‖ujk
(t)− û(t̂)‖2 ≤ ‖ujk

(t)− û(t)‖2 + ‖û(t)− û(t̂)‖2 ≤ η.
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Hence, F (ujk
(t)) ⊆ F γ(û(t̂)), for all t ∈ t̂α ∩ t̂β and k > k1.

Also, since δjk
→ 0, we can choose k2 large enough, such that δjk

≤ γ
nB1χ

, for all k > k2. Thus,
‖
∑n
i=1 f

jk

i (t)∂H(xi; ujk
(t))‖2 ≤ nB1χδjk

≤ γ, for all k > k2. Therefore, for all k ≥ max{k1, k2} and
t ∈ t̂α ∩ t̂β ,

u̇jk
(t) ∈ F (ujk

(t)) +
n∑
i=1

f jk

i (t)∂H(xi; ujk
(t)) ∈ F 2γ(û(t̂)), for a.e. t ∈ t̂α ∩ t̂β .

From Lemma G.1, û(t) is absolutely continuous in t̂α ∩ t̂β and

˙̂u(t) ∈ F 2γ(û(t̂)), for a.e. t ∈ t̂α ∩ t̂β .

We can cover the interval [0, T ] by varying t̂. Therefore, û(t) is absolutely continuous in the interval [0, T ]
and ˙̂u(t) exist almost everywhere. Also, if for any t ∈ [0, T ], ˙̂u(t) exists then ˙̂u(t) ∈ F 2γ(û(t)), where γ can
be made arbitrarily small. Hence,

˙̂u(t) ∈ F (û(t)), for a.e. t ∈ [0, T ].
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