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Abstract
Fine-tuning a pre-trained language model (PLM)
emerges as the predominant strategy in many
natural language processing applications. How-
ever, even fine-tuning the PLMs and doing in-
ference are expensive, especially on edge de-
vices with low computing power. Some gen-
eral approaches (e.g. quantization and distilla-
tion) have been widely studied to reduce the com-
pute/memory of PLM fine-tuning, while very few
one-shot compression techniques are explored.
In this paper, we investigate the neural tangent
kernel (NTK)–which reveals the gradient descent
dynamics of neural networks–of the multilayer
perceptrons (MLP) modules in a PLM and pro-
pose to coin a lightweight PLM through NTK-
approximating MLP fusion. To achieve this, we
reconsider the MLP as a bundle of sub-MLPs,
and cluster them into a given number of cen-
troids, which can then be restored as a compressed
MLP and surprisingly shown to well approxi-
mate the NTK of the original PLM. Extensive
experiments of PLM fine-tuning on both natural
language understanding (NLU) and generation
(NLG) tasks are provided to verify the effective-
ness of the proposed method MLP fusion. Our
code is available at https://github.com/
weitianxin/MLP_Fusion.

1. Introduction
Fine-tuning a large pre-trained language models (PLMs)
has been the most common method to tackle downstream
natural language processing (NLP) tasks (Howard & Ruder,
2018; Kale & Rastogi, 2020). However, despite high pre-
diction accuracy and scalability of fine-tuning (Peters et al.,
2018), the users have to suffer from a large computational
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Figure 1: NTK matrix approximation error of compression
methods on the validation set of SST2.

cost, both on time and space, due to the huge size of a pre-
trained language model: the sizes of popular PLMs recently
increase from hundreds of millions (Brown et al., 2020) to
trillion (Fedus et al., 2021) parameters. Even for the small-
est BERT model (Devlin et al., 2018), there are over 110
million parameters.

To harness the large-scale PLMs, efforts have been made in
various fields. A popular techniques in model compression is
knowledge distillation (Hinton et al., 2015, KD), which train
a smaller student network with the information obtained
from the original teacher model. KD serves to compress the
pre-trained model and eases the subsequent fine-tuning on
downstream tasks, while the distillation procedure requires
comparable computational resources to pre-training. The
burden is sometimes unbearable for users who cannot afford
the cost of regular fine-tuning.

In addition to the directions above, there were some previous
attempts to establish one-shot model compression methods.
Single-shot pruning methods (Han et al., 2015; Lee et al.,
2018; Wang et al., 2020a; Tanaka et al., 2020, sparsification)
identify sub-networks at initialization concerning certain
criteria of weight magnitude or gradient flow. However,
most works on (entry-wise) pruning focuses on reducing the
conceptual training or inference FLOPs, while sparse matrix
multiplication is not well supported on modern hardware
(e.g. GPUs) and even slows down the training in wall-clock
time (Dao et al., 2022). Meanwhile, truncated singular value
decomposition (SVD) on the weight matrices (Denton et al.,
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2014) is applied to speed up large CNNs by exploiting linear
structure in the network to remove its redundancy; however,
truncated SVD has limited representation power and suffers
from poor performance as it greatly reduces the dimensions
of the linear transforms within a network.

On a separate note, although efficient attention mecha-
nisms (Kitaev et al., 2020; Choromanski et al., 2020; Chen
et al., 2021) have become the mainstream methodology to
accelerate the pre-training of language models, we instead
focus on the feed-forward neural network (FFN) sub-layers
of a pre-tained transformer, composed of two-layer multi-
layer perceptrons (MLP) with a large intermediate dimen-
sion size that is usually four times larger than the hidden
input size (Liu et al., 2019; Radford et al., 2019; Devlin
et al., 2018). Given the ever-increasing hidden input size
of large language models, which now exceeds ten thousand
(Touvron et al., 2023), the significance of FFN sub-layers
in terms of computation cost has grown substantially. We
observe for regular natural language processing (NLP) tasks
where the token sequence length is no longer than 512, the
computational cost of the MLP modules is heavier than the
attention module even though the attention module has a
squared complexity (detailed computation and comparison
of the computational cost of the two modules are provided
in Appendix A.1).

The current limitations of general model compression meth-
ods and the realistic need to reduce the compute in MLP
modules motivate us to develop a MLP compression tech-
nique for efficient language model fine-tuning. To attain
competitive fine-tuning performance, we propose a novel
perspective on PLM compression, that the compressed
model is supposed to approximate not only the model out-
put, but also the training dynamics of original fine-tuning.
We turn to neural tangent kernel (Jacot et al., 2018; Arora
et al., 2019, NTK) as a proxy of the fine-tuning dynamics
and manage to enable the compressed model to approxi-
mate the original NTK; specifically, we dissect the structure
of MLP in a PLM, connect it with model fusion (Singh &
Jaggi, 2020, which layer-wisely fuse multiple MLPs into
one), and propose a novel compression method, MLP fusion,
specific to PLM. As shown in Figure 1, our method “fusion”
provably attains the smallest NTK matrix approximation
error on a real-world dataset SST2 (Socher et al., 2013).

In summary, the contribution of this work is three-fold:

• We introduce the concept of NTK approximation to PLM
compression, in the hope that the compressed model can
preserve the training dynamics of the original model.

• We dissect the MLP modules in a PLM and propose a new
task-agnostic technique MLP fusion, which utilizes the
character of clustering to approximate the NTK.

• We provide extensive experimental results of PLM fine-
tuning on both natural language understanding (NLU) and

generation (NLG) tasks, verifying the effectiveness and
rationality of the proposed fusion method.

2. Related work
There are abundant model compression methods available
for compressing the MLPs in a PLM. The first line of re-
search, knowledge distillation (Sanh et al., 2019b; Jiao et al.,
2019; Wang et al., 2020b), turns to directly compress the
pre-trained model and then fine-tune the yet-compressed
model on the downstream tasks. Mean squared error (Hin-
ton et al., 2015), optimal transport (Lohit & Jones, 2022),
and maximum mean discrepancy (Huang & Wang, 2017,
MMD) are usually adopted as the knowledge distillation
loss term. However, in distillation, we still need to load and
execute the large teacher PLM, which thus requires a lot of
computational resources even before the start of fine-tuning.

Secondly, in certain tasks the fine-tuned model can be com-
pressed for faster inference. For example, FastBert (Liu
et al., 2020) proposed a sample-wise adaptive mechanism to
flexibly adjusted inference time; DeeBERT (Xin et al., 2020)
allowed samples to exit earlier without passing through the
entire model to accelerate the inference process. Moefica-
tion (Zhang et al., 2021) speeds up the model by splitting the
MLP modules of a PLM into several sub-networks, which
requires an additional router to decide the corresponding
sub-network for each input. These inference-accelerating
methods still depend on regular fine-tuning and, most im-
portantly, do not fully utilize the knowledge within PLMs.

In addition to the directions above, a more lightweight effi-
cient fine-tuning paradigm is one-shot model compression.
As a representative, single-shot pruning methods (Han et al.,
2015; Liu et al., 2017; Lee et al., 2018; Wang et al., 2020a;
Tanaka et al., 2020) identify sub-networks at initialization
concerning a user-specified criteria (e.g. weight magnitude
or gradient flow) and attain sparsity in model weights. A
special case of pruning, Lottery tickets hypothesis (Fran-
kle & Carbin, 2018, LTH), demonstrates the existence of
sparse subnetworks in deep neural networks. LTH was
also successfully verified and adopted in PLM (Chen et al.,
2020). However, pruning focuses on reducing the concep-
tual training or inference FLOPs, while sparse matrix mul-
tiplication is not well supported on modern hardware (e.g.
GPUs) and even slows down the training in wall-clock time.
Furthermore, some classical computation techniques, such
as truncated SVD (Denton et al., 2014) and randomized
sketching (Woodruff et al., 2014; Chen et al., 2022c) can
intuitively be translated to one-shot PLM compression as
well; in Section 6 we implement those methods as baselines
for a comprehensive comparison.
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3. Preliminaries and notations
The notations for MLP are introduced in Section 3.1. We
also provide brief preliminaries to NTK in Section 3.2.

3.1. Problem setup

Across this paper, we denote the input sequence as a feature
matrix X ∈ Rn×p, where n is the sequence length and p is
the dimension of the MLP input/output (the dimensions of
MLP input and output agree with the embedding dimension
in most PLMs). The neural architecture of interest (a pre-
trained transformer) is denoted as f , which is different from
the scalar loss function ℓ. For the simplicity of notation,
the output of f(X) is assumed to be a scalar in this paper,
which is the case in regression and binary classification
tasks. Our derivation however still holds for vector/matrix
output if we analyze the output element-wise.

Specifically, an MLP in the FFN sub-layer of a transformer
is expressed as

H = σ(XW1 + 1bT1 )W2 + 1bT2 . (1)

In the equation above, W1 ∈ Rp×pI , b1 ∈ RpI (resp.
W2 ∈ RpI×p, b2 ∈ Rp) are the weight matrix and the
bias term of the first (resp. second) linear transform within
the FFN sub-layer, and σ(·) is the element-wise activation
function. Some other constantly used notations involve the
MLP intermediate dimension pI (the subscript I is short for
“intermediate”).

3.2. Neural tangent kernel

NTK is a powerful theoretical technique to study the gra-
dient descent dynamics of neural networks (Jacot et al.,
2018). It originated from the research on infinitely wide
or ultra-wide neural networks. In applying NTK to convo-
lutional neural networks for computer vision tasks, Arora
et al. (2019) noted that NTK can be extended to arbitrary
neural architecture f and initialization θ0, which induces
the (SGD) NTK as

⟨∇θ0f(x; θ0),∇θ0f(z; θ0)⟩ , (2)

We note that the NTK above is specific to the stochastic gra-
dient descent (SGD) (Robbins & Monro, 1951) optimizer.
As for Adam (Kingma & Ba, 2015), the most common op-
timizer for language model fine-tuning, its corresponding
NTK in the early stage of training (which is believed to
match the nature of the short-period fine-tuning) can be
approximated by the so-called Asymmetric SignGD Ker-
nel (Malladi et al., 2022)

K(AS)(x, z) := ⟨∇θ0f(x; θ0), sign (∇θ0f(z; θ0))⟩ , (3)

we will refer to this kernel by Adam NTK and focus on the
analysis thereof along this paper, considering Adam is the
dominant optimizer in language model fine-tuning.

Ensemble of Fusion

Sub-MLPs

≈NTK as a Proxy of 
Training Dynamics

Figure 2: An overview of MLP Fusion. The original MLP
is decomposed as an ensemble of pI sub-MLPs; through
MLP fusio, we cluster the sub-MLPs and re-construct a
smaller MLP, which is shown to approximate the NTK of
the original MLP and is thus expected to enjoy a similar
training dynamics to the full-size PLM.

Recent works show directly using the NTK Equation (2)
extracted from a pre-trained model f can obtain decent
performance on computer vision tasks (Wei et al., 2022a),
and in some cases can capture the training dynamics of
language model fine-tuning (Malladi et al., 2022). There has
already been some theoretical discussion on compressing a
trained (fine-tuned) network with NTK preserved through
pruning and quantization (Gu et al., 2022). We will shortly
leverage the useful tool to guide the design of our proposed
models and serve as a sanity check as well.

4. MLP fusion with approximate NTK
For the reader’s convenience, we first derive the concrete
form of NTK for MLP in Section 4.1; Section 4.2 then
provides the exact form of the proposed clustering-based
efficient method and then verify in Section 4.3 that the
proposed method meets the expectations raised before.

4.1. Preparation: NTK for MLP

As the gradients w.r.t. the model weights are the building
blocks of NTK, we provide the expressions of the gradients
(based on ∇Hf ∈ Rn×p) thanks to the chain rule:

∇W2
f = σT∇Hf, ∇b2

f = (∇Hf)
T

1

∇W1
f = XT

[(
∇Hf W T

2

)
⊙ σ′]

∇b1
f =

[(
∇Hf W T

2

)
⊙ σ′]T 1,

(4)

where ⊙ represents Hadamard product and σ′ is the deriva-
tive (used in mainstream automatic differentiation software)
of the activation function σ, and we abuse the boldfaced no-
tation σ,σ′ as shorthand notation for σ

(
XW1 + 1bT1

)
and

σ′ (XW1 + 1bT1
)

respectively. The computation of NTK
would then be boiled down to the proper inner products of
the aforementioned gradient terms.
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It is worth mentioning that the classical model compression
technique, pruning, can be expected to well approximate
the NTK. Assuming the output of a pruned MLP is close to
the original one, the gradient terms will be roughly approxi-
mated by the Hadamard product of the mask matrix and the
original gradient terms in Equation (4).

4.2. MLP Fusion with Clustering

We mainly develop the proposed method in this subsection
for the purpose that the new output H̃C can approximate
the original one H . We turn to MLP fusion for this intuitive
purpose, through a view that an MLP can be taken as the
ensemble of multiple bottleneck-1 sub-MLPs. We rewrite
the MLP output as the following form:

H = σ(XW1 + 1bT1 )W2 + 1bT2

=

pI∑
i=1

[σ(XW1,·,i + b1,i1)W2,i,·] + 1bT2 ,

where by convention we represent the i-th column (resp.
row) in the weight matrix W1 (resp. W2) as W1,·,i (resp.
W2,i,·). The summation implies that it is feasible to approxi-
mate MLP via a few bottleneck-1 sub-MLPs (the summands
on the right-hand-side above), in a similar way to numeri-
cal methods such as importance sampling (Hammersley &
Morton, 1954) and sketching (Woodruff et al., 2014; Chen
et al., 2022c). Considering the existence of the nonlinear
activation function σ, we turn to clustering and will show as
follows how the classical machine learning technique can
serve to approximate the above sub-MLP summation.

To obtain the “embedding” of the sub-MLPs for clustering,
we consider the original MLP as a bundle of supporting
points W =

[
W T

1 , b1,W2

]
∈ RpI×(2p+1). An intuitive

idea to compress an MLP is therefore representing the empir-
ical distribution (MLP) by the output centroids of k clusters.
We suggest to use wi = [W T

1,·,i, b1,i,W2,i,·]
T as the em-

bedding vector for the i-th sub-MLP, as wi can uniquely
decide the i-th sub-MLP. Upon the embeddings, Lloyd’s
algorithm (Lloyd, 1982) can be directly applied to solve
the k-means clustering problem, obtain k clusters {Pj}kj=1,
and return a one-hot clustering matrix C ∈ Rk×pI with
elements Cji = 1{wi∈Pj}. Normalizing C and making the
rows sum to 1, we can accordingly construct an averaging
matrix C̄ so that C̄W will return the desired centroid matrix
W̃ =

[
W̃ T

1 , b̃1, W̃2

]
∈ Rk×(2p+1). In general, conduct-

ing clustering is minimizing the distance from a point to its
closest centroid, which partially explains our intuition that
replacing the original sub-MLPs with their corresponding
centroids can benefit the compression of MLP.

Relation with model fusion (Singh & Jaggi, 2020). In
principle, we consider the clustering of sub-MLPs share
the same spirit as model fusion, which takes a single layer

of MLPs as an empirical distribution of the correspond-
ing weights (either W1,·,i’s or W2,i,·’s in our context) and
then fuses multiple MLPs into a new one through solving
a Wasserstein barycenter problem (Peyré et al., 2019). The
procedure of clustering itself is actually deeply connected
to the problem above in the sense that the output centroids
are the optimal barycenters when the number of points wis
assigned to each cluster is fixed. Due to the connection, we
similarly name the clustering procedure as MLP fusion in
this paper.

The expression of the compressed MLP. We replace each
sub-MLP parameter vector wi with the corresponding cen-
troid (equivalently, we replace W with CTW̃ ). The new
output can be naturally simplified as

σ
((

XW̃1 + 1(b̃1)
T
)
C
)
CTW̃2 + 1bT2

=σ
(
XW̃1 + 1(b̃1)

T
) (

CCT
)
W̃2 + 1bT2 ,

where the above equation holds because C simply “copies”
the centroids and thus can be taken out of the activation
function. We will shortly show in Section 4.3 the compu-
tational properties of the one-hot clustering matrix C is
indeed critical for Adam NTK approximation.

After being taken out of the activation function, C is then
allowed to be combined with CT to form the scaling matrix
referred to as P = CCT , which is a k × k diagonal fixed
matrix that greatly reduces the computation compared with
the original equation. Note the architecture of the final MLP
has not yet been specified, since there are different ways to
address the scaling matrix P : it can

• either be incorporated into W̃2, or

• stand alone as a constant scaling matrix.

It is worth mentioning that these two strategies perform
the same during forward propagation, but during backward
propagation, the gradient of the second method is multiplied
by the scaling matrix P .

4.3. NTK Approximation

We analyze that when P is designed to stand alone, the
specific MLP named MLP Fusion can serve to approximate
the NTK. It is formally given as follows:

H̃C := σ
(
XW̃1 + 1b̃T1

)
PW̃2 + 1bT2 (5)

where we choose W̃1 := W1C̄
T , b̃1 := C̄b1, W̃2 :=

C̄W2 as the new parameters for the compressed MLP, and
P is designed to stand alone as a constant scaling matrix.
It is important to highlight that Pii = CCT

ii =
∑

q C
2
iq =
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q Ciq (Pij = CCT

ij = 0 for i ̸= j) represents the number
of points in cluster i. From an intuitive perspective, the
backward process of multiplying the gradient by the scaling
matrix P can be interpreted as assigning different learning
rates to different clusters, which means that larger clusters
will be assigned a larger learning rate. To perform a more
detailed analysis of the problem, we will then demonstrate
how the specific MLP (5) can serve to approximate the
NTK.

To exploit the potentials of the pre-trained models, in addi-
tion to retaining the output, we also expect the efficient MLP
modules can induce an Adam NTK similar to the original
one. This expectation implies the following requirements:
first, the new output H̃ is supposed to approximate the orig-
inal output H , which we have heuristically show in the
previous discussion. We also provide a standard analysis of
MLP output H̃ in Appendix C; second, the hidden represen-
tation σ and the related composition term

(
∇Hf W T

2

)
⊙σ′

should also be preserved.

This subsection will thus be devoted to verify that the pro-
posed method can induce an Adam NTK close to the original
one. The key step is to show the inner product of the four
gradient terms in Equation (4) will approximately remain.
We prepare some additional notations to ease the following
discussions, and let the compressed neural model equipped
with the compressed MLP module as fc. The input token
sequence is denoted as X or Z, respectively.

We first make an assumption that the clustering can cap-
ture the MLP empirical distribution, so that, to some sense,
CW̃ ≈ W and H̃C ≈ H as derived in Section 4.2.
This assumption implies that ∇Hf can be preserved by
∇

H̃C
fc, since they depend on H /H̃C in the same way. We

can automatically obtain ⟨∇b2
f(X), sign (∇b2

f(Z))⟩ ≈
⟨∇b2

fc(X), sign (∇b2
fc(Z))⟩.

We then analyze the term ⟨∇W2
f(X), sign (∇W2

f(Z))⟩,
where the notation ⟨·, ·⟩ is reloaded as the matrix inner prod-
uct ⟨X,Z⟩ := Tr

(
XTZ

)
. The term equals1

Tr
[
(∇Hf(X))

T
σx · sign

(
σT
z ∇Hf(Z)

)]
,

and can be shown to approach〈
∇

W̃2
fc(X), sign

(
∇

W̃2
fc(Z)

)〉
.

Concretely, we re-utilize the deduction ∇Hf ≈ ∇
H̃C

fc to
make it sufficient to study whether (σ̃xP ) · sign

(
Pσ̃T

z

)
can approximate its counterpart σx · sign

(
σT
z

)
.

1σx,σz are the shorthand for σ
(
XW1 + 1bT1

)
and

σ
(
ZW1 + 1bT1

)
respectively. Similarly, we define σ̃x :=

σ
(
XW̃1 + 1b̃T1

)
and σ̃z := σ

(
ZW̃1 + 1b̃T1

)
for fc.

Analogous analyses of the matrix product[(
∇Hf(X)W T

2

)
⊙ σ′

x

]
·
[(
∇Hf(Z)W T

2

)
⊙ σ′

z

]T
can also be performed for the rest two terms

⟨∇W1
f(X), sign (∇W1

f(Z))⟩ and
⟨∇b1

f(X), sign (∇b1
f(Z))⟩ .

Due to the limited space, we defer both derivations to Ap-
pendix A.3, and remark the element-wise sign function as-
sociated with the Adam optimizer plays an important role in
NTK preservation. For the regular SGD, however, some ad-
ditional conditions and modifications are needed. We refer
the readers interested to Appendix A.4 for more details.

4.4. Layer-wise task-specific tuning

In the previous section, our proposed approach MLP Fusion
manages to exploit the potentials of the pre-trained models
in a one-shot and task-agnostic manner without the need for
any data, where we retain the training dynamics of neural
networks through NTK preservation. To more effectively
acquire the knowledge within each task, we can leverage
the idea from distillation and intuitively design a layer-wise
(and thus lightweight) task-specific tuning module, which
further tune the fused MLP with task-specific unsupervised
training data. Compared to classical distillation, the layer-
wise tuning lasts a shorter period (e.g. only 1 epoch in our
experiments in Section 6) and only the weights in the fused
MLP will be updated.

To be specific, we set the tuning loss as the mean squared
error (MSE) between the layer output H l

t in the teacher
model and the layer output H l in the student model for
layer l of the PLM. The tuning loss is then computed as:

ℓtune =

L∑
l=1

MSE(H l
t ,H

l) (6)

where L is the number of layers in the PLM and MSE
denotes the mean squared error.

5. Experimental Setup
We evaluate the proposed MLP fusion on various down-
stream NLP tasks, and provide a sketch of these tasks in
this section. In addition, we succinctly introduce two intu-
itive while non-trivial baseline methods, “Sketching” and
“MMD”, in Section 2. Part of the experiment implementa-
tions are borrowed from Chen et al. (2022a;b). The code for
our algorithms will be publicly available on GitHub.

5.1. Dataset Details

• The Stanford Sentiment Treebank (Socher et al., 2013,
SST2) is a corpus of movie reviews and human annota-
tions of their sentiment. The corpus is part of the GLUE
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benchmark (Wang et al., 2019). In SST2, the sequence
lengths are on average 13.3 and max 66. 67k sentences
are incorporated into the training set and 0.9k into the
dev set. Following the GLUE benchmark, we report the
accuracy metric on whether the sentiment of a review is
positive or negative.

• The Multi-Genre Natural Language Inference Corpus
(Williams et al., 2018, MNLI) consists of enormous sen-
tence pairs of premises and hypotheses, labeled with hu-
man textual entailment annotations. The premise sen-
tences include ten distinct genres, and there are 393k
pairs in the training set, 10k in the dev set. (Only the dev
set is used for evaluation in Table 2.) The metric of this
task is mismatched (cross-domain) accuracy following
(Wang et al., 2019).

• WebNLG dataset is composed of data/text pairs, where
“data” is in a format of (subject, property, object) triple.
For the train and the validation set, there are nine cate-
gories extracted from DBpedia; while in the test set, there
are five extra unseen categories, which can partially reflect
the generalizability of the methods. The input sequences
in the training set contain 1 to 7 triples, and the lengths of
most sequences are bounded by 50 (as each triple only in-
cludes three short phrases). The official evaluation script
is used in our experiments, and we report BLEU (Pap-
ineni et al., 2002), METEOR (Banerjee & Lavie, 2005),
(Banerjee & Lavie, 2005) and TER (Snover et al., 2006)
as the metrics.

5.2. Hyperparameter Setup

All the models in this work are implemented by PyTorch.
The experiments are all conducted on one Tesla V100 32
GB GPU. For NLU tasks, We fine-tune RoBERTa (Liu et al.,
2019) with an AdamW (Loshchilov & Hutter, 2018) opti-
mizer and use a polynomial learning rate scheduler to make
the learning rate linearly decay; concretely, the learning rate
is linearly warmed up from 0 for the first 0.06 epoch. The
learning rate is searched in the range of {1e-5, 2e-5,4e-5,
6e-5, 8e-5}, and the batch size is fixed as 32. For NLG
tasks, we keep using AdamW optimizer to fine-tune GPT-2
(Radford et al., 2019), and a linear learning rate scheduler
with a 500-step warmup duration is used. The learning rate
is tuned in the same range as above while the batch size is
fixed to 8. By default, all the compared methods reduce the
MLP intermediate size to 768 or a comparable number of pa-
rameters from 3076. The reduction/sketching is performed
on the last 8 layers of the PLM by default. For Clustering,
we adopt the K-Means algorithm due to its simplicity and
effectiveness. To reduce the random variability in the results,
the experiments are all averaged over three runs.

5.3. Compared methods

We mainly compare our method with several other one-
shot compression methods: regular fine-tuning (Howard &
Ruder, 2018), truncated SVD (Denton et al., 2014), Pruning
(single-shot unstructured pruning) (Han et al., 2015; Lee
et al., 2018; Wang et al., 2020a; Tanaka et al., 2020), LTH
(Lottery Ticket Hypothesis) (Frankle & Carbin, 2018; Chen
et al., 2020), GEM-MINER (Sreenivasan et al.), Moefi-
cation (Zhang et al., 2021). We also compare the struc-
tured pruning method FLOP(Factorized Low-rank Prun-
ing) (Wang et al., 2020c) with our method. By default, all
the compared methods reduce the MLP intermediate size
to 768 or a comparable number of parameters from 3076.
Specifically, truncated SVD linearly compressed the weight
matrix in the MLP. The SVD is defined as W = USV T

where S is a diagonal matrix with the singular values on the
diagonal. As the singular values of W decay rapidly, W
can be approximated by keeping only the t largest entries of
S as W̃ = Ũ S̃Ṽ T . Here we extract the top 768 entries for
compression. Unstructured pruning globally removes a cer-
tain ratio of connections by exploring the weight magnitude
and gradient. Concretely, we mask 75% of the connec-
tions to match the compression rate (25%). As a special
case of pruning, Lottery tickets hypothesis (LTH) (Frankle
& Carbin, 2018; Chen et al., 2020), demonstrates the ex-
istence of sparse subnetworks in DNNs, which performs
iterative sparsification during tuning to find the matching
network. We iteratively prune the MLP for one epoch to
make it computationally equivalent to the Layer-wise task-
specific tuning module. The network mask ratio is also
75% as pruning. Moefication splits the MLP modules of a
PLM into several sub-networks, and designs the additional
route mechanism to decide the corresponding sub-network
for each input. Here we split the original MLP into 4 sub-
networks to match the compressed network size.

Furthermore, we demonstrate as follows how two machine
learning techniques, Randomized Sketching and MMD, can
be directly applied to MLP compression.

Sketching the weight matrices. The idea of Sketching is
to reduce the size of W1,W2 by multiplying a matrix S:

H̃S = σ(XW1S + 1bT1 S)S
TW2 + 1bT2 ,

where S can be a Gaussian Sketching Matrix, which applies
Johnson–Lindenstrauss transform (Ailon & Chazelle, 2009)
to the weight matrices W1,W2. We expect Sketching can
more or less preserve the information within the PLM.

Compression via minimizing MMD. Following the empir-
ical distribution perspective introduced in Section 4.2, we
can naturally compress the MLP (distribution of sub-MLPs)
through finding a new empirical distribution with smaller
support points. The problem can be reduced to minimizing
the MMD distance (for the reader’s convenience we pro-
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Table 1: Approximation error of each baseline method on
SST2 validation set with RoBERTa as the backone. Specifi-
cally, SVD is a deterministic method and therefore gives 0
standard deviation. The results are averaged over 3 runs.

Approximation Error
Output NTK

Sketch 24.48±0.61 242757.23±42629.38
MMD 8.92±0.22 7620.49±527.86
SVD 5.89±0.00 4423.38±108.89
Pruning 5.18±0.23 6623.20±463.72
LTH 5.10±0.18 6628.73±462.03
Clustering 4.83±0.02 7030.91±561.52
MLP Fusion (Ours) 7.26±0.14 2826.59±155.06

vide a preliminary introduction to MMD in Appendix A.2)
between the original MLP and the compressed MLP.

In addition, we list the performance of Distil-
RoBERTa (Sanh et al., 2019a) as a reference in the
two GLUE tasks. To clearly ablate the effect of NTK
approximation, we implement a clustering-based method
while the fused weights W̃1, b̃1, W̃2 will be replaced
by W1C̄

TP
1
2 , C̄b1P

1
2 , P

1
2 C̄W2 respectively (recall

P = CCT is a diagonal matrix); the corresponding MLP
is then specified by

σ
(
XW̃1 + 1b̃T1

)
W̃2 + 1bT2 ,

which enjoys the same architecture as “Sketching” and
“MMD”. For the layer-wise task-specific tuning, we adopt
the original RoBERTa model (Liu et al., 2019) (GPT-2 (Rad-
ford et al., 2019) for language generation) as the teacher and
the language model with fused MLP as the student, on the
two NLU tasks. The tuning only lasts for 1 epoch so as to
match the computational cost of the pre-processing in LTH.

6. Numerical results
In the section, we show the numerical results of our pro-
posed MLP Fusion compared with representative baselines
on both the NLU and NLG tasks.

In the main text we focus our attention on the prediction
accuracy. As for the runtime, we compare our proposed
MLP fusion to two representative methods, regular fine-
tuning and pruning, in Appendix B.

6.1. Preliminary Evaluation of Approximation Error

As a sanity check, we first perform the preliminary evalu-
ation on NTK approximation. We examine the output and
the induced NTK of the first-layer MLP on the validation
set of SST2 with RoBERTa-base (Liu et al., 2019) com-
pressed by different baseline approaches. The results are
summarized in Table 1. We come up with the following
observations: i Most of the listed methods can well approxi-

Table 2: Accuracy of each baseline method on SST2 and
MNLI validation sets with RoBERTa as the PLM.

SST2 MNLI
RoBERTa 94.61±0.09 87.34±0.28
DistilRoBERTa 92.50±0.12 84.03±0.18
Sketch 91.90±0.14 83.30±0.11
MMD 92.54±0.41 84.20±0.24
SVD 92.55±0.24 85.23±0.04
FLOP 92.12±0.19 84.05±0.21
Pruning 92.78±0.17 85.82±0.12
LTH 92.91±0.15 85.96±0.10
GEM-MINER 92.89±0.16 85.51±0.11
Moefication 92.19±0.20 84.83±0.27
Clustering 93.01±0.17 85.75±0.04
MLP Fusion (Ours) 93.23±0.23 86.10±0.06
+Task-specific Tuning 93.79±0.07 86.32±0.06

mate the MLP output with a small output distance between
the original RoBERTa and the compressed model. ii Our
proposed MLP Fusion achieves the minimum NTK distance
among all approaches, which maximizes the retention of
the training dynamics of the original PLM. The distance is
defined as the l2 difference of the NTK kernel calculated on
the evaluation samples before and after compression. The
preliminary experiments successfully verify our assumption
about NTK approximation.

6.2. Evaluation of Natural Language Understanding

We provide extensive experimental comparisons based on
RoBERTa as the PLM with a set of representative baselines
on four natural language understanding benchmarks SST2,
MNLI, STS-B, and QNLI. The test results on SST2 and
MNLI can be found in Table 2, while the test results on
the rest of the benchmarks are provided in Appendix F.
Furthermore, we present performance comparisons among
various methods after task-specific fine-tuning in Appendix
E and two additional baselines that try to maintain MLP
output and NTK in Appendix G. Note that DistilRoBERTa
is the distilled version of RoBERTa with the same training
process but a lightweight network architecture. For all the
compressed methods, we reduce the intermediate size to
25% (3072 → 768), which is the same as the MLP input
size. For Pruning/LTH, we mask 75% of connections in
the MLP. In Moefication, the MLP is divided by 4 experts
to reduce the model size. For a fair comparison, all the
reduction in each method is conducted on the last 8 layers
of PLM.

According to the table, we can have the following findings:
(i) MLP Fusion outperforms all the baselines, which demon-
strates the effectiveness of our proposed approach. (ii) With-
out the property of NTK approximation, there is an obvious
reduction in the performance of Clustering. which verifies
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Table 3: Performance(%) of each baseline method on WebNLG with GPT-2 as the PLM. Bold results are the best scores
under each metric. The down-arrow notation indicates that a lower metric represents better performance.

WebNLG
BLEU MET TER ↓

S U A S U A S U A
Fine-tuning 57.93 22.55 42.17 0.42 0.25 0.34 0.39 0.76 0.56
Sketch 43.16 8.07 27.28 0.32 0.13 0.23 0.54 0.95 0.73
MMD 56.73 19.90 40.17 0.41 0.23 0.33 0.41 0.79 0.59
Pruning 55.21 21.80 40.55 0.40 0.25 0.33 0.42 0.76 0.57
Clustering 54.75 20.63 39.81 0.40 0.25 0.33 0.43 0.77 0.59
MLP Fusion (Ours) 57.12 21.03 40.79 0.41 0.25 0.33 0.41 0.78 0.58
+Task-specific Tuning 56.75 21.41 41.04 0.42 0.25 0.33 0.40 0.77 0.57

a The letters S, U, and A in the WebNLG metric denote SEEN, UNSEEN, and ALL; instances under the SEEN categories are used for
training; instances under the UNSEEN categories are used for testing; ALL has all the instances in it.

Figure 3: Accuracy of each baseline method with respect to
various numbers of sketched layers on the SST2 data set.

the necessity of NTK approximation. (iii) Layer-wise task-
specific tuning further enhances the performance of MLP
Fusion by incorporating task-specific knowledge. Mean-
while, the constrained structured pruning method FLOP
tends to yield lower performance. It is worth noting that
LTH and GEM-MINER also require pre-processing when
masking connections. By making them computationally
comparable, the superior performance further validates the
advantageousness of our approach.

6.3. Evaluation of Natural Language Generation

In this part, we investigate the effectiveness of the proposed
MLP Fusion by evaluating on the natural language genera-
tion benchmark WebNLG with a set of one-shot comparable
baselines. The results are reported in Table 3. The com-
pressing/pruning setup is as the same as the NLU evaluation
shown in Section 6.2. Our proposed method generally re-
tains the performance of naive fine-tuning method best. The
average accuracy of MLP Fusion is increased by about 1%

compared to baselines. Among all the baselines, the pruning
method stands out, which can be attributed to the preser-
vation of the original MLP weight matrix size. However,
sparse matrix multiplication is not well supported on mod-
ern GPU hardware.

Impact of sketch layers In the previous sections, we per-
form experiments with the sketch of the last 8 layers of
PLM on the SST2 data set. Here we explore the impact of
the sketch layers in Figure 3 to offer more insights. The
dashed lines denote the performances of RoBERTa and Dis-
tilRoBERTa. The number 2 on the horizontal axis indicates
the setting of Sketching the last 2 layers of PLM. From the
figure, we can find that MLP Fusion consistently exhibits
comparable or better performance than the baselines. To
our surprise, MLP Fusion can even outperforms the raw
RoBERTa when the number of sketched layers is less than
6, which can be regarded as a free lunch for the PLM fine-
tuning. It also reveals the potential of our method for re-
moving redundancy in neural networks. In addition, we find
that MLP Fusion always exhibits superior performance than
DistilRoBERTa as long as the number of sketched layers is
less than 10. However, when we sketch all the layers (12) in
the PLM, the prediction performance will drop substantially.
This suggests that the bottom layers of the PLM contain a
wealth of semantic information that should not be replaced,
which is consistent with the finding in (Zhang et al., 2020).

6.4. Ablation Studies

The choice of the intermediate dimension in MLP fusion.
In the previous experiments, we set the reduced intermediate
dimension to 768, which is the same as the MLP input size.
In this section, we test the training dynamics and testing
performance of our proposed MLP Fusion with various
intermediate sizes. From the results in Figure 4, we can
observe the training loss is stable when the intermediate size
is larger than 768. However, when the dimension is smaller
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Figure 4: Training loss (dynamic) of our proposed MLP
Fusion with respect to various intermediate dimensions on
the SST2 data set.

Table 4: Performance of Proposed Method and The Baseline
Method at Different Levels of Compression

Intermediate Dimension Sketch MLP Fusion
256 88.19 90.71
768 91.90 93.23
1536 92.09 93.46

than 768, there is a dramatic increase in the curve. The
phenomenon is mainly because the intermediate dimension
is smaller than the input dimension, resulting in the MLP
which is not full rank and consequently leads to poor results.
We further test the performance of our MLP Fusion and
Sketch baseline with different intermediate sizes in Table 4,
which has a similar trend as training dynamics.

7. Conclusion
We propose MLP fusion, a novel one-shot model compres-
sion method that heavily utilizes the properties of clustering
to approximate the NTK of the original PLM. It turns out
that the fused MLP can both well approximate the output
and attain the closest NTK to the original one compared to
other one-shot compression methods. Therefore, we believe
MLP fusion sheds some light on the the new paradigm for
efficient language model fine-tuning.

One direct extension of our work is using MLP fusion as
an initialization method for distillation. Compared to re-
training from scratch, we expect the information preserved
in the fused MLP can ease the following distillation and
speed up the model convergence.
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Peyré, G., Cuturi, M., et al. Computational optimal trans-
port: With applications to data science. Foundations and
Trends® in Machine Learning, 11(5-6):355–607, 2019.

Radford, A., Wu, J., Child, R., Luan, D., Amodei, D.,
Sutskever, I., et al. Language models are unsupervised
multitask learners. OpenAI blog, 1(8):9, 2019.

Robbins, H. and Monro, S. A stochastic approximation
method. The annals of mathematical statistics, pp. 400–
407, 1951.

Sanh, V., Debut, L., Chaumond, J., and Wolf, T. Distilbert,
a distilled version of bert: smaller, faster, cheaper and
lighter. ArXiv, abs/1910.01108, 2019a.

11

http://arxiv.org/abs/1503.02531
https://aclanthology.org/2020.inlg-1.14
https://aclanthology.org/2020.inlg-1.14
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980
https://openreview.net/forum?id=rkgNKkHtvB
https://openreview.net/forum?id=rkgNKkHtvB


NTK-approximating MLP Fusion for Efficient Language Model Fine-tuning

Sanh, V., Debut, L., Chaumond, J., and Wolf, T. Distilbert,
a distilled version of bert: smaller, faster, cheaper and
lighter. arXiv preprint arXiv:1910.01108, 2019b.

Singh, S. P. and Jaggi, M. Model fusion via optimal trans-
port. Advances in Neural Information Processing Systems,
33:22045–22055, 2020.

Snover, M., Dorr, B., Schwartz, R., Micciulla, L., and
Makhoul, J. A study of translation edit rate with targeted
human annotation. In Proceedings of the 7th Confer-
ence of the Association for Machine Translation in the
Americas: Technical Papers, pp. 223–231, 2006.

Socher, R., Perelygin, A., Wu, J., Chuang, J., Manning,
C. D., Ng, A. Y., and Potts, C. Recursive deep models for
semantic compositionality over a sentiment treebank. In
Proceedings of the 2013 conference on empirical methods
in natural language processing, pp. 1631–1642, 2013.

Sreenivasan, K., Sohn, J.-y., Yang, L., Grinde, M., Nagle,
A., Wang, H., Xing, E., Lee, K., and Papailiopoulos,
D. Rare gems: Finding lottery tickets at initialization.
Advances in neural information processing systems. URL
https://par.nsf.gov/biblio/10395564.

Tanaka, H., Kunin, D., Yamins, D. L., and Ganguli, S. Prun-
ing neural networks without any data by iteratively con-
serving synaptic flow. Advances in Neural Information
Processing Systems, 33:6377–6389, 2020.

Touvron, H., Lavril, T., Izacard, G., Martinet, X., Lachaux,
M.-A., Lacroix, T., Rozière, B., Goyal, N., Hambro, E.,
Azhar, F., Rodriguez, A., Joulin, A., Grave, E., and Lam-
ple, G. Llama: Open and efficient foundation language
models, 2023.

Wang, A., Singh, A., Michael, J., Hill, F., Levy, O., and
Bowman, S. R. GLUE: A multi-task benchmark and anal-
ysis platform for natural language understanding. 2019.
In the Proceedings of ICLR.

Wang, C., Zhang, G., and Grosse, R. Picking winning
tickets before training by preserving gradient flow. arXiv
preprint arXiv:2002.07376, 2020a.

Wang, W., Wei, F., Dong, L., Bao, H., Yang, N., and
Zhou, M. Minilm: Deep self-attention distillation for
task-agnostic compression of pre-trained transformers.
Advances in Neural Information Processing Systems, 33:
5776–5788, 2020b.

Wang, Z., Wohlwend, J., and Lei, T. Structured pruning
of large language models. In Proceedings of the 2020
Conference on Empirical Methods in Natural Language
Processing (EMNLP), pp. 6151–6162, Online, November
2020c. Association for Computational Linguistics. doi:
10.18653/v1/2020.emnlp-main.496. URL https://
aclanthology.org/2020.emnlp-main.496.

Wei, A., Hu, W., and Steinhardt, J. More than a toy: Ran-
dom matrix models predict how real-world neural repre-
sentations generalize. arXiv preprint arXiv:2203.06176,
2022a.

Wei, T. and He, J. Comprehensive fair meta-learned recom-
mender system. In Proceedings of the 28th ACM SIGKDD
Conference on Knowledge Discovery and Data Mining,
pp. 1989–1999, 2022.

Wei, T., You, Y., Chen, T., Shen, Y., He, J., and Wang, Z.
Augmentations in hypergraph contrastive learning: Fabri-
cated and generative. In Advances in Neural Information
Processing Systems, 2022b.

Williams, A., Nangia, N., and Bowman, S. A broad-
coverage challenge corpus for sentence understanding
through inference. In Proceedings of the 2018 Confer-
ence of the North American Chapter of the Association
for Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long Papers), pp. 1112–1122, 2018.

Woodruff, D. P. et al. Sketching as a tool for numerical
linear algebra. Foundations and Trends® in Theoretical
Computer Science, 10(1–2):1–157, 2014.

Xin, J., Tang, R., Lee, J., Yu, Y., and Lin, J. Deebert: Dy-
namic early exiting for accelerating bert inference. In
Proceedings of the 58th Annual Meeting of the Associa-
tion for Computational Linguistics, pp. 2246–2251, 2020.

Ying, C., Cai, T., Luo, S., Zheng, S., Ke, G., He, D., Shen, Y.,
and Liu, T.-Y. Do transformers really perform badly for
graph representation? Advances in Neural Information
Processing Systems, 34:28877–28888, 2021.

Zhang, T., Wu, F., Katiyar, A., Weinberger, K. Q., and Artzi,
Y. Revisiting few-sample bert fine-tuning. arXiv preprint
arXiv:2006.05987, 2020.

Zhang, Z., Lin, Y., Liu, Z., Li, P., Sun, M., and Zhou,
J. Moefication: Conditional computation of trans-
former models for efficient inference. arXiv preprint
arXiv:2110.01786, 2021.

12

https://par.nsf.gov/biblio/10395564
https://aclanthology.org/2020.emnlp-main.496
https://aclanthology.org/2020.emnlp-main.496


NTK-approximating MLP Fusion for Efficient Language Model Fine-tuning

A. Derivations omitted in the main text
A.1. Computational costs of attention and MLP moduels

Condensing FFN sub-layers is critical to obtaining a lightweight pre-trained model. Besides self-attention sub-layers, FFN
sub-layers also take a lot of computation time, and even become the actual bottleneck when the input sequence length is
short. We will verify this claim through the following derivation.

We first recall the most common setting of a MLP in PLMs. Taking RoBERTa-base as an example, the hidden dimension is
p = 768 and there are h = 12 heads in each self-attention module; the intermediate dimension in MLP is pI = 4p = 3072.
In the self-attention sub-layer, given the length-n input X we need to first compute the query, key, and value matrix
Q,K,V , which takes 3 · np2 operations to perform the linear transform (omitting the bias). For the core self-attention
module, we will at least need h · 2n2(p/h) multiplication operations; the final linear transform will again take np2 cost. The
total FLOPs of a self-attention sub-layer are around 4np2 + 2n2p.

As for the FFN sub-layer, the computational cost is clear: 2nppI = 8np2. We can check for regular nlp tasks in which the
input length n is bounded by 512, 8np2 proves to be larger than 4np2 + 2n2p, when p = 768. More specifically, when
input length n < 2p, the computation cost of FFN layers becomes the primary bottleneck. This condition is particularly
applicable to modern foundational language models (Touvron et al., 2023), which often possess a massive hidden size even
exceeding ten thousand.

A.2. Maximum mean discrepancies (MMD)

We start with a brief introduction to MMD. The expression of MMD between two distributions P and Q is given as

MMD(P,Q) = sup
∥f∥H≤1

EX∼P [f(X)]− EY∼Q[f(Y )]

= ∥EX∼P [φ(X)]− EY∼Q[φ(Y )]∥H, (7)

where φ(·) : X → H is the feature map inducing the kernel function k(x, y) = ⟨φ(x), φ(y)⟩H associated with a reproducing
kernel Hilbert space (RKHS) H. Through the strong reproducing property of the map φ, we can rewrite the the squared
MMD as

MMD2(P,Q) = ∥EX∼Pφ(X)− EY∼Qφ(Y )∥2H
= ⟨EX∼Pφ(X),EX′∼Pφ(X

′)⟩H + ⟨EY∼Qφ(Y ),EY ′∼Qφ(Y
′)⟩H − 2⟨EX∼Pφ(X),EY∼Qφ(Y )⟩H

= EX,X′∼P k(X,X ′) + EY,Y ′∼Qk(Y, Y
′)− 2EX∼P,Y∼Qk(X,Y ), (8)

which is easier to optimize using back-propagation.

Following the empirical distribution view of MLP, we denote the original MLP as µw, a uniform discrete distribution over
the rows of the embedding matrix W , and the compressed MLP similarly as µm, an empirical distribution evenly distributed
over the rows in matrix W (m) = [W

(m)
1 , b(m),W

(m)
2 ] ∈ Rk×(2p+1)). We can then optimize the following problem

min
W (m)

MMD2
(
µw, µm

(
W (m)

))
, (9)

from which we can obtain W (m). As in Section 4.2, we can construct the condensed MLP with W (m) as

H̃M =
pI
k

[
σ
(
X(W

(m)
1 )T + 1(b(m))T

)
W

(m)
2 + 1bT2

]
, (10)

which additionally introduces a factor pI/k since expectations rather than sums are involved in MMD.

A.3. NTK preservation

In the main text, we have made the assumption that CW̃ ≈ W and H̃C ≈ H . This assumption implies that ∇Hf can be
preserved by ∇

H̃C
fc, which helps obtain ⟨∇b2

f(X), sign (∇b2
f(Z))⟩ ≈

〈
∇b̃2

fc(X), sign
(
∇b̃2

fc(Z)
)〉

.
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For the remaining three term, we first address 1 :=
〈
∇

W̃2
fc(X), sign

(
∇

W̃2
fc(Z)

)〉
:

1 =Tr

[(
∇

H̃C
fc(X)

)T

σ̃xP · sign
(
Pσ̃T

z ∇H̃C
fc(Z)

)]
=Tr

[(
∇

H̃C
fc(X)

)T

σ
(
XW̃1 + 1b̃T1

)
P · sign

(
P Tσ

(
W̃ T

1 ZT + b̃11
T
)
∇

H̃C
fc(Z)

)]
(i)
= Tr

[(
∇

H̃C
fc(X)

)T

σ
(
XW̃1 + 1b̃T1

)
CCT sign

(
σ
(
W̃ T

1 ZT + b̃11
T
)
∇

H̃C
fc(Z)

)]
(ii)
= Tr

[(
∇

H̃C
fc(X)

)T

σ
(
XW̃1C + 1b̃T1 C

)
sign

(
σ
(
CTW̃ T

1 ZT +CT b̃11
T
)
∇

H̃C
fc(Z)

)]
≈Tr

[
(∇Hf(X))

T
σ
(
XW1 + 1bT1

)
sign

(
σ
(
W T

1 ZT + b11
T
)
∇Hf(Z)

)]
= ⟨∇W2

f(X), sign (∇W2
f(Z))⟩ ,

where equation (i) above holds since P = CCT and the positive diagonal matrix P will not impact the sign of the matrix
elements; as for equation (ii), the “copy” matrix C, as discussed in Section 4.2, is free to be brought inside both the sign
function and the activation function.

For ⟨∇W1
f(X), sign (∇W1

f(Z))⟩, we need to verify the product XT
[(
∇Hf(X)W T

2

)
⊙ σ′

x

]
·

sign
([(

∇Hf(Z)W T
2

)
⊙ σ′

z

]T
Z
)

can be approximated by 2 := XT
[(

∇
H̃C

fc(X)W̃ T
2 P

)
⊙ σ̃′

x

]
·

sign

([(
∇

H̃C
fc(Z)W̃ T

2 P
)
⊙ σ̃′

z

]T
Z

)
, where σ̃′

x := σ′
(
XW̃1 + 1b̃T1

)
, σ̃z := σ′

(
ZW̃1 + 1b̃T1

)
, and σ′(·)

is the derivative of the activation function σ(·) 2. We show the derivation as follows:

2
(i)
=XT

[(
∇

H̃C
fc(X)W̃ T

2

)
⊙ σ̃′

x

]
P · sign

(
P

[(
∇

H̃C
fc(Z)W̃ T

2

)
⊙ σ̃′

z

]T
X

)
=XT

[(
∇

H̃C
fc(X)W̃ T

2

)
⊙ σ̃′

x

]
CCT · sign

([(
∇

H̃C
fc(Z)W̃ T

2

)
⊙ σ̃′

z

]T
X

)
=XT

[(
∇

H̃C
fc(X)W̃ T

2 C
)
⊙ (σ̃′

xC)
]
· sign

([(
∇

H̃C
fc(Z)W̃ T

2 C
)
⊙ (σ̃′

zC)
]T

Z

)
≈XT

[(
∇Hf(X)W T

2

)
⊙ σ′

x

]
·
[(
∇Hf(Z)W T

2

)
⊙ σ′

z

]T
Z,

in which we obtain equation (i) because P as a diagonal matrix has the same scaling effect on the Hadamard product[(
∇

H̃C
fc(X)W̃ T

2

)
⊙ σ̃′

x

]
as on one of its component ∇

H̃C
fc(X)W̃ T

2 ; the rest equations simply follow the previous
derivations.

For the last term ⟨∇b1f(X), sign (∇b1f(Z))⟩, we solely need to replace the above input matrix X,Z with 1T , and all the
derivation steps will follow.

A.4. Model requirements for SGD NTK

To preserve the regular SGD NTK, the scale of the weight parameters needs to be adjusted. We re-define the efficient MLP
model as (fc,σx,σz, σ̃x, σ̃z will also be accordingly re-defined):

H̃C := σ

(
XW

(c)
1 + 1

(
b
(c)
1

)T
)
W

(c)
2 , (11)

where W
(c)
1 := W̃1P

1
2 , b

(c)
1 := P

1
2 b̃1 and W

(c)
2 := P

1
2 W̃1 incorporate the diagonal scaling matrix P in Equation (5).

2For simplicity we assume the activation function σ(·) is differentiable everywhere.
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We also require the activation function to have the following property:

σ (AP ) = σ (A)P ,

for arbitrary non-negative diagonal matrix P , which implies σ(0) = 0, σ(·) is piece-wise linear on R+,R−, and σ′(x) is
piece-wise constant (σ(1) on R+ and σ(−1) on R−); as an instance, the commonly used Rectified Linear Units (ReLU)
function (Fukushima, 1975) σr(x) = max {0, x} can satisfy this requirement.

Equation (11) can keep maintaining the approximation for H and still ⟨∇b2
f(X),∇b2

f(Z)⟩ ≈〈
∇

b
(c)
2
fc(X),∇

b
(c)
2
fc(Z)

〉
, as we only modify the scale of the weight matrices. We then follow the derivation

in the previous subsection and similar results are obtained

For the remaining three term, again we first address 1 :=
〈
∇

W
(c)
2

fc(X),∇
W

(c)
2

fc(Z)
〉

:

1 =Tr

[(
∇

H̃C
fc(X)

)T

σ̃x · σ̃T
z ∇H̃C

fc(Z)

]
=Tr

[(
∇

H̃C
fc(X)

)T

σ

(
XW

(c)
1 + 1

(
b
(c)
1

)T
)
· σ

((
W

(c)
1

)T

ZT + b
(c)
1 1T

)
∇

H̃C
fc(Z)

]
(i)
= Tr

[(
∇

H̃C
fc(X)

)T

σ
(
XW̃1 + 1b̃T1

)
P

1
2P

1
2σ

(
W̃ T

1 ZT + b̃11
T
)
∇

H̃C
fc(Z)

]
=Tr

[(
∇

H̃C
fc(X)

)T

σ
(
XW̃1 + 1b̃T1

)
CCTσ

(
W̃ T

1 ZT + b̃11
T
)
∇

H̃C
fc(Z)

]
≈⟨∇W2

f(X),∇W2
f(Z)⟩ ,

where equation (i) holds since P
1
2 , as we require, is free to be brought outside the activation function; the rest derivation

simply follows the counterpart in Appendix A.3.

For ⟨∇W1
f(X),∇W1

f(Z)⟩, we similarly need to verify the product XT
[(
∇Hf(X)W T

2

)
⊙ σ′] ·[(

∇Hf(Z)W T
2

)
⊙ σ′]T X can be approximated by 2 := XT

[(
∇

H̃C
fc(X)

(
W

(c)
2

)T
)
⊙ σ̃′

x

]
·[(

∇
H̃C

fc(Z)
(
W

(c)
2

)T
)
⊙ σ̃′

z

]T
X .

σ̃′
x := σ′

(
XW̃1 + 1b̃T1

)
, σ̃z := σ′

(
ZW̃1 + 1b̃T1

)
We then show the derivation as follows:

2 =XT

[(
∇

H̃C
fc(X)

(
W

(c)
2

)T
)
⊙ σ̃′

x

]
·
[(

∇
H̃C

fc(Z)
(
W

(c)
2

)T
)
⊙ σ̃′

z

]T
X

(i)
=XT

[(
∇

H̃C
fc(X)W̃ T

2

)
⊙ σ̃′

x

]
P

1
2P

1
2 ·

[(
∇

H̃C
fc(Z)W̃ T

2

)
⊙ σ̃′

z

]T
X

=XT
[(

∇
H̃C

fc(X)W̃ T
2

)
⊙ σ̃′

x

]
CCT ·

[(
∇

H̃C
fc(Z)W̃ T

2

)
⊙ σ̃′

z

]T
X

=XT

[(
∇

H̃C
fc(X)W̃ T

2

)
⊙ σ′

(
XW

(c)
1 + 1

(
b
(c)
1

)T
)]

CCT

·
[(

∇
H̃C

fc(X)W̃ T
2

)
⊙ σ′

(
XW

(c)
1 + 1

(
b
(c)
1

)T
)]T

X

(ii)
=XT

[(
∇

H̃C
fc(X)W̃ T

2

)
⊙ σ′

(
XW̃1 + 1b̃T1

)]
CCT

·
[(

∇
H̃C

fc(X)W̃ T
2

)
⊙ σ′

(
XW̃1 + 1b̃T1

)]T
X,

in which we obtain equation (i) because P
1
2 as a diagonal matrix has the same scaling effect on the Hadamard product
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∇

H̃C
fc(X)

(
W

(c)
2

)T
)
⊙ σ̃′

x

]
as on one of its component ∇

H̃C
fc(X)

(
W

(c)
2

)T

; equation (ii) holds because σ′ is

piece-wise constant and the scaling matrix P
1
2 will not change the signs of the elements within. Then, following the same

derivation as in the previous derivations, we have 2 ≈ XT
[(
∇Hf(X)W T

2

)
⊙ σ′] · [(∇Hf(Z)W T

2

)
⊙ σ′]T X

For the last term ⟨∇b1
f(X),∇b1

f(Z)⟩, we can again replace the above input matrix X with 1T , and all the derivation
steps will follow.

B. Runtime of fine-tuning after PLM compression
Since our proposed MLP fusion only differs from the sketching and mmd baselines in initialization, we focus on the runtime
evaluation of MLP fusion along with two representative methods, regular fine-tuning and pruning.

For a fair comparison, we intentionally run the two NLU tasks on a cluster server (so that no other processes will compete
with the model fine-tuning) with one core of a server CPU (Intel(R) Xeon(R) Gold 6240R CPU @ 2.40GHz) on Ubuntu
18.04. In this setting, we train the RoBERTa model for 100 steps with batch size 32.

Specifically, on SST2, it will take the model with MLP fusion, pruning, and regular fine-tuning around 6746, 18066,
9342 seconds to finish the training, respectively; on MNLI, the time cost is around 6956, 17060, 18966 seconds for the
training. We remark the architecture of MLP fusion can accelerate the regular fine-tuning by 30% on SST2, and is even 2.7
times faster in MNLI, which has longer average sequence length. As for pruning, although it has a comparable prediction
performance in the two tasks, its time cost is no less than regular fine-tuning and is much higher in the more lightweight task
SST2, due to some overhead cost from its implementation.

C. Bounding the error of MLP output
Recall the object of clustering is:

min
C

∥W −CTW̃∥2F

The assumption can thus be rewritten in a mathematical manner, which is ∥W −CTW̃∥F ≤ ε with small ε. Assuming
f(W,CTW̃) = ∥W −CTW̃∥F ≤ ε, we can provide a standard analysis of MLP output (ignoring b1 for simplicity) as
follows.

Denoting ∆ := σ(XW̃1C) − σ(XW1) and following the technical assumptions in [4] that ∥W1∥2 ≤ C1, ∥W2∥2 ≤
C2, ∥X∥F ≤ CX and the activation function σ(·) is L-Lipschitz continuous. Further assuming σ(0) = 0 (the assumptions
holds for commonly used activation functions in PLMs, e.g., ReLU and GELU), we first have

∥∆∥F ≤ L∥XW̃1C−XW1∥F ≤ L∥X∥F ∥W̃1C−W1∥F ≤ LCXε.

We can then bound ∥H− H̃C∥F as

∥σ(XW̃1C)CTW̃2 − σ(XW1)W2∥F ≤∥σ(XW̃1C)(CTW̃2 −W2)∥F + ∥(σ(XW̃1C)− σ(XW1))W2∥F
≤∥σ(XW̃1C)∥F ∥CTW̃2 −W2∥F + ∥σ(XW̃1C)− σ(XW1)∥F ∥W2∥2
=∥∆+ σ(XW1)∥F ∥CTW̃2 −W2∥F + ∥∆∥F ∥W2∥2
≤(∥∆∥F + ∥σ(XW1)∥F ) · ε+ ∥∆∥F · C2

≤L(C2CX + C1CX) · ε+ LCX · ε2,

where we utilize

∥W̃1C−W1∥F , ∥CTW̃2 −W2∥ ≤ ∥W −CTW̃∥F ≤ ε

∥σ(XW1)∥F = ∥σ(XW1)− σ(0)∥F ≤ L∥XW1∥F ≤ L∥X∥F ∥W1∥2 = LC1CX ,

for the derivation. From the bound, we can observe with the well-learned CTW̃ from clustering (small ε), the output error
(∥H− H̃C∥F ) will also be small.
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Moreover, a similar error analysis can also be applied to Adam NTK. The error analysis ∥K − K̃C∥F of NTK kernel K can
be simplified as analyzing Tr[ATsign(B)− ÃTsign(B̃)] where A, B represent arbitrary matrices. The precise derivation
of the approximation error bound on Adam NTK, considering the additional assumption on |sign(B) − sign(B̃)|F as
described in (Balles & Hennig, 2018), is left as future work.

D. Discussions
We are not aware of any potential negative societal impacts regarding our work to the best of our knowledge. For all the
used data sets, there is no private personally identifiable information or offensive content.

Regarding future work, beyond the combination with distillation, we also plan to explore practical compression methods
in various domains, including speech processing (Dong et al., 2018), recommender system (Geng et al., 2022; Wei & He,
2022), and graph mining (Ying et al., 2021; Wei et al., 2022b). The derivation of a more precise error analysis with regard to
the pre-trained model is also a challenging and promising direction.

E. Performance Comparison of Representative Methods after Task-specific Fine-tuning

Table 5: Accuracy of Representative Methods After Task-specific Fine-tuning on SST2 Validation Set

Method+Task-specific Fine-tuning Accuracy
Sketch 91.86
Clustering 93.35
MMD 92.43
SVD 93.01
LTH 93.42
MLP Fusion(Ours) 93.79

From Table 5 and Table 2 in the paper, we can observe that not all methods can benefit from the layer-wise task-specific
tuning module. For example, the accuracy of the Sketch method drops from 91.90 to 91.86. Meanwhile, our proposed MLP
Fusion provides a promising starting point for subsequent optimization through NTK approximation. By incorporating a
layer-wise task-specific tuning module, we can further enhance its performance and still achieve the best results compared
to all other baseline methods.

F. Experiment Results on More Benchmark Datasets

Table 6: Accuracy of Each Baseline Method on STS-B And QNLI Validation Sets with RoBERTa as The PLM

Method STS-B(7k) QNLI(105k)
Sketch 86.99 89.84
Clustering 88.12 90.63
LTH 87.37 90.87
RoBERTa 91.20 92.80
DistilRoBERTa 88.30 90.80
MLP Fusion(Ours) 89.37 91.03

Table 6 shows the experimental results on two additional data sets QNLI and STS-B within the GLUE benchmark. We can
see the proposed method is still able to achieve the best performance over strong baselines.
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G. Performance Comparison between Proposed Method and Maintaining Output/NTK of The
MLP Model

Table 7: Performance of Proposed Method and Maintaining Output/NTK of The MLP Model

Methods Accuracy
Maintain NTK Gradient 91.74
Maintain Output 92.35
MLP Fusion (Ours) 93.23

In Table 7, we compare two additional baselines that try to maintain the MLP output and NTK of the pre-trained language
model. Our NTK approximation method MLP Fusion still achieves the best performance. The loss that attempts to maintain
the output with unsupervised data ranked second. The method that tries to maintain the NTK of the MLP model with
gradient has the lowest accuracy. This is mainly because the gradient difference in the loss is difficult to minimize since it
requires operating second-order derivatives, which can also be time-consuming. Additionally, gathering labeled data for the
loss calculation can also be burdensome.
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