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Abstract

Recent breakthroughs by deep neural networks (DNNs) in natural language processing
(NLP) and computer vision have been driven by a scale-up of models and data rather
than the discovery of novel computing paradigms. Here, we investigate if scale can have
a similar impact for models designed to aid small molecule drug discovery. We address
this question through a large-scale and systematic analysis of how DNN size, data diet,
and learning routines interact to impact accuracy on our Phenotypic Chemistry Arena
(Pheno-CA) benchmark — a diverse set of drug discovery tasks posed on image-based high
content screening data. Surprisingly, we find that DNNs explicitly supervised to solve tasks
in the Pheno-CA do not continuously improve as their data and model size is scaled-up. To
address this issue, we introduce a novel precursor task, the Inverse Biological Process (IBP),
which is designed to resemble the causal objective functions that have proven successful
for NLP. We indeed find that DNNs first trained with IBP then probed for performance
on the Pheno-CA significantly outperform task-supervised DNNs. More importantly, the
performance of these IBP-trained DNNs monotonically improves with data and model scale.
Our findings reveal that the DNN ingredients needed to accurately solve small molecule drug
discovery tasks are already in our hands, and project how much more experimental data is
needed to achieve any desired level of improvement. We release our Pheno-CA benchmark
and code to encourage further study of neural scaling laws for small molecule drug discovery.

1 Introduction

Rich Sutton (Sutton, 2019) famously wrote, “the biggest lesson that can be read from 70 years of AI research
is that general methods that leverage computation are ultimately the most effective, and by a large margin.”
The scale of compute, model, and data have proven over recent years to be the most important factors for
developing high performing systems in nearly every domain of AI including computer vision (Dehghani et al.,
2023), natural language processing (Kaplan et al., 2020), reinforcement learning (Hilton et al., 2023), protein
folding (Lin et al., 2023), and design (Hesslow et al., 2022). The foundation of each of these revolutions-of-scale
rests on empirically derived “neural scaling laws,” which indicate that continued improvement on a given
domain’s tasks are constrained by compute, model, and data scale rather than novel algorithmic solutions or
additional domain-knowledge. Thus, one of the extraordinary opportunities for AI is finding and exploiting
similar scaling laws in domains that have not benefited from them yet.
Small molecule drug discovery is one of the domains where scaling laws could have an outsized impact.
Biological experiments are costly and time intensive, while the space of molecules has been estimated to
contain as many as 1060 compounds with drug-like properties (Lipinski et al., 2012). The current standard
approach for identifying interactions between small molecules and biological targets involves high throughput
screening (HTS), in which libraries of hundreds of thousands of molecules are tested empirically in parallel for
specific biological readouts at great cost. The ability to accurately predict in silico whether a small molecule
engages a biological target would at the very least reduce the size of the chemical libraries needed to find
bioactive molecules and support significantly faster and cheaper discovery. Moreover, if models for small
molecule drug discovery follow similar scaling laws as those discovered for natural language processing (Kaplan
et al., 2020), then it would mean that even the loftiest goals may be within reach, such as screening larger
parts of the 1060 space of molecules to find treatments for today’s intractable diseases. Can DNNs speed up
drug discovery, and if so, do their abilities follow neural scaling laws?
One of the most promising avenues for generating data that could be used to train DNNs on drug discovery
tasks is image-based high-content screening (iHCS). This type of screen is widely used to measure the effects
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of drugs and find targets for treating disease because it is can capture a large variety of biological signatures
through different stains or biosensors, and has been helpful in drug discovery applications including hit
identification (Simm et al., 2018; Bray et al., 2017) and expansion (Hughes et al., 2020), lead optimization (Caie
et al., 2010), generating hypotheses on a drug’s mechanism-of-action (Young et al., 2008; Boyd et al., 2020;
Sundaramurthy et al., 2014) and target (Schenone et al., 2013), and also identifying and validating disease
targets (see Chandrasekaran et al., 2021 for a review). While iHCS is potentially more flexible than standard
biochemical assays used in drug discovery, it still requires significant time, money, and effort to set up and
run. The recently released JUMP dataset (Chandrasekaran et al., 2023a;b) contains nearly two orders of
magnitude more iHCS data than was previously available to the public (Bray et al., 2017), and therefore
represents a significant opportunity for deep learning. However, it is still unclear if DNNs can leverage the
data in JUMP for drug discovery.
Here, we use the JUMP dataset to investigate if DNNs trained on it for small molecule drug discovery tasks
follow neural scaling laws. A positive answer to this question could bring about a revolution in biomedicine
that mimics the ones in natural language processing and computer vision over recent years, making it faster,
easier, and cheaper than ever to discover drugs.

Contributions. We began by augmenting the JUMP dataset with our Phenotypic Chemistry Arena
(Pheno-CA): a diverse set of drug discovery tasks posed on a subset of images in JUMP. We then tested if the
performance of DNNs trained to solve each task could be predicted by the size of their models or the amount
of data they were trained with. Surprisingly, it could not: the performance of these “task-supervised” DNNs
was either unaffected or hurt by an increase in data and model sizes (Fig. A1a). However, DNNs in domains
like natural language processing and vision rely on specific objective functions to achieve efficient scaling —
for instance, GPT models use the causal language modeling objective (Kaplan et al., 2020). We reasoned that
a similar precursor task, especially one that could force DNNs to learn a causal model of biology, could have
have a large impact on scaling. We therefore developed a novel precursor task, the inverse biological process
(IBP), and performed large-scale and systematic experiments on the Pheno-CA to understand how this task
interacted with the size of DNN architectures and the amount of data used in training them. Through this
large-scale survey, we found the following:
• DNNs pretrained with IBP significantly outperform task-supervised DNNs on the Pheno-CA.
• DNNs pretrained with IBP also follow linear scaling laws on the Pheno-CA that accurately predict how

many novel samples and replicates are needed to achieve arbitrary levels of accuracy.
• IBP-trained DNNs improved in predictable ways as the total number of model parameters was increased.

The effect of model depth, on the other hand, was less clear, and impacted only a subset of tasks.
• Scaling laws on IBP-trained DNNs indicate that to achieve 100% accuracy on a task like predicting a

compound’s mechanism-of-action, JUMP would need to be expanded by approximately 3.25M compounds.
Achieving this scale of data would take an impossible amount of time and money, meaning that additional
experimental advances are needed to improve neural scaling laws and move significantly beyond the
performances of our IBP-trained models.

• We release our Pheno-CA challenge and code at https://anonymous.4open.science/r/pub_scaling_
mols-B3E1/ to encourage the field to continue investigating scaling laws in iHCS drug discovery.

2 Methods

JUMP data The Joint Undertaking for Morphological Profiling (JUMP) project has produced the largest
publicly available dataset for iHCS. The dataset consists of images of Human U2OS osteosarcoma cells from
12-different data generating centers. Each image depicts a well of cells in a plate that have been perturbed
then stained with the “Cell Painting” toolkit (Bray et al., 2016). Cell Painting involves fixing and staining
cells with six dyes that mark eight different cell organelles or compartments: DNA, nucleoli, actin, Golgi
apparatus, plasma membrane, endoplasmic reticulum (ER), cytoplasmic RNA, and mitochondria. Together,
these stains provide an unbiased read-out on the effects of different perturbations on cell biology (Fig. 1a).
JUMP perturbations include the addition of 116,750 different compounds and the knockout of 7,975 genes
by Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) ∗. There are a total of 711,974
compound perturbation images and 51,185 CRISPR perturbation images, which amounts to an average of
five replicates of each perturbation type.

∗JUMP also contains gene overexpression manipulations, but we do not include those images in this study.
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Figure 1: Designing a scalable precursor task for phenotypic drug discovery. (a) We investigate
the ability of DNNs to learn drug discovery tasks from the large-scale JUMP dataset. (b) Our Phenotypic
Chemistry Arena (Pheno-CA) measures the ability of DNNs trained on JUMP data to solve diverse drug
discovery tasks. Task performance is measured through either “learned probes,” small neural network
readouts that map a DNN’s learned representations to the labels for a task, or through “0-shot” evaluations
of performance (no task-specific training). (c) We find that only those DNNs pretrained on a specialized
precursor task — the inverse biological process — follow scaling laws on the Pheno-CA.

Phenotypic Chemistry Arena. We introduced the Phenotypic Chemistry Arena (Pheno-CA, Fig. 1b) to
evaluate DNNs trained on JUMP data for drug discovery tasks The Pheno-CA consists of annotations on 6,738
well images from JUMP for four different discovery tasks. These tasks are (i) predicting a drug’s mechanism-
of-action (“MoA deconvolution,” 1,282 categories), (ii) predicting a drug’s target (“target deconvolution,”
942 categories), (iii) predicting a molecule’s identity (“molecule deconvolution,” 2,919 categories), and (iv)

3



Under review as a conference paper at ICLR 2023

finding compounds with the same target as a CRISPR perturbation (“compound discovery” Fig. 1b). The
remaining images from JUMP are used for training, and depict perturbations from all 116,750 represented in
the JUMP dataset (including the 2,919 compounds in the Pheno-CA). All well images used in the Pheno-CA
were held out from model training.
DNN performance on the Pheno-CA tasks was measured in different ways. Performance on MoA and target
deconvolution was recorded as top-10 classification accuracy, i.e., a model was considered accurate if the
model’s top-10 predictions included the molecule’s true (labeled) MoA or target. Molecule deconvolution
performance was recorded using categorical cross entropy loss, which measured how closely the distribution
of predicted molecule identities matched the true identity. Finally, to measure how accurately models could
find the compounds that match a CRISPR perturbation, we constructed curves that indicated how many
guesses it took a model to find the appropriate molecules, then computed area-under-the-curve (AUC).

Preprocessing We preprocessed CP data in two ways. First, we aggregated all cells from a well into
a single representation, which captured the effect of its particular experimental perturbation. Second, we
normalized these representations to control for experimental nuisances such as well, plate, and batch effects.
To aggregate cells into a single well-based representation, we took the median CP-vector per well then
normalized these representations by subtracting off the per-plate median representation and dividing by the
per-plate inter-quartile-range (Wong et al., 2023). Lastly, before training, we principle components analysis
(PCA) whitened the representations (Bell & Sejnowski, 1996), which yielded 878−dimensional vectors for
each well. As we describe in the Appendix C, some of the models were also explicitly trained to ignore
experimental nuisances.

Inverse biological process learning as a generalist precursor task DNN and data scale paired with
the appropriate precursor training task — so-called causal language modeling — have lead to breakthroughs
in natural language processing. Here, we devised a learning procedure that we hypothesized would similarly
help DNNs learn biological causality from JUMP data. Our basic insight is that each cell in the JUMP dataset
undergoes a “forward biological process”, in which the addition of a small molecule transforms its phenotype
from a control to a perturbed one (Fig 1c). We reasoned that training a model to invert this process would
force it to learn the host of underlying biophysical processes that cause a cell to change phenotypes, and that
the resulting model representations would prove useful for downstream discovery tasks including those in the
Pheno-CA (Ardizzone et al., 2018). We refer to this precursor task as the inverse biological process (IBP). If
a model improves on tasks in the Pheno-CA after IBP-training it means that the motivating hypothesis is at
least partially correct. In practice, IBP involves learning to predict a molecule from the phenotype it causes.
We investigated the efficacy of IBP on the Pheno-CA by first pretraining a DNN for this task before freezing
its weights and training task-specific readouts on its representations as detailed below.

Model zoo. We built a large “zoo” of DNNs to understand how changing model architecture, supervision
methods, and the amount of data seen during training affects performance on the Pheno-CA. Each DNN
ended with a task-specific 3-layer multilayer perceptron (MLP), which mapped its representations of image
content to a Pheno-CA task.
All DNNs consisted of a basic MLP block with a residual connection. The MLP consisted of a linear layer,
followed by a 1-D BatchNorm, and finally a gaussian error linear unit (GELU; Hendrycks & Gimpel, 2016).
DNNs consisted of 1, 3, 6, 9, or 12 layers of these blocks, each with 128, 256, 512, or 1512 features.
We tested two types of DNN supervision. (i) DNNs were directly trained to solve each Pheno-CA task. (ii)
DNNs pretrained with IBP were frozen and their representations were mapped to a Pheno-CA task with
the 3-layer MLP readout. In other words, we compared DNNs that learned task-specific representations
to DNNs that learned IBP representations. Each of these DNNs was also given images from 1e3, 2e4, 5e4,
8e4 or 1e5 molecules that were not included in the Pheno-CA, and hence were out-of-distribution (OOD)
of that challenge. Our hypothesis was that OOD compound information would help IBP-trained DNNs
more accurately model the biophysical effects of compounds on U2OS cells, and ultimately outperform
task-supervised DNNs on Pheno-CA tasks. Finally, each DNN was trained on 1%, 25%, 50%, 75%, or 100%
of replicates of each of the compounds included in their training set.
All combinations of data, model, and supervision parameters yielded 1,876 unique DNNs. Each DNN was
implemented in PyTorch and trained using one NVIDIA TITAN X GPU with 24GB of VRAM. DNNs were
trained with a AdamW (Loshchilov & Hutter, 2017), a learning rate of 1e-4, a batch size of 6000, and mixed-
precision weights using Huggingface Accelerate library (https://github.com/huggingface/accelerate).
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Figure 2: Pheno-CA challenge 1 : Mechanism-of-action (MoA) deconvolution. (a) DNNs were
either trained directly for MoA deconvolution from phenotypes or first pretrained on the IBP task before
their weights were “frozen” for testing. Testing in each case involved fitting a 3-layer probe to generate MoA
predictions for a molecule’s imaged phenotype. (b) The highest-performing DNN was an IBP-pretrained
model. A UMAP decomposition of its image representations qualitatively reveals clustering for the most
commonly appearing MoAs. (c) IBP-trained DNN performance is a linear function of the amount of data
each model is trained on. Each individual colored curves depicts the performance of DNNs trained on a fixed
number of molecules that fall “out-of-distribution” of the molecules in the Pheno-CA. Decreases on the right
end of each curve indicate overfitting. The scaling law depicted here is a linear fit of the max-performing
models in each curve. Chance is 7e − 2. (d) While DNN performance generally improved as models grew in
parameters, 9-layer DNNs were more accurate than 12-layer DNNs.

Training was ended early if test performance stopped improving for 15 epochs. Training took at most 16
hours per DNN.

3 Results

The Phenotypic Chemistry Arena (Pheno-CA) is a large-scale evaluation benchmark we created to measure
the performance of DNNs trained on iHCS for diverse phenotypic drug discovery tasks: (i) predicting a
drug’s mechanism-of-action (“MoA deconvolution”; Chandrasekaran et al., 2021), (ii) predicting a drug’s
target (“target deconvolution”; Schenone et al., 2013), (iii) predicting a molecule’s identity (“molecule
deconvolution”; Chandrasekaran et al., 2021), and (iv) finding compounds that have the same target as a
CRISPR perturbation (Fig. 1b; Zhang & Gant, 2008; Méndez-Lucio et al., 2020). By surveying 1,876 different
DNNs on the Pheno-CA, we identified the training routines and DNN architectures that yielded the highest
performance on these tasks, and discovered scaling laws that predict performance for certain model classes
with respect to the amount and types of data used to train them.
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Challenge 1: Mechanism-of-action deconvolution. Phenotypic screening is a powerful way to find
active compounds in a biologically relevant setting. Phenotypic screens have inspired many important drug
programs, including the discoveries of FKBP12 (Harding et al., 1989), calcineurin25 (Liu et al., 1992), and
mTOR26 (Brown et al., 1994). However, it often requires substantial effort to understand the mechanism-
of-action and targets of small molecules that are bioactive in a phenotypic screen. By MoA, we mean the
effect the compound has on a cellular pathway or class of molecules, for instance ‘inhibitor of bacterial cell
wall synthesis’, or ‘glucocorticoid receptor agonist’. In contrast, in the target challenge below we refer to the
actual cellular component (for instance a specific enzyme) that the compound alters (usually by binding to
it). iHCS data has been used in the past to help solve MoA deconvolution through a “guilt-by-association”
approach, in which compounds that have known MoAs and targets are added into an experiment and used to
deduce those properties in other compounds (Chandrasekaran et al., 2021).

Figure 3: Experimental replicates improve IBP-trained
DNN scaling laws. DNN performance and scaling laws increased
as they were trained with larger amounts of replicates of each
experimental perturbation.

Here, we pose a version of “guilt-by-
association” MoA-discovery on JUMP
data. Each DNN in our zoo was given
images of cells perturbed by different com-
pounds, and trained to predict the MoA
of a given compound out of 1,282 possi-
bilities (Fig. 1a). DNNs were either su-
pervised directly for MoA deconvolution
or pretrained with IBP (Fig. 2a). Next,
DNN weights were frozen and three-layer
MLP probes were used to transform im-
age representations from both models into
MoA predictions (i.e. there was no direct
task supervision for IBP models).
Our DNN zoo yielded a wide range of per-
formances on this task. At the low end
was a 12.09% accurate 12-layer and 128-
feature DNN trained with IBP on 100%
of out-of-distribution molecules but only
0.01% of the replicates of each compound.
At the high-end was a 52.62% accurate
9-layer and 1512-feature DNN trained
with IBP on 100% of out-of-distribution
molecules and 75% of the replicates of
each compound. The representations of
this performant IBP-trained DNN clearly separated the phenotypes of different MoAs (Fig. 2b), and it
was 46% more accurate than the highest performing task-supervised DNN (36.08%; 6-layer and 256-feature
DNN). Overall, IBP-trained DNNs were significantly more accurate at MoA deconvolution than task-trained
DNNs (T (624) = 7.97, p < 0.001). These results indicate that the IBP precursor task promotes generalist
representations that outperform task-specific training and are already well suited for MoA deconvolution.
Another key difference we found between task-supervised and IBP-trained DNNs is that the performance of
the latter followed a scaling law. The MoA deconvolution accuracy of IBP-trained DNNs linearly increased
as they were trained on additional molecules that were out-of-distribution (OOD) of the Pheno-CA (Fig 2c).
The discovered law indicated that IBP-DNN performance increases by 1% with the addition of approximately
56K (non-unique) OOD molecules for training. While DNN performance generally improved with the total
number of model parameters, the rate of improvement was higher for 9-layer DNNs than 12-layer DNNs
(Fig 2c; analyzed further in Appendix ADD).
We further analyzed scaling laws for MoA prediction by recomputing them for different amounts of experimental
replicates. That is, we expected that DNNs which were able to observe more experimental variability would
scale better than those that observed less variability. Indeed, we found that more replicates lead to better
models on average, and that more data also generally improved the scaling law slope (Fig. 3).

Challenge 2: Target deconvolution. Identifying a bioactive molecule’s target from its phenotypes is
another essential challenge for phenotypic screens. We evaluated the ability of DNNs to automate this task in
the Pheno-CA, and measured how accurately models can deconvolve a molecule’s target from its phenotype.
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Figure 4: Pheno-CA challenge 2 : Target deconvolution. (a) DNNs were either trained directly for
target deconvolution from phenotypes or first pretrained on the IBP task then “frozen” for testing. Testing
in each case involved fitting a 3-layer probe to generate target predictions for a molecule’s imaged phenotype.
(b) The highest-performing DNN was an IBP-pretrained model, and its representations discriminate between
the most commonly appearing targets. (c) IBP-trained DNN performance is a linear function of the amount
of data each model is trained on. Each individual colored curves depicts the performance of DNNs trained on
a fixed number of molecules that fall “out-of-distribution” of the molecules in the Pheno-CA. Decreases on the
right end of each curve indicate overfitting. The scaling law depicted here is a linear fit of the max-performing
models in each curve. Chance is 1.1e − 1. (d) While DNN performance generally improved as models grew in
parameters, 9-layer DNNs were more accurate than 12-layer DNNs.

This task followed the same general approach as the MoA deconvolution task described above, and tested
models for 942-way target deconvolution (Fig. 4a).
As with MoA deconvolution, IBP-trained DNNs were on average significantly better at target deconvolution
than task-supervised DNNs (T (624) = 15.07, p < 0.001). The lowest performing DNN (35.00%) was an
IBP-trained 12-layer and 256-feature model trained with 0.01% of out-of-distribution molecules and 25%
of the replicates of each compound. The highest performing DNN (67.95%) was an IBP-trained 9-layer
and 1512-feature model trained on 100% of out-of-distribution molecules and 75% of the replicates of each
compound. The representations of this IBP-trained DNN separated the phenotypes of different targets
(Fig. 2b), and it was 33% more accurate than the highest performing task-supervised DNN (51.03%), which
was a 6-layer and 512-feature DNN.
IBP-trained DNNs also followed a scaling law on target deconvolution (Fig. 2c). Model performance was
linearly predicted by the number of out-of-distribution molecules included in training. The discovered law
indicated that IBP-trained DNN performance increases 1% per 79K (non-unique) OOD molecules added to
training. As with MoA deconvolution, DNNs improved as they grew in size, but the deepest 12-layer models
were again less effective than 9-layer models (Fig. 4d).
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Challenge 3: Molecule deconvolution. We next probed how well trained DNNs could discriminate
between individual molecules by their phenotypes, a task which we call molecule deconvolution. This task
involved 2,919-way classification of molecule identities on the Pheno-CA (Fig. A2a). In contrast to MoA
and target deconvolution, molecular deconvolution represents a distinct challenge since many of the 2,919
compounds may yield quite similar phenotypes. As such, this task measures the ceiling discriminability of
phenotypic representations in the models.
The best-performing DNN (4.02 CCE) was an IBP-trained 9-layer and 1512-feature model and trained with
100% of out-of-distribution molecules and 75% of the replicates of each compound. The representations
of this IBP-trained DNN separated the phenotypes of different targets (Fig. A2b). IBP-trained DNNs
followed another scaling law on this task; their performance was predicted by the number of OOD molecules
included in training. The discovered law indicated that IBP-trained DNN performance improved by 1 point
of crossentropy loss for every additional 606,061 (non-unique) OOD molecules added into training. DNNs on
this task improved as they grew in size, and deeper models performed better (Fig. A2d).

Figure 5: Pheno-CA challenge 4 : Compound discovery.
We measured the “zero-shot” effecicay of features from an IBP-
trained DNN vs cell profiler (CP) for finding compounds that
share the target of a CRISPR-perturbation. Lines depict the
cumulative number of discovered molecules that match a target.
The IBP-trained DNN is significantly better than CP (p = 0.007).

Challenge 4: Compound discovery.
Another important use of phenotypic
screening is to find compounds that affect
biology in ways that resemble a biologi-
cal perturbation such as a mutation in a
specific gene or protein. If we could pre-
dict such compounds accurately, we could
rapidly assemble compound libraries that
we could screen for an illness associated
with that mutation.
We investigated the ability of our DNNs to
perform this task “zero shot” (i.e., with-
out a task-specific as like in the other
challenges) by comparing model repre-
sentations of molecule phenotypes and
of CRISPR manipulations of specific tar-
gets. We measured the representational
distance between the phenotype of a
CRISPR perturbation of one gene and the
phenotype of every molecule in the Pheno-
CA. We then computed the rank-order of
the distance between molecules and the
target manipulation, and recorded how
many molecules one would need to test in
order to find those with the same target
as the manipulation (Fig. 5). We repeated
this analysis for all compounds with at least 5 replicates in the Pheno-CA (12 total) and found that the
IBP-trained model with the lowest loss recorded during IBP-training produced representations that were
significantly better at task than standard Cell Profiler (CP) representations (T (11) = 2.91, p = 0.007).

4 Related work

Deep learning-based chemistry While computational methods have played a large role in drug discovery
since at least the early 80’s (Van Drie, 2007), big data and large-scale DNN architectures have recently
supported significant advances for a variety of discovery tasks, such as predicting protein folding (Lin et al.,
2023) and designing proteins with specific functions (Hesslow et al., 2022). Far less progress has been made in
leveraging iHCS data for computational drug discovery tasks, with several notable exceptions. For instance,
one study (Wong et al., 2023) found that iHCS data from an earlier and smaller iteration of the JUMP
dataset can be used to train models to deconvolve MoAs significantly better than chance. Others have
showed that iHCS carries signal for decoding the types of chemical or genetic perturbations that have been
applied to cells (Moshkov et al., 2023). Our study takes significant steps beyond these prior ones and aligns
iHCS with the goals of large-scale and data-driven AI in three ways: (i) we introduce the Pheno-CA as a
standardized benchmark for model evaluation, (ii) we identify model parameterizations that perform well on
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this benchmark and are immediately useful for drug discovery, and (iii) we discover scaling laws that describe
how datasets like JUMP need to be expanded for continued improvements.

Small molecule drug discovery benchmarks While JUMP and the Pheno-CA offer a unique opportunity
to train and evaluate DNNs on iHCS data for small molecule drug discovery, there are multiple other
benchmarks that have focused on structure-based approaches to small molecule design. Fréchet ChemNet
Distance (Preuer et al., 2018) (FCD) measures the distance between a model-generated small molecule
and the distribution of molecules modeled by a DNN trained to predict the bioactivity of 6,000 molecules.
Scoring high on this benchmark means that a model generates compounds that are within distribution of
the FCD-model’s representations. Guacamol (Brown et al., 2019) and molecular sets (Polykovskiy et al.,
2020) (MOSES) are benchmarks that evaluate a model’s generated molecules according to their FCD, validity,
uniqueness, and novelty. Finally, MoleculeNet (Wu et al., 2017) consists of multiple types of benchmarks
for models spanning quantum mechanics, physical chemistry, biophysics, and predictions of physiological
properties like toxicity and blood-brain barrier penetration. These benchmarks can synergize with the
Pheno-CA, for instance, to tune models for filtering molecules predicted by our Pheno-CA-adjudicated DNNs
to have desirable phenotypic qualities.

5 Discussion

The many great breakthroughs of AI over recent years have been guided by the discovery of neural scaling
laws (Kaplan et al., 2020; Dehghani et al., 2023). Prior to these scaling laws, it was unclear if achieving
human- or superhuman-level performance on challenging tasks in natural language processing and computer
vision would require computing breakthroughs that shifted the paradigm beyond deep learning. But scaling
laws indicate that sufficiently good algorithms are already in our hands, and that we need more data and
compute to unlock their full potential. Here, we provide — to the best of our knowledge — the first evidence
that DNNs trained with our IBP precursor task follow similar scaling laws for small molecule discovery.
We find that IBP-trained DNNs are very useful for drug discovery, and significantly better than task-
supervised DNNs of any tested size at solving the tasks in our Pheno-CA. While the number of experimental
replicates included in training affected the overall accuracy of IBP-trained DNNs (Fig. 3), the introduction of
additional molecules that fell “out-of-distribution” of the Pheno-CA was what actually enabled the accuracy
of these models to scale up. This finding implies that the manifold relationship of small molecules and their
phenotypes is highly nonlinear and filled with local-minima that make it easy for models to overfit — as if
task-supervised DNNs are “looking for their keys under the streetlamp.” While it may not be feasible to
generate the 14M additional experimental images (3.25M more novel molecules, with about five experimental
replicates each) needed to achieve 100% accuracy on a task like MoA deconvolution, continuing to scale
experimental data and DNNs towards this goal will unlock extraordinary opportunities to expedite drug
discovery for the most challenging diseases we face today. We release our code and the Pheno-CA benchmark at
https://anonymous.4open.science/r/pub_scaling_mols-B3E1/ to support these efforts to revolutionize
medicine.

Limitations JUMP and other iHCS datasets present significant opportunities for advancing DNNs in small
molecule discovery. However, the scaling laws that we discover demonstrate some key limitations. Purchasing
just the 3.25M molecules needed to reach 100% accuracy in MoA deconvolution would cost around $325M
(assuming $100 per compound). Generating replicate experiments for each could multiply that cost by orders
of magnitude. Thus, there is an essential need to identify new imaging and experimental methods that
can generate cheaper and better data for training DNNs with IBP. A partial solution to this problem is
time-lapse imaging of single cells (Arrasate et al., 2004; Finkbeiner et al., 2015), which enables analysis of
single cells over time. Such time-course data has already been successfully used in multiple deep learning
applications (Linsley* et al., 2021; Wang et al., 2022; Christiansen et al., 2018) and could approximate
and supercharge the beneficial effects of replicates on scaling laws that we observed for MoA deconvolution
(Fig. 3).
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A Appendix

Glossary: Drug discovery

Mechanism of action (MoA): the biochemical interaction through which a drug substance
produces its pharmacological effect.

Target: the specific molecular target (protein, RNA, etc.) that a drug interacts with to
initiate a biological response.

Small molecule drug discovery: the process of identifying and optimizing low molecular
weight organic compounds that can modulate biological targets. It involves techniques like
high-throughput screening, structure-based drug design, and medicinal chemistry to identify hit
compounds, validate their activity, determine their mode of action, and optimize their potency,
selectivity, and drug-like properties to generate lead compounds and clinical candidates.

Glossary: Machine learning

Neural scaling laws: DNNs trained on certain tasks exhibit predictable improvements as key
resources are increased during training and inference. Specifically, metrics like accuracy, loss, and
throughput often improve in predictable ways (often power law relationships) as compute, data size, and
parameters are increased. These consistent patterns are called scaling laws, and deriving them helps re-
searchers determine optimal resource investments to efficiently maximize model quality for a given task.

Out-of-distribution data: these are model inputs that differ from the data used to train
a model. This discrepancy can arise when the data is collected under different conditions or from
a different environment than the training data. In-distribution data matches the patterns in the
training data, while OOD data exhibits new patterns the model has not seen before. Detecting and
handling OOD inputs is critical for many applications.

Precursor tasks: a common approach in vision and natural language processing is to pre-
train on model on a large dataset with a task that could learn generally useful representations of that
data. A common approach is with so called self-supervised objetives, which in vision can encourage
a model to build up tolerances to transformations that objects undergo in the real world. This
pretraining can then improve generalization on downstream classification tasks.

B Task-supervised DNNs do not exhibit scaling laws

We compared DNNs trained directly on Pheno-CA tasks to those that were first pretrained on IBP then
frozen and probed (with an MLP) for decisions on Pheno-CA tasks. We found that training IBP DNNs
on molecules that fell outside the distribution of Pheno-CA molecules lead to significant improvements in
performance over task-supervised DNNs. Moreover, IBP DNNs followed neural scaling laws; their performance
was predicted by the number of additional OOD molecules they were trained on (as well as the number of
replicates of each of these molecules). Task-supervised DNNs, on the other hand, do not follow scaling laws
(Fig. A1a). Moreover, we found that DNN model scale had very little impact on performance of these models
(Fig. A1b).

C Training to ignore experimental noise

We developed a novel approach to protect DNNs against the experimental noise, which can overwhelm
biological signal captured in iHCS data. To do this, we introduced the source of an image into the input
of a model, and added additional losses to the model that made it as inaccurate as possible at predicting
the well, batch, or source of an image (see Appendix C for details). These losses were cross entropy
between the predicted well/batch/source that an image came from and a uniform distribution across possible
wells/batches/sources. Hence, to satisfy this objective, DNNs had to learn representations that were as
indiscriminate of wells/batches/sources as possible. We found that DNNs trained with this approach performed
significantly better on the Pheno-CA than models that were not.
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Figure A1: Task-supervised models trained for mechanism-of-action (MoA) deconvolution do not
follow neural scaling laws. (a) The performance of task-supervised DNNs trained for MoA deconvolution
as a function of the amount of data they were trained on and the number of additional out-of-distribution
(OOD) molecules that were included in training. For each grouping of OOD molecules, DNN performance
increased before saturating, and there was no effect of OOD molecules. (b) The number of parameters and
layers in task-supervised DNNs had a minimal affect on performance.
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D Challenge 3 results: Molecule deconvolution

Figure A2: Pheno-CA challenge 3 : Molecule deconvolution. (a) DNNs were either trained directly for
molecule deconvolution from phenotypes or first pretrained on the IBP task then “frozen” for testing. Testing
in each case involved fitting a 3-layer probe to generate target predictions for a molecule’s imaged phenotype.
(b) The highest-performing DNN was an IBP-pretrained model, and its representations discriminate between
the most commonly appearing molecules. (c) Molecule deconvolution loss (lower is better). IBP-trained DNNs
follow a scaling law, in which their performance is predicted by the number of molecules they are trained
on that fall “out-of-distribution” of the Pheno-CA. Chance loss is 7.97. (d) DNN performance generally
improved as models grew in depth and parameters.
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