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ABSTRACT

Evidence from cognitive psychology suggests that understanding spatio-temporal
object interactions and dynamics can be essential for recognizing actions in com-
plex videos. Therefore, action recognition models are expected to benefit from
explicit modeling of objects, including their appearance, interaction, and dynam-
ics. Recently, video transformers have shown great success in video understand-
ing, exceeding CNN performance. Yet, existing video transformer models do not
explicitly model objects. In this work, we present Object-Region Video Trans-
formers (ORViT), an object-centric approach that extends video transformer lay-
ers with a block that directly incorporates object representations. The key idea is
to fuse object-centric spatio-temporal representations throughout multiple trans-
former layers. Our ORViT block consists of two object-level streams: appearance
and dynamics. In the appearance stream, an “Object-Region Attention” element
applies self-attention over the patches and object regions. In this way, visual object
regions interact with uniform patch tokens and enrich them with contextualized
object information. We further model object dynamics via a separate “Object-
Dynamics Module”, which captures trajectory interactions, and show how to in-
tegrate the two streams. We evaluate our model on standard and compositional
action recognition on Something-Something V2, standard action recognition on
Epic-Kitchen100 and Diving48, and spatio-temporal action detection on AVA. We
show strong improvement in performance across all tasks and datasets considered,
demonstrating the value of a model that incorporates object representations into a
transformer architecture.

1 INTRODUCTION

Consider the simple action of “Picking up a coffee cup” in Figure 1. Intuitively, a human recognizing
this action would identify the hand, the coffee cup and the coaster, and perceive the upward move-
ment of the cup. This highlights three important cues needed for recognizing actions: what/where
are the objects? how do they interact? and how do they move? Indeed, evidence from cognitive
psychology also supports this structure of the action-perception system (Quinton, 1979; Hacker,
1982; Gallese et al., 1996; Chao & Martin, 2000; Helbig et al., 2006). The above perception process
allows easy generalization to different compositions of actions. For example, the process of pick-
ing up a knife will share some of the components with “Picking up a coffee cup”. More broadly,
representing image semantics using objects facilitiates compositional understanding, because many
perceptual components remain similar when one object is swapped for another. Thus, a model that
captures this compositional aspect potentially requires less examples to learn.

It seems intuitively clear that machine vision models should also capture the above reasoning struc-
ture, and indeed this has been explored in the past (Gupta & Davis, 2007; Saenko et al., 2012).
However, current state-of-the-art video transformer models do not explicitly model objects. Re-
cently, video transformers have been introduced as a powerful video understanding models (Arnab
et al., 2021b; Bertasius et al., 2021; Haoqi et al., 2021; Patrick et al., 2021), motivated by the suc-
cess of transformers in language (Devlin et al., 2019) and vision (Carion et al., 2020; Dosovitskiy
et al., 2021). In these models, each video frame is divided into patches, and a spatio-temporal self-
attention architecture obtains a context-dependent representation for the patches. However, there
is no explicit representation of objects in this approach, which makes it harder for such models to
capture compositionality.
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Figure 1: Our ORViT model introduces class-agnostic object-centric information into the transformer self-
attention operation. The figure shows the standard (uniformly spaced) patch-tokens in blue, and object-regions
corresponding to class-agnostic detections in orange. In ORViT any temporal patch-token (e.g., the patch in
black at time T ) attends to all patch tokens (blue) and region tokens (orange). This allows the new patch
representation to be informed by the objects.

Motivated by the above, our key question in this paper is how to model objects explicitly within a
video-transformer (Arnab et al., 2021b) architecture. We propose a general approach by adapting
the self-attention block (Dosovitskiy et al., 2021) to incorporate object information. The challenge
in building such an architecture is that it should have components for modeling the appearance of
objects as they move, the interaction between objects, and the dynamics of the objects (irrespective
of their visual appearance). An additional key desideratum is that video content outside the objects
should not be discarded, as it contains important contextual information. Finally, we would like the
objects to influence the representation of the scene, throughout the bottom-up process, rather than as
a post-processing stage. In what follows, we show that a self-attention architecture can be extended
to address these aspects. Our key idea is that object regions can be introduced into transformers in a
similar way to that of the regular patches, and dynamics can also be integrated into this framework
in a natural way. We refer to our model as an “Object-Region Video Transformer” (or ORViT).

The ORViT block takes as input patch tokens (also referred as spatio-temporal features) and outputs
refined patch tokens based on object information. Within the block, it uses a set of object bounding
boxes that are predicted using largely class-agnostic off-the-shelf trackers, and serve to inform the
model which parts of video contain objects. This information is then used to generate two separate
object-level streams: an “Object-Region Attention” stream that models appearance, and an “Object-
Dynamics Module” stream that models trajectories.1 The appearance stream first extracts descriptors
for each object based on the object coordinates and the patch tokens. Next, we append the object
descriptors to the patch tokens, and a self-attention is applied to all these tokens jointly, and thus
incorporating object information into the patch tokens (see Figure 1). The trajectory stream only uses
object coordinates to model the geometry of motion and performs self-attention over those. Finally,
we re-integrate the appearance and trajectory stream into a set of refined patch tokens, which have
the same dimensionality as the input to our ORViT block. This means that the ORViT block can be
called repeatedly. See Figure 2 and Figure 3 for the model visualizations.

Through extensive empirical study, we show that integrating the ORViT block into video trans-
former architecture leads to improved Action Recognition results on Something-Something, Epic-
Kitchens100, Diving48, improved Spatio-temporal Action Detection on AVA as well as improved
Compositional Action Recognition on SomethingElse. These results confirm our hypothesis that
explicitly modeling objects indeed leads to better generalization.

2 RELATED WORK

Object-centric models. Recently object-centric models have been successfully applied in many
computer vision applications: visual relational reasoning (Battaglia et al., 2018; Zambaldi et al.,
2018; Krishna et al., 2018; Baradel et al., 2018; Herzig et al., 2018; Xu et al., 2020; Raboh et al.,
2020; Jerbi et al., 2020), representation learning (You et al., 2020), vision and language (Li et al.,
2019; Tan & Bansal, 2019; Li et al., 2020; Chen et al., 2020), human-object interactions (Kato et al.,
2018; Xu et al., 2019; Gao et al., 2020), and even image generation (Johnson et al., 2018; Herzig
et al., 2020). The advances and the success of object-centric models in these domains inspired
varied video-based tasks, such as action localization (Nawhal & Mori, 2021), video synthesis (Bar
et al., 2021), and action recognition (Zhou et al., 2018). The latter was the focus of varied recent

1Our focus is different from papers on two-stream models in vision, that are not object-centric (see Sec. 2).
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works that designed different object interactions approaches for convolutional models. A line of
works (Santoro et al., 2017; Sun et al., 2018; Girdhar et al., 2019) focused on capturing spatial object
interactions while ignoring the temporal interactions. STRG (Wang & Gupta, 2018) and ORN (Ba-
radel et al., 2018) used spatio-temporal interactions with two consecutive frame interactions, while
STAG (Herzig et al., 2019) considered long-range temporal interactions. Last, Unified (Arnab et al.,
2021a) tried to generalize all these models and propose long spatio-temporal object interactions.
While all these works focused solely on interactions of visual appearance information, recently
STIN (Materzynska et al., 2020) introduced an object-centric model based on object trajectories by
modeling bounding box movement. Our ORViT approach directly combines object appearance, ob-
ject trajectories, and the overall video, by mapping all computations to spatio-temporal patch tokens.
This is particularly natural to do in a transformer framework, as we show here, and results in state of
the art performance. We note that models combining vision and language (e.g., Li et al., 2020) use
detectors to extract object features and utilize them later in their network. Our approach is focused
on video and markedly different from theirs since we are not extracting detection features.

Transformers in action recognition. Ranging from the early works that employ optical flow based
features (Efros et al., 2003), to recent transformer based approaches (Haoqi et al., 2021), a wide
variety of approaches have been proposed for action recognition. In broad brushstrokes, the pro-
posed approaches have evolved from using temporal pooling for extracting features (Karpathy et al.,
2014) to using recurrent networks (Donahue et al., 2015; Yue-Hei Ng et al., 2015), through to 3D
spatio-temporal kernels (Ji et al., 2013; Taylor et al., 2010; Tran et al., 2015; Varol et al., 2018;
Lin et al., 2019a; Wang et al., 2019; Carreira & Zisserman, 2017), and two-stream networks that
capture complementary signals (e.g., motion and spatial cues (Feichtenhofer et al., 2016; Simonyan
& Zisserman, 2014; Feichtenhofer et al., 2019)). Unlike these approaches, our work uses two sep-
arate object-level streams to leverage object-centric information. In parallel to developments in
video understanding, Vision Transformers (Dosovitskiy et al., 2021; Touvron et al., 2021) propose
a new approach to image recognition by discarding the convolutional inductive bias entirely and
instead employing self-attention operations. Specialized video models such as TimeSformer (Berta-
sius et al., 2021), ViViT (Arnab et al., 2021b), Mformer (Patrick et al., 2021) and MViT (Haoqi et al.,
2021) form the latest epoch in action recognition models. However, none of the video transformer
models leverage object cues, a persistent shortcoming that we aim to address in ORViT.

Spatio-temporal action detection. The task of action detection requires temporally localizing the
action start and end times. A wide variety of methods have been proposed for it, such as actions
modeling (Long et al., 2019; Zeng et al., 2019; Alwassel et al., 2018), temporal convolutions (Shou
et al., 2016; Lea et al., 2017), boundaries modeling (Lin et al., 2018; 2019b), attention (Shi et al.,
2020; Yuan et al., 2019), structure utilization (Yuan et al., 2017; Zhao et al., 2017), detection based
methods (Chao et al., 2018; Xu et al., 2017), end-to-end approaches (Dai et al., 2017; Gao et al.,
2017; Buch et al., 2017; Jain et al., 2020), recurrent neural networks (Ma et al., 2016; Singh et al.,
2016; Yeung et al., 2016), and even using language (Richard & Gall, 2016; Zhukov et al., 2019).
Recently, the new MViT (Haoqi et al., 2021) model showed promising results on action localization
in the AVA dataset (Gu et al., 2018b). However, it does not explicitly model objects, and we show
that an ORViT version of MViT indeed improves performance.

3 THE ORVIT MODEL

We now present Object-Region Video Transformer (ORViT) model, which explicitly models object
appearance and trajectories within the transformer architecture. We begin by reviewing the video
transformer architecture in Section 3.1, which our model extends, and present ORViT in Section 3.2.
A high-level overview of ORViT is shown in Figure 2 (left) and detailed in Figure 3. Briefly, ORViT
repeatedly refines the patch token representations by using information about both the appearance
and movement of objects. Figure 2 (right) visualizes object-centric attention learned by our model.

3.1 VIDEO TRANSFORMER ARCHITECTURE

Video transformers (Arnab et al., 2021b; Haoqi et al., 2021; Bertasius et al., 2021) extend the Vi-
sion Transformer model to the temporal domain. Similar to vision transformers, the input is first
“patchified” but with temporally extended 3-D patches instead of 2-D image patches producing a
down-sampled tensor X of size, say, T ×H ×W × d. Then spatio-temporal position embeddings
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Figure 2: Left: An ORViT block. The input patch-tokens X and boxes B are used as input to the “Object-
Region Attention” and “Object-Dynamics Module” components. Each component outputs a THW × d tensor
and the two tensors are summed to obtain new patch tokens Y . Right: We visualize the attention allocated
to the object tokens in the ORViT block (red, green, and blue) in each frame for a video describing “moving
two objects away from each other”. It can be seen that each phone object affects the patch-tokens in its region,
whereas the hand has a broader map. For more visualizations, please see section E in supplementary.

are added in for location information. Finally, a classification token (CLS) is appended to X , result-
ing in THW + 1 tokens in Rd, to which self-attention and MLP blocks are applied repeatedly to
produce the final contextualized CLS feature vector which is used for classification.2

3.2 THE ORVIT BLOCK

There are two inputs to the ORViT block. The first is the output of the preceding transformer
block, represented as a set of spatio-temporal tokens X ∈ RTHW×d. The second input is a set of
bounding boxes for objects across time, provided by an off-the-shelf object detector3 or available
directly in the dataset. These bounding boxes are denoted by B ∈ RTO×4 (providing the bounding
box for each object at each time frame). The output of the ORViT block is a set of refined tokens
Y ∈ RTHW×d contextualized with object-centric information. Thus, the block can be viewed as a
token representation refining mechanism using the object-level information.

As mentioned, we argue that the key cues for recognizing actions in videos are: the objects in the
scene, their interactions, and their movement. To capture these cues, we design the ORViT block
with the following two object-level streams. The first stream models the appearance of objects, and
their interactions. We refer to it as “Object-Region Attention” and denote it by R. The second
“Object-Dynamics Module” stream (denoted by D) models the interactions between trajectories,
agnostic of their appearance. Importantly, the output of each of the streams is THW token vectors,
which can also be interpreted as refined patch representations based on each source of information.

The D stream only models object dynamics, and thus only uses bounding boxes, B as input. We
therefore denote its output byD(B). The streamRmodels appearance and thus depends on both the
token represention, X and the bounding boxes, B and produces R(X,B). The final output of the
ORViT block Y is simply formed by the sum of the two streams and an input residual connection:

Y ′ := R(X,B) +D(B) +X , Y := Y ′ + MLP(LN(Y ′)) (1)

where LN denotes a LayerNorm operation. Next, we elaborate on the two components separately.

Object-Region Attention. The goal of this module is to extract information about each object
and use it to refine the patch tokens. This is done by using the object regions to extract descriptor
vectors per region from the input tokens, resulting in TO vectors in Rd, which we refer to as object
tokens. These vectors are then concatenated with the THW patch tokens and serve as the keys and
values, while the queries are only the patch tokens. Finally, the output of the block is THW patch
tokens. Thus, the key idea is to fuse object-centric information into spatio-temporal representations.

2In what follows we omit the count of the CLS feature for brevity.
3We also use a simple tracker on top of the detections, but discuss detections here for brevity.
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Figure 3: ORViT Block architecture. The block consists of two object-level streams: an “Object-Region
Attention” that models appearance, and an “Object-Dynamics Module” that models trajectories. The two are
combined to produce new patch tokens. The “Box Position Encoder” maps the output of the trajectory stream
to the dimensional of patch tokens.

Namely, inject the TO object region tokens into patch tokens THW . An overview of our approach
is depicted in Figure 3. We provide further details below.

Given the patch token features X and the boxes B, our first goal is to obtain vector descriptors in
Rd per object and time frame. The natural way to do this is via an RoIAlign (He et al., 2017) layer,
which uses the patch tokens X and box coordinates B to obtain object region crops. This is followed
by max-pooling and an MLP to get the final object representation in Rd:

O := MLP(MaxPool(RoIAlign(X,B))) (2)

Since this is done per object and per frame, the result is OT vectors in Rd (i.e., O ∈ RTO×d).
Importantly, this extraction procedure is performed in each instance of an ORViT block, so that it
will produce different object tokens at each layer. We also add positional embeddings but leave the
details to Section B.1.

At this point, we would like to allow the object tokens to refine the patch tokens. We concatenate
the object tokens O with the patch tokens X , resulting in C ∈ RT (HW+O)×d. Next C and X are
used to obtain queries, keys and values as follows:

Q := XWq K := CWk V := CWv , where Wq , Wk, Wv ∈ Rd×d (3)

Finally, there are several ways to perform spatio-temporal self-attention (e.g., joint attention over
space and time, attention over space and then time, or the recently introduced trajectory atten-
tion (Patrick et al., 2021)). We use trajectory attention because it performs well empirically. We
compare different self-attention versions in Table 4c.

Object-Dynamics Module. To model object dynamics, we introduce a component that only consid-
ers the boxes B. We first encode each box via its center coordinate, height and width, and apply an
MLP to this vector to obtain a vector in Rd. Applying this to all boxes results in L̃ ∈ RTO×d. Next
we add a learnable object-time position embedding P̃ ∈ RTO×d, resulting in B̃ := L̃+ P̃ . We refer
to this as the “Coordinate Embedding” step in Figure 3. Its output can be viewed as TO tokens in
Rd, and we apply self-attention to those as follows: AttentionD(Q̃, K̃, Ṽ ) := Softmax

(
Q̃K̃T

√
dk

)
Ṽ ,

where: Q̃ := B̃Wq̃ , K̃ := B̃Wk̃, Ṽ := B̃Wṽ and Wq̃,Wk̃,Wṽ ∈ Rd×d. The self-attention output
is in RTO×d. Next, we would like to transform the objects with a T × d vector into a spatial volume
of THW × d. This is done using the Box Position Encoder described below.

Box Position Encoder. The returned features of the ORViT model should have the same dimensions
as the input, namely THW × d. Thus, our main challenge is to project the object embeddings into
spatial dimensions, namely TO × d into THW × d. The naive approach would be to ignore the
boxes by expanding every object with vector T × d into THW × d. However, since the object
trajectories contain their space-time location, a potentially better way to do it would consider the
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object locations. Hence, for each object with corresponding T × d tokens, we generate a spatial
feature HW × d by placing the object representation vector according to the matching bounding
box coordinates using a bilinear interpolation sampler operation4 (Jaderberg et al., 2015; Johnson
et al., 2018). Finally, the output in HW × d is the sum of all objects from all frames representing
the coarse trajectory of the object in spatial dimensions. The process is shown in Figure 3 (right).
We show empirically that this approach is better than the naive approach described above.

The ORViT model: We conclude by explaining how to integrate ORViT into transformer-based
video models. The advantage of ORViT is that it takes as input the standard spatio temporal tokens
in RTHW×d and outputs a refined version of those with the same dimensions. Thus, it acts as a
standard transformer layer in terms of input and output. Therefore, one can take any transformer
and simply add ORViT layers to it. In particular, we experiment with three such models: TimeS-
former (Bertasius et al., 2021), Mformer, and MViT (Haoqi et al., 2021). We show that for these,
using ORViT layers improves performance. The only design choice is which layers to apply ORViT
to. We found that it is very important to apply it in lower layers, while repeated applications further
improves performance. Specifically, in our experiments we apply it in layers 2, 7, 11.

4 EXPERIMENTS

We evaluate our ORVIT block on several video action recognition benchmarks. Specifically, we
consider the following tasks: Compositional Action Recognition (Section 4.1), Action Recognition
(Section 4.2) and Spatio-Temporal Action Detection (Section 4.3).

Datasets: We experiment with the following datasets: (1) Something-Something v2
(SSv2) (Goyal et al., 2017) contains 174 action categories of common human-object interactions.
We follow the official splits from (Materzynska et al., 2020) for action recognition, compositional
action recognition, and few-shot recognition. (2) Epic Kitchens 100 (EK100) (Damen et al., 2020)
contains 700 egocentric videos of daily kitchen activities. This dataset includes noun and verb
classes, and we report verb, noun, and action accuracy, where the highest-scoring verb and noun
pair constitutes an action label. (3) Diving48 (Li et al., 2018) contains 48 fine-grained categories of
diving activities. (4) Atomic Visual Actions (AVA) (Gu et al., 2018a) is a benchmark for human
action detection. We report Mean Average Precision (mAP) on AVA-V2.2.

Baselines. In the experiments, we compare ORViT to several models reported in previous work
for the corresponding datasets. These include non-transformer approaches (e.g., I3D (Carreira
& Zisserman, 2017) and SlowFast (Feichtenhofer et al., 2019)) as well as state-of-the-art trans-
formers (TimeSformer, Mformer, and MViT). We also cite results for two object-centric models:
STIN (Materzynska et al., 2020) which uses boxes information, and the Space-Time Region Graph
(STRG) model (Wang & Gupta, 2018) which extracts I3D features for objects and runs a graph neu-
ral network on those. Both STIN and STRG use the same input information as ORViT. Finally, we
implement an object-centric transformer baseline combining STRG and STIN: we use the Mformer
final patch tokens as input to the STRG model, resulting in STRG feature vector, and concatenate it
to the STIN feature vector and the Mformer’s CLS token. We refer to this as Mformer+STRG+STIN.

Box Input to ORViT: The ORViT block takes bounding boxes of objects as inputs. Here we explain
how these are extracted in our experiments. We emphasize that in all cases, these are either bounding
boxes provided with the dataset or the result of an off-the-shelf class-agnostic detector. For SSv2,
we used both GT and detected boxes provided by the dataset. For EK100, we used detections
provided by the dataset that were based on a pre-trained detector. For Diving48, we used a standard
pre-trained class-agnostic detector from Detectron2 (trained on MSCOCO). For AVA, we use the
provided detection boxes for the spatio-temporal action detection task. For all datasets, once we
have the detector results, we apply multi-object tracking to find correspondence between the objects
in different frames (no training data is required). See Section A.1.

Implementation Details: ORViT is implemented in PyTorch, and code will be released upon ac-
ceptance. Our training recipes and code are based on the MViT, Mformer, and TimeSformer code
published by the authors. We set the number of objects to 4 in SSv2 and EK100, 6 in AVA, and 10
in Diving48. See Section A in Supplementary.

4Features outside of an object region are set to zeros.
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Table 1: Compositional and Few-Shot Action Recognition on the “SomethingElse” dataset. All results are
reported using ground-truth box annotations.

Model Modality Compositional Base Few-Shot
RGB Boxes Top-1 Top-5 Top-1 Top-5 5-Shot 10-Shot

I3D (Carreira & Zisserman, 2017) 3 7 42.8 71.3 73.6 92.2 21.8 26.7
SF (Feichtenhofer et al., 2019) 3 7 45.2 73.4 76.1 93.4 22.4 29.2
TimeSformer (Bertasius et al., 2021) 3 7 44.2 76.8 79.5 95.6 24.6 33.8
Mformer (Patrick et al., 2021) 3 7 60.2 85.8 82.8 96.2 28.9 33.8

STRG (\w SF) (Wang & Gupta, 2018) 3 3 52.3 78.3 75.4 92.7 24.8 29.9
STIN (\w SF) (Materzynska et al., 2020) 3 3 54.6 79.4 77.4 95.0 23.0 33.4
Mformer+STRG+STIN 3 3 62.3 86.0 83.7 96.8 29.8 36.5

ORViT Mformer (ours) 3 3 69.7 91.0 87.1 97.6 33.3 40.2

4.1 COMPOSITIONAL AND FEW-SHOT ACTION RECOGNITION

Several action recognition datasets define an action via a combination of a verb (action) and noun
(object). In such cases, it is more challenging to recognize combinations that were not seen during
training. This “compositional” setting was explored in the “SomethingElse” dataset (Materzyn-
ska et al., 2020), where verb-noun combinations in the test data do not occur in the training data.
The split contains 174 classes with 54,919/54,876 videos for training/validation. This setting is
of particular relevance for object-centric models like ORViT, which can potentially better handle
compositional actions. Finally, the dataset also contains GT boxes, intended to specifically evaluate
object-centric models that use this information. We also evaluate on the few-shot compositional
action recognition task in (Materzynska et al., 2020) (see Section A.6 for details).

Table 1 reports the results in these settings, given GT boxes input. It can be seen that ORViT
outperforms all models for both the Compositional and Few-shot tasks. Importantly, it provides large
improvement over the baseline Mformer model. Recall that ORViT is essentially an Mformer with
additional ORViT blocks, so the difference in performance is due to the ORViT block architecture
and its use of box information. When using detected boxes (as opposed to GT), ORViT Mformer
achieves 62.3% top-1 compared to the Mformer model with 60.2% top-1 on the compositional split.

4.2 ACTION RECOGNITION

Table 2 reports results on the standard action recognition task for several datasets. We train on the
standard splits and use the standard evaluation procedure. See Section A of Supplementary.

SSv2. Table 2a shows that ORViT outperforms the state-of-the-art with both detected and ground-
truth (GT) boxes. GT boxes result in better performance, indicating the potential of using object-
centric models like ORViT. When using GT boxes, improvements over Mformer and Mformer-L are
4.9% and 5.4%, respectively. When using detected boxes, improvement is 1.4% for both. ORViT
also outperforms other box-based methods, such as STIN, STRG and their combination.

Diving48. Here we build ORViT on top of TimerSformer model, which was previously reported on
this dataset (this demonstrates the ease of adding ORViT to any transformer model). Table 2b shows
that our ORViT TimeSformer model outperforms the state-of-the-art methods, including TQN (Zhang
et al., 2021) by a significant margin of 6.2%. We obtain an improvement of 8.0% over the baseline
TimeSformer model to which ORViT blocks were added. This again indicates the direct improve-
ment due to the ORViT block. We note that ORViT achieves these results using only 32 frames,
significantly less than the previous best results, TimeSformer-L, which uses 96 frames.

EK100. Table 2c reports results on EK100. Here we add ORViT blocks to the Mformer-HR model.
Results show that our ORViT Mformer-HR model improves the accuracy for all three tasks (with a
smaller improvement for nouns). As in Diving48, we use only the detected boxes provided with
the dataset (Damen et al., 2020), obtained with Faster-RCNN trained on MS COCO. We believe
the improvements on EK100 are less impressive than on the other datasets for mainly two reasons:
(a) EK100 is an ego-centric dataset, making the camera movement a significant challenge for our
method to use objects effectively. Since the movement of the boxes is mainly due to the camera, it is
more challenging to model meaningful object interactions as opposed to motion caused by objects
movement. (b) EK100 contains short 2-3 seconds videos, thus temporal reasoning is less effective.
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Table 2: Comparison to state-of-the-art on video action recognition. We report top-1 (%) and top-5 (%)
accuracy on SSv2. On Epic-Kitchens100 (EK100), we report top-1 (%) action (A), verb (V), and noun (N)
accuracy. On Diving48 we report top-1 (%). For EK100 and Diving48 we used only detected boxes since
ground-truth does not exist. Difference between baselines and ORViT is denoted by (+X). IN refers to IN-21K.

(a) Something–Something V2

Model Boxes Pretrain Top-1 Top-5 GFLOPs×views (109) Param (106)

SlowFast, R101 7 K400 63.1 87.6 106×3×1 53.3
TimeSformer-L 7 IN 62.5 - 1703×3×1 121.4
ViViT-L 7 IN+K400 65.4 89.8 3992×4×3 -
MViT-B, 64 7 K600 68.7 91.5 236×3×1 53.2

Mformer 7 IN+K400 66.5 90.1 369.5× 3× 1 109
Mformer-L 7 IN+K400 68.1 91.2 1185.1× 3× 1 109
Mformer + STRG + STIN GT IN+K400 69.2 90.9 375× 3× 1 119

ORViT Mformer (Ours) Detected IN+K400 67.9 (+1.4) 90.5 (+0.4) 405× 3× 1 148
ORViT Mformer (Ours) GT IN+K400 73.8 (+7.3) 93.6 (+3.5) 405× 3× 1 148
ORViT Mformer-L (Ours) Detected IN+K400 69.5 (+1.4) 91.5 (+0.3) 1259× 3× 1 148.2
ORViT Mformer-L (Ours) GT IN+K400 74.9 (+6.7) 94.2 (+3.0) 1259× 3× 1 148.2

(b) Diving48

Model Pretrain Frames Top-1

SlowFast, R101 K400 16 77.6
TimeSformer IN 16 74.9
TimeSformer-L IN 96 81.0
TQN K400 ALL 81.8

TimeSformer IN 32 80.0
TimeSformer + STRG + STIN IN 32 83.5

ORViT TimeSformer (Ours) IN 32 88.0 (+8.0)

(c) Epic-Kitchens100

Method Pretrain A V N

SlowFast, R50 K400 38.5 65.6 50.0
ViViT-L IN+K400 44.0 66.4 56.8
Mformer IN+K400 43.1 66.7 56.5
Mformer-L IN+K400 44.1 67.1 57.6

Mformer-HR IN+K400 44.5 67.0 58.5
MF-HR + STRG + STIN IN+K400 44.1 66.9 57.8

ORViT Mformer-HR (Ours) IN+K400 45.7 (+1.2) 68.4 (+1.4) 58.7 (+.2)

4.3 SPATIO-TEMPORAL ACTION DETECTION

We also evaluate ORViT on the task of spatio-temporal action detection on the AVA dataset. In the
literature, the action detection task on AVA is often formulated as a two stage prediction procedure.
The first step is the detection of bounding boxes, which are often obtained through an off-the-shelf
pretrained person detector. The second step involves predicting the action being performed at each
detected bounding box. The performance is benchmarked on the end result of these steps and is
measured through the Mean Average Precision (MAP) metric. Typically, for fair comparison, the
detected person boxes are kept identical across approaches and hence, the final performance depends
directly on the ability of the approach to utilize the video and box information.

Model Pretrain mAP Param

SlowFast, 4× 16, R50 K400 21.9 33.7
SlowFast, 8× 8, R101 K400 23.8 53.0
MViT-B, 16× 4 K400 25.5 36.4
ORViT MViT-B (Ours) K400 26.6 49.8

Figure 4: Evaluation on AVA.

This task presents an ideal benchmark for evaluating the benefit
of ORViT, since all baselines as well as our model operate on
identical detected boxes. Table 4 reports the results and shows
that ORViT-MViT achieves a significant +1.1 MAP improvement
on the MViT-B 16 × 4, thereby showcasing the power of our
proposed object-centric representation fusion scheme.

4.4 ABLATIONS

We perform a comprehensive ablation study on the compositional split of SomethingElse to test the
contribution of the different ORViT components (Table 3; for additional ablations see section C in
supplementary). We use Mformer as the baseline architecture for ORViT, and use GT boxes.

Components of the ORViT model. We consider the following versions of our model. (i) Single
ORViT block (no trajectory stream5). We first consider a single application of the ORViT block, but
without the trajectory stream. We also compare different video transformer layers at which to apply
our ORViT block (namely, the video transformer layer from which to extract the RoI descriptors).
We refer to models applied at layer X as ORViT[L:X]. (ii) Single ORViT block (with trajectory
stream). Here we augment the single ORViT block, with the trajectory stream. We refer to these
models as ORViT[L:X]+Traj. (iii) Multiple ORViT blocks (with trajectory stream). This is the
version of ORViT used in all our experiments. It applies the ORViT block at multiple layers. We
chose layers 2,7 and 11 of the video transformer model to apply ORViT block at. All the ablations

5We refer to the Object-Dynamics Module as trajectory stream.
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Table 3: Albations. We report top-1 and top-5 action accuracy on the SomethingElse split. We show (a)
Contribution of ORViT components (with parameters number in 106 and GFLOPS in 109). (b) Other Object-
centric baselines , and (c) ORViT with box input not provided by a detector.

(a) Components

Layers Top-1 Top-5 GFLOP Param

Mformer 60.2 85.8 370 109
ORViT [L:12] 63.9 87.6 373 109
ORViT [L:2] 66.7 89.2 373 109
ORViT [L:2] + Traj 68.8 90.5 381 122
ORViT [L:2, 7, 11] + Traj 69.7 91.0 405 148

(b) Object-centric baselines

Model Top-1 Top-5

Mformer 60.2 85.8
Mformer + RoIAlign 59.6 84.5
Mformer + Boxes 63.7 86.9
ORViT (Ours) 69.7 91.0

(c) Boxes

Model Top-1 Top-5

Full boxes 60.9 84.5
Null boxes 60.4 84.2
Grid boxes 60.9 84.8
Random boxes 60.7 85.0
Object Regions (Ours) 69.7 91.0

were performed on the compositional split in SomethingElse. In the ablation table, we refer to this
as ORViT[L:2,7,11]+Traj. In the rest of the experiments this is simply referred to as ORViT.

The results are shown in Table 3a. It can be seen that a single layer version of the model already
results in considerable improvement (66.7%), and that it is very important to apply it in the earlier
layers of video transformer rather than at the end. This is in contrast to the current practice in object-
centric approaches (e.g., STRG and STIN) that extract RoIs from the final layer. It can also be seen
that the trajectory component improves performance (by 2.1% from 66.7% to 68.8%). Finally,
multiple applications of the layer further improve performance to 69.7%.

Object-Centric Baselines. ORViT proposes a way to integrate object region information into a
transformer architecture. Here we consider two other candidate models to achieve this goal. (i)
Mformer+RoIAlign uses RoIAlign over the last video transformer layer to extract object features.
Then, it concatenates the CLS token with max-pooled object features to classify the action using
an MLP. This captures the appearance of objects with global context but without fusing the object-
centric information back to the network as we do. (ii) Mformer+Boxes uses coordinates and patch
tokens. We use the CLS token from the last layer of Mformer, concatenated with trajectory em-
beddings. To obtain trajectory embeddings, we use a standard self-attention over the coordinates
similar to our “Object-Dynamics Module”. This captures the trajectory information with global
context without fusing the object-centric information back to the network as we do. The results are
shown in Table 3b. Mformer+RoIAlign does not improve over the baseline, while Mformer+Boxes
improves by 3.5%, which it still far from ORViT (69.7%).

How important are the object bounding boxes? Since ORViT changes the architecture of the base
video transformer model, we want to check whether the bounding boxes are indeed the source of
improvement. We consider several variations where the object bounding boxes are replaced with
other values. (i) All boxes: all boxes are given the coordinates of the entire image ([0, 0, 1, 1]). (ii)
Null boxes: all boxes are initialized to zeros. (iii) Grid boxes: each of the 4 bounding boxes is one
fourth of the image. (iv) Random boxes - each box is chosen uniformly at random. See Table 3c for
results. We observe a large drop in performance for all these baselines, which confirms the important
role of the object regions in ORViT. Finally, we ask whether tracking information is important, as
opposed to just detection. Namely, what happens if we keep the bounding boxes, but shuffle their
allocation to objects. We find that this results in degradation from 69.7 to 68.2, indicating that the
model can perform relatively well with only detection information.

Box Position Encoder. Our “Box Position Encoder” transforms from a tensor of size TO to size
THW . We compare between our implementation that uses boxes to a simpler one that expands the
shape of TO to THW without using boxes. Our approach obtains 69.7 compared to 68.4, showing
that our box-based encoding performs better. For more details, see Section C in the Supplementary.

5 CONCLUSIONS

Objects are a key element of human visual perception, but their modeling is still a challenge for ma-
chine vision. The ORViT model we present here makes use of simple object detection information
to generate a contextualized representation of the entire scene. We note that such integration is par-
ticularly natural in transformer models, where an object region has the same role in the architecture
as the uniformly-spaced patch tokens. In our current implementation, we use externally provided
boxes. However, it will be interesting to replace the externally provided boxes with boxes that the
model generates itself without supervision. We leave this challenge to future work.
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In this supplementary file, we provide additional information about our model, implementation de-
tails, experimental results, and qualitative examples. Specifically, Section A provides additional
implementation details, Section B provides additional model details, Section C provides additional
ablations of our approach, Section D provides more experiment results, and we show qualitative
visualizations to demonstrate our approach in Section E.

A ADDITIONAL IMPLEMENTATION DETAILS

We add ORViT to the existing transformer models MFormer, MViT and TimesFormer. These are
all implemented based on the SlowFast (Feichtenhofer et al., 2019) library (available at https:
//github.com/facebookresearch/SlowFast) and we base our code on that library.
Next, we elaborate on how we extract the object regions, and for each dataset, we add additional
implementation details.

A.1 DETECTOR AND TRACKER

Detector. For SSv2 and EK100, we used the supplied detection boxes from the original codebase.
In SSv2, the detection class categories are grouped into hand and object involved in action. For
Diving48, we used off-the-shelf Faster R-CNN detector (Ren et al., 2015; He et al., 2017) with
ResNet-50 backbone (He et al., 2016) and Feature Pyramid Network (FPN) (Lin et al., 2017) that
is pre-trained on the MS COCO (Lin et al., 2014) dataset. We used the Detectron2 (Wu et al.,
2019b) implementation. For AVA, we used the supplied detection boxes for the spatio-temporal
action detection task that were first obtained by Faster-RCNN pre-trained over MS COCO and then
fine-tuned on AVA as in (Wu et al., 2019a). We set the number of objects in our model to 4 in
SSv2 and EK100, 6 in AVA, and 10 in Diving48. If fewer objects are presented, we set the object
coordinates with a zero vector.

Tracker. Once we have the detector results, we apply multi-object tracking to find correspondence
between the objects in different frames. We use SORT (Bewley et al., 2016): a simple tracker imple-
mented based on Kalman Filter (Kálmán, 1960) and the Hungarian matching algorithm (KM) (Kuhn,
1955). At each step, the Kalman Filter predicts plausible instances in the current frame based on
previous tracks. Next, the predictions are matched with single-frame detections by the Hungarian
matching algorithm. It is important to note that the tracker does not require any training and does
not use any additional data. If an object does not appear in one of the frames, we set the coordinates
in these frames to zeros.

A.2 SOMETHING-SOMETHING V2

Dataset.. SSv2 (Goyal et al., 2017) contains 174 action categories of common human-object inter-
actions. We follow the official splits from (Materzynska et al., 2020) to train and test our model for
action recognition, compositional action recognition, and few-shot.

Optimization details. For the standard SSv2 (Materzynska et al., 2020) dataset, we trained 16
frames with sample rate 4 and batch-size 48 on 8 RTX 3090 GPUs. We train our network for
35 epochs with Adam optimizer (Kingma & Ba, 2014) with a momentum of 0.9 and Gamma 0.1.
Following (Patrick et al., 2021), we use lr = 5e − 5 with ×10 decay steps at epochs 0, 20, 30.
Additionally, we used Automatic Mixed Precision, which is implemented by PyTorch. We initialize
from a Kinetics-400 pre-trained model (Kay et al., 2017). For the ORViT Mformer-L model, we fine-
tuned from the SSv2 pre-trained model provided by (Patrick et al., 2021) and train with 32 frames.
The optimization policy is similar to the above, except we used a different learning rate: 1e− 5 for
the pre-trained parameters, and 1e− 4 for the ORViT parameters.

For the compositional action recognition task, we trained on the SomethingElse splits (Materzynska
et al., 2020). We train with a batch size of 32 and a learning rate of 3e− 5.

Regularization details. We use weight decay of 0.05, a dropout (Hinton et al., 2012) of 0.5 before
the final classification, dropout of 0.3 after the ORViT block, and DropConnect (Huang et al., 2016)
with rate 0.2.
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Training details. We use a standard crop size of 224, and we jitter the scales from 256 to 320.
Additionally, we use RandAugment (Cubuk et al., 2020) with maximum magnitude 20 for each
frame separately.

Inference details. We take 3 spatial crops per single clip to form predictions over a single video in
testing as done in Patrick et al. (2021).

A.3 EPICKITCHENS100

Dataset. EK100 (Damen et al., 2020) contains 700 egocentric videos of daily kitchen activities.
This dataset includes 300 noun and 97 verb classes, and we report verb, noun, and action top-1
accuracy, while the highest-scoring of the verb and noun pairs constitutes the action label.

Optimization details. We trained over videos of 16 frames with sample rate 4 and batch-size 16 on 8
Quadro RTX 8000 GPUs. We train our network for 35 epochs with Adam optimizer (Kingma & Ba,
2014) with a momentum of 0.9 and Gamma 0.1. Following (Patrick et al., 2021), we use lr = 5e−5
with ×10 decay steps at epochs 0, 30, 40. Additionally, we used Automatic Mixed Precision, which
is implemented by PyTorch. We initialize from a Kinetics-400 pre-trained model (Kay et al., 2017).

Training details. We use crop size of 336 for the ORViT Mformer-HR. We jitter the scales from 384
to 480. Additionally, we use RandAugment (Cubuk et al., 2020) with maximum magnitude 20.

Inference details. We take 3 spatial crops with 10 different clips sampled randomly to aggregate
predictions over a single video in testing.

A.4 DIVING48

Dataset. Diving48 (Li et al., 2018) contains 16K training and 3K testing videos spanning 48 fine-
grained diving categories of diving activities. For all of these datasets, we use standard classification
accuracy as our main performance metric.

Optimization details. We trained over videos of 32 frames with sample rate 8 and batch-size 8 on
8 Quadro RTX 8000 GPUs. We train our network for 35 epochs with Adam optimizer (Kingma &
Ba, 2014) with a momentum of 0.9 and Gamma 0.1. We use lr = 3.75e− 5 with ×10 decay steps
at epochs 0, 20, 30. Additionally, we used Automatic Mixed Precision, which is implemented by
PyTorch. We initialize from a Kinetics-400 pre-trained model (Kay et al., 2017).

Training details. We use a standard crop size of 224 for the standard model and jitter the scales
from 256 to 320. Additionally, we use RandomFlip augmentation. Finally, we sampled the T frames
from the start and end diving annotation time, followed by (Zhang et al., 2021).

Inference details. We take 3 spatial crops per single clip to form predictions over a single video in
testing same as in Bertasius et al. (2021).

Object-Dynamics Module. As we show in Table 4d, we compared different self-attention mecha-
nisms, and the standard self-attention usually performed better. However, we observe a slight im-
provement when we perform a trajectory self-attention (Patrick et al., 2021) instead of the standard
self-attention.

A.5 AVA

Architecture. SlowFast (Feichtenhofer et al., 2019) and MViT (Haoqi et al., 2021) are using a de-
tection architecture with a RoI Align head on top of the spatio-temporal features. We followed their
implementation to allow a direct comparison. Next we elaborate on the RoI Align head proposed
in SlowFast (Feichtenhofer et al., 2019). First, we extract the feature maps from our ORViT MViT
model by using the RoIAlign layer. Next, we take the 2D proposal at a frame into a 3D RoI by
replicating it along the temporal axis, followed by a temporal global average pooling. Then, we
max-pooled the RoI features and fed them to an MLP classifier for prediction.

Optimization details. To allow a direct comparison, we used the same configuration as in
MViT (Haoqi et al., 2021). We trained 16 frames with sample rate 4, depth of 16 layers and batch-
size 32 on 8 RTX 3090 GPUs. We train our network for 30 epochs with an SGD optimizer. We use
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lr = 0.03 with a weight decay of 1e−8 and a half-period cosine schedule of learning rate decaying.
We use mixed precision and fine-tune from an MViT-B, 16× 4 pre-trained model.

Training details. We use a standard crop size of 224 and we jitter the scales from 256 to 320. We
use the same ground-truth boxes and proposals that overlap with ground-truth boxes by IoU > 0.9
as in (Feichtenhofer et al., 2019).

Inference details. We perform inference on a single clip with 16 frames. For each sample, the
evaluation frame is centered in frame 8. We use a crop size of 224 in test time. We take 1 spatial
crop with 10 different clips sampled randomly to aggregate predictions over a single video in testing.

A.6 FEW SHOT COMPOSITIONAL ACTION RECOGNITION

We also evaluate on the few-shot compositional action recognition task in (Materzynska et al., 2020).
For this setting, we have 88 base action categories and 86 novel action categories. We train on the
base categories (113K/12K for training/validation) and finetune on few-shot samples from the novel
categories (for 5-shot, 430/50K for training/validation; for 10-shot, 860/44K for training/validation).

B ADDITIONAL MODEL DETAILS

B.1 OBJECT-REGION ATTENTION

As explained in section 3.2, there are two inputs to the ORViT block. The first is the output of the
preceding transformer block, represented as a set of spatio-temporal tokens X ∈ RTHW×d. The
second input is a set of bounding boxes for objects across time, provided by an off-the-shelf object
detector or available directly in the dataset. These bounding boxes are denoted by B ∈ RTO×4.

Object-Region Attention. Given the patch token features X and the boxes B, we use RoIAlign (He
et al., 2017) layer, which uses the patch tokens X and box coordinates B to obtain object region
crops. This is followed by max-pooling and an MLP. To these features we add a learnable object-
time position encoding P ∈ RTO×d to encode the positional object information. We also use a
coordinate embedding by applying an MLP on the boxes coordinates, resulting in L ∈ Rd:

L := MLP(B) (4)

where B ∈ RT×O×d is the boxes coordinates. This leads to an improved object features:

O := MLP(MaxPool(RoIAlign(X,B))) + L+ P (5)

where the token features are X ∈ RTHW×d. We pass these features into the self-attention layers as
explained in the “Object-Region attention” subsection.

C ADDITIONAL ABLATIONS

We perform an ablation study of each of the components in Table 4 to show the effectiveness of the
different components of our model. All ablations are on the SomethingElse dataset and use Mformer
as the baseline architecture for ORViT unless stated otherwise.

Contribution of Appearance and motion Streams. In Table 4a, we show the “Object-Region At-
tention” is an important factor for the improvement, responsible for a 7.2% gain from the baseline
without significant parameters addition (2M parameters compared to the baseline). This highlights
our contribution that object interactions are indeed crucial for video transformers. Additionally,
adding trajectory information with coordinates in the “Object-Dynamics Module” improved by an-
other 2.3%.

ORViT Blocks. In Table 4b, we show which layers are most important for adding the ORViT block.
The experiments show that adding this information at the network’s beginning, middle, and the end
is the most effective (layer 2, 7, 11). We also note that, surprisingly, adding ORViT at the second
layer has the most significant contribution (8.6% improvements).

Different self attention in “Object-Region Attention”. In Table 4c, we compared different self-
attention mechanisms: joint space-time, divided space-time, and trajectory attention to the Mformer
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Table 4: Albations. Evaluation of different model ablations and baselines on the “SomethingElse” split (Tables
(a-d) see text). We report pretrain, param (106), GFLOPS (109), and top-1 and top-5 video action recognition
accuracy. Table (e) reports ablations on the Diving dataset.

(a) Streams

Model Top-1 Top-5 GFLOPs(109) Param(106)

Baseline 60.2 85.5 369.5 109
+ Object-Region Att. 67.4 89.8 382.3 111
+ Object-Motion Mod. 69.7 91.0 405 148

(b) Blocks Ablation

Layers Top-1 Top-5 GFLOPs (109) Param (106)

Baseline 60.2 85.8 370 109
2 68.8 90.4 381 122
7 68.9 90.5 381 122
11 66.8 89.3 381 122
2, 7 69.3 90.6 393 135
2, 7, 11 69.7 91.0 405 148

(c) Object-Region Attention

Model Top-1 Top-5

Baseline 60.2 85.8
Ours /w Joint attn. 68.9 90.4
Ours /w Divided attn. 69.3 90.6
Ours /w Trajectory attn. 69.7 91.0

(d) Object-Motion Module

Model Top-1 Top-5

GCN 67.7 89.8
Trajectory Self-attention 69.4 90.5
Self-attention 69.7 91.0

(e) Components

Layers Top-1 Param

Baseline 80.0 121
ORViT [:12] 85.4 121
ORViT [:2] 86.8 121
ORViT [:2] + Motion 87.5 135
ORViT [:2, 7, 11] + Motion 88.0 163

baseline, which uses trajectory attention in all layers. We observed that trajectory attention is slightly
better. However, it can be seen that our object region approach is not sensitive to these choices,
indicating that the generic approach is the main reason for the observed improvements.

Processing trajectory information. In Table 4d, we compared our self-attention (see “Object-
Dynamics Module” in Section 3.2) with other standard baseline models: GCN (Kipf & Welling,
2016) and trajectory self-attention (Patrick et al., 2021). For the GCN, we use a standard imple-
mentation with 2 hidden layers, while for the trajectory attention, we treat the O objects as the
spatial dimension. Our model improves the GCN baseline by 2.0%, and the difference between the
self-attention layers is significant (0.3% difference).

Components on Diving48. Following our ablations in Table 3a, we also validate our approach
on the Diving48 dataset in Table 4e. We used the TimeSformer trained on videos of 32 frames as
a baseline for a fair comparison. It can be seen that a single layer version of the model already
results in considerable improvement (85.4%) and that it is important to apply it in the earlier layers
of transformers than at the end (86.8% compared to 85.4%). Additionally, the “Object-Dynamics
Module” improves performance to 87.5%. Finally, multiple applications of the layer further improve
performance to 88.0%.

Replacing ORViT with Trajectory Attention. We observe that Joint and Divided self attention lay-
ers (Bertasius et al., 2021; Arnab et al., 2021b) have similar results to the Trajectory Attention (Kim
et al., 2019), as seen in Table 4c. However, we would like to demonstrate that Trajectory Attention
is not the main reason for the improvement. Thus, we replace our ORViT with a standard Trajectory
Attention on the Diving48 and AVA datasets. The top1 accuracy on Diving48 are improved by 4.5%
(from 80.0 to 84.5) with trajectory attention, while using our ORViT+TimeSformer achieves 88.0
(3.5% improvements on top of that). The MAP on AVA are the same as the baseline with trajec-
tory attention (25.5), while using our ORViT+MViT-B achieves 26.6 (1.1 improvements on top of
the baseline). We note that our Mformer is the baseline on EK100, SSv2, and SomethingElse, and
therefore the trajectory attention is already part of the model, and hence this demonstration is not
needed.

Box Position Encoder. Our “Box Position Encoder” transforms from a tensor of size TO to size
THW . Our implementation of this transformation uses box information so that each object is
mapped to the “correct” region in space. A simpler approach would have been to expand the shape of
TO to THW without using boxes. We refer to the latter as a standard tensor expansion. Comparing
the two methods, we find out that our approach obtains 69.7 compared to 68.4, showing that our
box-based encoding performs better.
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D ADDITIONAL EXPERIMENTS

Here we present additional results of the standard action recognition task. Additionally, we show a
lightweight version of the “Object-Dynamics Module” that significantly reduces the model parame-
ters without losing significant performance.

D.1 LIGHT-WEIGHT OBJECT-DYNAMICS MODULE

Dataset Model Boxes Dimension Top-1 Top-5 GFLOPs (109) Param (106)

SomethingElse

Baseline - - 60.2 85.8 369.5 109

Ours GT
128 68.7 90.3 382 112
256 68.9 90.5 383 114
768 69.7 91.0 408 148

SSv2

Baseline - - 66.5 90.1 369.5 109

Ours

GT
128 73.4 93.5 382 112
256 73.7 93.6 383 114
768 73.8 93.7 405 148

Detected
128 67.2 90.4 382 112
256 67.3 90.5 383 114
768 67.9 90.5 405 148

Table 5: A light-weighted version of ORViT.

In Table 4a, we show that the “Object-Dynamics Module” improves by 2.3% the top-1 accuracy
with an additional 39M parameters (148M Vs. 109M). We would like to demonstrate that our main
approach is the main reason for the observed improvements and not necessarily the addition of more
parameters. Here, we present a light-weight version of the module that reduces the embedding
dimensions without losing significant accuracy. See Table 5.

As mentioned in the main paper (see Section 3), we use B̃ for the coordinate embeddings and object-
time position embedding in the “Object-Dynamics Module”. We validate how the dimension size of
B̃ is responsible for the action accuracy. We observe that reducing the dimension of B̃ from 768 to
256 has little impact on the action accuracy in SSv2 (73.8% Vs. 73.7% for ground-truth boxes and
67.9% Vs. 67.3% for detected boxes) and SomethingElse (68.7% Vs. 67.9%), although having only
114M model parameters (only addition of 5M parameters to the Mformer baseline that has 109M).

Indeed this indicates that our main approach is the main reason for the observed improvements and
not necessarily more parameters.

D.2 RESULTS

We next report in Table 6 the full results table for the standard action recognition task, including
extra models, which were not included in the main paper.

E QUALITATIVE VISUALIZATIONS

To provide insight into the inner representation of ORViT we provide further visualization next.
See Figure 5 and Figure 6. In Figure 5, we visualize the attention map of the CLS token on all
spatial tokens. It can be seen that object-regions indeed affect these spatial maps. For example,
“Tearing something into two pieces” (top left corner) demonstrates that ORViT+Mformer success-
fully separates the two pieces of the paper, while the Mformer baseline does not. Next, in Figure 6
we visualize the attention allocated to each of the object keys. It can be seen that the object keys in
ORViT indeed affect their corresponding spatial tokens.
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Table 6: Comparison to the state-of-the-art on video action recognition. We report pretrain, param (106),
GFLOPS (109) and top-1 (%) and top-5 (%) video action recognition accuracy on SSv2. We also report when
our model uses ground-truth (GT) and detected boxes. On Epic-Kitchens100 (EK100), we report top-1 (%)
action (A), verb (V), and noun (N) accuracy. On Diving48 we report pretrain, number of frames and top-1 (%)
video action recognition accuracy. For EK100 and Diving48 we used only detected boxes since ground-truth
does not exist.

(a) Something–Something V2

Model Boxes Pretrain Top-1 Top-5 GFLOPs×views (109) Param (106)

SlowFast, R50 7 K400 61.7 87.0 65.7×3×1 34.1
SlowFast, R101 7 K400 63.1 87.6 106×3×1 53.3
TSM 7 K400 63.4 88.5 62.4×3×2 42.9
STM 7 IN-1K 64.2 89.8 66.5×3×10 -
MSNet 7 IN-1K 64.7 89.4 67×1×1 24.6
TEA 7 IN-1K 65.1 - 70×3×10 -
bLVNet 7 IN-1K 65.2 90.3 128.6×3×10 -

VidTr-L 7 IN-21K+K400 60.2 - 351×3×10 -
TimeSformer-L 7 IN-21K 62.5 - 1703×3×1 121.4
ViViT-L 7 IN-21K+K400 65.4 89.8 3992×4×3 -
MViT-B, 32 7 K400 67.1 90.8 170×3×1 36.6
MViT-B, 64 7 K400 67.7 90.9 455×3×1 36.6
MViT-B, 32 7 K600 67.8 91.3 170×3×1 36.6
MViT-B, 64 7 K600 68.7 91.5 236×3×1 53.2

Mformer 7 IN-21K+K400 66.5 90.1 369.5× 3× 1 -
Mformer-L 7 IN-21K+K400 68.1 91.2 1185.1× 3× 1 109
Mformer + STIN GT IN-21K+K400 66.9 89.4 369.5× 3× 1 111
Mformer + STRG GT IN-21K+K400 69.1 90.9 375× 3× 1 117
Mformer + STRG + STIN GT IN-21K+K400 69.2 90.9 375× 3× 1 119

ORViT Mformer (Ours) Detected IN-21K+K400 67.9 (+1.4) 90.5 (+0.4) 405× 3× 1 148
ORViT Mformer (Ours) GT IN-21K+K400 73.8 (+7.3) 93.6 (+3.5) 405× 3× 1 148
ORViT Mformer-L (Ours) Detected IN-21K+K400 69.5 (+1.4) 91.5 (+0.3) 1259× 3× 1 148.2
ORViT Mformer-L (Ours) GT IN-21K+K400 74.9 (+6.8) 94.2 (+3.0) 1259× 3× 1 148.2

(b) Diving48

Model Pretrain Frames Top-1

I3D K400 8 48.3
TSM ImageNet 3 51.1
TSN ImageNet 3 52.5
GST-50 ImageNet 8 78.9
ST-S3D K400 8 50.6

SlowFast, R101 K400 16 77.6
TimeSformer IN-21K 16 74.9
TimeSformer-HR IN-21K 16 78.0
TimeSformer-L IN-21K 96 81.0
TQN K400 ALL 81.8

TimeSformer IN-21K 32 80.0
TimeSformer + STIN IN-21K 32 81.0
TimeSformer + STRG IN-21K 32 78.1
TimeSformer + STRG + STIN IN-21K 32 83.5

ORViT TimeSformer (Ours) IN-21K 32 88.0 (+8)

(c) Epic-Kitchens100

Method Pretrain A V N

TSN IN-1K 33.2 60.2 46.0
TRN IN-1K 35.3 65.9 45.4
TBN IN-1K 36.7 66.0 47.2
TSM IN-1K 38.3 67.9 49.0
SlowFast K400 38.5 65.6 50.0

TimeSformer IN-21K 32.9 55.8 50.1
ViViT-L IN-21K+K400 44.0 66.4 56.8
Mformer IN-21K+K400 43.1 66.7 56.5
Mformer-L IN-21K+K400 44.1 67.1 57.6
Mformer-HR IN-21K+K400 44.5 67.0 58.5

Mformer-HR + STIN IN-21K+K400 44.2 67.0 57.9
Mformer-HR + STRG IN-21K+K400 42.5 65.8 55.4
MF-HR + STRG + STIN IN-21K+K400 44.1 66.9 57.8

ORViT Mformer-HR IN21K+K400 45.7 (+1.2) 68.4 (+1.4) 58.7 (+.2)
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ORViT-
Mformer

Mformer

“Tearing something into two pieces” “Stuffing something into something”

“Turning the camera left while filming something”

ORViT-
Mformer

Mformer

“Putting something that can't roll onto a 
slanted surface, so it stays where it is”

Figure 5: Attention Maps comparison between the ORViT+Mformer and the Mformer on videos from the
SSv2 dataset. The visualization shows the attention maps corresponding to the CLS query.

“Dropping something behind something”

BOX
0

BOX
1

BOX
2

“Moving something and something away 
from each other”

BOX
0

BOX
1

BOX
2

Figure 6: Object contribution to the patch tokens. For each object token, we plot the attention weight given
by the patch tokens, normalized over the patch tokens.
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