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Abstract 

Background and 
Aims 

Early identification of cardiac structural abnormalities indicative of heart failure is crucial to improving patient outcomes. Chest 
X-rays (CXRs) are routinely conducted on a broad population of patients, presenting an opportunity to build scalable screening 
tools for structural abnormalities indicative of Stage B or worse heart failure with deep learning methods. In this study, a model 
was developed to identify severe left ventricular hypertrophy (SLVH) and dilated left ventricle (DLV) using CXRs.  

Methods A total of 71 589 unique CXRs from 24 689 different patients completed within 1 year of echocardiograms were identified. 
Labels for SLVH, DLV, and a composite label indicating the presence of either were extracted from echocardiograms. A 
deep learning model was developed and evaluated using area under the receiver operating characteristic curve 
(AUROC). Performance was additionally validated on 8003 CXRs from an external site and compared against visual assess-
ment by 15 board-certified radiologists.  

Results The model yielded an AUROC of 0.79 (0.76–0.81) for SLVH, 0.80 (0.77–0.84) for DLV, and 0.80 (0.78–0.83) for the com-
posite label, with similar performance on an external data set. The model outperformed all 15 individual radiologists for 
predicting the composite label and achieved a sensitivity of 71% vs. 66% against the consensus vote across all radiologists 
at a fixed specificity of 73%.  

Conclusions Deep learning analysis of CXRs can accurately detect the presence of certain structural abnormalities and may be useful in 
early identification of patients with LV hypertrophy and dilation. As a resource to promote further innovation, 71 589 CXRs 
with adjoining echocardiographic labels have been made publicly available.  
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Structured Graphical Abstract   

Can chest X-rays (CXRs) be used for the detection of left ventricular hypertrophy and dilation?

Deep learning analysis of CXRs accurately detected left ventricular hypertrophy and dilation, and outperformed board-certified
radiologists, with better sensitivity at the same specificity.

Deep learning analysis of CXRs shows promise as a tool to identify patients with undiagnosed left ventricular abnormalities.
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Deep learning for the assessment of chest X-rays

The deep learning model that was developed takes as input a pre-processed chest X-ray of dimension 224-by-224, age, and sex; the model outputs a 
probability for dilated left ventricle, severe left ventricular hypertrophy, and a composite label indicating the presence of either structural abnormal-
ity. The model outperforms all 15 board-certified radiologists in the task of detecting the presence of either abnormality (composite label). For a 
single point of comparison, we used the consensus vote amongst radiologists. The model achieves a sensitivity of 71% compared with the consensus 
vote sensitivity of 66% at a fixed specificity of 73%. Saliency maps demonstrate that at shallower layers in the network, the model is sensitive to the 
broader cardiac silhouette as well as structures in the left heart. AI, artificial intelligence; AUROC, area under the receiver operating characteristic 
curve; CXR, chest X-ray; DLV, dilated left ventricle; IVSd, interventricular septal thickness at end-diastole; LVIDd, left ventricular internal diameter at 
end-diastole; LVPWd, left ventricular posterior wall distance at end-diastole; SLVH, severe left ventricular hypertrophy.  

Keywords Deep learning • Chest X-rays • Early detection • Heart failure • Dilated left ventricle • Left ventricular hypertrophy  

Introduction 
Early identification of structural changes to the heart is critical to im-
proving outcomes for patients with heart failure. Initial signs and symp-
toms of early-stage heart failure can be non-specific, often resulting in 
delays in diagnostic echocardiography.1,2 Millions of patients with left 
ventricular (LV) structural abnormalities remain undiagnosed and later 
diagnosis is associated with worse outcomes.1–3 Routinely diagnosing 
heart failure earlier, ideally when only structural abnormalities are pre-
sent but patients are not yet symptomatic, remains an elusive but 
critical goal in cardiology.4 An accurate, broadly applicable, and cost- 

effective method of detecting LV structural abnormalities could lead 
to earlier diagnosis of heart failure and improved outcomes. 

Echocardiography is the primary diagnostic study for LV structural ab-
normalities5–8 but is usually only performed on a narrow patient popula-
tion with high pre-test probability.9,10 On the other hand, chest X-rays 
(CXRs) are relatively inexpensive and much more frequently performed 
on a broader population of patients.11,12 Recent work has shown that 
deep learning methods can effectively detect reduced ejection frac-
tion,13,14 valvular heart disease,15–17 and LV hypertrophy18 from cardiac 
tests such as echocardiograms and electrocardiograms. However, there 
has been limited work on building methods for detecting cardiac pathology  
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with CXRs. Identification of incidental cardiac abnormalities in patients 
undergoing a CXR may allow for earlier recognition and treatment of car-
diac disease. In this study, we sought to use CXRs to detect two primary 
cardiac structural abnormalities indicative of heart failure: severe LV hyper-
trophy (SLVH) and dilated left ventricle (DLV). 

Deep learning methods utilizing CXRs have lacked both variety and 
quality in labels for cardiac conditions. Prior models19,20 have primarily 
focused on detecting cardiomegaly, a non-specific term to indicate an 
abnormally enlarged heart. However, radiographic cardiomegaly is 
poorly predictive of cardiac disease, and there are no guideline-directed 
recommendations for further workup in its presence.21,22 We sought to 
determine whether more clinically actionable diagnoses of SLVH and 
DLV derived from echocardiograms could be detected using CXRs. In 
this study, we (i) developed a deep learning model to accurately identify 
SLVH and DLV using CXRs, (ii) assessed model performance when ap-
plied to a different hospital’s data, (iii) compared the model’s accuracy in 
detecting pathology vs. that of 15 radiologists, and (iv) applied saliency 
mapping to determine which parts of the CXRs the model were most 
sensitive to in making predictions. The development of an artificial intel-
ligence (AI) model that can accurately detect LV structural abnormalities 
from inexpensive, prevalent exams like CXRs represents a novel solu-
tion to diagnosing heart failure earlier in the disease process. 

Methods 
Data sources and cohort construction 
All patients who had both a CXR and an echocardiogram conducted at 
Columbia University Irving Medical Center (CUIMC) from January 2013 
to August 2018 were identified. Chest X-rays in their full resolution were 
extracted in DICOM format and filtered to only include posteroanterior 
(PA) films. All portable anteroposterior films were excluded to prevent la-
bel leakage from the model potentially associating portable films with pa-
tients more likely to have cardiac pathology. Chest X-ray metadata were 
used to identify demographic information including age and sex. The echo-
cardiograms were accessed through the Syngo Dynamics system (Siemens 
Healthineers, Malvern, PA, USA). For each echocardiogram, the following 
continuous measures were extracted from the parasternal long-axis view 
using our enterprise data warehouse that stores finalized reports: interven-
tricular septal thickness at end-diastole (IVSd), LV internal diameter at end- 
diastole (LVIDd), and LV posterior wall distance at end-diastole (LVPWd). 

After extraction, only CXRs for patients with at least one echocardio-
gram conducted within 12 months (i.e. before or after CXR) were retained 
in the final data set. In constructing the data set, our objective was to create 
pairs of CXRs and echocardiograms close enough in temporal proximity 
where signs of structural abnormality could plausibly be present on a 
CXR, given a positive indication via echocardiogram. The data set contains 
patients who may have heart failure at any stage (i.e. asymptomatic or symp-
tomatic). While structural changes may take place over the course of 12 
months, these changes are typically slow to progress. To assess the impact 
of choosing a different cut-off window for associating a CXR with an 
echocardiogram-derived label, we evaluated how drastically IVSd, LVIDd, 
LVPWd, and LV ejection fraction (LVEF) change between successive echo-
cardiograms conducted on the same patient (Supplementary data online, 
Figure S7). It was determined that the magnitude of the difference in mea-
surements was not significantly different when the temporal difference be-
tween successive echocardiograms was larger. 

The final data set consisted of 71 589 unique CXRs conducted on 24 689 
different patients (Figure 1). Using the echocardiographic measurements, 
gold-standard labels for IVSd, LVIDd, and LVPWd were assigned to each 
CXR. For any CXR with multiple echocardiograms conducted within 12 
months, the maximum of each echocardiographic measurement across all 
studies was taken. A majority of CXR and echocardiogram pairs were 

conducted within 6 months of each other, indicating that continuous mea-
surements recorded via echocardiogram are in close temporal proximity 
to the CXR (Supplementary data online, Figures S5 and S6). Binary diagnosis 
labels for SLVH and DLV were derived by thresholding echocardiographic 
measurements in accordance with current guidelines.8 Men with IVSd >  
1.5 cm or LVPWd > 1.5 cm and women with IVSd > 1.4 cm or LVPWd >  
1.4 cm were identified as SLVH cases. Meanwhile, men with LVIDd >  
5.9 cm and women with LVIDd > 5.3 cm were identified as DLV cases. A 
composite binary label was also constructed indicating the presence of either 
SLVH or DLV. We chose to focus on the modelling SLVH in lieu of mild and 
moderate LVH for two primary reasons: (i) we hypothesized that CXRs 
would not carry a rich enough signal for the detection of mild/moderate 
cases, and (ii) we wanted to ensure a fair comparison with radiologist assess-
ments, since a pre-study survey of radiologists indicated that mild/moderate 
cases would not be easily indicated on a CXR if read by human experts. 

Each patient in the final cohort was randomly assigned to a training (90%), 
validation (5%), or test set (5%) to ensure that CXRs for a given patient 
were limited to a single partition. As a resource to promote further innov-
ation, we have made all CXRs with adjoining echocardiographic labels a 
publicly available data set. 

To assess how well our model performed on data from another institu-
tion, we reported its performance on a data set from Stanford University 
Medical Center consisting of 8003 PA CXRs from 4657 patients completed 
between October 2002 and July 2017 where an echocardiogram was com-
pleted within 12 months. The data set was curated using a procedure iden-
tical to that used for building the CUIMC data set with the exception that 
echocardiographic data were abstracted from a Philips Xcelera system. 

Data pre-processing and model architecture 
Chest X-rays were first cropped to a 1:1 aspect ratio and downsampled to a 
224-by-224 pixel image using bicubic interpolation to ensure images were 
the same size. To improve the contrast of images, contrast-limited adaptive 
histogram equalization23 was applied to each image and Gaussian noise was 
added to each image in the training set to improve generalization perform-
ance. The DenseNet-12124 architecture was used as the backbone of the 
model as it has been shown to learn effective representations of CXRs using 
a series of convolutions and residual connections.19,20,25 The representa-
tion of the image at the last layer of the neural network along with sex 
and the continuous age of the patient at the time of the CXR was combined 
to produce a single data vector. Using this vector, the model produced es-
timates for the three continuous echocardiogram measurements: LVPWd, 
IVSd, and LVIDd. Based on these estimates, a probability for each of the bin-
ary labels (SLVH, DLV, and composite SLVH/DLV) was computed and used 
for assessing the evaluation metrics (Structured Graphical Abstract). Further 
details about the model architecture and optimization are included in the  
Supplementary data online, Methods S1. 

Model evaluation 
We conducted three primary evaluations of the model: (i) internal site val-
idation evaluating the trained model on a held-out test set, (ii) external val-
idation on an independent test set obtained from a different institution, and 
(iii) comparison of model performance to that of 15 radiologists on a subset 
of sampled CXRs. We also assessed the performance of our model on key 
subpopulations: (i) a subset including only CXRs from the 12 months pre-
ceding the patient’s first echocardiogram to determine if performance was 
similar before a diagnosis of heart failure was made and (ii) a subset exclud-
ing patients with pacemakers (PMs), heart transplants (HTs), and lung trans-
plants (LTs); the model may perform well in each of these populations by 
using information not related to cardiac anatomy (e.g. learning to positively 
classify patients when a PM present). The metrics we reported are area un-
der the receiver operating characteristic curve (AUROC), area under the 
precision–recall curve, sensitivity, specificity, and positive predictive value 
(PPV). We used bootstrapping methods to construct 95% confidence inter-
vals (CIs) around each statistic. Since multiple CXRs may be present for  
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each patient, we also report the test set results with one CXR per patient 
(i.e. the average across resampling a single random CXR per patient). See  
Supplementary data online, Methods S1 for more details. 

Chest X-rays prior to first echo analysis 
For evaluating the model on a patient population more likely to be asymptom-
atic, we evaluated its performance on patients who had CXRs performed prior 
to their first recorded echocardiogram at CUIMC. Patients in this subpopula-
tion are of interest because their pre-test probability for structural disease is 
lower since their providers have yet to order an echocardiogram. For the 
CUIMC test set, we isolated all CXRs conducted prior to a first echocardio-
gram and evaluated using the same performance statistics described previously. 

Exclusion of pacemakers and heart/lung 
transplant cases 
Medical device implantation and organ transplants are common interven-
tions in cases of late-stage heart failure. This patient population is enriched 
for structural heart problems, including SLVH and DLV. Deep learning 
models are prone to learning spurious confounders26 and exploiting 
them for prediction. This can cause failures27 when models are deployed 
in populations where such correlations may not exist. To ensure that the 
model was not using these attributes to infer patient status, we identified 
and excluded patients with PM, implantable cardioverter defibrillators 
(ICDs), or HTs/LTs. This was done by compiling a list of common phrases 
representing each concept and using regular expressions to identify their 

mentions within the diagnostic statements accompanying each CXR 
(Supplementary data online, Table S1). This identification method had 
95% accuracy in a manual review of 200 randomly selected studies. 

Thereby, we identified three categories of CXR based on the presence of 
(i) PM/ICD, (ii) HT, or (iii) LT. We constructed data subsets by excluding 
each category (and combinations thereof). For each subset, we generated 
new partitions, retrained, and re-evaluated to compare held-out perform-
ance against models trained using the full data set. 

Comparison with radiologists 
To provide a comparison of model performance against experts, we re-
cruited 15 board-certified radiologists. Ten were academic radiologists, 
with the remaining practicing in community hospitals. Five were chest sub- 
specialty attending physicians, three were completing chest fellowship, and 
the remaining were general radiology attending physicians. All regularly read 
CXRs as part of their practice; the average number of years of experience as 
radiologists was 11.4 years. A data set was constructed consisting of 204 
images from the CUIMC test set and 204 images from the Stanford test 
set. We sampled 68 images each from CUIMC and Stanford (one-third 
of each sample), which were positive for the composite label, ensuring 
that SLVH and DLV were each present in at least half of the positives. 
The remaining images were randomly sampled from the set of CXRs, which 
were negative for the composite label. 

A pre-study survey of radiologists found that cardiomegaly could re-
present one of four underlying pathologies: SLVH, DLV, dilated right 

276,527 chest X-rays performed in

from 2013 to 2018

from 2013 to 2018 from 2013 to 2018

X-rays

Figure 1 Cohort construction. Chest X-rays in their full resolution were extracted in DICOM format and filtered to only include posteroanterior 
frontal films. Echocardiograms were filtered to only those with all three continuous measurements of interest (interventricular septal thickness at end- 
diastole, left ventricular internal diameter at end-diastole, and left ventricular posterior wall distance at end-diastole) recorded. Only chest X-rays for 
patients with at least one echocardiogram conducted within 12 months were retained in the final data set. The final data set consisted of 71 589 unique 
chest X-rays conducted on 24 689 different patients. Each patient in the final cohort was randomly assigned to a training (90%), validation (5%), or test 
set (5%) to ensure that chest X-rays for a given patient were limited to a single partition. CXR, chest X-ray.   
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ventricle, and large pericardial effusion. The latter two pathologies were 
present in <1% of the total data, and studies with either present were ex-
cluded in the head-to-head comparison to ensure the radiologist’s defin-
ition of cardiomegaly aligned with the model prediction. Each radiologist 
was given the full resolution CXRs to read and asked to label each for 
the presence of cardiomegaly as they would in routine clinical practice; 
see Supplementary data online, Methods S1 for the exact prompt given to 
radiologists. The radiologists were informed that their interpretations 
would be compared with an AI model for accuracy of detecting SLVH or 
DLV. We compared the model’s performance on the same set of images 
against each individual radiologist and against the consensus vote across 
all radiologists. 

Saliency mapping 
Class activation mapping28 (CAM) was used to visualize the regions 
within CXRs to which our model’s output was most sensitive. Class 
activation mapping allowed us to assess if the model was sensitive to 
components of a CXR, which could reasonably be relied upon to 
estimate the sizes of cardiac structures. Similarly, they allowed us to 
inspect the model’s sensitivity to PMs, LV assist devices, and other 
implanted medical devices that may have been informative confounders 
to the presence of SLVH and DLV. There are growing concerns that 
current state-of-the-art CAM approaches can lead to a false sense of 
assuredness that models are not attending to confounders. We 
therefore visualized layers at various depths using LayerCAM,29 a 
newer CAM algorithm developed specifically for this purpose. For fur-
ther details about how these visualizations were generated, see the  
Supplementary data online, Methods S1. 

Results 
We identified 71 589 unique CXRs conducted on 24 689 different pa-
tients completed within 1 year of an echocardiogram. The data set con-
sisted of more females than males (57% female and 43% male) and a 
mean patient age of 62 years (Table 1). The label prevalences were as 
follows: 8.7% positive for SLVH, 6.0% positive for DLV, and 13.8% posi-
tive for the composite label. Using just age and sex, we fit logistic regres-
sion and gradient-boosted trees for each of the three binary labels. Age 
and sex alone were poor predictors for all three of the labels with an 
AUROC ranging from 0.51 to 0.59 (Supplementary data online, 
Table S2). 

Model performance 
The full model, which takes as input a single CXR, age, and sex, pro-
duces predicted probabilities for SLVH, DLV, and the composite label. 
This model yielded an AUROC of 0.79 (95% CI 0.76–0.81) for SLVH, 
0.80 (95% CI 0.77–0.84) for DLV, and 0.80 (95% CI 0.78–0.83) for 
the composite label (Figure 2). Model performance was similar in an 
analysis restricted to a single randomly selected CXR per patient 
(Supplementary data online, Table S3). Performance was not significant-
ly different when stratified by months between CXR and echocardio-
gram, suggesting that the choice to pair CXRs and echocardiograms 
as many as 12 months apart did not have a significant impact on label 
quality (Supplementary data online, Figure S8). 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Table 1 Patient characteristics  

CUIMC train CUIMC validation CUIMC test Stanford external  

CXRs, n 64 619 3303 3667 8003 

Patients, n 22 220 1234 1235 4657 

Age, years 62.2 ± 16.2 62.3 ± 16.4 62.1 ± 16.2 59.0 ± 16.5 

Age groups, years   

<59 25 493 (39.5) 1334 (40.4) 1428 (38.9) 3812 (47.6)  

60–69 17 508 (27.1) 844 (25.6) 1032 (28.1) 2000 (25.0)  

70–79 13 324 (20.6) 658 (19.9) 711 (19.4) 1336 (16.7)  

80+ 8294 (12.8) 467 (14.1) 496 (13.5) 855 (10.7) 

Female sex 12 633 (56.9) 696 (56.4) 707 (57.2) 1820 (39.1) 

Echo measures   

IVSd 2D 1.12 ± 0.27 1.12 ± 0.26 1.12 ± 0.23 1.17 ± 0.23  

LVPWd 2D 1.07 ± 0.23 1.07 ± 0.22 1.07 ± 0.20 1.14 ± 0.21  

LVd 2D 4.61 ± 0.68 4.65 ± 0.73 4.58 ± 0.60 5.01 ± 0.99  

LVEF 56.2 ± 11.2 55.2 ± 11.9 56.6 ± 11.2 – 

Labels   

SLVH 5621 (8.7) 301 (9.1) 269 (7.3) 826 (10.3)  

DLV 3898 (6.0) 300 (9.1) 145 (4.0) 1368 (17.1)  

Composite 8889 (13.8) 580 (17.6) 392 (10.7) 2016 (25.2) 

Data are reported as mean ± SD or n (%). The only patient-level static characteristic is sex. All other statistics are summarized on a per CXR–echocardiogram pair basis (including age as it 
may change across different CXRs for the same patient).   
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Using this trained model, we also evaluated our performance on a 
separate validation set from Stanford University (8003 CXRs on 
4657 patients). In this data set, the AUROC was 0.67 (95% CI 0.65– 
0.69) for SLVH, 0.78 (95% CI 0.76–0.79) for DLV, and 0.76 (95% CI 
0.75–0.77) for the composite label (Figure 3 and Supplementary data 
online, Table S3). Performance suffered more significantly on the 
SLVH label as compared with DLV and the composite label. The label 
prevalences in this external data set were larger than those of 
Columbia’s data set (10.3% for SLVH, 17.1% for DLV, and 25.2% for 
the composite label), and the data set had a higher proportion of 
men than women (39% female and 61% male), though mean age was 
similar at 59 years (Table 1). 

Performance on chest X-rays done prior 
to first echocardiogram 
The patient population used to train the model consisted of patients 
who may have already received an echocardiogram prior to a CXR. 
In a deployment scenario, the most impactful use case of the model 
would be to identify patients who have high risk for previously un-
diagnosed heart failure. To evaluate how the model performed on 
this key subpopulation, we isolated CXRs conducted prior to the 
first recorded echocardiogram for every patient in the test set. On 
this population, the model maintained an AUROC of 0.80 (95% 
CI 0.75–0.86) on the composite label (Supplementary data online, 
Table S4). 

Performance removing potential imaging 
confounders 
We reported the performance characteristics (Supplementary data 
online, Tables S5 and S8) of three models that were each re-trained 
by excluding different subpopulations: (i) excluding all PM and ICD, 
(ii) excluding all LT and HT patients, and (iii) excluding both (i) and (ii). 
The characteristics of each of these subpopulations are available in  
Supplementary data online, Table S6. There was no significant difference 
in composite label performance across all models, indicating stable mod-
el performance even in populations excluding these patient subtypes. 

Performance in demographic 
subpopulations 
It is well-known that certain patient populations can have a higher base-
line risk for heart failure. Black adults are at higher risk of heart failure 
compared with White adults.30 Similar trends have been noted in the 
case of ethnicity, where Hispanic adults are at a higher risk compared 
with non-Hispanics.31 We conducted an analysis of performance on 
four additional subpopulations across which risk is likely to be different: 
ethnicity, race, sex, and age (Supplementary data online, Table S7). We 
found that there is no significant difference in model performance on 
the composite label across non-Hispanics and Hispanics nor across 
Black and White patients (Supplementary data online, Figure S4). 
Performance was also similar across males and females, as well as across 
different age groups. This finding suggests that the model may perform 

Figure 2 Columbia University Irving Medical Center test set area under the receiver operating characteristic curve/area under the precision–recall 
curve. The deep learning model fit on Columbia University Irving Medical Center data achieves an area under the receiver operating characteristic curve 
of 0.79 (0.76–0.81) for severe left ventricular hypertrophy, 0.80 (0.77–0.84) for dilated left ventricle, and 0.80 (0.78–0.83) for the composite label on the 
test set. The precision–recall curve shows the trade-off between positive predictive value (y-axis) and sensitivity (x-axis). For example, on the composite 
label, the model has a positive predictive value of 35% at a sensitivity of 50% and a specificity of 89%. Dilated left ventricle and severe left ventricular 
hypertrophy, by comparison, have lower area under the precision–recall curve values partly due to a lower baseline prevalence. CUIMC, Columbia 
University Irving Medical Center; AUROC, area under the receiver operating characteristic curve; AUPRC, area under the precision–recall curve; 
DLV, dilated left ventricle; SLVH, severe left ventricular hypertrophy.   
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well even within populations in which patients are at different baseline 
levels of risk. 

Comparison with radiologists 
We compared the model’s performance on a subset of 408 randomly 
sampled images (204 from CUIMC and 204 from Stanford) to that of 
15 board-certified radiologists. The composite model’s AUROC on 
this set of images was 0.79. The model outperformed each of the 15 
radiologists, achieving better sensitivity at the same specificity attained 
by a given radiologist. We additionally used the consensus vote label as a 
proxy for ‘average’ performance. Using the consensus vote as a single 
point of comparison, we looked at the model’s sensitivity at the same 
specificity as the consensus vote. The consensus vote across all radiol-
ogists had a sensitivity of 66%, a specificity of 73%, and a PPV of 55%. At 
the same specificity as the consensus vote, the model achieved a sensi-
tivity of 71%. At the same sensitivity as the consensus vote, the model 
achieved a PPV of 63% (Figure 4). 

Saliency mapping 
For all 3667 CXRs in the CUIMC test set, we generated LayerCAM vi-
sualizations targeting each continuous label at every DenseBlock and 
TransitionLayer within our DenseNet-121 architecture. These visuali-
zations were systematically reviewed to identify global patterns that 
emerged consistently across many CXRs.32 

For any given CXR, the visualizations generated for IVSd, LVIDd, and 
LVPWd were very similar. Figure 5 shows LayerCAM heatmaps target-
ing LVPWd for a sample of five CXRs, each from a distinct patient 

(Supplementary data online, Figures S1 and S2 respectively show the cor-
responding heatmaps targeting IVSd and LVIDd). As seen in this sample, 
heatmaps for the deepest layer (DenseBlock4) showed sensitivity to a 
broad area in the centre of the CXR corresponding to the cardiac sil-
houette. Meanwhile, at slightly shallower layers (DenseBlock3 and 
TransitionLayer3), heatmaps were more concentrated within the bor-
ders of the cardiac silhouette and often highlighted areas corresponding 
to the left ventricle. At shallower layers (DenseBlock1 and 2 and 
TransitionLayer1 and 2), patterns of sensitivity were far less consistent 
across CXRs, though sensitivity to various regions along the periphery of 
the cardiac silhouette was regularly observed. 

LayerCAM heatmaps often did not show sensitivity to implanted 
medical devices. However, the model did appear sensitive to PMs par-
ticularly at shallower layers (e.g. Figure 5, third row; DenseBlock1 and 2 
and TransitionLayer1 and 2), though sensitivity to cardiac structures 
was often more pronounced. 

Discussion 
The main findings of this study are as follows: (i) we developed and de-
monstrated that a deep learning model can accurately identify patients 
with LV structural abnormalities associated with heart failure using only 
CXRs (composite SLVH/DLV; AUROC: 0.80); (ii) model performance 
remains similar when evaluated on data from an external site; (iii) the 
model outperforms a group of board-certified radiologists for identify-
ing the presence of either structural abnormality, a benchmark never 
previously achieved; (iv) on CXRs conducted prior to the first 

Figure 3 Stanford external set area under the receiver operating characteristic curve/area under the precision–recall curve. The external data set 
from Stanford University Medical center consisted of 8003 posteroanterior chest X-rays conducted on 4657 patients. The model’s area under the 
receiver operating characteristic curve on this external data set was 0.67 (95% confidence interval 0.65–0.69) for severe left ventricular hypertrophy, 
0.78 (95% confidence interval 0.76–0.79) for dilated left ventricle, and 0.76 (95% confidence interval 0.75–0.77) for the composite label. The area under 
the precision–recall curve for the composite label is 0.53 (95% confidence interval 0.51–0.56) partly due to a higher prevalence of both severe left 
ventricular hypertrophy and dilated left ventricle. AUROC, area under the receiver operating characteristic curve; AUPRC, area under the preci-
sion–recall curve; DLV, dilated left ventricle; SLVH, severe left ventricular hypertrophy.   
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echocardiogram, model performance is the same or better across la-
bels, demonstrating promise for using the model as a screening tool; 
and (v) saliency maps of shallower layers reveal that the model is sen-
sitive to the cardiac silhouette and areas around the left ventricle. 

The principal research question we sought to address was whether 
CXRs contain enough information for the accurate detection of struc-
tural abnormalities indicative of structural heart disease. The model we 
built demonstrates good performance on all three structural abnormal-
ity labels we assessed including SLVH (AUROC: 0.79), DLV (AUROC: 
0.80), and a composite label representing the union of both labels 
(AUROC: 0.80). 

Assessing model performance using data from independent sites is 
crucial to ensure that the model is not narrowly applicable for certain 
populations or learning spurious signal in the training population. The 
decrease in performance on the SLVH label in the Stanford data set 
was the most pronounced amongst all labels. Possible causes for per-
formance drops include (i) explicit differences in the input data (e.g. dif-
ferent devices used to conduct CXRs and distinct pre-processing steps 
prior to saving images), (ii) distinct patient populations (e.g. a particular 
structural abnormality may be more common at Stanford vs. CUIMC), 
(iii) differences in practices related to reading echocardiograms, 
(iv) noisier labels due to more rapid structural changes over shorter 
periods of time. Machine learning models have been known to be sus-
ceptible to these kinds of data distribution shifts.33–35 We trained a 
model to predict the source institution given a data set of CXRs 

from both institutions and the model had near-perfect accuracy, indi-
cating a detectable difference in data distributions. Another hypothesis 
is a difference in the patient populations themselves, as can be clearly 
noted by the much larger prevalences of all labels in the external set. 
Despite these issues, the model still maintained relatively good accuracy 
on the composite label in the external set, showing promise that these 
results could be replicated at other sites as well. 

Beyond assessing generalizability, we also sought to assess perform-
ance on a population that would better replicate the set of patients who 
would benefit from heart failure screening. On CXRs conducted in the 
12 months prior to a patient’s first echocardiogram, the model had an 
AUROC of 0.80 on the composite label, establishing that the model 
maintains performance on a more realistic screening population. 

Explainability of deep learning models is critical for not only building 
trust in model outputs but also verifying that the model is not learning 
from confounding factors. The saliency maps showed that the model 
was sensitive to the broad cardiac silhouette and, at shallower layers, 
structures of the left heart. At shallower layers, the model was also 
slightly sensitive to the presence of implanted medical devices such as 
PMs. However, these layers still showed strong sensitivity to areas 
around the cardiac silhouette, showing that the signal coming from 
structures of the heart was most important and present in all images. 
These findings are consistent with results showing that the model main-
tains performance in the absence of populations with transplants or im-
plantable devices. Practitioners should consider visualizing shallower 

Figure 4 Model performance vs. radiologists. A separate data set of 408 chest X-rays sampled from Columbia University Irving Medical Center and 
Stanford data (204 from each) was used to compare model performance against radiologists. Each radiologist was given the full resolution chest X-rays 
to read and asked to label each for the presence of cardiomegaly as they would in routine clinical practice. The figure shows the performance of the 
model on the composite label against the radiologist’s best assessment of structural abnormality. A total of 15 radiologists (five chest attendings, three 
chest fellows, and seven general attendings) were asked to read the same set of images. The model outperforms all 15 individual radiologists, attaining a 
higher sensitivity at the same specificity as each radiologist. The consensus vote across all radiologists is displayed as an additional reader to serve as a 
single point of comparison to the model. At a fixed specificity of 73%, the model achieves a sensitivity of 71%, while the consensus vote sensitivity is 66%. 
At the same sensitivity as the consensus vote, the model achieves a positive predictive value of 63%, while the consensus vote positive predictive value is 
55%. AUROC, area under the receiver operating characteristic curve; AUPRC, area under the precision–recall curve; DLV, dilated left ventricle; SLVH, 
severe left ventricular hypertrophy.   
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layers in their models, particularly when interested in identifying sensi-
tivity to fine-grained structures to which deeper layers are less 
responsive. 

After establishing that the model can accurately identify structural 
abnormalities, it was important to evaluate how well the model per-
formed against the best clinical interpretation of structural abnormal-
ities by experts. The model outperformed all radiologists on the 
subset of 408 films, using the composite label as the gold standard 
for structural abnormality. At the same specificity, the model outper-
formed the consensus vote of all radiologists by 5% on sensitivity. 
While radiologists are not formally trained to diagnose SLVH and 
DLV, the study attempted to make the comparison as favourable to 
radiologists as possible. The CXRs used only included SLVH and DLV 
pathologies and excluded any other pathologies like dilated right ven-
tricle that may be another cause of cardiomegaly. Radiologists were 
told the comparison only had to do with cardiomegaly and given no 
time constraints. Given this prompting, they could solely focus on the 

characteristics of the cardiac silhouette. During routine clinical inter-
pretation, radiologists may be less attentive to the heart, resulting in po-
tentially worse performance. To date, studies have only shown AI 
models to be inferior to radiologists in diagnosing cardiac pathology 
from radiologic modalities. Our study establishes that a model trained 
on higher quality labels (echocardiographic wall/chamber measure-
ments) can outmatch the best possible clinical evaluation of cardiomeg-
aly using the same image. This is a strong indication that there is a finer 
signal in CXRs, which can be used to detect more actionable pathologic 
findings than cardiomegaly. 

The European Society of Cardiology (ESC) guidelines36 have recently 
advocated for more studies on screening for heart failure in asymptom-
atic patients. The American College of Cardiology (ACC), American 
Heart Association (AHA), and ESC all provide Class I indications for 
conducting CXRs in suspected new-onset heart failure. The ACC/ 
AHA guidelines4 though have noted the limited sensitivity and specifi-
city CXRs have in the diagnosing heart failure. Machine learning models 

Figure 5 LayerCAM for chest X-rays with respect to left ventricular posterior wall distance at end-diastole continuous label. The figure shows saliency 
maps for five patients amongst the true positives for the composite label. For each patient, the feature map for each intermediate layer in the model 
architecture is displayed (the corresponding model layer is indicated above each column). The heatmaps show which areas of the image the model are 
attending to for making predictions. In analysing all heatmaps of the test set, broad patterns emerged represented by these examples: (orange circle, 
Patient C) in earlier layers the model can show sensitivity to implanted devices as highlighted in the orange outline for Patient C; (pink circle, Patient D) in 
intermediate layers, heatmaps are more concentrated within the borders of the cardiac silhouette and often highlighted areas corresponding to the left 
ventricle as shown in the pink outline; (red circle, Patient D) in the final layer, the model shows sensitivity to a broad area in the centre of the chest 
X-rays corresponding to the cardiac silhouette as shown in the red outline. LVPWd, left ventricular posterior wall distance at end-diastole.   
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trained on high-quality labels derived from echocardiograms provide a 
way to significantly improve the diagnostic accuracy of a cheap, preva-
lent diagnostic test that already holds a Class I indication. 

The retrospective analyses presented herein are a necessary first 
step towards establishing the viability of detecting LV abnormalities 
from CXRs. This opens avenues for designing an approach to validating 
such a model prospectively. A prospective deployment strategy in 
which patients who undergo CXRs may be flagged by the model as 
high risk for structural abnormalities and referred for echocardiography 
may be an attractive strategy for diagnosing heart disease earlier, but 
how radiologists should best interact with such a technology requires 
further investigation. Since CXRs are a widely deployed clinical test 
across a variety of clinical settings, they may function as the ideal data 
modality to capture a certain proportion of this underdiagnosed 
population. 

Limitations 
Firstly, these continuous echocardiographic measurements are subject 
to interpretation and known to have inter-observer variability. We at-
tempted to mitigate this issue by modelling this noise in the form of a 
variance parameter. The method used to identify PMs, HTs, and LTs 
was reliant on using a specific set of keywords based on radiology re-
ports. This method may not have captured all patients in each subpo-
pulation, but clinician review found the method to have high 
precision after reviewing 150 studies for each keyword set. We were 
unable to similarly identify patients with sternotomy wires. In terms 
of the generalizability of our model, we were only able to obtain data 
from one external site. Machine learning models trained on medical 
images are known to be susceptible to data set shifts from numerous 
sources including the usage of different devices for recording a CXR 
with distinct settings and differing patient populations.33–35 To truly as-
sess the robustness of the model, a larger multi-site study would need 
to be conducted. To more closely match the population present in a 
hypothetical screening program, we assessed performance on a subset 
of the training data consisting of CXRs conducted prior to the first 
echocardiogram. A limitation of this approach is that these patients 
were within 1 year of echocardiographic diagnosis and may not be rep-
resentative of patients earlier in the disease course. Finally, while sali-
ency mapping techniques serve as useful methods for auditing and 
verifying that the model is sensitive to realistic features in the image, 
deep learning methods remain opaque in terms of explaining individual 
predictions. This poses a challenge for building trust amongst users. 

Conclusions 
To date, studies building machine learning models to evaluate cardiac 
pathology on CXRs have focused on predicting cardiomegaly, a diagno-
sis that is poorly predictive of cardiac disease. Our study is the first to 
demonstrate that CXRs can be used for detecting structural abnormal-
ities associated with Stage B37 or worse heart failure, potentially exped-
iting diagnosis and improving clinical outcomes. To our knowledge, it is 
also the first study showing an AI model can outperform radiologists in 
the detection of cardiac pathology. These results show early promise 
that machine learning may enable effective screening using cheap, 
prevalent imaging to identify patients with undiagnosed heart failure, 
potentially even in pre-symptomatic Stage B, through earlier detection 
of structural abnormalities. 
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