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ABSTRACT

Transformer-based large language models (LLMs) have demonstrated exceptional
capabilities in sequence modeling and text generation, with improvements scaling
proportionally with model size. However, the limitations of GPU memory have re-
stricted LLM training accessibility for many researchers. Existing heterogeneous
training methods significantly expand the scale of trainable models but introduce
substantial communication overheads and CPU workloads. In this work, we pro-
pose AutoHete, an automatic and efficient heterogeneous training system compat-
ible with both single-GPU and multi-GPU environments. AutoHete dynamically
adjusts activation checkpointing, parameter offloading, and optimizer offloading
based on the specific hardware configuration and LLM training needs. Addition-
ally, we design a priority-based scheduling mechanism that maximizes the overlap
between operations across training iterations, enhancing throughput. Compared to
state-of-the-art heterogeneous training systems, AutoHete delivers a 1.32x∼1.91x
throughput improvement across various model sizes and training configurations.

1 INTRODUCTION

The Transformer architecture (Vaswani et al., 2017) has become the foundation of Large Language
Models (LLMs) due to its excellent performance across various natural language processing (NLP)
tasks (Raffel et al., 2020; Devlin et al., 2018; Yang et al., 2019). Scaling laws (Kaplan et al., 2020)
suggests that model quality increases in model size, leading to the development of ever-larger models
like OPT (Zhang et al., 2022), BLOOM (Le Scao et al., 2023), and the GPT series (Radford et al.,
2018; 2019; Brown et al., 2020; Achiam et al., 2023). However, GPU memory capacity has increased
only 2.5-fold, from NVIDIA’s 32 GB V100 to the 80 GB H100, a minor increase compared to the
thousand-fold growth in model sizes over the past five years. This “GPU memory wall” (Gholami
et al., 2024) restricts the accessibility of LLM training for most researchers. Efforts to tackle this
issue mainly involve parallelism and memory-saving strategies for LLM training.

Leveraging data (Li et al., 2020), model (Shoeybi et al., 2019), pipeline (Huang et al., 2019), and
hybrid parallelism (Zheng et al., 2022), we can distribute activations, parameters, and optimizer
states across multiple GPUs, enabling scalable LLM training with improved efficiency. However,
this requires many GPUs, often too costly for most academic teams and small businesses, as train-
ing a 10-billion parameter model needs 16 NVIDIA V100 GPUs (Ren et al., 2021). Conversely,
memory-saving techniques like activation checkpointing (Kirisame et al., 2020; Zhao et al., 2023)
and heterogeneous training (Ren et al., 2021; Fang et al., 2022; Sun et al., 2022) allow significant
scaling on a single GPU.

To democratize transformer-based LLM training, we focus on memory-saving approaches that com-
plement distributed training methods to enhance model scalability and speed up training. Although
activation checkpointing reduces GPU memory usage by discarding and recomputing activation
tensors, it fails to adequately address the extensive memory needs for model data, which include pa-
rameters, gradients, and optimizer states that are crucial for LLM training. Heterogeneous training
presents a promising solution for LLMs by offloading model data to cheaper CPU memory. ZeRO-
Offload (Ren et al., 2021) enables training of models 10x larger on a single NVIDIA V100 GPU by
offloading all optimizer states to the CPU, albeit at the cost of significant CPU workload and com-
munication overhead. PatrickStar (Fang et al., 2022) and StrongHold (Sun et al., 2022) dynamically
allocate model data across heterogeneous memory spaces, achieving a better trade-off. However, ex-
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isting heterogeneous training systems exhibit two key limitations. First, they fail to comprehensively
analyze the memory requirements and execution costs of all data involved in training, including ac-
tivations, parameters, gradients, and optimizer states. Second, significant resource idle periods arise
between consecutive training iterations, caused by lagged gradient offloading and CPU optimizer
updates. Prior works limit operations overlap to individual iterations, ignoring opportunities for
overlap across iterations.

This paper introduces AutoHete, an automatic and efficient heterogeneous training system that
dynamically integrates activation checkpointing, parameter offloading, and optimizer offloading.
Achieving both flexibility and efficiency poses two challenges for the system: (1) Given a spe-
cific LLM architecture, batch size, and GPU-CPU configuration, the system must decide which
intermediate activations to recompute, which parameters to offload, and which optimizer states
to place on the CPU. (2) Another challenge lies in scheduling operations across different execu-
tion streams—including GPU computation, offloading, prefetching, and CPU optimizer updates—to
maximize the overlap while preserving data dependencies.

To tackle these challenges, AutoHete involves a two-stage optimization strategy. Firstly, we con-
struct a cost model to accurately capture GPU peak memory consumption and execution time during
heterogeneous training. We then formalize the heterogeneous training optimization problem as an
integer linear program (ILP), deriving the optimal plan in a few seconds. Instead of uniform post-
backward parameter updates, our cost model considers asynchronous layer-wise optimizer steps
during the backward pass, opening up more granular scheduling opportunities for optimal opera-
tion overlap. The second stage introduces a priority-based scheduling strategy to minimize resource
idle periods between successive training iterations. By prioritizing gradient offloading and CPU
optimizer updates for earlier LLM layers, it facilitates the early initiation of subsequent training
iterations. This work makes the following key contributions:

• We formulate the heterogeneous training optimization problem as an ILP problem, which
combines activation checkpointing, parameter offloading, and optimizer offloading.

• We introduce a priority-based scheduling strategy, which achieves operators overlapping
across training iterations without increasing peak GPU memory usage.

• We evaluate AutoHete’s efficiency and adaptability in both single-GPU and multi-GPU
environments, demonstrating a 1.32x∼1.91x performance improvement over state-of-the-
art heterogeneous training solutions.

2 BACKGROUND AND RELATED WORK

2.1 TRANSFOMER-BASED LLM TRAINING

LLMs like OPT (Zhang et al., 2022) and GPT series (Radford et al., 2018; 2019; Brown et al.,
2020; Achiam et al., 2023) stack multiple transformer blocks for powerful sequence modeling and
representation learning. While pre-training requires vast computational resources dominated by tech
companies, fine-tuning on domain-specific tasks (Touvron et al., 2023) enables broader participation
but still faces significant memory challenges.

GPU memory during training is consumed by activations and model data (parameters, gradients,
optimizer states). Using mixed-precision training with ADAM optimizer (Ren et al., 2021), acti-
vations and parameters are stored in FP16 while maintaining FP32 precision for optimizer states,
which include momentum, variance, and FP32 parameter copies. This requires 16M bytes for a
model with M parameters, meaning a 2-billion parameter model would exceed a single V100 GPU’s
memory capacity even before accounting for activations, which scale with batch size and sequence
length. Memory fragmentation further constrains effective utilization, making these resources ex-
tremely scarce. In response, research efforts are increasingly focused on enhancing LLM training
through multi-GPU parallelism and single-GPU memory optimization techniques.

2.2 PARALLEL TRAINING

Data Parallelism (DP) (Li et al., 2020; Jiang et al., 2020; Peng et al., 2019; Renggli et al., 2019)
distributes inputs across GPUs while maintaining full model copies. However, DP alone cannot
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handle LLM training due to single-GPU memory constraints. ZeRO (Rajbhandari et al., 2020)
addresses this by partitioning model states across GPUs, using efficient reduce-scatter and all-gather
operations to minimize communication overhead.

Model Parallelism (MP) (Shoeybi et al., 2019; Zeng et al., 2022) divides model parameter across
GPUs. Mesh-Tensorflow (Shazeer et al., 2018) enables flexible tensor partitioning, while Megatron-
LM (Shoeybi et al., 2019) optimizes communication through strategic row and column parallelism
for transformer-based LLMs.

Pipeline Parallelism (PP) (Huang et al., 2019; Narayanan et al., 2019) segments models into stages,
processing micro-batches in a pipelined manner. Efficient scheduling strategies (Li & Hoefler, 2021;
Sun et al., 2024) are crucial for balanced GPU utilization and throughput.

Hybrid Parallelism (Zheng et al., 2022; Yuan et al., 2024; Jiang et al., 2024), combining DP, MP,
and PP, has also been developed to achieve optimal distributed training efficiency. Nevertheless,
these parallelism solutions necessitate sufficient aggregated GPU memory to accommodate model
data, presenting a significant affordability challenge.

2.3 MEMORY-SAVING TRAINING

Activation checkpointing reduces memory usage by retaining only essential activations as check-
points while recomputing discarded activations from these checkpoints during the backward pass.
A typical approach segments an N-layer model into

√
N parts (Chen et al., 2016). Various strate-

gies have been proposed, from optimal but computationally intensive solutions (Jain et al., 2020) to
faster but sub-optimal approaches (Kirisame et al., 2020; Zhao et al., 2023), each balancing memory
savings against recomputation costs.

Offloading leverages CPU memory to supplement GPU memory during training. While initially
developed for CNNs to manage activations (Rhu et al., 2016), LLM training shifts focus to handling
model data. L2L (Pudipeddi et al., 2020) pioneered heterogeneous LLM training by keeping only
one transformer layer on GPU. ZeRO-Offload (Ren et al., 2021) enables training of 13-billion param-
eter models on a single V100 GPU by offloading gradients and optimizer states to CPU, though its
static approach limits efficiency. PatrickStar (Fang et al., 2022; Li et al., 2023) and StrongHold (Sun
et al., 2022) introduced dynamic memory allocation methods for model data using synchronous and
asynchronous execution, respectively. However, the absence of comprehensive analyses of memory
usage and execution overhead during training results in suboptimal performance.

This paper focuses on GPU memory-saving training to make LLM training more accessible. Exist-
ing approaches lack flexibility and do not jointly consider activation checkpointing, offloading, and
hybrid optimizer strategies. Furthermore, the possibility of operator scheduling remains unexplored
in LLM heterogenous training, thus leaving room for significant performance improvements.

Profiler Priority-based Scheduler RuntimeILP Solver

min execution time
s.t. memory constraint

Cost Model

LLM Structure

Activation checkpointing

Parameter offloading

Optimizer offloading

Fwd/Bwd Comp.

NCCL Comm.

PCIe Comm.

Optim. Update

Figure 1: The overview of AutoHete.

3 AUTOHETE

Fig. 1 shows the overview of AutoHete. Given the LLM and hardware configuration, we construct
a Profiler module to capture the memory consumption and execution time of all operators. The
collected information is then fed into the Solver module, which formulates the heterogeneous train-
ing optimization problem as integer linear programming to derive optimal strategies for activation
checkpointing, parameter offloading, and optimizer offloading. A priority-based scheduler further
orchestrates GPU computation, CPU-GPU communication, and CPU optimizer updates to maxi-
mize overlap among these operations. Finally, the resulting execution strategy is configured into
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the runtime to enable efficient heterogeneous training. Notably, our heterogeneous training system
strictly maintains the data dependency of all operators so without affecting training convergence.

3.1 COMPUTATION AND MEMORY PROFILER

To guide the exploration of heterogeneous training strategies, we first need to collect the execu-
tion time and memory footprints of all operators. A computational graph is constructed by the
torch.fx (Reed et al., 2022) module, which utilizes symbolic execution to capture operations invoked
on a given input throughout the program. Based on the symbolic tracing mechanism, we use fake in-
put tensors containing solely meta-data without actual values to infer the output shape of each node
within the computational graph, consequently revealing the computational demands and memory
allocation of each operator.

Instead of focusing on individual nodes within the computational graph, we simplify the decision-
making process by considering the entire transformer block as the fundamental planning unit. Within
a transformer block, there are three binary switches to consider whether to delete and recompute all
intermediate activations, offload all parameters, and offload all corresponding optimizer states. This
coarse-grained decision-making provides three main advantages. Firstly, the policy search space is
significantly reduced, as a transformer block encompasses hundreds of nodes. Secondly, the CPU-
GPU data transfer operations that aggregate multiple tensors make more efficient utilization of PCIe
bandwidth. Thirdly, the coarse-grained execution time evaluation is obviously more accurate than
the evaluation on individual nodes. Therefore, we partition the computational graph, where each
partition represents a transformer block. The embedding layer is treated as a distinct partition.

We use Ma and M
′

a to denote the total activations and input activations of a transformer block, re-
spectively. Note that nodes involved in in-place operations are skipped, as they are not allocated new
memory footprint for their output activations. The number of parameters Mp within the partition
can be directly derived from the hidden dimension. The forward and backward computation over-
heads (tfp and tbp) of the partition are evaluated by directly executing the corresponding operators
on the GPU. Rather than executing on the original model, evaluation is conducted by a tiny model
containing only one transformer block with identical configuration. Similar profiling is employed
to evaluate the cost of CPU optimizer updates tcpuoptim, GPU optimizer updates tgpuoptim, parameters
prefetching th2d, and parameter or gradients offloading td2h for the transformer block.

3.2 SOLVER

3.2.1 ANALYSIS

Before solving the heterogeneous training strategy, we analyze the GPU memory savings and the
extra overheads incurred by diverse planning. For an LLM with L transformer blocks, Fi and
Bi represent the forward and backward execution of the i-th (i ∈ {1, ..., L}) transformer block,
respectively. The strategy space contains three binary decision sequences: C,P,O ∈ {0, 1}L, where
C[i], P [i], and O[i] represent whether to employ activation checkpointing, parameters offloading,
and optimizer states offloading, respectively, for the i-th transformer block.

If checkpointing is applied to the i-th transformer block, it will reduce 2 ∗ (Ma −M
′

a) bytes GPU
memory usage during the execution interval [Fi+1, ..., FL, BL, ..., Bi+1], concurrently incurring an
additional recomputation cost of tfp. Similarly, offloading parameters of the i-th transformer block
frees GPU memory footprint by 2 ∗Mp bytes1 and adds extra CPU-GPU communication overhead
of td2h + th2d within the same execution interval.

Insight 1: For activation checkpointing and parameter offloading, prioritizing earlier transformer
blocks is advantageous, as it enables GPU memory savings over a longer execution duration while
incurring similar costs to later blocks. This observation can be formalized as C[i] ≥ C[j] and
P [i] ≥ P [j], ∀i, j ∈ {1, ..., L}, i < j.

Placing the optimizer states of the i-th transformer block on the CPU involves 1) prefetching FP16
parameters before Fi, 2) offloading FP16 gradients after Bi, and 3) updating CPU FP32 parameters.

1The multiplication factor of 2 stems from storing parameters and activations in FP16 format during forward
and backward computation.
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It reduces GPU memory footprint by 12 ∗Mp bytes during the entire training iteration with a total
cost of th2d + td2h + tcpuoptim. Consistent with ZeRO-Offload, we avoid moving the optimizer states
between the GPU and CPU since it will introduce excessive communication costs, roughly 6 ∗
(th2d + td2h). Despite the equivalent cost, GPU memory savings, and the duration of memory
savings, disparities exist in optimizer offloading between various transformer blocks. Considering
offloading optimizer states for the i-th block, its FP16 parameter prefetching can be overlapped with
earlier forward computations [F1, ..., Fi−1], while its FP16 gradient offloading and CPU parameter
updates can be overlapped with later backward computations [Bi−1, ..., B1]. Appendix 6.1 provides
an example of the memory allocation process.

Insight 2: For optimizer offloading, the later transformer blocks should be prioritized to improve
overlaps. We formulate it as O[i] ≤ O[j], ∀i, j ∈ {1, ..., L}, i < j.

Based on the above analysis, the heterogeneous training strategy space can be reduced to three deci-
sion variables: ĉ, p̂, ô ∈ {0, ..., L}, which represent the number of sequential transformer blocks for
applying activation checkpointing, parameters offloading, and optimizer states offloading, respec-
tively. We further evaluate the peak GPU memory and total execution time of a training iteration.

3.2.2 COST MODEL AND STRATEGY SEARCH

Modeling peak memory footprint. GPU memory usage increases during the forward pass due to
activation generation and parameter prefetching. Conversely, memory footprint decreases during
the backward pass as activations, parameters, and gradients are deallocated. Peak GPU memory
allocation occurs at the transition between these two passes. We also employed a trick to optimize
memory efficiency2. Overall, given the GPU memory capacity Mgpu, we have:

2M
′

a ∗ ĉ+ 2Ma ∗ (L− ĉ+ 1) + 2Mp ∗ (L− p̂+ 1) + 12Mp ∗ (L− ô) +Mgc ≤ Mgpu, (1)

where Mgc is constant GPU storage requirements (e.g., activations) outside the transformer model.

The CPU memory is used to store offloaded model data, including optimizer states (FP32 momen-
tum, FP32 variance, and FP32 parameters), FP16 parameters, and FP16 gradients. Notably, FP16
parameters and FP16 gradients of a transformer block can share the same memory space since they
do not coexist. We define Mcc as the CPU storage requirements beyond the transformer model (e.g.,
the embedding layer). Thus, given the CPU memory limitation Mcpu, we have:

14Mp ∗ ô+Mcc ≤ Mcpu. (2)

Modeling execution time. In the forward phase, GPU computations and CPU-GPU communication
for FP16 parameters can proceed asynchronously via CUDA Stream, with computation and prefetch
streams overlapping to enhance efficiency. Synchronization operations are inserted into the compu-
tation stream to ensure forward computations utilize up-to-date FP16 parameters. FP16 parameters
can be released immediately after computations are completed, without data transfer, as the CPU
retains a copy. Thus, the critical path for forward execution is either parameter prefetching or the
GPU computation stream, represented as:

Tfwd = max (tfp ∗ L, th2d ∗ ô+ tfp) . (3)

In the backward phase, operations such as gradients computation, activations recomputation, pa-
rameters prefetching, gradients offloading, and optimizer updates are conducted. Unlike the for-
ward pass, the early backward pass is located at the peak duration of GPU memory usage. Prema-
ture parameter prefetching in this context carries the risk of out of GPU memory. Therefore, we
consider a relatively conservative execution, prefetching parameters only one transformer block in
advance. There are two cases for evaluating the synchronization overhead in the backward compu-
tation stream, i.e., whether parameter prefetching overlaps also with recomputation. We introduce v̂
to represent the number of transformer blocks applying both activation checkpointing and parameter
offloading, which can be derived by ĉ, p̂, and ô. The synchronization overhead is denoted as tsync,
then:

tsync = v̂ ∗max (th2d − tfp − tbp, 0) + (p̂− v̂) ∗max (th2d − tbp, 0) . (4)

2If the optimizer states of the i-th transformer block reside on the GPU, its FP16 parameters are not al-
located until Fi or Bi execution, temporarily converted through FP32 parameters, and immediately released
after computation. The overhead of precision conversion on the GPU is negligible. In this context, offloading
planning for FP16 parameters is unnecessary, which can be formulated as p̂ ≤ ô.
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CPU Comp

D2H Stream

H2D Stream

GPU Comp 5 4 3 3 2 2 1 1

5 4 3 2 1

1 1 2 3 4 5

1 2 3 4 5

5 4 3 2 1

Forward computation / recomputation Backward computation Parameter prefetching
Gradient offloading CPU optimizer execution

(a) Without priority-based scheduling.

CPU Comp

D2H Stream

H2D Stream

GPU Comp 5 4 3 3 2 2 1 1

5 4 2 1 3

1 1 2 3 4 5

1 2 3 4 5

5 2 1 3 4

𝒑𝒒𝒅𝟐𝒉 5 4 2, 3 1, 3 [3]

𝒑𝒒𝒐𝒑𝒕 [5] [2, 4] 1, 3, 4 3, 4 4

(b) With priority-based scheduling.

Figure 2: Execution examples of AutoHete for an LLM comprising 5 transformer blocks, with and
without priority-based scheduling strategy. Here, ĉ = 3, p̂ = 1, and ô = 5, indicating blocks
1-3 adopts activation checkpointing, block 1 offloads parameters, and blocks 1-5 offload optimizer
states. pqd2h and pqopt denote priority queues that manage the order of blocks for gradient offloading
and CPU optimizer updates, respectively. The dynamic queue states are shown in the dashed boxes.

Gradient offloading and optimizer execution are immediate, occurring as soon as gradients are gen-
erated or offloaded, without waiting for subsequent backward execution3. The critical path during
the backward phase lies in either the CPU workflow or the backward computation stream that may
be delayed by parameter prefetching. Therefore, we have:

Tbwd = max ( tbp ∗ L+ tfp ∗ ĉ+ tgpuoptim ∗ (L− ô) + tsync, tbp + td2h + tcpuoptim ∗ ô). (5)

Strategy search. With the heterogeneous memory space constraints, finding the optimal execution
strategy s = (ĉ, p̂, ô) becomes an integer linear programming (ILP) problem:

min
s

Tfwd + Tbwd, s.t.(1), (2). (6)

This ILP problem can be swiftly solved by commodity solvers, as it involves only three integer
variables. Given a feasible solution from ILP, we fine-tune the parameter prefetching in the backward
phase to reduce the synchronization overhead. A simulator of heterogeneous training is constructed
to capture dynamic GPU memory allocation. We will advance a parameter prefetching operation if
enough GPU memory is available before it.

3.3 PRIORITY-BASED SCHEDULER

While ILP offers efficient solutions for single training iterations, there remains potential to enhance
efficiency by overlapping operations across iterations. Fig. 2 illustrates the execution of AutoHete,
spanning from the backward phase of the previous training iteration to the forward phase of the
subsequent iteration. As shown in Fig. 2a, there are notable discrepancies in the execution speeds
across streams within a training iteration: the GPU computation finishes the fastest, followed by
the GPU-to-CPU communication, and finally, the CPU workflow. This gap is more pronounced
in larger models due to extensive offloading of optimizer states, creating a bottleneck where the
next iteration’s initial computation F1 must wait for the CPU optimizer updates of block 1, which

3For flexibility, we define n optimizers, each responsible for performing parameter updates of individual
transformer blocks.
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naturally finishes last. Analogously, for operators that start the forward pass earlier, their dependent
CPU optimizer updates are completed later.

Insight 3: By prioritizing the execution of gradient offloading and CPU optimizer updates for
earlier blocks, the idle period can be significantly reduced.

We introduce a priority-based scheduling mechanism. Higher priority is assigned to earlier blocks
in the model. Specifically, we manage two dynamic priority queues (pqd2h and pqopt) to determine
the execution order for gradient offloading and CPU parameter updates. Along the backward pass,
we track the execution status of the gradient computation and offloading for each transformer block.
It is achieved by inserting CUDA Events.

Upon the backward computation of a transformer block is completed, we append its index to the
priority queue pqd2h of gradient offloading. Instead of offloading gradients in the backward order,
we perform the next by dequeue from pqd2h when an offloading operation concludes. If the queues
are empty, we must await the completion of the latest gradient computation. Similarly, we add the
indices of completed gradient offloading to the optimizer execution queue pqopt. Rather than fol-
lowing the gradient offloading sequence, we continually dequeue the transformer block indices from
pqopt to conduct CPU optimizer updates. Notable, priority-based scheduling neither diminishes nor
extends the critical path of original backward pass. It overlaps the critical path of the backward and
forward pass by enabling parameter prefetching and forward computation to commence earlier.

In the subsequent iteration, we schedule parameter prefetching in the forward computation or-
der. Necessary synchronization operations are employed to ensure data dependencies. Parameter
prefetching can be launched once the CPU optimizer updates are complete. Ideally, the early initi-
ation of parameter prefetching does not augment the peak GPU memory, as both the latter span of
the backward phase and the initial span of the forward phase exhibit lower GPU memory footprints.
Furthermore, they demonstrate complementary GPU memory allocation trends, wherein memory
utilization gradually diminishes along the backward propagation while escalating during the for-
ward pass. To strictly avoid running out of GPU memory, we evaluate the GPU memory footprint
before scheduling parameter prefetching. If numerous gradients await offloading in the queue, which
results in not enough GPU memory available, we defer parameter prefetching by one step.

3.4 IMPLEMENTATION

We implemented the AutoHete system prototype based on PyTorch. AutoHete is user-friendly and
designed as a wrapper without modifying the original model definition. AutoHete leverages torch.fx
module to capture the computational graph of the model. The system implements activation re-
computation by annotating each node in the graph with checkpoint information. New nodes are
inserted after each transformer block, inheriting from the torch.autograd.Function class with cus-
tomized forward and backward functions to orchestrate parameter prefetching, gradient offloading,
and optimizer updates. To maintain data dependencies, torch.cuda.Event is used to record and syn-
chronize operations. Finally, the modified computational graph is recompiled to enforce the planned
optimizations at runtime.

4 EVALUATION

4.1 EVALUATION METHODOLOGY

Testbed. We evaluate AutoHete on a server configured with 8 NVIDIA 40GB A100 GPU, AMD
EPYC 7713 64-Core CPU, and 1TB DDR4 RAM. The GPUs are connected with NVLink, and data
transfer between the GPU and CPU occurs over the PCIe 4.0 interface.

Workloads. Consistent with prior research, we utilized GPT-like models for performance evalua-
tion. Models with varying scales are obtained by adjusting the hidden dimension and the number of
transformer blocks, as shown in Table 1. The sequence length is 1024 for all cases.

Baselines. We compare the effectiveness of AutoHete with three advanced heterogeneous training
solutions for LLMs. ZeRO-Offload (Ren et al., 2021) statically keeps all parameters on the GPU
but offloads gradients and optimizers to the CPU. PatrickStar4 (Fang et al., 2022; Li et al., 2023)

4PatricStar has been optimized and integrated into the open-source framework ColossalAI.
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Table 1: Model configuration in evaluation.

# Params (billion) # Layers Hidden Size # Params (billion) # Layers Hidden Size

2 42 2048 4, 6, 8 21, 32, 42 4096
10, 24, 32 34, 80, 108 5120 12, 14, 16, 40 30, 35, 40, 94 6144

48 82 7168 56, 70 75, 92 8192

(a) Single A100 GPU (b) 8 A100 GPUs

Figure 3: The training throughput of ZeRO-Offload, PatrickStar, StrongHold, and AutoHete across
various model sizes on single and multiple GPUs.

performs on-demand placement of model data across heterogeneous memory spaces during runtime.
StrongHold (Sun et al., 2022) maintains a dynamic working window on the GPU to store model data.
For distributed training, we utilized the ZeRO-3 stage to partition model data.

4.2 EXPERIMENTAL RESULTS

We first evaluate the overall performance of AutoHete, ZeRO-Offload, PatrickStar, and StrongHold
across various model scales. The performance of AutoHete without the priority-based scheduling
strategy (w/o PS) is also evaluated to promote ablation studies.

Single GPU. Fig. 3a shows the training throughput (TFLOPS) of AutoHete, ZeRO-Offload, Patrick-
Star, and StrongHold on a single GPU. Due to keeping all FP16 parameters on GPU, ZeRO-Offload
runs out of GPU memory when the model size exceeds 12B parameters. AutoHete, PatrickStar, and
StrongHold enable the training of larger models by further offloading FP16 parameters to the CPU.

Compared to ZeRO-Offload, we achieved 1.85x on average (up to 2.08x) performance improvement.
GPU memory remained underutilized when training models with 2 billion to 8 billion parameters
using ZeRO-Offload. Rather than offloading the entire optimizer states, AutoHete offloads only
the requisite portion based on actual memory demands and available GPU memory, directly reduc-
ing the overheads from parameter prefetching, gradient offloading, and CPU optimizer execution.
The performance gap is more pronounced for smaller models. Taking a 4B model as an example,
AutoHete offloaded the optimizer states of only the last 13 out of 21 transformer blocks to the CPU.

AutoHete achieves 1.63x on average (up to 1.91x) training throughput over PatrickStar. Although
PatrickStar is also memory-aware, its performance remains constrained by communication over-
heads and CPU workloads due to synchronous execution. Our cost model accounts for asynchronous
execution between operators and focuses on maximizing overlaps. Performance gains are relatively
modest for smaller models, where computational overhead dominates. The throughput improve-
ments become more pronounced with relatively larger models. Despite considerable overheads
from parameter prefetching, gradient offloading, and CPU workloads, the highly overlapped exe-
cution across the four streams effectively counteracts these costs.

StrongHold leverages data prefetching to overlap data movement with GPU computation, outper-
forming PatrickStar in training throughput. However, its performance remains suboptimal due to
the lack of integrated consideration for the memory requirements and execution overhead associated
with activations, parameters, and optimizer states. Moreover, operators overlapping in StrongHold
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is limited to a single training iteration, whereas AutoHete’s priority-based scheduling strategy en-
ables overlapping across training iterations. AutoHete achieves an average of 1.32x (up to 1.41x)
throughput improvement compared to StrongHold.

The priority-based scheduling (PS) mechanism contributes to a throughput improvement of 1.16x
on average (up to 1.24x) for AutoHete. For 2B and 4B models, the performance of AutoHete with
and without PS is comparable. This is because only the optimizer states of the initial few trans-
former blocks in the backward pass are offloaded to the CPU, and the introduced overhead is largely
overlapped with subsequent backward computations even without PS. When more optimizers are of-
floaded to the CPU, CPU workflow becomes significantly behind the GPU computation stream. PS
fills this gap by achieving overlaps across training iterations, i.e., scheduling parameter prefetching
and forward computation of the next iteration in advance.

Multi-GPUs. Fig. 3b shows the training performance comparison in a multi-GPU (8 GPUs) envi-
ronment. Multi-node performance results are presented in the Appendix 6.2.1. AutoHete achieves
an average of 2.31x (up to 2.6x) performance improvement compared to ZeRO-Offload. Similarly,
more performance gains are observed for smaller models due to reduced communication cost and
CPU workload. AutoHete demonstrates performance improvement of 1.63x on average (up to 1.84x)
over PatrickStar and 1.33x on average (up to 1.47x) over StrongHold. Although distributed training
requires additional inter-GPU communication overheads, these overheads are effectively overlapped
in AutoHete. Furthermore, the priority scheduling mechanism provides AutoHete with an average
of 1.17x (up to 1.26x) performance benefit.

(a) The 6B model (b) The 10B model

Figure 4: Performance on various batch sizes.

(a) The 32B model (b) The 40B model

Figure 5: Performance on varying GPU scales.

4.2.1 FURTHER ANALYSIS

Impact of batch size. Fig. 4 shows the throughput variations across different batch sizes for training
the 6B and 10B models on a single GPU. Larger batch sizes incur higher computational load and
activation storage demands.

AutoHete initially exhibits a more rapid throughput increase, as the additional computation from
larger batch sizes does not fully translate into an increase in total execution time. The backward
computation overhead, including recomputation cost, is still completely hidden by communication
and CPU optimizer execution. However, continuously increasing the batch size forces AutoHete to
place more model data on the CPU, and the additional communication and CPU workload leads to
a slowdown in throughput growth.

Scalability. Fig. 5 shows performance under varying numbers of GPUs for the 32B and 40B models.
When scaling to more GPUs, the AutoHete system benefits not only from parallel computation but
also from increased total GPU memory. This results in fewer activation checkpoints, parameter
offloading, and optimizer states offloading, ultimately leading to higher throughput.

5 CONCLUSION

This paper presents AutoHete, an automatic and efficient heterogeneous training system for LLMs.
It automatically identifies an effective execution strategy that combines activation checkpointing,
parameter offloading, and optimizer offloading. A priority-based scheduling strategy is introduced
to facilitate operation overlaps across training iterations. AutoHete significantly outperforms state-
of-the-art heterogeneous training systems, enhancing the accessibility of LLM training.
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6 APPENDIX

6.1 MEMORY ALLOCATION ANALYSIS

GPU Comp 31 2 3
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Gradient offloading CPU optimizer execution
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(a) The memory allocation process for activations, where only activation checkpointing is applied to the first
two transformer blocks.
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(b) The memory allocation process for parameters, where only parameter offloading is applied to the first two
transformer blocks.
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(c) The memory allocation process for parameters, gradients, and optimizer states, where only optimizer of-
floading is applied to the last two transformer blocks.

Figure 6: Example of the memory allocation process during a training iteration for an LLM com-
prising 5 transformer blocks.

Fig. 6 shows an example of the memory allocation process during a training iteration, individu-
ally applying activation checkpointing, parameter offloading, and optimizer offloading. Here, solid
boxes represent executed operations, while hollow boxes indicate memory allocation along the exe-
cution flow.
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Table 2: Model configuration in evaluation.

# Params (billion) # Layers Hidden Size # Params (billion) # Layers Hidden Size

70 92 8192 80 84 9216
100, 120 84, 100 10240 140, 160 80, 92 12288

Activations are generated during the forward pass and consumed during the backward pass. As
shown in Fig. 6a, applying activation checkpointing to block 1 reduces 2 ∗ (Ma − M

′

a) bytes
GPU memory usage during the execution of [F2, F3, F4, F5, B5, B4, B3, B2]. Similarly, for block
2, GPU memory savings occur during [F3, F4, F5, B5, B4, B3]. Activation checkpointing should be
prioritized for earlier blocks. The same principle applies to parameter offloading, as observed in Fig.
6b, where earlier offloading results in a longer duration of memory savings. Due to asynchronous
execution, GPU memory allocated for parameters is released only after offloading completes, while
memory allocation occurs when the prefetching kernel is launched.

The memory footprint of optimizer states remains constant during execution, as they are accessed
only once for optimizer updates and do not require CPU-GPU transfers. Optimizer offloading affects
parameters and gradients memory allocation due to data dependencies. Blocks employing optimizer
offloading prefetch the latest parameters from the CPU for forward and backward computation on
the GPU, while gradients from the backward pass are offloaded to the CPU for optimizer updates.
From Fig. 6c, it can be inferred that optimizer offloading should prioritize later blocks, as this allows
for greater overlap of parameter prefetching, gradient offloading, and CPU optimizer updates.

GPU memory allocation for activations and parameters increases during the forward pass and de-
creases during the backward pass, with peak memory usage occurring at the transition between the
two.

6.2 SUPPLEMENTAL EXPERIMENTS

6.2.1 EVALUATION ON MULTI-NODE ENVIRONMENT

Figure 7: The training throughput of ZeRO-Offload, PatrickStar, StrongHold, and AutoHete on a
multi-node environment.

We simulate a two-node cluster where each node is equipped with 8 Nvidia 40GB A100 GPUs,
AMD EPYC 7713 64-core CPU, and 1TB DDR4 RAM. Inter-node communication was facilitated
through InfiniBand connectivity. The model configurations are detailed in Table 2, with a global
batch size of 16.
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Fig. 7 shows the throughput comparison. ZeRO-Offload runs out of CPU memory rather than GPU
memory when the model size exceeds 140 billion parameters, as the CPU memory capacity cannot
accommodate all optimizer states and gradients. AutoHete, PatrickStar, and StrongHold address this
limitation by leveraging the aggregated GPU memory to store portions of the optimizer states.

AutoHete achieves an average speedup of 1.75x (up to 1.77x) compared to ZeRO-Offload, 1.58x
on average (up to 1.68x) over PatrickStar, and 1.33x on average (up to 1.36x) over StrongHold.
Although cross-node distributed training introduces additional inter-GPU communication overhead,
AutoHete effectively overlaps these communication costs with CPU workflow.

6.2.2 EVALUATION ON DIFFERENT GPU MEMORY BUDGETS

(a) The 4B model (b) The 6B model

Figure 8: Performance on different GPU memory budgets.

Fig. 8 shows performance under varying GPU memory budgets for the 4B and 6B models on a
single GPU. The throughput of AutoHete, PatrickStar, and StrongHold increases with a larger GPU
memory budget, while ZeRO-Offload remains nearly constant due to its static placement strategy.
Additionally, ZeRO-Offload fails to sustain 4B model training when the GPU memory budget is
less than 16GB, and training the 6B model requires a minimum of 24GB of GPU memory. It
is worth noting that AutoHete maintains high performance while reducing hardware costs. With
merely 12GB of GPU memory consumption, AutoHete achieves higher training throughput than
StrongHold, PatrickStar, and ZeRO-Offload running under the 40GB GPU memory budget.

6.3 THE USE OF LARGE LANGUAGE MODELS (LLMS)

We used large language models as the general-purpose assistive tool during the preparation of this
paper. Its contributions were limited to improving grammar, polishing wording, and suggesting
alternative phrasings for clarity and conciseness. The research ideas, methodological design, exper-
imental implementation, analysis, and final interpretations were entirely conceived and executed by
the authors.

LLMs were not used for generating novel research content, fabricating facts, or conducting scientific
reasoning. All technical descriptions, results, and conclusions presented in the paper are the sole
responsibility of the authors.
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