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ABSTRACT

Controlling camera motion in video diffusion models is highly sought after for
content creation, yet remains a significant challenge. Recent approaches often
create anchor videos (i.e., rendered videos that approximate desired camera mo-
tions) to guide diffusion models as a structured prior, by rendering from esti-
mated point clouds following camera trajectories. However, errors in point cloud
and camera trajectory estimation often lead to inaccurate anchor videos during
training. Furthermore, these inherent errors lead to higher training cost and in-
efficiency, since the model is forced to compensate for rendering misalignments.
To address these limitations, we introduce EPiC, an efficient and precise camera
control learning framework that constructs well-aligned training anchor videos
without the need for camera pose or point cloud estimation. Concretely, we cre-
ate highly precise anchor videos by masking source videos based on first-frame
visibility. This approach ensures strong alignment, eliminates the need for cam-
era/point cloud estimation, and thus can be readily applied to any in-the-wild
video to generate image-to-video (I2V) training pairs. Furthermore, we introduce
Anchor-ControlNet, a lightweight conditioning module that integrates anchor video
guidance in visible regions to pretrained video diffusion models, with less than
1% of backbone model parameters. By combining the proposed anchor video
data and ControlNet module, EPiC achieves efficient training with substantially
fewer parameters, training steps, and less data, without requiring modifications to
the diffusion model backbone. Although being trained on masking-based anchor
videos, our method generalizes robustly to anchor videos made with point clouds
at test time, enabling precise 3D-informed camera control. EPiC achieves state-of-
the-art performance on RealEstate10K and MiraData for I2V camera control task,
demonstrating precise and robust camera control ability both quantitatively and
qualitatively. Notably, EPiC also exhibits strong zero-shot generalization to video-
to-video (V2V) scenarios. This is compelling as it is trained exclusively on I2V
data, where anchor videos are derived with only source videos’ first frame as visi-
bility referencing. Code is uploaded as supplementary materials. Supplementary
videos in https://epic-iclr-submission.netlify.app/.

1 INTRODUCTION

Recent advancements in video diffusion models (VDMs) (Bar-Tal et al., 2024; Girdhar et al., 2023;
Hong et al., 2022; Khachatryan et al., 2023; Wang et al., 2023; Zhang et al., 2024b; Blattmann et al.,
2023; Kondratyuk et al., 2023) have significantly improved the generation of realistic videos. As
video generation becomes more practical, controlling the process has become a crucial requirement.
A key research focus is controlling camera trajectories (Bai et al., 2025a; Yu et al., 2025a; Ren
et al., 2025; Shi et al., 2024), which is essential for applications like film recapturing and virtual
cinematography. Recent approaches (Ren et al., 2025; Yu et al., 2025a; Cao et al., 2025; Zhang et al.,
2024a; Yu et al., 2024b) achieve this by using 3D-informed guidance to create an ‘anchor video,’
which approximates the desired camera motion to guide the diffusion model. This method faces
challenges, however, as it requires high-quality 3D data from expensive motion-capture systems or
relies on inaccurate 3D point cloud/camera trajectory estimators (Wang et al., 2024c; Yang et al.,
2024a; Schönberger et al., 2016). These inaccuracies result in pixel-level misalignments between
anchor and source videos, which in turn cause training difficulties and inefficiencies (Yu et al., 2025a;
2024b), often requiring extensive computational resources and substantial backbone modifications.

1

https://epic-iclr-submission.netlify.app/ 


054

055

056

057

058

059

060

061

062

063

064

065

066

067

068

069

070

071

072

073

074

075

076

077

078

079

080

081

082

083

084

085

086

087

088

089

090

091

092

093

094

095

096

097

098

099

100

101

102

103

104

105

106

107

Under review as a conference paper at ICLR 2026

104 105 106 107

Training Steps × Batch Size (log scale)

104

105

106

#
 T

ra
in

in
g 

Vi
de

os
 (

lo
g 

sc
al

e) TrajCrafter
5.57B

ViewCrafter
1.44B

AC3D
200M

CameraCtrl
211M

GCD
2.41B

EPiC (Ours)
30M

Method Efficiency Comparison
TrajCrafter
steps×bs=150k × 8
#videos  =632k
ViewCrafter
steps×bs=40k × 18
#videos  =632k
AC3D
steps×bs=750k × 32
#videos  =100k
CameraCtrl
steps×bs=50k × 32
#videos  =65k
GCD
steps×bs=10k × 56
#videos  =77k
EPiC(Ours)
steps×bs=0.5k × 8
#videos  =5k

RE10K Rot ( ) RE10K Trans ( ) MIRA Rot ( ) MIRA Trans ( )
Camera Control Metrics

0

1

2

3

4

5

Er
ro

r 
(

)

1.12

1.78
1.62

4.67

0.86

1.50

1.13

3.98

0.50

1.05
1.18

2.95

0.40

0.86
0.66

1.78

Camera Error Comparison (RE10K & MIRADATA)
CameraCtrl
AC3D
ViewCrafter
EPiC (Ours)

Figure 1: Left: Method efficiency comparison. The circle area is proportional to the number of
trainable parameters (exact values are shown below method names). Our method achieves over an
order of magnitude higher efficiency in terms of training data, compute cost (steps × batch size), and
parameter count. Right: Camera control performance comparison. On both RealEstate10K and Mira
datasets, our method achieves the best results with the lowest rotation and transition errors.

Furthermore, most training data mainly comes from multi-view datasets of static scenes (Zhou et al.,
2018a; Ling et al., 2024) to ensure high-quality estimations, limiting the models’ ability to generalize
to real-world videos with dynamic objects (Rockwell et al., 2025).

To address these issues, We propose EPiC, for learning Efficient and Precise Video Camera control
by crafting precisely-aligned training anchor videos with a lightweight, region-aware ControlNet
model design (Sec. 4). Our key insight is that anchor videos should be well-aligned with the source
videos to make learning as easy, transforming the task from one of more difficult repairing misaligned
content to the simpler task of copying visible regions. Thus, unlike previous approaches that render
anchor videos from inaccurate 3D point clouds which often misaligned with the source video and
reliant on camera trajectories we directly synthesize anchor videos by masking the source video based
on first-frame visibility. Specifically, for each subsequent frame, we estimate its pixel trajectories
with respect to the first frame from dense optical flow (Teed & Deng, 2020), preserving only those
pixels that can be reliably traced back to the first frame. Pixels with no valid correspondence in the
first frame are masked out. This process effectively mimics the key property of anchor videos—all
new regions relative to the first frame are invisible—while ensuring precise alignment in visible
regions. Furthermore, our approach eliminates the need for camera trajectory estimations, allowing
anchor videos to be created from any in-the-wild source.

Furthermore, we introduce Anchor-ControlNet (Sec. 4.2), injects anchor-video-based control signals
into the generation process with the base model frozen. Anchor-ControlNet is a lightweight module
with only 30M parameters (<1% of the backbone), injected into the first 25% of backbone layers and
using merely 8% of the hidden dimension, which directly takes the anchor video as control signals.
Importantly, to improve generation quality, we manually make Anchor-ControlNet visibility-aware,
applying visibility masking to ControlNet’s outputs. Specifically, its output is added to the base
model’s latent representation only within the visible regions, leaving the unseen areas untouched. This
design simplifies the ControlNet’s task to copying visible content, while delegating the synthesis of
occluded or invisible regions entirely to the base diffusion model. This clear division of responsibility
not only reduces training difficulty, but also fully unleashes the base model’s generation ability in
unseen regions. With these components, anchor-video-based camera control can be learned with
remarkable efficiency: converging with just 5K in-the-wild videos and 500 training steps (less than
5% of the data and steps of prior methods) (Figure 1 Left), requiring only 15 GPU hours in total.

Extensive experiments demonstrate that, despite being over an order of magnitude more efficient,
EPiC achieves superior performance in camera accuracy (e.g., RotErr, TransErr; Figure 1, Right) and
motion stability (measured by the standard deviation of generated trajectories across different seeds)
on image-to-video (I2V) camera control tasks in both indoor and game environments. Moreover,
EPiC exhibits strong generalization to video-to-video (V2V) camera control in a zero-shot setting,
even though it is trained solely on I2V data. Ablation study shows the effectiveness of our anchor
video method and ControlNet design. Our contributions are as follows:
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• A novel anchor video construction pipeline with visibility-based masking that produces well-
aligned anchor–source video pairs without required point cloud and camera trajectory estimations,
while enabling learning from in-the-wild videos.

• A lightweight Anchor-ControlNet architecture with visibility-aware output masking, allowing
efficient and precise conditioning on anchor videos.

• Strong performance on both I2V and V2V camera control tasks with high efficiency in training,
data, and model size compared to previous methods.

2 RELATED WORK

Image/Text-Based Camera Control in VDMs. Controlling camera trajectories in text-to-video
(T2V) generation and I2V generation has recently received increasing attention. A common approach
is to inject explicit camera parameters (e.g. plücker Embedding) into VDMs (Wang et al., 2024e;
Hou et al., 2024b; Bahmani et al., 2024b;a; Sun et al., 2024; He et al., 2025b; Zheng et al., 2024;
Xu et al., 2024; Watson et al., 2024; Yu et al., 2025b; Li et al., 2025; Zheng et al., 2024; He et al.,
2025a; Zhou et al., 2025; Li et al., 2024) for conditioning. However, such parameter-conditioned
models often generate world-inconsistent content due to the lack of explicit 3D guidance, especially
in out-of-distribution scenarios. To mitigate this, recent works have shifted toward guiding generation
with point-cloud renderings (anchor videos) as conditions to leverage geometric cues for more
accurate camera control (Yu et al., 2024b; Popov et al., 2025; Hou et al., 2024a; Ren et al., 2025;
Zheng et al., 2025; Seo et al., 2024; Cao et al., 2025; Müller et al., 2024; Liu et al., 2024; Zhang
et al., 2024a; 2025; Zhou et al., 2024; Yang et al., 2025; Bernal-Berdun et al., 2025). Alternatively,
some methods rely on trajectory tracking and encoding as intermediate guidance (Jin et al., 2025;
Feng et al., 2024; Xiao et al., 2024; Gu et al., 2025), but such guidance is generally less direct than
anchor video conditions and often results in lower accuracy. Despite these advances, rendered anchor
videos are often misaligned due to point-cloud errors, and the reliance on accurate camera estimations
restricts training to static datasets. Moreover, prior methods require large-scale data to correct
misalignment and increase diversity. To address these issues, we propose a masking-based anchor
video construction method for precise alignment without camera annotations, and a visibility-aware
ControlNet that conditions on the anchor video both efficiently and effectively.

Video-Based Camera Control. V2V camera control redirects camera trajectories in existing videos,
with applications in filmmaking, augmented reality, and beyond. Unlike T2V and I2V, it is harder to
recover comprehensive 4D information from original videos, and paired ground-truth 4D data are
scarce. To overcome this, one line of work applies test-time optimization or fine-tuning on specific
scenes (You et al., 2024; Zhang et al., 2024a), reducing data reliance but incurring heavy inference
overhead. Another line collects large-scale paired videos from simulators such as Unreal Engine5 (Bai
et al., 2025a;b), Kubric (Greff et al., 2022; Van Hoorick et al., 2024), or Animated Objaverse (Deitke
et al., 2023; Wu et al., 2025; Gao et al., 2024; Yu et al., 2024a; Wang et al., 2024a), though realism
and diversity remain limited. The most related works (Bian et al., 2025; Yu et al., 2025a) leverage
structured 3D priors (e.g., anchor videos) for controllable V2V generation, but require extensive
backbone tuning on large curated 4D datasets. By contrast, our method trains efficiently with only a
small amount of I2V data and minimal backbone modification, while generalizing well to V2V.

3 BACKGROUND: VIDEO DIFFUSION MODELS

We build on the framework of latent video diffusion models (VDMs), which generate videos by
iteratively denoising latent representations in a compressed space. Given an RGB video x ∈
R

L×3×H×W , a pre-trained 3D-VAE is used to encode the video into a latent variable z = E(x) ∈
R

L′
×C×h×w, where L is the number of input frames and H × W the frame resolution; and L′,

C, and h × w the sequence length, channel count, and spatial resolution of the z respectively.
Training diffusion models involves learning the reverse of a forward (noising) process. In the
forward process, a clean latent sample z0 ∼ pdata(z) is gradually corrupted with Gaussian noise
zt =

√
ᾱt z0 +

√
1− ᾱt ϵ, ϵ ∼ N (0, I). At each timestep t, the model is trained to predict the

noise ϵ from the noisy latent zt conditioned on external signals c (e.g., image or text), by minimizing
the denoising objective:

Ldenoise = Ez0,t,ϵ,c

[

∥ϵθ(zt, t, c)− ϵ∥2
2

]

(1)
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Figure 2: EPiC Model Architecture. (a) shows an overview of our EPiC framework. EPiC supports
multiple inference scenarios. (b) and (c) illustrate our I2V inference scenarios using full and masked
point clouds, respectively. (d) depicts V2V inference scenario employing dynamic point clouds.

At inference time, the model progressively denoises from Gaussian noise to the final latent represen-
tations ẑ, which is decoded by the 3D VAE decoder D to generate the output video: x̂ = D(ẑ).

Base Model. We adopt CogVideoX (Yang et al., 2024b) as our base model, which employs a DiT-
style (Peebles & Xie, 2023) transformer backbone with full 3D self-attention to jointly model spatial
and temporal dependencies across video frames. Specifically, we use the CogVideoX-5B-I2V variant,
which supports both image and text conditions for multimodal control during video generation.

Guiding VDMs with Anchor Video as a Structured Prior for Camera Control. Recent meth-
ods (Yu et al., 2024b; 2025a; Cao et al., 2025; Zhang et al., 2024a) have leveraged anchor videos
to enable controllable video generation with explicit camera motion control. Anchor videos are
typically rendered given camera trajectories from 3D point clouds constructed by lifting a single RGB
image into 3D space (Wang et al., 2024b; Yang et al., 2024a). These anchor videos provide explicit
geometry and camera motion signals, serving as a structured prior to guide the video generation to
follow the intended camera trajectory. During training, the anchor video is created by lifting the first
frame of the source video into 3D and rendering it along the source video’s camera trajectory. The
model then learns to reconstruct the source video conditioned on the anchor video. During inference,
the anchor video is constructed similarly using the input image and a user-specified camera trajectory.

However, existing methods face two major challenges: (1) Anchor videos derived from 3D point
cloud estimations are often imprecise, leading to difficulties during training ( Fig. 5 (a)). The model
must not only inpaint missing regions but also correct misaligned visible areas, resulting in inefficient
learning. (2) Conditioning on anchor videos in the latent space typically requires fine-tuning the
base model or injecting dense additional modules, which increases computational overhead and
reduces model generalization (Table 1). To overcome these limitations, we introduce EPiC, a novel
and efficient framework for learning precise camera control with masking-based anchor video and a
lightweight Anchor-ControlNet, which we will describe in detail next.

4 EPIC: AN EFFICIENT FRAMEWORK FOR CAMERA CONTROL LEARNING

Our key idea is to enable controllable video generation through precise anchor-video guidance. Fig. 2
illustrates the overall architecture of our framework. We first construct precisely aligned anchor and
source videos as training input-output pairs with a visibility-based masking strategy (Sec. 4.1). Then,
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we introduce a lightweight Anchor-ControlNet that learns to reconstruct the source video from the
anchor video efficiently (Sec. 4.2). Finally, we describe our training and inference details (Sec. 4.3).

4.1 CONSTRUCTING PRECISE ANCHOR VIDEOS FROM SOURCE VIDEOS VIA

VISIBILITY-BASED MASKING

We aim to construct anchor videos that are well-aligned with the source videos, making the learning
process easier and more efficient. To achieve this, we construct anchor videos through a masking
strategy that preserves alignment while mimicking the geometric characteristics of point-cloud-
rendered videos. Specifically, our process consists of the following two steps:

Figure 3: Anchor video construction.

Step 1: Pixel-Level Visibility Tracking and Mask-
ing. We estimate pixel trajectories in the source
video using dense optical flow from the first frame
(computed via RAFT (Teed & Deng, 2020)) to de-
termine whether each pixel remains visible from the
original viewpoint. This pixel tracking simulates how
content moves or disappears due to viewpoint shifts
or occlusion. We provide a binary visibility mask
for each frame based on such tracking information,
retaining only regions consistently traced from the
original view and masking out the rest. This process
effectively mimics the core property of anchor videos,
which excludes newly revealed content while ensur-
ing precise alignment in the visible regions. In cases
where the visible region becomes too small due to large viewpoint shifts, we freeze the mask in
subsequent frames to prevent further degradation. The masked source video is obtained by applying
the visibility mask to the source video, as shown in Fig. 3.

Step 2: Artifact Injection. A major limitation of estimated point clouds is the presence of flying-
pixel artifacts, especially around object boundaries (see Fig.2(d), where splatted flying pixels appear
near the dog’s edges in both point cloud examples). These errors propagate to the anchor video,
resulting in flying-pixel artifacts (see Fig.2(d)). To improve robustness, we simulate this flying-pixel
effect during training by injecting synthetic dashed rays into the masked anchor video to better align
training and inference gap (see Fig. 3 bottom red box). Specifically, we randomly sample a direction
and draw multiple rays perpendicular to it, with colors sampled from the first frame to ensure temporal
consistency. These rays are faded and dashed to resemble flying-pixel artifacts, and are applied only
within the visible regions defined by the mask, which helps the model learn to ignore such artifacts
during inference. The artifact-injected video is used as the final anchor video for training.

4.2 GUIDING VIDEO DIFFUSION WITH ANCHOR-CONTROLNET

We introduce Anchor-ControlNet, a variant of ControlNet to guide the base video diffusion model
using the constructed anchor video as the condition (Fig. 2 (a)). We follow the principle of using min-
imal parameters for downstream adaptation to preserve the model’s core generation capability (Ruiz
et al., 2023) instead of fine-tuning backbone densely. To this end, we adopt a lightweight ControlNet
design (<30M parameters) and keep the entire backbone frozen during training.

Model Architecture. Anchor-ControlNet is a lightweight DiT-based module designed to inject
anchor video guidance into the base diffusion model. Given an anchor video A, we encode it
using the 3D VAE from the backbone model to obtain latent features zanchor. During the reverse
diffusion process, the noisy latent zt is concatenated with zanchor along the channel dimension. The
combined representation is then patchified and fed into the ControlNet DiT block. The DiT block in
Anchor-ControlNet adopts a reduced hidden dimension (256 compared to 3072 in the base model) to
maintain efficiency. Its output is projected back to match the backbone’s dimension and added to the
corresponding layer in the base DiT model. The projection layer is zero-initialized, following the
standard practice in ControlNet, to ensure stable integration at the beginning of training.

Visibility-Aware Output Masking. Previous work, such as ViewCrafter (Yu et al., 2024b), con-
dition directly on the entire anchor video without visibility awareness. This forces the model to
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simultaneously repair misaligned regions and inpaint invisible (black) areas, making the learning task
unnecessarily difficult and increasing the risk of incorrect region repair during inference. Trajecto-
ryCrafter (Yu et al., 2025a) incorporates visibility information by encoding the visibility mask into
latents, which forces the model to learn the complex relationship among the anchor video, source
video, and the mask, thereby increasing training difficulty.

In contrast, with our aligned anchor videos, we can address these issues by manually distinguishing
visible and invisible content: the ControlNet focuses solely on copying visible content, while the
synthesis of occluded or invisible regions is entirely delegated to the base diffusion model. Formally,
we require the control signal from the anchor video to only affect visible regions by applying a binary

mask M ∈ {0, 1}T ′
×h×w to the ControlNet output. The mask is downsampled to match the latent

resolution and used to selectively update the base model’s latent features (Fig. 2a). The ControlNet
output is computed as z̃ = Proj(DiTctrl([zt, zanchor])), and then fused with the base model as

ẑ = DiTbase(zt) +M ⊙ z̃, (2)

where M masks out invisible regions. This visibility-aware latent fusion is applied during both training
and inference, allowing the base model to inpaint disoccluded regions while Anchor-ControlNet
controls the visible content aligned with the anchor video.

4.3 TRAINING AND INFERENCE

In this section, we outline the training and inference paradigm of our framework. EPiC supports mul-
tiple inference scenarios, including I2V and V2V, enabling flexible adaptation to diverse applications.

Training. We create our masking-based anchor video from in-the-wild source videos to construct
training data. We train the Anchor-ControlNet on our collected anchor and source video pairs by
conditioning on the anchor video to predict the source video with the training objective in Eq. 1.
Details of our in-the-wild video data are provided in Sec. 5.1.

I2V Inference. We consider two distinct inference scenarios for I2V: mode (b): with full point
clouds (illustrated in Fig. 2 (b)) and mode (c) with masked point clouds (shown in Fig. 2 (c)). In
the first scenario, given an input image and a target camera trajectory, we first estimate the metric
depth using DAv2 (Yang et al., 2024a). We then unproject the image into a 3D point cloud and render
the anchor video along the specified camera trajectory. However, this approach produces anchor
videos where objects remain static, as rendering is performed from a stationary point cloud. For
example, the character in Fig. 2 (b) retains the same position and pose throughout the video, limiting
its dynamic realism. To overcome this limitation and support dynamic object movement while
preserving precise camera control, we propose inference with masked point clouds. Specifically,
given a single input image, we employ GroundedSAM (Ren et al., 2024) to identify and segment
potentially dynamic objects (e.g., “person”, “animal”) from a predefined category list. Users may
also customize tailored segmentation masks. During 3D point cloud projection, we exclude points
within the segmented regions (note that we dilate each mask boundary to capture outlier points near
the edges). These masked areas are omitted when rendering the anchor video. Our design allows
the reserved background to drive camera motion while leaving the segmented foreground objects
unconstrained, enabling natural movement within the generated video.

V2V Inference. EPiC also supports V2V camera control (Fig. 2 (d)). Given an input video, we apply
DepthCrafter (Hu et al., 2024) to estimate continuous depths and construct dynamic point cloud. The
anchor video is rendered by replaying the target trajectory over 4D representation. Note that since the
base I2V model is frozen, we provide the first frame of the conditional video as input to the model.

5 EXPERIMENTS

5.1 EXPERIMENTAL SETUP

Datasets and Baselines. We compare EPiC and recent baselines for I2V setting on the RealCam-Vid
test set (Li et al., 2025) from two data source, RealEstate10K (RE10K) (Zhou et al., 2018b) and
MiraData (MIRA) (Ju et al., 2024), consisting of mainly indoor scene and gaming environments.
For each dataset, we sample 500 videos for evaluation. For baselines, we consider SoTA methods
including CameraCtrl (He et al., 2024), AC3D (Bahmani et al., 2024a) and ViewCrafter (Yu et al.,
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Table 1: Quantitative evaluation results on RealEstate10K (Zhou et al., 2018b) and MiraData (Ju
et al., 2024) for I2V camera control task. The best numbers are highlighted in bold. The total score is
computed by averaging all quality metrics. † indicates re-implementation results on the I2V task.

Dataset Method
Quality Score Camera Score

Total
Subject Bg Motion Temporal Aesthetic Imaging Rotation Transition

CamMC (↓)
Consist Consist Smooth Flicker Quality Quality Error (↓) Error (↓)

RE10K

CameraCtrl (He et al., 2024) 78.35 89.95 91.25 97.16 91.99 43.32 56.43 1.12 ± 0.44 1.78 ± 0.93 2.36 ± 1.01

AC3D† (Bahmani et al., 2024a) 82.63 91.96 92.77 98.30 96.23 50.97 65.56 0.86 ± 0.37 1.50 ± 0.82 1.97 ± 0.86

ViewCrafter (Yu et al., 2024b) 81.18 90.23 92.99 97.74 93.51 48.29 64.33 0.50 ± 0.16 1.05 ± 0.32 1.35 ± 0.40

EPiC (Ours) 82.63 91.62 93.43 98.48 96.47 51.19 64.57 0.40 ± 0.11 0.86 ± 0.18 1.17 ± 0.23

MIRA

CameraCtrl (He et al., 2024) 78.06 89.28 91.15 97.30 90.22 49.35 51.11 1.62 ± 0.84 4.67 ± 1.47 5.66 ± 2.06

AC3D† (Bahmani et al., 2024a) 82.78 91.75 92.81 98.20 94.77 57.64 61.51 1.13 ± 0.74 3.98 ± 1.50 4.79 ± 1.53

ViewCrafter (Yu et al., 2024b) 79.87 86.56 91.55 96.26 91.71 54.21 58.92 1.16 ± 0.34 2.95 ± 0.98 3.42 ± 1.04

EPiC (Ours) 82.89 91.82 92.94 98.75 94.86 57.94 61.03 0.66 ± 0.22 1.78 ± 0.67 2.10 ± 0.60

2024b). For consistency, we use similar anchor videos per test sample for both ViewCrafter and EPiC.
For V2V setting, we qualitatively evaluate using Sora videos (Brooks et al., 2024) and challenging
movie clips, while provide quantitative results on sampled 100 Kubric4D (Greff et al., 2022) scenes.
We use GCD (Van Hoorick et al., 2024) and TrajectoryCrafter (Yu et al., 2025a) as V2V baselines.

Implementation Details. EPiC is trained on 5,000 videos from the Panda70M dataset (Chen et al.,
2024) for 500 iterations, using a total batch size of 16 across 8 40G A100 GPUs. The text condition
for the I2V backbone is obtained from the annotated captions in Panda70M. Training takes less than
3 hours with a learning rate of 2× 10−4, using the AdamW (Loshchilov, 2017) optimizer. During
inference, we apply classifier-free guidance (CFG) with a scale of 6.0 for text conditioning. More
details are in the Appendix B.1.

Evaluation Metrics. For camera-related metrics, we follow prior works (Wang et al., 2024d; He
et al., 2024) and report Rotation Error (RotError), Translation Error (TransError), and CamMC, which
respectively measure orientation differences, positional errors, and overall camera pose consistency
between the predicted and ground-truth trajectories. To account for randomness, we sample five fixed
random seeds per test instance and report the mean and standard deviation of each camera metric. For
visual quality, we adopt the evaluation protocol from VBench (Huang et al., 2024), including metrics
such as Subject Consistency, Background Consistency, Motion Smoothness, Temporal Flickering,
Aesthetic Quality, and Imaging Quality. Details of these metrics are provided in the Appendix B.2.

5.2 QUANTITATIVE EVALUATION

Performance. In Table 1, we compare EPiC and recent SOTA I2V camera control methods (Cam-
eraCtrl, AC3D, ViewCrafter) on RealEstate10K (RE10K) and MiraData (MIRA). EPiC achieves
comparable quality scores to those of prior approaches across both the RE10K and MIRA bench-
marks. EPiC attains the highest total score on both datasets (82.63 on RE10K and 82.89 on MIRA),
suggesting strong subject/background consistency, smooth motion, and reduced temporal flicker.
Furthermore, our method significantly outperforms existing baselines in all three camera score metrics.
This demonstrates superior fidelity in controlling camera motions, along with the best robustness
across seeds, as reflected by the lowest standard deviations.

For V2V camera control, results on Kubric-4D (Table 2) show that our method, although only trained
on I2V data, is comparable with strong baselines specifically trained for this task such as GCD and
TrajCrafter, demonstrating its strong zero-shot generalization ability.

Efficiency. In Figure 1, we present a comparison of training efficiency with the aforementioned
methods for I2V and V2V. EPiC requires over an order of magnitude fewer training data and substan-
tially lower training cost, while also using significantly fewer parameters, requiring only 15 GPU
hours to train. Importantly, quantitative results show that our method achieves comparable or even
superior performance. This underscores the effectiveness of our lightweight design, demonstrating
that accurate and robust camera control can be achieved without relying on heavy data or computation.

5.3 QUALITATIVE EXAMPLES

Fig. 4 compares camera control results from EPiC and SOTA open-source baselines on both I2V and
V2V settings. For I2V, we include ViewCrafter and AC3D; for V2V, we compare against GCD and
TrajectoryCrafter. AC3D and GCD are conditioned on camera embeddings, whereas ViewCrafter and
TrajectoryCrafter, like ours, are conditioned on anchor videos.
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GT
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EPiC
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GCD

(a) I2V Camera Control (b) V2V Camera Control

Input Image Frame 8 Frame 24 Frame 40 Frame 1 Frame 16 Frame 32

Figure 4: Generated videos comparing with other camera control methods for I2V and V2V tasks.

Table 2: V2V results on Kubric-4D.

Method PSNR ↑ SSIM ↑
GCD (Van Hoorick et al., 2024) 19.72 0.59
TrajCrafter (Yu et al., 2025a) 19.61 0.62
EPiC (Ours) 19.65 0.60

Table 3: Different anchor video type on Real10K.

Anchor Video Type RotErr (↓) TransErr (↓) CamMC (↓)

Point cloud-based (1500 iters) 0.60 ± 0.20 1.07 ± 0.39 1.45 ± 0.62

Masking-based (500 iters; Ours) 0.40 ± 0.11 0.86 ± 0.18 1.17 ± 0.23

I2V Camera Control. As shown in Fig. 4 (a), both ViewCrafter (3rd row) and our method (4th row)
are capable of following anchor videos. However, as shown in the ViewCrafter row, it often introduces
content inconsistencies (red boxes): for example, it gradually changes a painting to glass-like material
(3rd column), and produces severe distortions around the sofa (4th column) and chairs (5th column).
Such deviations from the anchor video are potentially due to ViewCrafter learning to over-repair
misaligned regions—a side effect of being trained with misaligned point-cloud-based anchor videos.
In contrast, our method faithfully preserves visible content thanks to learning from aligned anchor
videos (shown in green boxes). As a baseline without anchor video guidance, AC3D fails to follow
the desired camera trajectory. It is worth noting that this example is taken from the RealEstate10K
test set, which is an in-domain evaluation setting for both ViewCrafter and AC3D, as they are trained
densely with RealEstate10K videos. Even so, our method demonstrates superior accuracy and quality.
We also provide 10+ more qualitative comparisons on Real10K and Miradata in Appendix Figure 10
and Figure 11, as well as more in-the-wild examples in Figure 13.

V2V Camera Control. We provide example shown in Fig. 4 (b). While GCD produces blurry
foregrounds and lacks fidelity, both TrajCrafter and our method are generally able to follow the
anchor video. However, wrong occlusion occurs in the 3rd frame of the anchor video, where the
tree passes through regions not reconstructed in the point cloud. TrajCrafter incorrectly follows this
erroneous signal (red box), potentially due to its heavily modified backbone that enforces anchor-
video following even when the renderer is inaccurate. In contrast, our method freezes the entire
backbone and only uses the anchor video as guidance, encouraging the model to generate the most
plausible content while avoiding being misled by incorrect occlusions (green box). We also provide
more additional qualitative comparisons and examples on in-the-wild videos in Figure 12, Figure 14,
and Figure 15, as well as two single-video multi-camera shooting examples in Figure 16

5.4 ABLATION STUDIES

In this section, we present ablation studies to validate the key components of our framework. We
analyze the impact of different anchor video constructions, artifact injection, visibility-aware output
masking, and masked point clouds for dynamic objects. We also provide additional ablations on
training data sources and lightweight model design in Appendix Sec. C.

Effects of Different Types of Anchor Videos. We evaluate the effects of different types of anchor
videos in Table 3 and Fig. 5 (a). For a fair comparison, we select 5K videos with significant camera
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Anchor
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Cloud-
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(1500 iter)

Masking-
Based
(500 iter)

(a) Training Results with Different Anchor Videos

Source Image

(d) Masked Point Clouds
With Masked Point CloudsWith Full Point Clouds

(b) Artifact Injection
Without Artifact Injection With Artifact InjectionAnchor VideoSource Video

Source Image

(c) Visibility-Aware Output Masking

Anchor Video Frame Without Masking With Masking

Anchor Video Frame Generated Video Frame Anchor Video Frame Generated Video Frame

Figure 5: Qualitative examples for ablation study.

movement from RealEstate10K, and obtain the anchor video using either a classical point cloud-based
method or our visibility-based masking method. We train on point cloud-based anchor videos for
1500 iterations, and masking-based ones for 500 iterations. Table 3 shows that training with point
cloud-based anchors leads to higher errors and less stable results with larger standard deviation.
In Fig. 5(a), due to misalignment, point cloud-based anchor videos lead to slower convergence,
producing significantly higher loss than masking-based ones, even with 3× more training. Qualitative
results show that models trained with point cloud-based anchors fail to follow the anchor precisely,
producing misaligned geometry (red dashed lines in the point cloud-based row), as the model learns
an additional task of repairing visible regions, whereas ours faithfully follow (green dashed lines).

Effects of Artifact Injection for Constructing Training Anchor Videos. Fig. 5 (b) demonstrates
the effectiveness of artifact injection, as described in Sec. 4.1. Due to point cloud estimation errors,
flying pixels often appear when rendering from rapidly changing camera poses, resulting in incorrect
guidance even within visible regions. Without artifact injection, the model follows these flawed
inputs, leading to similar artifacts at inference (red box). In contrast, with artifact injection, the model
learns to repair such artifacts during training, resulting in cleaner outputs (green box).

Effects of Visibility-Aware Output Masking. One crucial design in our Anchor-ControlNet is the
visibility-aware output masking strategy, which enables the model to control only the visible regions,
as described in Sec. 4.2. We conduct an ablation study by training modules without mask awareness,
similar to ViewCrafter. As shown in Fig. 5 (c), without output masking, the model is influenced by
tearing artifacts rendered from the point cloud, which guide it to generate ambiguous content in these
corrupted regions (see red boxes). In contrast, our method excludes such regions from the control
signal, allowing the model to generate reasonable and faithful content (green boxes).

Effects of Masked Point Clouds for Dynamic Objects. Fig. 5 (d) shows examples of results using
the masked point cloud to enable dynamic objects, as described in Sec. 4.3. Without masking (with
full point cloud, mode (b) in Figure 2), the generated video is static—the character (in the red boxes)
stands still due to strong 3D guidance in the anchor video. In contrast, masking the point cloud
(mode (c) in Figure 2) removes control signals from the character, allowing it to move freely and
enabling a natural walking motion (as shown in the green box). We provide more examples showing
our framework’s dynamic object control ability in Appendix Figure 17.

6 CONCLUSION

We propose EPiC, an efficient framework for learning camera control. It constructs high-quality
training anchors by masking source videos based on first-frame visibility, reducing the need for
camera pose estimation and enabling application to in-the-wild videos. We further introduce Anchor-
ControlNet, a lightweight adapter that learns to copy visible regions from the anchor video, requiring
neither large models, extensive data, nor backbone modifications to correct misalignment. EPiC
outperforms previous methods in various visual quality and camera scores. Qualitative experiments in
I2V and V2V scenarios, along with comprehensive ablation studies, also validate our design choices.
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7 ETHICS STATEMENT

This work focuses on efficient and precise camera control in video diffusion models using publicly
available or synthetic test datasets such as RealEstate10K, MiraData, Panda70M, and Kubric. No
human subjects, personally identifiable information, or sensitive data were involved. All datasets
used are released for research purposes and comply with their respective licenses.

The proposed method is designed to improve video generation controllability for applications such as
virtual cinematography, content creation, and embodied simulation. While generative models carry
potential risks of misuse (e.g., deepfakes or non-consensual content creation), our work primarily
targets camera trajectory control, a technical problem that does not inherently amplify these risks.
Nonetheless, we encourage responsible use, dataset transparency, and clear labeling of synthetic
media. We have no conflicts of interest or sponsorship that could influence the reported results.

8 REPRODUCIBILITY STATEMENT

We have made every effort to ensure reproducibility of our results. The training and evaluation
datasets (RealEstate10K, MiraData, Panda70M, Kubric) are publicly available. Implementation
details, model configurations, and training hyperparameters are fully described in Section 5 and
Appendix A of the paper output.

Our method requires only 5K training videos, 500 training iterations, and <20 GPU hours on 8×40GB
A100 GPUs, which makes reproduction feasible for most academic labs. Evaluation protocols follow
established benchmarks and metrics (e.g., Rotation Error, Translation Error, CamMC, and VBench
metrics). Code and supplementary materials (including videos) are provided with the submission to
facilitate replication.
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Figure 6: Comparison between prior 3D point cloud–based anchor video construction and our
visibility-based masking approach.

A ANCHOR VIDEO CONSTRUCTING METHOD ILLUSTRATION

We provide an illustration of anchor video construction in Figure 6. (a) Previous methods rely on
lifting the first frame into a 3D point cloud and rendering along estimated camera trajectories. This
often leads to misaligned visible regions due to pose/depth estimation errors, requiring large-scale
datasets and many training iterations. (b) In contrast, our visibility-based masking approach directly
preserves only pixels that can be traced back to the first frame, producing well-aligned anchor videos
without any camera pose estimation. This design greatly simplifies learning and enables efficient
training with substantially fewer videos and iterations.

B EXPERIMENT DETAILS

B.1 IMPLEMENTATION DETAILS

EPiC is trained on a subset of 5, 000 videos from the Panda70M dataset (Chen et al., 2024) for 500
iterations, using a total batch size of 16 across 8 40GB A100 GPUs. The text condition for the I2V
backbone is obtained from the annotated captions in Panda70M. The subset is selected based on
optical flow scores, where we rank videos by their average flow magnitude and retain those with
sufficient motion to ensure meaningful camera control training. Training takes less than 3 hours with
a learning rate of 2× 10−4, using the AdamW (Loshchilov, 2017) optimizer. For our visibility-aware
output masking, we apply average pooling to downsample the raw visibility mask to the latent
resolution. We train the Anchor-ControlNet at a resolution of 480 × 720 for 49 frames per video
(which is the default setting of CogVideoX-5B-I2V (Yang et al., 2024b)), with ControlNet weights
set to 1.0.

During inference, we apply classifier-free guidance (CFG) (Ho & Salimans, 2022) with a scale of 6.0
for text conditioning. Following AC3D (Bahmani et al., 2024a), we only inject the ControlNet into
the first 40% diffusion steps at inference. We apply max pooling to downsample the raw visibility
mask to the latent resolution for visibility-aware output masking. For videos with caption annotations,
we directly use the annotations as the textual condition. For those without annotations, we either
generate the text condition using advanced vision-language models (Li et al., 2023; Bai et al., 2023)
based on the visual input, or manually write prompts for specific usage scenarios.

B.2 EVALUATION METRICS

We adopt three standard camera pose evaluation metrics to measure the alignment between predicted
and ground-truth camera trajectories: Rotation Error (RotErr), Translation Error (TransErr),
and Camera Matrix Consistency (CamMC) following MotionCtrl (Wang et al., 2024d) and Camer-
aCtrl (He et al., 2024).
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• Rotation Error (RotErr) measures the angular deviation (in radians) between the predicted and
ground-truth camera rotations:

RotErr =

n
∑

i=1

arccos

(

tr(R̃iR
⊤
i )− 1

2

)

where R̃i and Ri are the predicted and ground-truth rotation matrices at frame i, and n is the
number of frames in the video.

• Translation Error (TransErr) computes the L2 distance between normalized translation vectors:

TransErr =
n
∑

i=1

∥

∥

∥

∥

∥

T̃i

s̃i
− Ti

si

∥

∥

∥

∥

∥

2

where T̃i and Ti are the predicted and ground-truth camera translations, and s̃i, si are their
respective scene scales—defined as the L2 distance between the first and farthest frame in each
video.

• Camera Matrix Consistency (CamMC) evaluates overall pose alignment by comparing full
camera-to-world matrices with scale normalization:

CamMC =
n
∑

i=1

∥

∥

∥

∥

∥

∥

[

R̃i

T̃i

s̃i

]3×4

−
[

Ri

Ti
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]3×4

∥

∥

∥

∥

∥

∥

2

where R̃i, T̃i, and s̃i are the predicted rotation, translation, and scene scale; Ri, Ti, and si are their
ground-truth counterparts.

For visual quality, we adopt the evaluation protocol from VBench (Huang et al., 2024), including
metrics such as Subject Consistency, Background Consistency, Motion Smoothness, Temporal
Flickering, Aesthetic Quality, and Imaging Quality. We refer to VBench (Huang et al., 2024) for
more details.

C ABLATION STUDIES

In this section, we provide additional ablations on the training data, the use of Anchor-ControlNet,
and the lightweight ControlNet design.

C.1 EFFECTS OF TRAINING DATA SOURCES

A key advantage of our method is that it does not rely on camera pose annotations, which en-
ables training on diverse, in-the-wild video datasets beyond multi-view datasets with limited do-
main coverage. To validate this, we conduct an ablation comparing training on the widely used
RealEstate10K (Zhou et al., 2018b), which is a mulit-view dataset limited to static indoor scenes,
with training on Panda70M (Chen et al., 2024), which contains more diverse and dynamic videos.

We report quantitative results in Tab. 4. We observe that both data sources yield comparable
performance on RealEstate10K, while training with Panda70M achieves slightly better results on
MiraData, likely due to its more diverse training content. However, in the V2V setting, especially
when the reference video involves fine-grained motion (e.g., detailed limb articulation), models
trained on RealEstate10K fail to generalize effectively. Specifically, as shown in Fig. 7, the crab’s
legs exhibit intricate, localized motion patterns. While the model trained on Panda70M is able to
precisely follow these details by following the anchor video, the model trained on RealEstate10K can
only capture a coarse moving direction, failing to reproduce the fine motion in the crab’s legs. This
limitation is likely due to the lack of diverse and dynamic videos in the RealEstate10K dataset, which
mainly consists of indoor scenes that differ significantly from the domain of the crab video.

C.2 EFFECTS OF LIGHTWEIGHT ANCHOR-CONTROLNET DESIGN

We ablate the design of our lightweight ControlNet in Tab. 5. Specifically, we compare injecting
into half of the backbone layers (21 layers here (CogVideoX-5B-I2V has 42 layers totally), as in the
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Figure 7: Qualitative V2V camera control results of models trained from different data sources.

Table 4: Ablation of using different data sources for training EPiC.

Training Data Source
RealEstate10K MiraData

Rot. Err (↓) Trans. Err (↓) CamMC (↓) Rot. Err (↓) Trans. Err (↓) CamMC (↓)

RealEstate10K Zhou et al. (2018b) 0.43±0.10 0.84±0.22 1.06±0.25 0.73±0.32 1.88±0.75 2.21±0.65

Panda70M Chen et al. (2024) 0.40±0.11 0.86±0.18 1.17±0.23 0.66±0.22 1.78±0.67 2.10±0.60

default ControlNet setting) with and without using pretrained weights, and further study the effect
of reducing the number of injection layers. Our results show that using a high-dimensional feature
space (3072) with pretrained CogVideoX weights performs comparably to using no pretraining and a
much smaller dimension (256), suggesting that the region-copying control is relatively easy to learn.
In addition, reducing the number of injection layers to 8 does not hurt performance, while further
reducing it to only 2 layers results in a noticeable decreased control accuracy. Based on these findings,
we adopt the most cost-effective configuration: injecting into 8 layers with a control dimension of
256.

C.3 TRAINING ANCHOR-CONTROLNET ONLY VS. FULL-FINETUNING

As ViewCrafter (Yu et al., 2024b) directly fine-tunes the entire backbone, we compare our ControlNet-
based training strategy with this standard full-finetuning approach to highlight the efficiency of
our design. Specifically, we encode the anchor video directly as the conditioning input,replacing
the original image-conditioned latent, and full-finetune the base model for 1000 iterations. As
shown in Fig. 8, despite training for twice as many steps, the output remains blurry and noisy. We
attribute this to a mismatch in the conditioning distribution: replacing image-based conditioning with
anchor-video conditioning disrupts the pre-learned first-frame embedding priors, making end-to-end
fine-tuning less effective and harder to optimize. In contrast, our ControlNet design enables effective
anchor-video conditioning without modifying the backbone, by treating the anchor video as an
external control signal.

D ROBUSTNESS TO DIFFERENT RANDOM SEEDS

We demonstrate the robustness of our method in Fig. 9. Given a conditioned image, we use a specific
object (highlighted with a white box) as the reference for spatial consistency. For AC3D, varying the
random seed leads to noticeable changes in the spatial positions of other objects (highlighted in red
boxes). This is especially evident in Seed 3, where the generated object’s position drifts significantly
from the reference, failing to maintain spatial alignment. In contrast, our method consistently pre-
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Table 5: Ablation on lightweight ControlNet design. Our selected setting is bolded (no pretrain, 256
hidden dimension, 8 layers).

Pretrained Hidden Dimension #Layers
RealEstate10K

Rot. Err ↓ Trans. Err ↓ CamMC ↓

✓ 3072 21 0.42 0.83 1.19

✗ 256 21 0.38 0.90 1.21

✗ 256 8 0.40 0.86 1.17

✗ 256 2 0.70 1.32 1.89

Source Frame Anchor Video Frame
Full-finetune Base

Model (1K iter.)

Ours w/ Anchor 

ControlNet (500 iter.)

Figure 8: Results of training with Anchor-ControlNet compared to full-finetuning.

serves the spatial relationship across different seeds. The objects in our generated videos (highlighted
in green boxes) remain stable and aligned with the referenced object, demonstrating strong robustness
to seed variation.

E ADDITIONAL QUALITATIVE RESULTS

I2V Qualitative Comparison. We compare EPiC with the ViewCrafter baseline on the
RealEstate10K test set for I2V camera control, as shown in Figure 10. ViewCrafter frequently
exhibits hallucination artifacts, where scene content is incorrectly imagined. For example, in the
1st case, a table and chairs are mistakenly transformed into a sofa as the camera moves closer;
in the 4th case, a doll inside the baby cot disappears after a viewpoint rotation. In contrast, our
method consistently preserves objects following the anchor video guidance. It is worth noting that
RealEstate10K serves as the in-domain large-scale training set for ViewCrafter, whereas for EPiC it
is an entirely out-of-domain dataset, since EPiC is trained only on limited samples from Pandas70M.
Despite this disadvantage, EPiC demonstrates superior fidelity and consistency.

We also present results on MiraData in Figure 11. In addition to hallucination artifacts, ViewCrafter
often fails to generate dynamic content (1st, 2nd examples), likely due to its reliance on fully
reconstructed point-cloud anchor videos. Moreover, its synthesis of invisible regions is frequently
ambiguous or implausible (3rd, 4th examples). In contrast, our method produces more consistent
dynamics and generates clear, reasonable content in challenging unseen areas.

V2V Qualitative Comparison. We present qualitative comparisons between our method and Tra-
jectoryCrafter in Figure 12. Overall, both approaches can follow the anchor video and generate
reasonable content, leading to comparable results in many cases. However, TrajectoryCrafter occa-
sionally produces less natural synthesis in invisible or overlapped regions (e.g., the handrail in the
3rd case and the human face in the 4th case), potentially due to its large backbone modifications
and heavy fine-tuning. In contrast, our method yields more natural content, as invisible regions are
directly synthesized by the backbone rather than being over-constrained by anchor-following.

V2V Qualitative Comparison. We present qualitative comparisons between our method and Tra-
jectoryCrafter in Figure 12. Overall, both approaches can follow the anchor video and generate
reasonable content, leading to comparable results in many cases. However, TrajectoryCrafter occa-
sionally produces less natural synthesis in invisible or overlapped regions (e.g., the handrail in the
3rd case and the human face in the 4th case), potentially due to its large backbone modifications
and heavy fine-tuning. In contrast, our method yields more natural content, as invisible regions are
directly synthesized by the backbone rather than being over-constrained by anchor-following.
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(a) Ground Truth

Seed 1 Seed 2 Seed 3 Seed 1 Seed 2 Seed 3

(b) AC3D (c) EPiC (Ours)

Figure 9: Robustness to different random seeds

I2V Qualitative Examples. We showcase diverse qualitative examples of I2V camera control
spanning a wide variety of scenarios in Figure 13, including daily-life activities (cooking, dining,
exercising), human–animal interactions (fox resting, horse walking), transportation (cycling, subway),
outdoor navigation (kayaking, hiking, urban scenes), and complex virtual environments (video games,
historical architectures, and futuristic cityscapes). These examples highlight that EPiC can handle
both indoor and outdoor scenes, real-world and synthetic data, and static as well as dynamic objects.
The results demonstrate strong generalization across highly diverse contexts, producing coherent
motion and faithful camera control without overfitting to specific domains.

V2V Qualitative Examples. We present diverse examples of V2V camera control spanning movie
clips and in-the-wild videos in Figure 14 and Figure 15. Across various camera trajectories, our
method is able to faithfully follow the target motion while producing high-quality and visually
coherent results.

V2V Multi-Camera Shooting. We further demonstrate multi-camera shooting in Figure 16, where
multiple trajectories are generated from a single input video. The results show strong temporal
consistency across different camera views, indicating that our method can maintain coherent scene
structure and appearance under diverse camera motions.

I2V Inference Modes. We show results of different I2V inference modes (mode (b) and (c)
in Figure 2) in Figure 17. With the full point cloud in mode (b), our method tends to generate
static content. By masking the point cloud in mode (c), we can make specific objects dynamic,
demonstrating the ability to control both object motion and scene dynamics.

Examples of Constructed Anchor Videos. We present examples of high-quality anchor videos
constructed from Panda70M source videos in Fig. 18. Our method consistently maintains spatial
coherence and masks regions that were initially not visible in the first frame, even when objects
exhibit significant movements across frames, while the Panda70M provides both diverse and dynamic
video data. Such high-quality and diverse anchor videos further help the efficient learning by our
model.

F ADDITIONAL APPLICATIONS: FINE-GRAINED CONTROL

We present several additional applications demonstrating different types of fine-grained control based
on a single image with our anchor-video conditioning.

Text-Guided Scene Control. Our model effectively demonstrates dynamic text-guided video
generation capabilities, enabling flexible scene synthesis across different styles while maintaining
temporal and spatial consistency. Fig. 19 illustrates examples of our text-guided scene control.
Starting from an initial frame with a fixed forward camera trajectory, our method generates subsequent
video frames conditioned on different textual prompts. The newly prompted objects are introduced
into the generated scene (highlighted in red text and boxes), while the objects present in the initial
frame remain consistently visible throughout the video (highlighted in green text and boxes).
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Object 3D Trajectory Control via Anchor Video Manipulation. We also demonstrate the flexi-
bility of our method in enabling 3D trajectory control for objects. The input is usually a 3D trajectory
(e.g., indicating moving backwards with 2 meters) applied to a specific object (e.g. corgi). We
encode the desired motion into the anchor video by manipulating it based on the 3D trajectory.
Specifically, following a similar approach to our inference setup with masked point clouds, we use
GroundedSAM (Ren et al., 2024) to obtain the segmentation mask of the corgi, extract the point cloud
corresponding to the corgi, and isolate the background point cloud without the corgi. We then simulate
motion by translating the corgi’s point cloud backward by 2 meters relative to the background over
time (we don’t move the background point cloud), producing a dynamic point cloud sequence for
rendering. In this setup, we focus solely on trajectory control, thus, we remain the camera trajectory
static during rendering. The resulting anchor video depicts the corgi moving backward and serves as
strong guidance. Our results are illustrated in Fig. 20, where our approach successfully generates
scenarios in which the corgi steps backward. In contrast, AC3D, which conditions only on camera
embeddings, which lack explicit trajectory information, fails to generate this backward motion even
with “stepping backward” included in the textual condition. This comparison highlights the strength
of our method in interpreting and executing precise object-level movements in 3D space, showcasing
its superior capability for controllable video generation.

Regional Animation. Our method is also applicable to regional image animation, where motion
is localized to a specific area based on a short text prompt and a user-provided click or prior mask.
To achieve this, we directly create the anchor video by repeating the source image and applying the
regional mask to each frame. As shown in Fig.21 (a), given the prompt “the corgi shakes its head,"
with corresponding corgi head mask, our method generates a video in which only the corgi’s head
moves while the rest of its body remains still, accurately following both the textual instruction and the
specified region. In contrast, Fig.21 (b) highlights a failure case of AC3D—when the intended motion
is for the palm tree to move, AC3D incorrectly animates the corgi instead. Our method, however,
successfully isolates and animates the palm tree, demonstrating its ability to localize motion precisely
based on regional guidance and text. This showcases the fine-grained spatial control ability enabled
by our approach.

G LIMITATIONS AND BROADER IMPACTS

EPiC trains a lightweight adapter on a backbone video diffusion model. As such, its performance,
output quality, and potential visual artifacts are inherently influenced by the capabilities and limitations
of the underlying backbone models it relies on. For instance, if the backbone model struggles with
generating complex, rare, or previously unseen scenes and objects, then EPiC may also exhibit
suboptimal generation results. This dependency highlights the importance of selecting strong and
reliable backbone models when applying EPiC.

While EPiC can benefit numerous applications in video generation, similar to other visual generation
frameworks, it can also be used for potentially harmful purposes (e.g., creating false information or
misleading videos). Therefore, it should be used with caution in real-world applications.

21



1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

Under review as a conference paper at ICLR 2026

Anchor

Video

EPiC

(Ours)

View

Crafter

Anchor

Video

EPiC

(Ours)

View

Crafter

Anchor

Video

EPiC

(Ours)

View

Crafter

Anchor

Video

EPiC

(Ours)

View

Crafter

Anchor

Video

EPiC

(Ours)

View

Crafter

Figure 10: RealEstate10k qualitative comparisons for I2V camera control.
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Figure 11: MiraData qualitative comparisons for I2V camera control. The anchor video for EPiC is
generated with the masked anchor video under I2V inference mode (c), while ViewCrafter uses the
full anchor video since it does not support masked point cloud inference.
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Figure 12: Qualitative comparisons for V2V camera control.
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Figure 13: Diverse I2V camera control results.
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Figure 14: Diverse V2V camera control results.
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Figure 15: Diverse V2V camera control results.
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Figure 16: Multi-camera shooting examples for V2V.
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Figure 17: Inference with different I2V modes.
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Caption: A lobby with red and white lamps hanging from the ceiling.

Caption: People are visiting a temple with scaffolding around it.

Caption: A black chevrolet truck is driving on a rural road.

Caption: A group of men in uniform standing in a lobby.
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Figure 18: Examples of constructed anchor videos. The source video and corresponding captions are
obtained from Panda70M.

Text Prompt: (Camera move forward)…The area is then seen with a wooden table set for six, a 

china cabinet, and a floral-patterned rug. the room is warmly lit by a chandelier and natural 

light, with a framed artwork and a red armchair adding to the ambiance.

Text Prompt: (Camera move forward)…The area is then seen with a set of dumbbells neatly 

arranged on a rack, a yoga mat laid out near the window, and a treadmill in one corner.

Text Prompt: (Camera move forward)…The area is then seen with a bed tucked against one 

wall, a closet near the curtain, and a dresser with a mirror, giving the space a cozy, bedroom-like 

feel.

Text Prompt: (Camera move forward)…The area is then seen with a freestanding bathtub near 

a tiled wall, a vanity sink with a round mirror, and a towel rack with neatly folded linens.

Figure 19: Examples of text-guided scene control.
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Text Prompt: A cheerful corgi stepping backward 2 meters at a tropical beach, with palm trees and waves in the background.

EPiC
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First Frame Condition
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Figure 20: Examples of object 3D trajectory control via anchor video manipulation.

(a) Regional Animation on Corgi’s head
Text Prompt: A cheerful corgi in sunglasses and a flower lei is shaking its head at a tropical beach.

EPiC

(Ours)

Anchor

Video

AC3D

First Frame Condition

EPiC

(Ours)

Anchor

Video

AC3D

EPiC

Green

Box

Zoom-in

(b) Regional Animation on Trees and Waves

Text Prompt: A corgi is sitting while palm trees sway in the breeze and ocean waves roll gently in the background.First Frame Condition

Figure 21: Examples of Regional Animation
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