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Abstract

We propose a novel sequential Monte Carlo (SMC) method for sampling from
unnormalized target distributions based on a reverse denoising diffusion process.
While recent diffusion-based samplers simulate the reverse diffusion using ap-
proximate score functions, they can suffer from accumulating errors due to time
discretization and imperfect score estimation. In this work, we introduce a princi-
pled SMC framework that formalizes diffusion-based samplers as proposals while
systematically correcting for their biases. The core idea is to construct informative
intermediate target distributions that progressively steer the sampling trajectory to-
ward the final target distribution. Although ideal intermediate targets are intractable,
we develop exact approximations using quantities from the score estimation-based
proposal, without requiring additional model training or inference overhead. The
resulting sampler, termed Reverse Diffusion Sequential Monte Carlo, enables con-
sistent sampling and unbiased estimation of the target’s normalization constant
under mild conditions. We demonstrate the effectiveness of our method on a range
of synthetic targets and real-world Bayesian inference problems. E]

1 Introduction

Sampling from unnormalized target distributions is a fundamental problem in many applications,
ranging from Bayesian inference [1} 2] to simulating molecular systems [3]]. Classical methods
like Markov chain Monte Carlo (MCMC) simulate a Markov chain with the target as its stationary
distribution, but they can suffer from slow mixing and difficulty traversing between modes for complex
distributions. Particle methods such as importance sampling generate exact samples in a large compute
limit; yet they struggle with the curse of dimensionality [4]]. Alternatively, variational inference (VI)
[S]] casts inference as an optimization task, though its success depends on the expressiveness of the
variational family and the complexity of the optimization landscape.

Recently, diffusion models have emerged as a powerful approach for sampling from complex dis-
tributions [6,[7]]. They define a forward noising process that gradually transforms a complex target
distribution into a simple base distribution. A reverse denoising process then reconstructs target
samples by simulating the dynamics backward in time, starting from the base distribution and guided
by a time-dependent score function. In the generative modeling setting, this score function is approxi-
mated by a neural network trained on samples from the target distribution. However, in the sampling
context, such training data are unavailable and only an unnormalized target density is accessible.

Recent works on diffusion-based samplers explore alternative ways to approximate the score function
directly from the target density, enabling sampling without access to training data. One line of works,

*Correspondence email: 1w2827@columbia.edu
2Our code is available at https://github. com/LuhuanWu/RDSMC.

39th Conference on Neural Information Processing Systems (NeurIPS 2025).


https://github.com/LuhuanWu/RDSMC

known as diffusion Monte Carlo (MC) samplers, estimates the score function using MC methods.
Huang et al. [8]], Grenioux et al. [9] consider Langevin-style MC algorithms, but they rely on a good
initialization of the reverse diffusion process to ensure theoretical guarantees. He et al. [10] propose
an alternative scheme based on rejection sampling which relaxes prior assumptions and improves
sampling efficiency in low-dimensional regimes. These approaches demonstrate both theoretical and
empirical advantages over conventional MCMC methods, particularly for multi-modal distributions.

In contrast to relying on MC estimation during sampling time, a complementary line of research trains
a neural network in advance to approximate the score function. To this end, some works propose new
score matching objectives [11} 112} |13]], while variational approaches instead optimize divergences
between forward and reverse diffusion processes [14} [15} 16} 17, [18].

While promising, diffusion-based samplers suffer from two sources of bias: discretization error
in simulating the reverse diffusion process and approximation error in the estimated or learned
score function. An exception is Phillips et al. [11]] which mitigates the bias of a trained diffusion-
based sampler using Sequential Monte Carlo (SMC), a general inference tool for sequential models
[19, 20]. However, such training-based methods remain computationally complex compared to
classical sampling methods and often rely on special neural network preconditioning [21]].

To address these challenges, we develop a new diffusion-based sampler, Reverse Diffusion Sequential
Monte Carlo (RDSMC) for sampling from unnormalized target distributions, which is training-free
and admits theoretical guarantees. Inspired by prior work, we formalize diffusion MC samplers
as proposal mechanisms within an SMC framework. At a high level, RDSMC generates multiple
particles from the reverse diffusion dynamics using MC-based score estimates. To correct the bias in
proposals, we introduce intermediate target distributions that guide resampling of particles at each
step, progressively steering them toward the final target distribution of interest.

Crucially, our intermediate targets are efficiently computed using byproducts of MC-based score
estimates, incurring no additional cost. Moreover, they form an exact approximation to the ideal
intermediate targets that maximize sampling efficiency, defined by the marginal distributions of
an extended final target [[19, [22]]. This design helps particles stay closely aligned with the final
target throughout the sampling process. In contrast, Phillips et al. [[11] learn neural network-based
surrogates that require additional training and attain the ideal target only at the final step.

RDSMC belongs to a class of nested SMC methods [23| [24]], inheriting the standard SMC guarantees.
In particular, it produces asymptotically exact samples from the target in the limit of many particles,
and provides an unbiased estimate of the normalization constant for any fixed size of particles.

Our contributions are summarized as follows:
* We propose a new SMC algorithm, Reverse Diffusion Sequential Monte Carlo (RDSMC),
based on the reverse diffusion process for sampling from unnormalized distributions.

* RDSMC is training-free and extends existing diffusion MC samplers to achieve asymptoti-
cally exact sampling and provide unbiased estimates of the normalization constant, while
incurring almost no computational overhead given the same number of final samples.

* Empirically, RDSMC outperforms or matches existing diffusion MC samplers and classical
geometric annealing-based Annealed Importance Sampling (AIS) [25] and SMC samplers
[26] on synthetic targets and Bayesian logistic regression benchmarks.

2 Background

Diffusion models. Diffusion models [6l [7] evolve a complex target distribution 7 () into a simple
base distribution 71 (), e.g. 1 (z) = N(0,1), via a forward stochastic differential equation (SDE)

dxy = f(t)zdt + g(t)dBy, t:0—1, (1
where f(t) and g(t) are the drift and diffusion coefficients, and B is the standard Brownian motion.
To generate samples from 7(x), we simulate a reverse SDE initialized from x; ~ 71 (),

dxy = [f(t)xt —g(t)?V,, log Wt(iCt)] dt + g(t)dB;, t:1—0, 2)

where V, log m; () is the score function of the marginal density 7, () at time ¢ induced by the
forward process in Eq. , and B, is the reverse-time Brownian motion.



Diffusion MC samplers. Building on the diffusion model paradigm, recent works use MC methods
to simulate the reverse dynamics in Eq. (2) whose terminal distribution corresponds to the target
distribution 7 o 7 of interest [8 O [T0]. While the score function V,, log m;(x,) is generally
intractable, the key idea is to construct MC estimates via the denoising score identity [DSI, 127} 28]],

a(t)xg — x¢

Vo, logm(z:) = /Wﬂ(ayo | 1)dxo, 3)

where 7(zg | z¢) o T(xo)N(zo | at)zo,0(t)?]) is the denoising posterior, which treats the
unnormalized target 7 () as the prior and the forward transition density N (zo | a(t)zo, o(t)?I)
from Eq. (1) as the likelihood. The coefficients «(t) and o (¢) are determined by the drift and diffusion
terms f(t) and g(t) (see Appendix [A.1]for details).

Eq. (3) suggests that score estimation can be cast as a posterior inference problem. In practice, one
can draw approximate samples from the denoising posterior to form an MC estimate of the score,
which is then substituted into the reverse dynamics to generate samples from 7. Other score identities
beyond the DSI can also be leveraged (see Appendix[A.2).

Sequential Monte Carlo. SMC [19] 20] is a particle-based method for sampling from a sequence
of distributions defined on variables x(.7, terminating at a final target distribution of interest. We
consider a reverse-time formulation, where SMC evolves a weighted collection of NV particles

{x,(f), wgi)}ij\il from ¢ = T to 0, gradually approximating the final target.

An SMC sampler requires two key design choices [[19], a sequence of intermediate proposals,
gr(zr) and {q:(x | xt+1)}tT:_01, and a sequence of (unnormalized) intermediate target distributions,
{7e(2r.7)}E . such that the final target v (z0.7) recovers the distribution of interest.

SMC initializes N particles a:g) ~ qr(xr) with weights wg,f) — fYT(xg))/qT(a:E,f)) for i =

1,---,N. Then foreachstept =7T—1,...,0and particle i = 1,..., N, it proceeds as follows:

1. resample ancestor zgﬂl ~ Multinomial(ajgﬂv), wt(iiv ));
2. propagate particle xii) ~ qy (xt | xﬁl);
3. compute weight wgl) — 'yt(:c£7)T)/ [’erl(xEleT)qt(xgl) | xﬁl)}

The final set of weighted particles forms a discrete approximation to the final target 7, which is
asymptotically exact given infinite particles under regularity conditions [20]. However, the efficacy
of SMC greatly depends on the choice of intermediate targets and proposals — the closer these
intermediate distributions are to the marginals of the final target, the more effective the SMC sampler.

3 Method

Our goal is to sample from a target distribution 7(2) = 7 (x), where 7(z) is the unnormalized
target and Z = [ 7(x)dx is a generally intractable normalization constant. We develop Reverse
Diffusion Sequential Monte Carlo (RDSMC), a diffusion-based SMC sampler targeting 7 (z).

To enable sequential inference with SMC, we define an extended target distribution over a discretized

trajectory xo.7 = (o, ..., zr) of the forward process in Eq. ,
T
m(zo:r) = m(20) HW(It|It—1), “
t=1

where 0 = 79 < - -+ < 7p = 1 are T+ 1 discretization times and 7 (x¢|z;—1) is the forward transition
density from time 7;_; to 7; induced by Eq. (T)) (see Appendix[A.T|for analytical expressions). Without
loss of generality, we assume a uniform discretization step size 6 = 1/T =7, — 741, Vt = 1,--- | T.

This construction yields a sequence of intermediate targets {m (xs.7)}"_ .., whose final marginal 7 ()
recovers the desired target. These intermediate targets provide a natural setting for SMC, and in fact,
are optimal intermediate gargets. However, they are intractable to sample from and to evaluate.



To address this challenge, we develop RDSMC leveraging the dual structure of diffusion processes,
generating samples in the reverse direction while grounding their targets in the forward direction. In
§[3.1] we introduce a sequence of proposals based on the reverse diffusion process using MC score
estimates. To correct the resulting proposal bias, in §[3.2] we develop practical intermediate targets
that form exact approximations to the optimal targets {7 (z¢.7)}7_, using byproducts of MC score
estimates. Finally in § [3.3] we present the full RDSMC algorithm and its theoretical guarantees.

Notation. We slightly abuse notation by letting x; denote both the continuous-time variable x;
for t € [0,1], as used in Egs. and , and the discrete-time variable for ¢ € {0,...,T}, as
used throughout this section. We denote f; = f(7),9: = g(7t), ¢ = a(m),01 = o(r) for
time-dependent diffusion coefficients from Eqgs. (I) and (3). For generality, we define «; as the
collection of all auxiliary random variables generated in the MC score estimation at step t.

3.1 Reverse diffusion proposal

We design an extended proposal distribution based on the reverse diffusion process with MC score
estimates, jointly modeling diffusion dynamics z; and auxiliary randomness 7, from score estimation.

MC score estimation. Given a sample x; at step ¢, we define a generic MC score estimator
s(wy, u) & Vg, logm(z;) based on the DSI in Eq. (3), where v, is the estimation randomness
associated with some sampling distribution g(u; | ).

As an illustrative example, consider an importance sampling (IS) estimator (Algorithm [2)) targeting
the posterior 7 (g | 1) o 7(20)N (1 | aero, 021). We draw M importance samples «)"" from the

proposal q(u)" | z;) == N'(u\"" | m /o, 02 /a2T) form = 1,- - , M, and estimate the score by
M
(m) o (m)
w Qg lly Tt
Vo, logm(zy) ~ s(xy, w) = : ) Q)
‘ D ST

which corresponds to an MC approximation of the RHS of Eq. . The importance weights w(™) are

w(m) _ ﬁ_(“[(m,))N(xt | atugm),of]l)’ m = 1, . ’M‘ (6)

a(" | @)
In this case, the auxiliary randomness is to the collection of all importance samples u; = {uf

m)y M

m=1-
In practice, we use a more sophisticated AIS scheme to improve the accuracy of score estimates
(Algorithm [3). More informative IS proposals or other MC methods such as SMC and rejection
sampling may also be used; see Appendix for further details.

Approximate reverse diffusion dynamics. With the score estimates in place, we approximate the
transition kernel of the reverse SDE in Eq. (2) to define a conditional proposal for z;,

q(zy | woqr, 1) = N(2g | 2441 — [ft+1fct+1 - 9?+18($t+17 ll/,+1)] J, 9,52+15)~ @)

Extended proposal distributions. The full sampling process starts by drawing x from a tractable
base distribution ¢(x1), e.g. ¢(z7) = N(0,1). We then iteratively evolve z; fort =7 —1,--- ,0
using the reverse diffusion dynamics q(z | @141, us1) in Eq. (7) where auxiliary variable ;| ~
q(uy1 | x¢41) is sampled in previous iteration to estimate the score s(zyy1, tr1).

The overall sampling process defines a proposal over the extended space of {x, u; }1_,
T-1
q(zo.r, uo.r) = q(xr)q(ur | TT) H q(e | Tor, wern)q(ue | o). (3)
t=0
While sampling . at the final step ¢ = 0 is not necessary, we retain it for notation simplicity.

This sampling procedure builds on prior work of Huang et al. [8], Grenioux et al. [9], which estimate
the score function using MCMC, and by He et al. [10] which use rejection sampling. We formalize
these ideas by defining an extended proposal distribution that incorporates randomness in MC score
estimates. In particular, we adopt an IS or AIS-based MC approach that also provides an unbiased
estimate of the normalization constant, a property that, in principle, can be achieved by the rejection
sampling approach of He et al. [10] as well. This property will be leveraged in the next part to
construct intermediate targets for RDSMC.



3.2 Intermediate targets

Samples from the reverse diffusion proposal deviate from the desired target 7 due to two sources of
error: time discretization of the reverse SDE, and bias in score estimation. To correct these errors, we
design a series of intermediate target distributions. We first characterize the optimal but intractable
targets, and then develop practical approximations using byproducts of score estimation. Finally,
we extend the intermediate targets to include auxiliary variables. Our construction aligns with the
optimal targets at intermediate steps and recovers the desired marginal 7 () at the final step ¢ = 0.

Optimal intermediate targets. The optimal intermediate target at step ¢ is the marginal distribution
of the extended target 7 (zo.7) in Eq. (4),

T

m(zer) = /W(xo:T)dxo:t_1 =) [[ w(@ilzi), ©)

i=t+1
as it leads to exact samples from 7(z¢.7) when combined with locally optimal proposals [19].
However, the marginal m(z;) = [ 7(zo)N (z¢ | ayxo,071)dz in Eq. @) involves an intractable

integral, except in the final step ¢ = 0, where 7(x() is known up to a normalization constant.

Marginal estimation. For ¢ > 0, we approximate the marginal 7 (x;) by 7 (x, v, ) using byproducts
of MC score estimates, where we recall w, is the estimation randomness. The key insight is that
Zm(x) is the normalization constant of the posterior 7(xq | 2¢) o< 7(20)N (2 | gz, 021), that is,

- 2 2
/w(mO)J\/(xt | auxo, i l)dag = Z/’]T(iCo)N((Et | awxo, opl)dzg = Zm(ay).
Hence, we can re-use the posterior inference procedure in MC score estimation to obtain an unbiased

estimate of the desired marginal 7 (x;) (up to a factor of 7).

For example, IS or AIS-based score estimation (Algorithms [2]and [3)) generates importance weights
{wmM_ targeting 7(z¢ | 2;) for a fixed ; we then obtain an unbiased marginal estimate

W™, with g, 0, [F (20, w)] = Z(ze). (10)

At the final step ¢t = 0, we set (g, ug) = 7(x9) = Z7(xo) as no approximation is needed.

Extended intermediate targets. Finally, we incorporate the auxiliary variables u; by setting their
targets to match their sampling distributions and define the extended intermediate target as
T—1
Vi@, uer) = 7 (g, ue) q(uy | o) H T(wig1 | 26) q(uivr | Tig1) (11)
i=t
fort =0,---, T — 1, and vy (xr, ur) == 7 (zr, ur) q(ur | zr).
The structure in Eq. mirrors that of the optimal targets in Eq. (9), replacing the intractable

marginal 7(x;) with an unbiased estimate 7 (z, u;) (up to a factor of Z) and accounting for auxiliary
randomness ;.. Moreover, we make the following two observations.

Observation 1. The final marginal target at ¢ = 0 matches the desired 7 (xo) with no approximations,

Yo(xo) = /WO(JTO;T,’UU:'I‘)dJSLT,Uu;'r
T

# (o, u0)q(uo | wo) [ [ w(@: | wic1) q(ui | 2:)dzrr, vor
i=1

12)

|
—

= 7(x9) x w(xp),

as 7(xg, ug) = 7(xg) by construction. This implies our final SMC target is correctly specified.
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Algorithm 1: Reverse Diffusion Sequential Monte Carlo (RDSMC)

Input: Unnormalized target 7 (z), number of particles N, discretization steps 7" (with step size
d = 1/T), diffusion schedule {a, o+, f+, g+ }, base distribution ¢(xr), and additional
inputs for score and marginal estimation 7

Output: Weighted samples {x((f), w((f) N | and normalization constant estimate Z

for i < 1to N do

Sample x(Ti) ~ q(xr);

Compute score and marginal estimates sg), 7?53) «+ Algorithm 3(7, ar, o, xg)
Compute weight: wéf) —

: )3
#{

q(z$)’

fort < T —1to0do
Resample {2\, u, @, ) 7 AN according to weights {w') 1Y, ;

for i < 1to N do
Sample xy) ~q(ze | 351(51)17 w1 ™) = N (mt | xi% - [ft+1$§21 - 9t2+15§21] 9, 9t2+15)§
if # > 0 then

L Compute score and marginal estimates sii), frt(i) + Algorithm 3 (7, o, o, xii), n);
else

L Compute exact marginal 70" « 7(z{");
(i # w(@) 12(?)

Compute weight: w!”) « — —t1 —:
B P gt #0 a@D 2l e @)

Compute normalization constant estimate Z < [[_, & SN | w”,

Observation 2. Marginalizing out ;.7 in v (2.7, us.7) recovers the optimal target 7w(xy.7), V¢,
-1
/%(xt:T, upr)dupr = /fr(xt, ur) q(ue [ o) [T w@iga [ 2) q(uir | wigr)dur
i=t
T-1
= By, fo) T, u)] ] w@isn [ 2) (13)
i=t
T-1
= Zm(xy) H (i1 | ) < w(@er),
i=t
where the last equality follows from the unbiasedness of marginal estimates, as in Eq. (I0). This
result shows that our intermediate targets ~; (x.7, u;.7) are aligned with the optimal 7 (z.1), despite
the approximation in 7 (2, 1+ ), a property known as the exact approximation [22}[19].

While the generic SMC framework remains valid under alternative choices of intermediate targets,
provided that o (z¢) x (o), our construction offers a balance between theoretical correctness
and practical efficiency. The marginal estimates 7 (z¢, ;) in our intermediate targets from Eq.
act as twisting or look-ahead functions [19, Chapter 3] that incorporate future information 7(z)
into intermediate steps. Together, Observations [1|and 2| ensure that our intermediate targets provide
effective guidance throughout the sampling process while recovering the desired target in the end.

3.3 RDSMC: Algorithm and theoretical guarantee

We now derive weighting functions, the final component of RDSMC, which guides the resampling of
particles. We then present the complete algorithm and establish its theoretical guarantees.

Weighting functions. Following the standard SMC framework, we define the weighting functions
on the extended space {zt.1, us.7} fort = T—1,--- , 0 asratios of intermediate targets and proposals
wy = %(l’t:% ”7‘,:'[‘) . (14)

'Yt+1(xt+1:T7 ’ll/+1:'/') (I(ft \ Ti1, U/+1)Q(Uz, | xt)




Substituting the expressions for ~; from Eq. (TT) and canceling out common terms yields

(e, u)w(Tepr|ae)
(@1, Ui 1)q(@e | Togr, vigr)

(15)

Wy =

yr(zr,ur) _ w(xr,ur)
zr)q(ur|zT) q(zr)

At the initial step T, the weight is wr = T recalling that yp (z7, ur) =

#(xr, ur)g(ur | x7) by construction.

Notably, although the intermediate targets and proposals involve auxiliary sampling distributions
q(u; | x;) for score estimation, the weighting functions w; in Eq. and wr do not depend on their
evaluation. Hence, a generic MC sampler can be used while still retaining computable weights, as
long as it produces tractable estimates of the score and marginal densities.

The RDSMC algorithm and theoretical guarantees. We summarize the RDSMC algorithm in
Algorithm [T} It initializes N particles from a tractable base distribution. Subsequently, the particles
are propagated through a reverse diffusion-based proposal, followed by weighting and resampling
using intermediate targets. These steps are enabled by running an inner-level MC estimation of the
score function and the marginal density. In this work, we use AIS (Algorithm [3) while other methods
can be incorporated as well (see Appendix [B.I). The final output of RDSMC is a weighted set of
samples approximating the target 7(z), along with an estimate of the normalization constant Z.

RDSMC can be viewed as an adaptation of the nested SMC framework [23| 24]. The inner-level MC
estimation involves a sampling procedure (e.g. AIS) targeting the intractable posterior 7(zg | ),
which is then used to assign proper weights [[19, Chapter 4.3] to proposed samples z;. Consequently,
RDSMC inherits the unbiasedness and asymptotic exactness guarantees of nested SMC [23} [19].

Theorem 1 (Informal). Under regularity conditions, the RDSMC algorithm provides a consistent
estimator of the target distribution 7(xg) as particle size N — 0o and an unbiased estimator of the
normalization constant Z for any N > 1.

We provide the formal statement and proof in Appendix [C]

Theorem |1| shows that RDSMC effectively wraps a diffusion MC-style proposal within an SMC
framework, mitigating its bias as the number of particles increases. Moreover, it provides an unbiased
estimate of the normalization constant, a property absent in existing diffusion MC methods [8} 9} [10].

The bias correction mechanism of RDSMC arises from two key aspects: (1) the final target of
RDSMC is explicitly constructed to match the desired target 7 (), regardless of the discretization
scheme or marginal density approximation (Observation [I); and (2) errors in score estimation affect
only the proposal steps, which are accounted for in the weighting functions. Therefore, the weighting
and resampling steps in the outer SMC loop asymptotically correct for proposal bias, ensuring
convergence to the final target m(xg) in the limit of many particles.

4 Related works

Diffusion MC samplers. Huang et al. [8] develop the RDMC sampler based on the reverse diffusion
process using Langevin-style MCMC to estimate the score function. They initialize the sampler at
some 77 < 1 via a nested Langevin procedure. Grenioux et al. [9] propose a similar SLIPS sampler
with a signal-to-noise-ratio (SNR)-adjusted discretization scheme, and provide further guidance on
choosing the initial sampling time 77 under suitable conditions. In contrast, we use AIS-based score
estimators to enable marginal estimation and start sampling from the base distribution at 70 = 1.

Alternatively, He et al. [10] explore rejection sampling for score estimation, improving the sampling
efficiency in low-dimensional settings, which may be incorporated into our framework as well.

While these methods provide certain theoretical guarantees, we offer an orthogonal means to improve
their accuracy by increasing the number of particles. RDSMC can be viewed as a generic SMC
wrapper around these diffusion-MC samplers (given suitable score estimators), enabling consistent
sampling and unbiased estimation of the normalization constant.

Training-based diffusion samplers In addition to developing MC estimates of the score func-
tion, another line of work trains a neural network directly using unnormalized target information.



Variational approaches achieve this goal by minimizing the divergence between forward and reverse
processes [[14} [15, (17} 18, [16], while Akhound-Sadegh et al. [12], OuYang et al. [13]] exploit various
identities of the score function or a related energy function. Similar to their training-free MC-based
counterparts, these methods are prone to discretization and score approximation errors.

Closest to our work is Phillips et al. [[L1] that also use SMC to correct proposal bias. Their method
requires training neural networks, while ours is training-free. Moreover, their neural network-based
intermediate targets incur approximation errors except at the last step, while ours reflect the true
target marginals at each SMC iteration. See an empirical comparison in Appendix [E.5.3]

He et al. [21]] show that many training-based methods incur heavy computational overhead compared
to classical sampling methods and rely on special network preconditioning. For this reason, we limit
our empirical comparison to training-free samplers. Nonetheless, an interesting direction for future
work is to combine our method with training-based approaches to further enhance performance.

SMC for conditional generation from diffusion models. Beyond classical sampling tasks, SMC
has been applied to conditional generation for pre-trained diffusion models [29, 30} 31} 32]. While
these works also combine SMC and diffusion dynamics, a key distinction is the target distribution:
they sample from an existing diffusion model prior tilted with a reward function, whereas our setting
involves sampling from any (unnormalized) target distribution. As a result, the way diffusion models
are used is different, and we require distinct designs for proposals and intermediate targets in SMC.

Nevertheless, RDSMC uses the estimated marginal densities in Eq. (T) as twisting functions to
improve SMC sampling efficiency. This strategy is conceptually is similar to that of Wu et al. [30],
though in a different setting; see Appendix |D|for further discussion.

5 Experiments

We evaluate RDSMC on a range of synthetic and real-world target distributions, comparing it to
SMC [26]], AIS [25], SMS [33], RDMC [8]], and SLIPS [9]. AIS and SMC operate over a series of
geometric interpolations between the target and a Gaussian proposal with MCMC transitions. SMS
samples from the target by sequentially denoising equally noised measurements using a Langevin
procedure combined with estimated scores. RDMC and SLIPS are described in § {]

RDSMC uses a variance-preserving diffusion schedule. To evaluate the effectiveness of our intermedi-
ate targets and the importance of resampling, we include two ablations: (i) RDSMC (Proposal), which
samples directly from the reverse diffusion proposal in Eq. (8) without any weighting or resampling,
and (ii) RDSMC (IS), which applies a final IS correction to samples from RDSMC (Proposal).

Baseline methods follow the implementation of Grenioux et al. [9]]. Notably, the information about
the target variance (or an estimation) is provided to guide the initialization of the baselines SMC,
AIS, SMS and SLIPS. In contrast, our method does not make use of this extra information.

Unless otherwise specified, we use T' = 100 discretization steps for RDSMC and its variants, and
T = 1,024 steps for other methods. We generate N = 4,096 final samples for all methods, and tune
their hyperparameters assuming access to either a validation dataset or an oracle metric.

We provide ablation studies controlling for the discretization steps, the total running time and
comparable hyperparameter settings in Appendix [E.5] where we observe RDSMC still remains
competitive and, in some cases, superior. All experiment details are included in Appendix [E]

5.1 Bi-modal gaussian mixtures

We first study bi-modal Gaussian mixtures with an imbalanced weight ratio of w; /(w; + wz) = 0.1
for varying dimensions d. The estimated ratio is obtained by assigning samples to the mode with the
highest posterior probability. For each method we select the hyperparameters based on the lowest
estimation bias of the weight ratio.

In Figure [Ta] we compare the marginal histogram of samples from RDSMC, RDSMC (Proposal), and
the true target in d = 2. While samples from RDSMC (Proposal) cover both modes, their relative
weights are overly balanced. In contrast, RDSMC recovers the calibrated mode weights, indicating
the importance of the error correction mechanism by SMC.



1 Tre w1/(w; + w;) estimation bias ( 1 ) log Z estimation bias ( { )
10°

[ RDSMC 104
__7 RDSMC(Proposal) T 3 /
—— RDSMC
N RDSMC(IS)

RDSMC(Proposal)
— AIS

smMC

SLIPS

RDMC

sms

i
i > =
ﬁ‘.‘ ..
S
2 4 8 16 32 64 2 4 8 16 32 64

-20 -10 0 d d

(a) d = 2: histogram along 1st (b) Estimation bias of weight ratio w1 /(w1 + w2) and log-normalization
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SMC procedure is crucial for not provide estimate of log Z. For both metrics, the bias increases with d for
producing calibrated weights.  all methods, while RDSMC outperforms the baselines for most cases.

Figure 1: Bi-modal Gaussian mixture study.

Algorithm Rings (d = 2) Funnel (d = 10)
Radius TVD (}) logZ Bias (}) Sliced KSD () logZ Bias ()

AIS 0.10 £ 0.00 0.05 £+ 0.00 0.07 £ 0.00 0.28 = 0.01
SMC 0.10 + 0.00 0.05 + 0.00 0.07 + 0.00 0.28 + 0.01
SMS 0.24 + 0.01 N/A 0.15 £ 0.00 N/A
RDMC 0.37 4 0.00 N/A 0.13 £+ 0.00 N/A
SLIPS 0.19 £+ 0.00 N/A 0.06 + 0.00 N/A
RDSMC 0.13 £ 0.01 0.03 £+ 0.00 0.11 £ 0.00 0.28 - 0.10
RDSMCS) 0.15 +£0.01 0.02 + 0.01 0.33 +0.03 1.61 +0.14
RDSMC(Proposal) 0.09 £ 0.00 N/A 0.32 £+ 0.03 N/A

Table 1: Results on Rings and Funnel (mean + standard error over 5 seeds). Bold indicates 95%
confidence interval overlap with the best average result. RDSMC has the lowest log Z estimation bias
for both targets. On Rings, RDSMC(Proposal) has the lowest radius TVD, followed by AIS, SMC,
and RDSMC. On Funnel, SLIPS has the lowest sliced KSD, followed by AIS, SMC, and RDSMC.

Figure [Tb| shows the estimation bias of the weight ratio (left), and that of the log-normalization
constant log Z (right). Note that only RDSMC, RDSMC(S), AIS and SMC provide estimates for
log Z. We observe that RDSMC consistently outperforms other methods in both metrics across
dimensions. Moreover, RDSMC (Proposal) exhibits consistently high weight ratio estimation bias.
While RDSMC (IS) reduces this bias, it still underperforms the full RDSMC procedure, highlighting
the effectiveness of intermediate resampling guided by our intermediate target distributions.

In high dimensions, all methods exhibit some degree of mode collapse. RDSMC primarily samples
from the dominant mode, resulting in average weight ratio estimation biases of 0.09 and 0.08 for
d = 32 and 64, respectively. In contrast, AIS and SMC completely collapse to a single mode, which
varies across runs, yielding degenerate estimated ratios of 0 or 1 and an average bias of around 0.4.

5.2 Rings and Funnel distributions

We present results on two additional synthetic targets. Rings, introduced by Grenioux et al. [9], is a
2-dimensional distribution constructed via an inverse polar parameterization: the angular component
is uniformly distributed, while the radius component follows a 4-mode Gaussian mixture. Funnel
[34], is a 10-dimensional “funnel”-shaped distribution.

For Rings, we assess sample quality using total variational distance in the radius component (Radius
TVD). For Funnel, use sliced Kolmogorov-Smirnov distance (Sliced KSD) to evaluate sample quality
following Grenioux et al. [9]]. As both targets admit tractable normalization constants, we also report
the estimation bias for methods that compute them. For each method, we select the hyperparameters
with lowest Raidus TVD on a heldout validation set for Rings and lowest Sliced KSD for Funnel.



Test LL (1) Credit (d = 25) Cancer (d = 31) Ionosphere (d = 35)  Sonar (d = 61)

AIS —122.73 £0.51 —60.45+0.31 —86.37 £0.10 —110.114+0.06
SMC —123.17+£0.05 —-60.28£0.11 —86.37+0.10 —110.11+0.06
SMS —527.79 £0.85 —215.64 +0.66 —202.56 £0.16 —275.44£0.31
RDMC —388.24+£1.75 —182.81+0.43 —108.67£0.09 —128.29+0.03
SLIPS —121.79 £0.04 —56.26 £ 0.08 —85.07+0.07 —102.39+0.03
RDSMC —124.00£1.96 —62.23+1.96 —87.72+1.75 —101.52+1.84
RDSMC(S) —144.38 £4.63 —8247+7.78 —84.90+2.84 —110.57 +4.54
RDSMC(Proposal) —606.03 +1.26 —246.86 +0.97 —92.624+0.04 —134.724+0.13

Table 2: Bayesian logistic regression with test log-likelihood (mean =+ standard error) averaged over
5 seeds. Bold indicates 95% confidence interval overlap with that of the best average result. SLIPS
achieves the best overall performance, while RDSMC matches or closely approaches it. In contrast,
RDSMC(Proposal) performs noticeably worse, highlighting the effectiveness of the SMC correction.

As shown in Table|l} RDSMC achieves lower or comparable estimation bias of the log-normalization
constant relative to AIS and SMC on both targets. On the lower-dimensional Rings target, RDSMC
(Proposal) has the lowest radius TVD, where AIS, SMC and RDSMC closely match. On the more
challenging Funnel target, SLIPS achieves the lowest sliced KSD; while RDSMC performs slightly
worse, it greatly outperforms its IS and Proposal variants.

5.3 Bayesian logistic regression

Finally, we evaluate inference performance on Bayesian logistic regression models using four datasets.
Credit and Cancer [35]] involve predicting credit risk and breast cancer recurrence, while Ionosphere
[36]] and Sonar [37] focus on classifying radar and sonar signals, respectively. The inference is
performed on 60% of each dataset, leaving 20% for validation and 20% for testing. Each method is
tuned using the validation log-likelihood estimate. We report the test log-likelihood in Table[2]

RDSMC achieves the best or near-best performance across datasets, closely matching SLIPS, which
performs the best overall. This comparison suggests that SLIPS’s time discretization and initialization
strategy may offer complementary benefits despite lacking systematic error correction. RDSMC
(IS) underperforms on Credit and Cancer and exhibits higher variance than RDSMC, while RDSMC
(Proposal) performs the worst, again highlighting the importance of the SMC mechanism. Compared
to baseline methods, RDSMC shows greater variance, likely due to auxiliary randomness in its nested
structure, suggesting a direction for future improvement.

6 Discussion

This paper presents a training-free and diffusion-based SMC sampler, Reverse Diffusion Sequen-
tial Monte Carlo (RDSMC), for sampling from unnormalized distributions. By leveraging reverse
diffusion dynamics as proposals, we devise informative intermediate targets to correct systematic
errors within a principled SMC framework. These components rely on Monte Carlo score estimation,
without requiring additional training. Our algorithm provides asymptotically exact samples from the
target distribution and a finite-sample unbiased estimate of the normalization constant. Empirical re-
sults on both synthetic and Bayesian inference tasks demonstrate competitive or superior performance
compared to existing diffusion-based and classical geometric annealing-based samplers.

Limitations and future work. As a nested SMC procedure, RDSMC introduces auxiliary variance.
Such variance may be mitigated by enhancing autocorrelation within the MC estimation step [e.g.
38]. In high-dimensional Gaussian mixture experiments, we observe a degree of mode collapse, an
issue also seen in other samplers. Potential remedies include partial resampling [39]], or using more
informed proposals. Our method also relies on oracle metrics for hyperparameter tuning, which aligns
with existing works; however, developing a more automated strategy remains an important future
direction. Finally, to further improve performance, we can incorporate SNR-adapted discretization
schemes and informative initializations, as explored by Grenioux et al. [9], as well as combine our
approach with training-based diffusion samplers.
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Test LPPD 1

Credit (d = 25)

Cancer (d = 31)

Tonosphere (d = 35)

Sonar (d = 61)

RDSMC -94.54 + 1.34 -10.59 £ 0.45 -25.97 £ 0.73 -18.54 + 0.28
RDSMC(Proposal)  -94.62 + 0.06 -50.24 £ 0.16 -24.87 £+ 0.02* -18.91 £ 0.01
RDMC -138.22 £ 0.35 -78.03 £ 0.12 -44.16 + 0.07 -28.64 £ 0.03
SLIPS -92.42 + 0.02* -10.41 £ 0.01 -25.22 £ 0.01 -18.40 + 0.01*
AIS -92.91 + 0.44 -10.13 + 0.07 -25.09 + 0.02 -18.41 + 0.01
SMC -92.55 +0.05  -10.13 + 0.01* -25.09 £ 0.02 -18.41 + 0.01
SMS -98.00 + 0.27 -20.47 £ 0.16 -26.17 £ 0.10 -23.29 +£ 0.08

Table 8: Ablation experiments: Bayesian logistic regression with test log pointwise predictive density
(Test LPPD, with mean = standard error) averaged over 10 seeds. Bold indicates 95% confidence
interval overlap with that of the best average result. RDSMC, AIS, SMC, and SLIPS achieve the
best overall performance. RDSMC outperforms RDSMC (Proposal) and RDMC in most cases,
highlighting the effectiveness of the SMC correction.

where the likelihood p(y; | z;; w, ) is defined in Eq. and the posterior p(w, b | D) is defined in
Eq. @4).
We use final (weighted) samples from each method to approximate the Test LPPD in Eq. (46).

We report the results in Table We observe that RDSMC, AIS, SMC, and SLIPS achieve the
best overall performance. Compared to SLIPS, RDSMC does not require target-variance-based
initialization. Moreover, RDSMC outperforms RDSMC (Proposal) and RDMC in most cases,
highlighting the effectiveness of the SMC correction. However, we observe that results for RDSMC
exhibit large variance, as the case in the main experiments from Table 2]

The optimal hyperparameters for each method are selected based on the highest LPPD on a heldout
validation set, computed analogously to the Test LPPD.

E.5.3 Comparison to Particle Denoising Diffusion Sampler on the Funnel target

Finally, we present a comparison to the Particle Denoising Diffusion Sampler (PDDS) [[11], which is
also a diffusion-based SMC sampler. However, unlike RDSMC, PDDS requires training.

We evaluate PDDS on the Funnel target using 10 random seeds. Experiments are conducted on
an NVIDIA RTX A6000 GPU, whereas our previous experiments use an NVIDIA A100 GPU. In
addition, PDDS is implemented in JAX (following the official implementation at https://github.
com/angusphillips/particle_denoising_diffusion_sampler# ), while RDSMC and the
other baselines are implemented in PyTorch.

PDDS requires approximately 82.63 4 0.43 seconds for training and 15.08 & 0.073 seconds for final
sampling of 4096 particles, resulting in a total runtime of about 97.70 £ 0.47 seconds (reported as
mean + standard error). The runtimes of our method and other training-free baselines are reported
in FigureE], which are all below 25 seconds. However, due to differences in hardware and software
frameworks, PDDS’s runtime is not directly comparable to those of the previous experiments.

PDDS achieves a log Z bias of 0.26 £ 0.04 and a mean Sliced KSD of 0.10 4 0.00. Compared with
the results in Table [/, PDDS exhibits a slightly lower average log Z bias than RDSMC, but higher
than AIS and SMC. Its Sliced KSD is also higher than that of RDSMC, AIS, and SMC.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: Our method provides a diffusion-based SMC samplers with theoretical guaran-
tees. Our claims match our theory results and empirical results.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: We discuss limitations of our work in the Experiment section when comparing
to other methods, as well as in Discussion where we look out for future directions.

Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

 The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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