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Abstract

A combinatorial cost function for hierarchical clustering was introduced by Das-1

gupta [10]. It has received great attention and several new cost functions from sim-2

ilar combinatorial perspective have been proposed. In this paper, we investigate3

hierarchical clustering from the information-theoretic perspective and formulate4

a new objective function. We also establish the relationship between these two5

perspectives. In algorithmic aspect, we present two algorithms for expander-like6

and well-clustered cardinality weighted graphs, respectively, and show that both7

of them achieve O(1)-approximation for our new objective function. For practi-8

cal use, we consider non-binary hierarchical clustering problem. We get rid of9

the traditional top-down and bottom-up frameworks, and present a new one. Our10

new framework stratifies the sparsest level of a cluster tree recursively in guide11

with our objective function. Our algorithm called HCSE outputs a k-level cluster12

tree by an interpretable mechanism to choose k automatically without any hyper-13

parameter. Our experimental results on synthetic datasets show that HCSE has14

its own superiority in finding the intrinsic number of hierarchies, and the results15

on real datasets show that HCSE also achieves competitive costs over the popular16

non-binary hierarchical clustering algorithms LOUVAIN and HLP.17

1 Introduction18

Hierarchical clustering for graphs plays an important role in the structural analysis of a given data19

set. Understanding hierarchical structures on the levels of multiple granularities is fundamental in20

various disciplines including artificial intelligence, physics, biology, sociology, etc [4, 11, 13, 9].21

Hierarchical clustering requires a cluster tree that represents a recursive partitioning of a graph into22

smaller clusters as the tree nodes get deeper. A leaf represents a graph node while a non-leaf node23

represents a cluster containing its descendant leaves. The root is the largest one containing all leaves.24

Clustering is usually formulated as an optimization problem with some objective function. For hier-25

archical clustering, no cost function with a clear and reasonable combinatorial explanation was de-26

veloped until Dasgupta [10] introduced a cost function for cluster trees. In this definition, similarity27

or dissimilarity between data points is represented by weighted edges. Taking the similarity-based28

metrics as an example, a cluster is a set of nodes with relatively denser intra-links compared with its29

inter-links, and in a good cluster tree, heavier edges tend to connect leaves whose lowest common30

ancestor (LCA) is as deep as possible. This intuition leads to Dasgupta’s cost function that is a31

bilinear combination of edge weights and the sizes of corresponding LCAs.32

Motivated by Dasgupta’s cost function, Cohen-Addad et al. [8] proposed admissible cost functions.33

In their definition, the size of each LCA in Dasgupta’s objective is generalized to be a function of34

the sizes of its left and right children. For all similarity-based graphs generated from a minimal35

ultrametric, a cluster tree achieves the minimum cost if and only if it is a generating tree that is a36
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“natural” ground truth tree in an axiomatic sense therein. A necessary condition of admissibility of37

an objective function is that it achieves the same value for every cluster tree for a uniformly weighted38

clique that has no structure in common sense. However, any slight deviation of edge weights would39

generally separate the two end-points of a light edge on a high level of its optimal (similarity-based)40

cluster tree. Thus, it seems that admissible objective functions, which take Dasgupta’s cost function41

as a specific form, ought to be an unchallenged criterion in evaluating cluster trees since they are42

formulated by an axiomatic approach.43

However, an admissible cost function seems imperfect in practice. The arbitrariness of optima of44

cluster trees for cliques indicates that the division of each internal node on an optimal cluster tree45

totally neglects the balance of its two children. Edge weight is the unique factor that decides the46

structure of optimal trees. But a balanced tree is commonly considered as an ideal candidate in47

hierarchical clustering compared to an unbalanced one. Even clustering for cliques, a balanced48

partition should be preferable for each internal node. At least, an optimal cluster tree whose height49

is logarithm of graph size n is intuitively more reasonable than a caterpillar shaped cluster tree50

whose height is n − 1. Moreover, a simple proof would imply that the optimal cluster tree for any51

connected graphs is binary. This property is not always useful in practice since a real system usually52

has its inherent number of hierarchies and a natural partition for each internal cluster. For instance,53

the natural levels of administrative division in a country is usually intrinsic, and it is not suitable to54

differentiate hierarchies for parallel cities in the same state. This structure cannot be obtained by55

simply minimizing admissible cost functions.56

In this paper, we investigate the hierarchical clustering from the perspective of information theory.57

Our study is based on Li and Pan’s structural information theory [14] whose core concept named58

structural entropy measures the complexity of hierarchical networks. We summarize our contribu-59

tions as follows.60

(1) We formulate a new objective function from the information-theoretic perspective, which61

builds the bridge for combinatorial and information-theoretic perspectives for hierarchical cluster-62

ing. For this cost function, the balance of cluster trees will be involved naturally as a factor just63

like we design optimal codes, for which the balance of probability over objects is fundamental in64

constructing an efficient coding tree. We also define cluster trees with a specific height, which is65

coincident with our cognition of natural clustering.66

(2) For our new objective function, we present two polynomial-time approximation algorithms67

respectively for two cases of the conductance Φ(G) of a cardinality weighted graph G. Our first68

result shows that any cluster tree of G has a approximation factor O(Φ(G)−1) (Theorem 3.1). So69

a "Huffman-merge" heuristic that solely depends on the degrees of vertices achieves this guaran-70

tee, and it achieves O(1)-approximation when Φ(G) is a constant. The second result is a O(1)-71

approximation algorithm for G that can be well clustered into a constant number of expanders (The-72

orem 3.2). The main idea of this algorithm is inspired by very recent Manghiuc and Sun’s work [15],73

and our approximation factors for our new objective also match their results in these two cases.74

(3) For practical use, we develop a new interpretable framework for natural hierarchical clus-75

tering that outputs a non-binary cluster tree. The idea of our framework is essentially different from76

the traditional recursive division or agglomeration ones. In our framework, the sparsest level of the77

cluster tree is stratified recursively. This coincide with the intuition that when we differentiate the78

hierarchies of a complex system, the clearest level should be stratified first, rather than in a rigid79

divisive or agglomerative fashion. Therefore, this framework has much better interpretability than80

the traditional ones.81

(4) We develop a new non-binary clustering algorithm (HCSE) under the new clustering frame-82

work. To find the sparsest level in each iteration, we formulate two basic operations called stretch83

and compress, respectively. HCSE terminates when a specific criterion that intuitively coincides84

with the natural hierarchies is met, and no hyperparameter is needed. Our extensive experiments on85

both synthetic and real datasets demonstrate that HCSE outperforms the present popular heuristic86

algorithms LOUVAIN [3] and HLP [19]. These two algorithms proceed simply by recursively in-87

voking flat clustering algorithms based on modularity and label propagation, respectively, and the88

hierarchy number is solely determined by the number of rounds when the algorithm terminates. So89

their interpretability is quite poor. Our experimental results on synthetic datasets show that HCSE90

has a great advantage in finding the intrinsic number of hierarchies, and the results on real datasets91

show that HCSE achieves much better costs than HLP and competitive costs to LOUVAIN.92
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Related work. The first combinatorial objective function was proposed by Dasgupta [10]. Along93

with this line of study, several alternative objectives have been presented. All of them are bilinear94

functions of edge weights and some function of the corresponding LCAs. For Dasgupta’s cost func-95

tion and for the worst case study, Dasgupta showed that a recursively bipartition applying Arora’s96

seminal algorithm for sparsest cut problem [2] yields O(log1.5 n)-approximation, and it was im-97

proved by [20] and [5, 8] to O(log n) and
√
log n, respectively. It is NP-hard to optimize the cluster98

tree [10] and even a O(1)-approximation is impossible under the Small Set Expansion hypothesis99

[20, 5]. Beyond the worst case, Cohen-Addad et al. [8] showed that a SVD-based algorithm achieves100

a O(1 + o(1))-approximation for the stochastic block model with high probability. Manghiuc and101

Sun [15] presented a O(1)-appromation algorithm for more generalized well-clustered graphs. The102

outline of their method is to utilize a flat clustering algorithm [12] to obtain the underlying clusters103

first, and then some relatively easy heuristics for clustering in and out of these clusters are enough104

for the guarantee. Our proof follows this route also.105

For other lines of this study, Moseley and Wang [16] studied the dual of Dasgupta’s cost function106

and showed that the average-linkage algorithm achieves a (1/3)-approximation. This factor has107

been improved by a series of works to 0.336 [6], 0.4246 [7] and 0.585 [1], respectively. Cohen-108

Addad et al. [8] considered maximization of Dasgupta’s cost function for the dissimilarity-based109

metrics. They proved that the average-link and random partitioning algorithms achieve a (2/3)-110

approximation, which has been improved to 0.667 [6], 0.716 [18] and 0.74 [17], respectively.111

For non-binary cluster tree construction, the most popular algorithm for practical use is LOUVAIN112

[3]. More recently, a hierarchical label propagation based algorithm HLP has been presented [19].113

Both of these two algorithms construct a non-binary cluster tree with the same framework, that is,114

the hierarchies are formed from bottom to top one by one. In each round, they invoke different flat115

clustering algorithms, Modularity and Label Propagation, respectively.116

2 A cost function from information-theoretic perspective117

In this section, we introduce Li and Pan’s structural information theory [14] and the combinatorial118

cost functions of Dasgupta [10] and Cohen-Addad et al. [8]. Then we propose a new cost func-119

tion that is developed from structural information theory and establish the relationship between the120

information-theoretic and combinatorial perspectives.121

Notations. Let G = (V,E,w) be an undirected weighted graph with a set of vertices V , a set of122

edges E and a weight function w : E → R+, where R+ denotes the set of all positive real numbers.123

An unweighted multigraph can be viewed as a cardinality weighted one whose edge weight is the124

number of parallel edges. For each vertex u ∈ V , denote by du =
∑

(u,v)∈E w(u, v) the weighted125

degree of u. For a subset of vertices S ⊆ V , define the volume of S to be the sum of degrees of126

vertices. We denote it by vol(S) =
∑

u∈S du. We denote by G[S] the subgraph induced by S. A127

cluster tree T for graph G is a rooted tree with |V | leaves, each of which is labeled by a distinct128

vertex v ∈ V . Each non-leaf node on T is labeled by a subset S of V that consists of all the leaves129

treating S as an ancestor. For each node α on T , denote by α− the parent of α, and by |α| its size.130

For each pair of leaves u and v, denote by u ∨ v the LCA of them on T .131

Structural entropy of graphs. Because of the tense space limit, we just give the definition of the132

core concept structural entropy in structural information theory. The idea of this definition is briefly133

introduced in Appendix A. Readers could also refer to [14] for more information on this theory.134

Given a weighted graph G = (V,E,w) and a cluster tree T for G, the structural entropy of G on T135

is defined as136

HT (G) = −
∑
α∈T

gα
vol(V )

log
vol(α)

vol(α−)
, 1

where α− denotes the parent of tree node α, and gα denotes the sum of weights of edges in G137

with exactly one end-point in the set of vertices corresponding to α. The structural entropy of G is138

defined as the minimum one among all cluster trees, denoted byH(G) = minT {HT (G)}.139

1For notational convenience, for the root λ of T , set λ− = λ. So the term for λ in the summation is 0. In
this paper, the omitted base of logarithm is always 2.
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Combinatorial explanation of structural entropy. The cost function of a cluster tree T for graph140

G = (V,E) introduced by Dasgupta [10] is defined to be cT (G) =
∑

(u,v)∈E w(u, v)|u ∨ v|. The141

admissible cost function introduced by Cohen-Addad et al. [8] generalizes the term |u ∨ v| in the142

definition of cT (G) to be a general function g(|L|, |R|), where L and R are the two children of143

u∨ v, respectively. Dasgupta defined g(x, y) = x+ y. For both definitions, the optimal hierarchical144

clustering of G is in correspondence with a cluster tree of minimum cost in the combinatorial sense145

that heavy edges are cut as far down the tree as possible. The following proposition establishes the146

relationship between structural entropy and this kind of combinatorial form of cost functions.147

Proposition 2.1. For a weighted graph G = (V,E,w), minimizing HT (G) (over T ) is equivalent148

to minimizing the cost function149

costT (G) =
∑

(u,v)∈E

w(u, v) log vol(u ∨ v). (1)

We defer the proof of Proposition 2.1 to Appendix B. We call cost(SE) the cost function in Propo-150

sition 2.1 from now on. Proposition 2.1 indicates that when we view g as a function of the LCA151

rather than that of its size and define g(u, v) = log vol(u ∨ v), the “admissible” function becomes152

equivalent to structural entropy in evaluating cluster trees, although it is not admissible any more.153

So what is the difference between these two cost functions? As stated by Cohen-Addad et al. [8],154

an important axiomatic hypothesis for admissible function, thus also for Dasgupta’s cost function,155

is that the cost for every binary cluster tree of an unweighted clique is identical. So any binary tree156

for clustering on cliques is reasonable, which coincides with the common sense that structureless157

datasets can be organized hierarchically free. However, for structural entropy, the following theorem158

indicates that balanced organization is of importance even though for structureless dataset.159

Proposition 2.2. For any positive integer n, let Kn be the clique of n vertices with identical weight160

on every edge. Then a cluster tree T of Kn achieves minimum structural entropy if and only if T is161

a balanced binary tree, that is, the two children clusters of each sub-tree of T have difference in size162

at most 1.163

The proof of Proposition 2.2 is a bit technical, and we defer it to Appendix C. The intuition behind164

Proposition 2.2 is that balanced codes are the most efficient encoding scheme for unrelated data. So165

the codewords of the random walk that jumps freely among clusters on each level of a cluster tree166

have the minimum average length if all the clusters on this level are in balance.167

It is worth noting that the admissible function introduced by Cohen-Addad et al. [8] is defined168

from the viewpoint that a generating tree T of a similarity-based graph G that is generated from a169

minimal ultrametric achieves the minimum cost. In this definition, the monotonicity of edge weights170

between clusters on each level from bottom to top on T , which is given by Cohen-Addad et al. [8] as171

a property of a “natural” ground-truth hierarchical clustering, is the unique factor when evaluating T .172

However, Proposition 2.2 implies that for cost(SE), besides cluster weights, the balance of cluster173

trees is implicitly involved as another factor. Moreover, for cliques, the minimum cost should be174

achieved on every subtree, which makes an optimal cluster tree balanced everywhere. This optimal175

clustering for cliques is also robust in the sense that a slight perturbation to the minimal ultrametric,176

which can be considered as slight variations to the weights of a batch of edges, will not change the177

optimal cluster tree structure wildly due to the holdback force of balance.178

3 Approximation algorithms for SE-based cost function179

In this section, we present approximation algorithms for expander-like and well-clustered graphs,180

respectively. These algorithms work for cardinality edge weights (e.g. the multiplicity of edges).181

Why cardinality weights? In general, the term log vol(u ∨ v) in Eq. 1 and thus cost(SE) may be182

negative when the volume of u ∨ v varies, which may lead to pathosis in approximation analysis.183

The cardinality weight function w is at least one, which makes cost(SE) non-negative. The depen-184

dence of cost(SE) on the scale of edge weights violates the scale-invariance principle. However, we185

emphasize that HT (G) is scale-invariant and Proposition 2.1 holds for any scale variation. In this186

paper, we present approximation algorithms for cost(SE) in well-defined settings.187

Theorem 3.1. For any cardinality weighted graph G = (V,E,w) with conductance Φ(G), it holds188

that any cluster tree has a cost O(Φ(G)−1) ·OPT , where OPT is the minimum cost(SE) of G.189
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We defer the proof of Theorem 3.1 to Appendix D. When Φ(G) is a constant, Theorem 3.1 implies190

that any cluster tree achieves O(1)-approximation for expanders. Thus, the balance of a cluster191

tree has a significant impact on its cost. Considering balance as an important factor, we present a192

Huffman-merging heuristic (Algorithm 1). It will serve as a subroutine for the algorithm for well-193

clustered graphs.194

Algorithm 1: HuffmanMerge
Input: a graph G = (V,E,w)
Output: A cluster tree T of G

1 Create n singleton trees;
2 while there are at least two trees do
3 Select the two trees T1 and T2 with the least volumes;
4 Construct a new tree T0 with T1 and T2 as two subtrees of the root;
5 Return the resulting binary tree T0.

Next, we consider well-clustered graphs that are composed by a collection of densely-connected195

components with high inner conductance and weakly interconnections. Our settings for well-196

clustered graphs is the same as those in [15]. We start from the following (Φin,Φout)-decomposition197

presented by Gharan and Trevisan [12]. Let λk be the k-th smallest eigenvalue of the normalized198

Laplacian matrix of G and ΦG(S) be the conductance of a vertex set S in G.199

Lemma 3.1. ([12], Theorem 1.5) Let G = (V,E,w) be a graph such that λk > 0, for some k ≥ 1.200

Then, there is a local search algorithm that finds a l-partition {Pi}li=1 of V, for some l < k, such201

that for every 1 ≤ i ≤ l, ΦG(Pi) = O(k6
√

λk−1) and Φ(G[Pi]) = Ω(λ2
k/k

4).202

Lemma 3.1 implies that, when graph G exhibits a clear clustering structure, there is a partition203

{Pi}li=1 of V such that for each Pi both the outer and inner conductance can be bounded. This is204

one of the most crucial insights that we can use {Pi}li=1 directly to construct a cluster tree.205

For a high-level description, our algorithm consists of two phases: Partition and Merge. In the206

Partition phase, it invokes the algorithm in Lemma 3.1 to partion V into sets {Pi}li=1. In the Merge207

phase it combines the trees in a "caterpillar style" according to an increasing order of their volumes.208

This algorithm is described as Algorithm 2.209

Algorithm 2: CaterpillarMerge
Input: A graph G = (V,E,w), an integer k ≥ 2 such that λk > 0
Output: A cluster tree T of G

1 Apply the partitioning algorithm in Lemma 3.1 on input (G, k) to obtain {Pi}li=1 for some
l < k;

2 Sort P1, ..., Pl be such that volG(Pi) ≤ volG(Pi+1), for all 1 ≤ i < l;
3 Let Ti = HuffmanMerge(G[Pi]);
4 Initialize T = T1;
5 for i = 2, ..., l do
6 Let T be the tree with T and Ti as its two children;
7 Return T .

Note that Algorithm 2 degenerates to Algorithm 1 when k = 2. For the approximation guarantee,210

we have the following theorem.211

Theorem 3.2. Let G = (V,E,w) be a cardinality weighted graph such that λk > 0 for some212

k ≥ 1. Then Algorithm 2 constructs in polynomial time a cluster tree T of G that achieves213

O
(

1
(1−α)β log k

1−α

)
-approximation for costT (G), where α = O(k6

√
λk−1), β = Ω(λ2

k/k
4). Con-214

sequently, when λk = Ω(1/poly(k)) and λk−1 = O(1/k12) such that α < 1− ρ for some constant215

ρ ∈ (0, 1), Algorithm 2 achieves O(poly(k))-approximation. In addition, when k is a constant,216

Algorithm 2 achieves O(1)-approximation.217

The proof of Theorem 3.2 is given in Appendix E.218
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4 Practically used non-binary hierarchical clustering algorithm219

In this section, we develop a non-binary hierarchical clustering algorithm based on cost(SE) opti-220

mization. At present, all existing algorithms for hierarchical clustering can be categorized into two221

frameworks: top-down division and bottom-up agglomeration [8]. The top-down division approach222

usually yields a binary tree by recursively dividing a cluster into two parts with a cut-related cri-223

terion. But a binary clustering tree is far from a practical one as we introduced in Section 1. For224

practical use, bottom-up agglomeration that is also known as hierarchical agglomerative clustering225

(HAC) is commonly preferable. It constructs a cluster tree from leaves to the root recursively, during226

each round of which the newly generated clusters shrink into single vertices.227

Our algorithm jumps out of these two frameworks. We establish a new one that stratifies the sparsest228

level of a cluster tree recursively rather than in a sequential order. In general, in guide with cost(SE),229

we construct a k+ 1-level cluster tree from the previous k-level one, during which we find the level230

whose stratification makes the average cost in a local reduced subgraph decrease most, and then231

differentiate it into two levels. The process of stratification consists of two basic operations: stretch232

and compression. Generally speaking, in stretch steps, given an internal node of a cluster tree, a233

local binary subtree is constructed, while in compression steps, the paths that are overlength from234

the root to leaves on the binary tree is compressed by shrinking tree edges that make the cost reduce235

most. The intuition behind the “stretch-and-compress” scheme is as follows. First, we run a fast and236

simple, but probably rough clustering algorithm to obtain a binary cluster subtree. So intuitively,237

after stretch, we unfold all the potential hierarchies such that the sparsest level is possibly to be238

seen. Second, we compress every overlength path that is supposed to get through each level of this239

subtree, during which, the edge on the sparsest level whose compression makes too many graph240

edges amplify the sizes of their LCAs to a large extent will be retained.241

We remark that this framework can be collocated with any cost function and any binary cluster tree242

algorithm. For computational efficiency, especially for real networks of large scale more than 104,243

we will adopt in our experiments an HAC construction of binary cluster trees in stretch steps.244

Stretch and compress. Given a cluster tree T for graph G = (V,E), let u be an internal node245

on T and v1, v2, . . . , vℓ be its children. We call this local parent-children structure rooted at u to246

be a u-triangle of T , denoted by Tu. These two operations are defined on u-triangles. Note that247

each child vi of u is a cluster in G. We reduce G by shrinking each vi to be a single vertex v′i248

while maintaining each inter-link and ignoring each internal edge of vi. This reduction captures the249

connections of clusters at this level in the parent cluster u. The stretch operation constructs a binary250

tree for u-triangle. We adopt a common HAC construction in this u-triangle. That is, initially, view251

each v′i as a cluster and recursively combine two clusters into a new one for which cost(SE) drops252

most. The sequence of combinations yields a binary subtree T ′
u rooted at u which has v1, v2, . . . , vℓ253

as leaves. Then the compression operation is proposed to reduce the height of T ′
u to be 2. Let Ê(T ′)254

be the set of edges on T ′, each of which appears on a path of length more than 2 from the root of255

T ′ to some leaf. Denote by ∆(e) for edge e be the amount of structural entropy enhanced by the256

shrink of e. We pick from Ê(T ′
u) the edge e with least ∆(e). Note that the compression of a tree257

edge makes the grandchildren of some internal node to be children, which must amplify the cost.258

The compression operation picks the least amplification. The processes of stretch and compress are259

illustrated in Figure 3 and stated in Algorithms 5 and 6, respectively (see Appendix G).260

Sparsest level. Let Uj be the set of j-level nodes on cluster tree T , that is, Uj is the set of261

nodes each of which has distance j from T ’s root. Suppose that the height of T is k, then262

U0, U1, . . . , Uk−1 is a partition for all internal nodes of T . For each internal node u, define263

H(u) = −
∑

v:v−=u
gu

vol(V ) log
vol(v)
vol(u) . Note thatH(u) is the partial sum contributed by u inHT (G).264

After a “stretch-and-compress” round on u-triangle, denote by ∆H(u) the structural entropy by265

which the new cluster tree reduces. Since the reconstruction of u-triangle stratifies cluster u, ∆H(u)266

is always non-negative. Define the sparsity of u to be Spar(u) = ∆H(u)
H(u) , which is the relative varia-267

tion of structural entropy in cluster u. From the information-theoretic perspective, this means that the268

uncertainty of random walk can be measured locally in any internal cluster, which reflects the quality269

of clustering in this local area. At last, we define the sparsest level of T to be the j-th level such that270

the average sparsity of triangles rooted at nodes in Uj is maximum, that is argmaxj{Sparj(T )},271
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where Sparj(T ) =
∑

u∈Uj
Spar(u)/|Uj |. Then stratification works for the sparsest level of T . This272

process is illustrated in Figure 4 (see Appendix G).273

For a given positive integer k, to construct a cluster tree of height k, we start from the trivial 1-level274

cluster tree that involves all vertices of G as leaves. Then we do not stop stratifying at the sparsest275

level recursively until a k-level cluster tree is obtained. This process is described in Algorithm 3.276

Algorithm 3: k-Hierarchical clustering based on structural entropy (k-HCSE)
Input: a graph G = (V,E), k ∈ Z+

Output: a k-level cluster tree T
1 Initialize T to be the 1-level cluster tree;
2 h = height(T);
3 while h < k do
4 j′ ← argmaxj{Sparj(T )}; // Find the sparsest level of T (breaking ties arbitraily);
5 if Sparj′(T ) = 0 then
6 break; // No cost will be saved by any further clustering;
7 for u ∈ Uj′ do
8 Tu ← Stretch(u-triangle Tu);
9 Compress(Tu);

10 h← h+ 1;
11 for j ∈ [j′ + 1, h] do
12 Update Uj ;

13 return T

To determine the height of the cluster tree automatically, we derive the natural clustering from the277

variation of sparsity on each level. Intuitively, a natural hierarchical cluster tree T should have278

not only sparse boundary on clusters, but also low sparsity for triangles of T , which means that279

stratification within the reduced subgraphs corresponding to the triangles on the sparsest level makes280

little sense. For this reason, we consider the inflection points of the sequence {δt(H)}t=1,2,...,281

where δt(H) is the structural entropy by which the t-th round of stratification reduces. Formally,282

denote ∆tH = δt−1(H) − δt(H) for each t ≥ 2. We say that ∆tH is an inflection point if both283

∆tH ≥ ∆t−1H and ∆tH ≥ ∆t+1H hold. Our algorithm finds the least t such that ∆tH is284

an inflection point and fix the height of the cluster tree to be t (Note that after t − 1 rounds of285

stratification, the number of levels is t). This process is described as Algorithm 4.286

Algorithm 4: Hierarchical clustering based on structural entropy (HCSE)
Input: a graph G = (V,E)
Output: a cluster tree T

1 t← 2;
2 while ∆tH < ∆t−1H or ∆tH < ∆t+1H do
3 if maxj{Sparj(T )}=0 then
4 break;
5 t← t+ 1;
6 return t-HCSE(T )

Time complexity. The running time of HCSE on graph G = (V,E) for which |V | = n and |E| = m287

depends mainly on the iterations of stratification for the sparsest level. For each round of t-HCSE in288

Algorithm 4, since the change of structure entropy can be calculated incrementally and locally when289

merge siblings, the time complexity for the Stretch process is O(mh log n), where h is the height290

of the binary tree that Stretch yields. Since at most n times of shrinking operations on tree edges291

will happen, the time complexity for the Compress process is O(hn). Let hmax be the maximum292

height among the binary trees that appear during all iterations. The time complexity of HCSE (and293

also k-HCSE) is O(kmhmax log n + khmaxn). In practice, k is usually very small (we can even294

set k = O(1) in k-HCSE). Moreover, the balance property of structural entropy tends to produce a295
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p⃗ HCSE HLP LOU

p2 4.5E(-2) 0.89 0.79 0.92
p1 1.5E(-3) 0.93 0.75 0.92
p0 6E(-6) 0.62 0.58 --

p2 5.5E(-2) 0.87 0.89 0.89
p1 1.5E(-3) 0.95 0.87 0.87
p0 4E(-6) 0.72 -- --

p2 6.5E(-2) 0.96 0.95 0.99
p1 4.5E(-3) 0.94 0.81 0.99
p0 2.5E(-6) 0.80 -- --

Table 1: NMI for three algorithms. Each
dataset has 2, 500 vertices, and the cluster
numbers at three levels are 5, 25 and 250, re-
spectively, for which the size of each cluster is
accordingly generated at random. p3 = 0.9 for
each graph. “−−” means the algorithm does
not find this level.

Figure 1: δt(H) variations for HCSE. It
can be observed easily that the inflection
points for all the three datasets appear on
t = 4, which is also the ground-truth num-
ber of hierarchies.

balanced binary tree after stretch, which makes hmax = O(log n). Therefore, in this case, the time296

complexity is merely O(m log2 n).297

5 Experiments298

We evaluate experimentally our practically used non-binary clustering algorithm both on synthetic299

networks generated from the Hierarchical Stochastic Block Model (HSBM) and on real datasets,300

respectively. We compare HCSE with the popular practical algorithms LOUVAIN [3] and HLP301

[19]. To avoid over-fitting to higher levels, which possibly results in under-fitting to lower levels,302

LOUVAIN admits a sequential input of vertices. Usually, to avert the worst-case trap, the vertices303

come randomly, and the resulting cluster tree depends on their order. HLP invokes the common304

LP algorithm recursively, and so it cannot be guaranteed to avoid under-fitting in each round. This305

can be seen in our experiments on synthetic datasets, for which these two algorithms usually miss306

ground-truth levels. For real datasets, as far as we know, no public real datasets have clear ground307

truth for hierarchical clustering. We do the comparative experiments on real networks. Some of308

them have (overlapping, possibly hierarchical) ground truth, e.g., Amazon, while others do not309

have. We evaluate the resulting cluster trees for the Amazon network by Jaccard index, and show310

the results in Appendix F, For other networks without ground truth, we evaluate results by both311

cost(SE) and Dasgupta’s cost function cost(Das). All the source code can be downloaded from312

https://github.com/samwu-learn/HCSE.313

Synthetic datasets generated from HSBM. Our experiments on synthetic datasets utilize 4-level314

HSBM. For simplicity, let p⃗ = (p0, p1, p2, p3) be the probability vector for which pi is the proba-315

bility of generating edges for vertex pairs whose LCA on the ground-truth cluster tree has depth i.316

Note that the 0-depth node is the root. We compare the Normalized Mutual Information (NMI) at317

each level of the ground-truth cluster tree to those of three algorithms. Note that the randomness in318

LOUVAIN, and breaking-ties rule as well as convergence of HLP make different results, we choose319

the most effective strategy and pick the best results in five runs for both of them. Compared to their320

uncertainty, our algorithm HCSE yields stable results.321

Table 1 demonstrates the results in three groups of probabilities, for which the hierarchical structures322

get clearer one by one. Each dataset has 2, 500 vertices, and the cluster numbers at three levels are323

5, 25 and 250, respectively, for which the size of each cluster is accordingly generated at random.324

p3 = 0.9 for each graph. Our algorithm HCSE is always able to find the right number of levels,325

while LOUVAIN always misses the top level, and HLP misses the top level in two groups. The326

inflection points for choosing the intrinsic hierarchy number t = 4 of hierarchies are demonstrated327

in Figure 1.328
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Networks HCSE HLP LOUVAIN

CSphd 1.30E4 / 5.19E4 / 5 1.54E4 / 5.58E4 / 4 1.28E4 / 7.61E4 / 5

fb-pages-government 2.48E6 / 1.18E8 / 4 2.53E6 / 1.76E8 / 3 2.43E6 / 1.33E8 / 4

email-univ 1.16E5 / 2.20E6 / 3 1.46E5 / 6.14E6 / 3 1.14E5 / 2.20E6 / 4

fb-messages 1.58E5 / 4.50E6 / 4 1.76E5 / 8.12E6 / 3 1.52E5 / 4.96E6 / 4

G22 5.56E5 / 2.68E7 / 4 6.11E5 / 4.00E7 / 3 5.63E5 / 2.80E7 / 5

As20000102 2.64E5 / 2.36E7 / 4 3.62E5 / 7.63E7 / 3 2.42E5 / 2.42E7 / 5

bibd-13-6 7.41E5 / 2.56E7 / 3 8.05E5 / 4.41E7 / 2 7.50E5 / 2.75E7 / 4

delaunay-n10 4.65E4 / 3.39E5 / 4 4.87E4 / 3.55E5 / 4 4.24E4 / 4.25E5 / 5

p2p-Gnutella05 9.00E5 / 1.48E8 / 3 1.01E6 / 2.78E8 / 3 8.05E5 / 1.49E8 / 5

p2p-Gnutella08 5.59E5 / 5.51E7 / 4 6.36E5 / 1.28E8 / 4 4.88E5 / 6.03E7 / 5

Table 2: “cost(SE) / cost(Das) / k” for three algorithms, where k is the hierarchy number that the
algorithm finds.

Real datasets. We do our experiments on a series of real networks 2 without ground truth. We329

compare cost(SE) and cost(Das), respectively. Since the different level numbers given by the three330

algorithms influence the costs seriously, that is, lower costs are obtained just due to greater heights,331

we only list in Table 2 the networks for which the three algorithms yield similar level numbers that332

differ by at most 1 or 2. It can be observed that HLP does not achieve optima for any network,333

while HCSE performs best w.r.t. cost(Das) for all networks, but does not outperform LOUVAIN334

for most networks. This is mainly due to the fact that LOUVAIN always finds no less number335

of hierarchies than HCSE, and the better cost benefits from its depth. Moreover, we emphasize that336

there is no evidence to indicate that the lower cost(SE) or cost(Das) is, the better a non-binary cluster337

tree is. Our experiments on these real datasets are just demonstrations of the effectiveness for our338

interpretable mechanism in hierarchical clustering.339

6 Conclusions and future discussions340

In this paper, we investigate the hierarchical clustering problem from an information-theoretic per-341

spective and propose a new objective function that relates to the combinatorial cost functions raised342

by Dasgupta [10]. For optimization of this function, we present two O(1)-approximation algorithms343

for expander-like and well-clustered cardinality weighted graphs, respectively. For practical use, we344

propose a new interpretable non-binary hierarchical clustering framework that stratifies the sparsest345

level of the cluster tree recursively, which can be collocated with any cost function. We also present346

an interpretable strategy to find the intrinsic number of levels without any hyper-parameter. The ex-347

perimental results on k-level HSBM demonstrate that our algorithm HCSE has a great advantage in348

finding k compared to the popular but strongly heuristic algorithms LOUVAIN and HLP. Our results349

on real datasets show that HCSE also achieves competitive costs compared to these two algorithms.350

There are several directions that are worth further study. The first problem is about the relationship351

between the concavity of g of the cost function and the balance of the optimal cluster tree. It can be352

checked that for cliques, being concave is not a sufficient condition for total balance. Whether is it a353

necessary condition? Moreover, is there any explicit necessary and sufficient condition for total bal-354

ance of the optimal cluster tree for cliques? The second problem is about approximation algorithms355

for both structural entropy and cost(SE) in the worst case. Due to the non-linear and volume-related356

function g, many previous proof techniques for approximation algorithms seems unavailable. The357

third one is about more precise characterizations for “natural” hierarchical clustering whose depth is358

limited. Since any reasonable choice of g makes the cost function achieve optimum on some binary359

tree, a blind pursuit of minimization of cost functions seems not to be a rational approach. More360

criteria in this scenario need to be studied.361

2http://networkrepository.com/index.php
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A A brief introduction to structural information473

The idea of structural information is to encode a random walk with a certain rule by using a high-
dimensional encoding system for a graph G. It is well known that a random walk, for which a neigh-
bor is randomly chosen with probability proportional to edge weights, has a stationary distribution
on vertices that is proportional to vertex degree.3 So to position a random walk under its stationary
distribution, the amount of information needed is typically the Shannon’s entropy, denoted by

H(1)(G) = −
∑
v∈V

dv
vol(V )

log
dv

vol(V )
.

By Shannon’s noiseless coding theorem,H(1)(G) is the limit of average code length generated from474

the memoryless source for one step of the random walk. However, dependence of locations may475

shorten the code length. For each level on cluster trees, the uncertainty of locations is measured by476

the entropy of the stationary distribution on the clusters of this level. Consider an encoding for every477

cluster, including the leaves. Each non-root node α is labeled by its order among the children of478

its parent α−. So the amount of self-information of α within this local parent-children substructure479

is − log(vol(α)/vol(α−)), which is also roughly the length of Shannon code for α and its siblings.480

The codeword of α consists of the sequential labels of nodes along the unique path from the root481

(excluded) to itself (included). The key idea is as follows. For one step of the random walk from u to482

v in G, to indicate v, we omit from v’s codeword the longest common prefix of u and v that is exactly483

the codeword of u ∨ v. This means that the random walk takes this step in the cluster u ∨ v (and484

also in u∨v’s ancestors) and the uncertainty at this level may not be involved. Therefore, intuitively,485

a quality similarity-based cluster tree would trap the random walk with high frequency in the deep486

clusters that are far from the root, and long codeword of u ∨ v would be omitted. This shortens the487

average code length of the random walk. Note that we ignore the uniqueness of decoding since a488

practical design of codewords is not our purpose. We utilize this scheme to evaluate and differentiate489

hierarchical structures.490

Then we formulate the above scheme and measure the average code length as follows. Given a491

weighted graph G = (V,E,w) and a cluster tree T for G, note that under the stationary distribution,492

the random walk takes one step out of a cluster α on T with probability gα/vol(V ). Therefore, the493

aforementioned uncertainty measured by the average code length is494

HT (G) = −
∑
α∈T

gα
vol(V )

log
vol(α)

vol(α−)
,

which is defined as the structural entropy of G on T . To minimize this uncertainty, the structural495

entropy H(G) of G is defined as the minimum one among all cluster trees. Note that the structural496

entropy of G on the trivial 1-level cluster tree is consistent with the previously defined H(1)(G). It497

doesn’t have any non-trivial cluster.498

3For connected graphs, this stationary distribution is unique, but not for disconnected ones. Here, we
consider this canonical one for all graphs.
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B Proof of Proposition 2.1499

Proof. For each internal node α on T , denote by ∂(α) the sets of edges in G with exactly one500

end-point in the set of vertices corresponding to α. So gα =
∑

e∈∂(α) w(e). Note that501

HT (G) = −
∑
α∈T

gα
vol(V )

log
vol(α)

vol(α−)

= −
∑
α∈T

∑
(u,v)∈∂(α)

w(u, v)

vol(V )
log

vol(α)
vol(α−)

= −
∑

(u,v)∈E

w(u, v)

vol(V )

∑
α:(u,v)∈gα

log
vol(α)

vol(α−)

 .

For a single edge (u, v) ∈ E, all the terms log(vol(α)/vol(α−)) for leaf u satisfying (u, v) ∈ gα502

sum (over α) up to log(du/vol(u ∨ v)) along the unique path from u to u ∨ v. It is symmetric for v.503

Therefore, considering ordered pair (u, v) ∈ E,504

HT (G) = −
∑

ordered (u,v)∈E

w(u, v)

vol(V )
log

du
vol(u ∨ v)

=
1

vol(V )

−∑
u∈V

du log du +
∑

ordered (u,v)∈E

w(u, v) log vol(u ∨ v)


=

1

vol(V )

−∑
u∈V

du log du + 2 ·
∑

(u,v)∈E

w(u, v) log vol(u ∨ v)

 .

The second equality follows from the fact
∑

u∈V du =
∑

ordered (u,v)∈E w(u, v) = vol(V ) and the505

last equality from the symmetry of (u, v). Since the first summation is independent of T , Proposition506

2.1 follows.507

C Proof of Proposition 2.2508

We restate Proposition 2.2 as follows.509

Theorem 2.2. For any positive integer n, let Kn be the clique of n vertices with identical weight on510

every edge. Then a cluster tree T of Kn achieves minimum structural entropy if and only if T is a511

balanced binary tree, that is, the two children clusters of each sub-tree of T have difference in size512

at most 1.513

Note that a balanced binary tree (BBT for abbreviation) means the tree is balanced on every internal514

node. Formally, for an internal node of cluster size k, its two sub-trees are of cluster sizes ⌊k/2⌋ and515

⌈k/2⌉, respectively.516

For cliques, since the weights of each edge are identical, we assume it safely to be 1. By Theorem517

2.1, minimizing the structural entropy is equivalent to minimizing the cost function (over T )518

costT (G) =
∑

(u,v)∈E

log vol(u ∨ v)

=
∑

(u,v)∈E

log ((n− 1)|u ∨ v|)

=
∑

(u,v)∈E

log(n− 1) +
∑

(u,v)∈E

log |u ∨ v|

Since the first term in the last equation is independent of T , the optimization turns to minimizing519

the last term, which we denote by Γ(T ). Grouping all edges in E by LCA of two end-points, the520

cost Γ(T ) can be written as the sum of the cost γ at every internal node N of T . Formally, for every521
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internal node N , let A,B ⊆ V be the leaves of the sub-trees rooted at the left and right child of N ,522

respectively. We have523

Γ(T ) =
∑
N

γ(N)

γ(N) =

 ∑
x∈A,y∈B

1

 · log (|A|+ |B|)
= |A| · |B| · log(|A|+ |B|)

Now we only have to show the following lemma.524

Lemma C.1. For any positive integer n, a cluster tree T of Kn achieves minimum cost Γ(T ) if and525

only if T is a BBT.526

Proof. Lemma C.1 is proved by induction on |V |. The key technique of tree swapping we use here527

is inspired by Cohen-Addad et al [4]. The basis step holds since for |V | = 2 or 3, the cluster tree is528

balanced and unique. It certainly achieves the minimum cost exclusively.529

Now, consider a clique G = (V,E) with n = |V | ≥ 4. Let T1 be an arbitrary unbalanced cluster530

tree and λ be its root. We need to prove that the cost Γ(T1) does not achieve the minimum. Without531

loss of generality, we can safely assume the root node is unbalanced, since otherwise, we set T1 to532

be the sub-tree that is rooted at an unbalanced node. Let T2 be a tree with root λ whose left and533

right sub-trees are BBTs such that they have the same sizes with the left and right sub-trees of T1,534

respectively. Let Vll, Vlr, Vrl and Vrr be the sets of nodes on the four sub-trees at the second level of535

T2 and nll, nlr, nrl and nrr denote their sizes, respectively. Our proof is also available when some536

of them are empty. We always assume nll ≤ nlr and nrl ≥ nrr. Next, we construct T3 by swapping537

(transplanting) Vlr and Vrl with each other. Finally, let T4 be a tree with root λ whose left and right538

sub-trees are BBTs after balancing the left and right sub-trees of T3. So T4 is a BBT. Then we only539

have to prove that Γ(T1) > Γ(T4). Note that the strict “>” is necessary since we need to negate all540

unbalanced cluster trees.541

Then we show that the transformation process that consists of the above three steps makes the cost542

decrease step by step. Formally,543

(a) T1 to T2. The sub-trees of T1 become BBTs in T2. Since the number of edges whose544

end-points treat the root as LCA is the same, by induction we have Γ(T1) ≥ Γ(T2).545

(b) T2 to T3. We will show that Γ(T2) > Γ(T3) in Lemma C.2.546

(c) T3 to T4. The sub-trees of T3 become BBTs in T4. For the same reason as (a), we have547

Γ(T3) ≥ Γ(T4).548

Putting them together, we get Γ(T1) > Γ(T4) and Lemma C.1 follows.549

550

Lemma C.2. After swapping Vlr and Vrl, we obtain T3 from T2, for which Γ(T2) > Γ(T3).551

Proof. We only need to consider the changes in cost of three nodes: root and its left and right552

children, since the cost contributed by each of the remaining nodes does not change after swapping.553

Ignoring the unchanged costs, define554

cost(T2) = nlnr log n+ nllnlr log nl + nrlnrr log nr

= nlnr log n+
⌊nl

2

⌋ ⌈nl

2

⌉
log nl +

⌈nr

2

⌉ ⌊nr

2

⌋
log nr,

where nl = nll + nlr, nr = nrl + nrr. Both of them are at least 1. Similarly, define555

cost(T3) = (nll + nrl)(nlr + nrr) log n+ nllnrl log (nll + nrl) + nlrnrr log (nlr + nrr)

=
⌊n
2

⌋ ⌈n
2

⌉
log n+

⌊nl

2

⌋ ⌈nr

2

⌉
log
(⌊nl

2

⌋
+
⌈nr

2

⌉)
+
⌈nl

2

⌉ ⌊nr

2

⌋
log
(⌈nl

2

⌉
+
⌊nr

2

⌋)
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Denote556

∆ = Γ(T2)− Γ(T3)

= cost(T2)− cost(T3)

=
⌊nl

2

⌋ ⌈nl

2

⌉
log
(nl

n

)
+
⌈nr

2

⌉ ⌊nr

2

⌋
log
(nr

n

)
−
⌊nl

2

⌋ ⌈nr

2

⌉
log

(⌊
nl

2

⌋
+
⌈
nr

2

⌉
n

)
−
⌈nl

2

⌉ ⌊nr

2

⌋
log

(⌈
nl

2

⌉
+
⌊
nr

2

⌋
n

)
(2)

So we only have to show that ∆ > 0. We consider the following three cases according to the odevity557

of nl and nr.558

Case 1: nl and nr are even.559

Case 2: nl and nr are odd.560

Case 3: nl is odd while nr is even.561

The case that nl is even while nr is odd is symmetric to Case 3.562

For Case 1, if both nl and nr are even, then notations of rounding in Eq. (2) can be removed and ∆563

can be simplified as564

∆ =
n2
l

4
log
(nl

n

)
+

n2
r

4
log
(nr

n

)
+

nlnr

2
.

Let p = nl/n, q = nr/n, and so p + q = 1. Recall that T1 is unbalanced on the root λ, so is T2.565

Thus p ̸= q. Multiplying by 4
n2 on both sides, we only have to prove that566

p2 log p+ q2 log q + 2pq > 0.

That is,
p

q
log p+

q

p
log q + 2 > 0.

Let g(x) = x
1−x log x. Then we only need to show that g(p) + g(q) + 2 > 0 when p ̸= q. Since567

g′(x) =
(1− x) + lnx

ln 2 · (1− x)2
,

g′′(x) = −x2 − 2x lnx− 1

ln 2 · x(1− x)3
.

It is easy to check that g′′(x) > 0 when 0 < x < 1. So g(x) is strictly convex in the interval (0, 1).
Since p ̸= q,

g(p) + g(q) > 2g

(
p+ q

2

)
= −2.

Thus ∆ > 0 holds.568

For Case 2, if both nl and nr are odd, then ∆ can be split into two parts ∆ = ∆1 +∆2, in which569

∆1 =
n2
l

4
log
(nl

n

)
+

n2
r

4
log
(nr

n

)
+

nlnr

2

∆2 = −1

4
log
(nl

n

)
− 1

4
log
(nr

n

)
− 1

2

Since we have shown that ∆1 > 0, if we can prove ∆2 ≥ 0, then the lemma will hold for Case 2.570

Due to the convexity of logarithmic function, this holds clearly since571

2 log
(n
2

)
≥ log nl + log nr.

For Case 3, if nl is odd while nr is even,572

∆ =
n2
l − 1

4
log
(nl

n

)
+

n2
r

4
log
(nr

n

)
−
[
(nl − 1)nr

4
log

(
n− 1

2n

)
+

(nl + 1)nr

4
log

(
n+ 1

2n

)]
.

15



Multiplying the above equation by 4 ln 2, without changing its sign, yields573

(4 ln 2)∆ = (n2
l − 1) ln

(nl

n

)
+ n2

r ln
(nr

n

)
−
[
(nl − 1)nr ln

(
n− 1

2n

)
+ (nl + 1)nr ln

(
n+ 1

2n

)]
Splitting the right hand side into two parts,574

A = n2
l ln

(nl

n

)
+ n2

r ln
(nr

n

)
+ 2nlnr ln 2

B = − ln
(nl

n

)
− (nl + 1)nr ln

(
1 +

1

n

)
− (nl − 1)nr ln

(
1− 1

n

)
Since n is odd and the root λ of T2 is unbalanced, we only need to consider the case that nl =575

(n − i)/2, nr = (n + i)/2 (Note that nl and nr are symmetric. So if (n − i)/2 is even, exchange576

nl and nr), where both n and i are odd satisfying n > i ≥ 3. Next we show that in this case,577

A ≥ ln(1/5) + 42 ln(4/5) + 2 · 4 ln 2 and B > ln 2 − 3/4 − (2/3) · (1/52). By calculation,578

∆ = A+B > 0 for Case 3.579

Claim C.1. A ≥ ln(1/5) + 42 ln(4/5) + 2 · 4 ln 2 for odd integers n > i ≥ 3.580

Proof. Substituting nl = (n− i)/2, nr = (n+ i)/2 into the A yields581

A = C(n, i) ≜
(
n− i

2

)2

ln

(
n− i

2n

)
+

(
n+ i

2

)2

ln

(
n+ i

2n

)
+ 2 · n− i

2
· n+ i

2
ln 2.

Treat n as a continuous variable, we have582

∂C(n, i)

∂n
=

1

2

[
(n+ i) ln

(
1 +

i

n

)
+ (n− i) ln

(
1− i

n

)
− i2

n

]
Multiplying the above equation by 2/n and setting x = i/n yields583

f(x) ≜ (1 + x) ln(1 + x) + (1− x) ln(1− x)− x2,

f ′(x) = ln(1 + x)− ln(1− x)− 2x,

f ′′(x) =
2x2

1− x2
.

It is easy to check that f(0) = 0 and f ′(0) = 0. When 0 < x < 1, f ′′(x) > 0. Thus f ′(x) > 0 and584

f(x) > 0. This means that ∂C(n, i)/∂n > 0 for all n > 0. So C(n, i) ≥ C(i+ 2, i) for n ≥ i+ 2585

(When i is fixed, the minimum value of n can be taken to i + 2, which makes nl = (n − i)/2 and586

nr = (n+ i)/2 integral). The curves of C(n, i) for varying i are plotted in Figure 2.587

Figure 2: Functions C(n, i)
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When n = i+ 2, we get nl = (n− i)/2 = 1 and nr = (n+ i)/2 = n− 1. Substituting them into588

A yields589

D(n) ≜ ln

(
1

n

)
+ (n− 1)2 ln

(
1− 1

n

)
+ 2(n− 1) ln 2,

dD

dn
= 1− 2

n
+ 2 ln 2 + 2(n− 1) ln

(
1− 1

n

)
.

When n > 2, it is easy to check that dD/dn > 0. So the minimum value of d(n), which is also the590

minimum value of C(i + 2, i), is achieved at n = i + 2 = 5. So A = C(n, i) ≥ C(i + 2, i) ≥591

C(5, 3) = ln(1/5) + 42 ln(4/5) + 2 · 4 ln 2.592

Claim C.2. B > ln 2− 3/4− (2/3) · (1/52).593

Proof. Due to the facts that594

ln

(
1 +

1

n

)
<

1

n
− 1

2n2
+

1

3n3
,

ln

(
1− 1

n

)
< − 1

n
− 1

2n2
− 1

3n3
,

we have595

B = − ln
(nl

n

)
− (nl + 1)nr ln

(
1 +

1

n

)
− (nl − 1)nr ln

(
1− 1

n

)
> − ln

(nl

n

)
+

nlnr

n2
− 2nr

n
− 2nr

3n3

> − ln
(nl

n

)
+

nlnr

n2
− 2nr

n
− 2

3n2
.

Let α = nl/n, then596

B > − lnα+ α(1− α)− 2(1− α)− 2

3n2

≥ ln 2− 3

4
− 2

3n2
.

When n ≥ 5, B > ln 2− 3/4− (2/3) · (1/52).597

Combining Claims C.1 and C.2, Lemma C.2 follows.598

This completes the proof of Proposition 2.2.599

D Proof of Theorem 3.1600

Proof. Note that costT (G) for any cluster tree T has a trivial upper bound. That is,

costT (G) =
∑
e∈E

costT (e) ≤
∑
e∈E

we · log(vol(G)) ≤ vol(G) · log(vol(G))

2
,

where costT (e) = we log vol(LCAT (e)). Let T ∗ be the optimal cluster tree that achieves the mini-601

mum cost, we present here a lower bound for costT
∗
(G). Referring to the dense branch technique602

[10, 15], we start with the root node A0 and walk along T ∗ recursively as follows: at every internal603

node Ai, walk down to the node Ai+1 of higher volume between its two children. This process stops604

when we reach node Ak such that volG(Ak) ≤ 2vol(G)
3 . Denote A ≜ Ak as well as B ≜ V \Ak. By605

construction, it holds that volG(A) > vol(G)
3 and volG(B) ≥ vol(G)

3 . Moreover, volG(Ai) >
2vol(G)

3606
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for every 0 ≤ i < k. The basic idea behind the dense branch is that the cut(A,B) has a significant607

contribution to costT
∗
(G).608

costT
∗
(G) =

∑
e={u,v}

we · log(volG(u ∨ v))

≥
∑

e={u,v}
e∈E{A,B}

we · log(volG(u ∨ v))

≥ w(A,B) · log
(
2vol(G)

3

)
.

≥ Φ(G) · vol(G)

3
· log

(
2vol(G)

3

)
.

Let T be an arbitrary cluster tree, and T ∗ be an optimal tree. We have

costT (G)

costT∗(G)
≤ 3

2Φ(G)
· log(vol(G))

log
(

2vol(G)
3

) = O(Φ(G)−1).

609

E Proof of Theorem 3.2610

Proof. To prove Theorem 3.2, we only have to prove the following lemma. Then the theorem follows611

from a simplification of the approximation factor.612

Lemma E.1. Let α = maxi{ΦG(Pi)} and β = mini{Φ(G[Pi])}. Algorithm 2 achieves613 (((
log
(

1
1−α

)
+ 1
)
+ 2α

1−α

(
1 + log k

1−α

))
· 3

2β log( 4
3 )

)
-approximation.614

Proof. We group the edges of G into two categories: let E1 be the set of edges in the induced
subgraphs G[Pi] for all 1 ≤ i ≤ l, i.e.,

E1 ≜ ∪li=1E[G[Pi]],

and E2 be the remaining crossing edges. Then we have

costT (G) =
∑
e∈E1

costT (e) +
∑
e∈E2

costT (e).

We denote by vol(G[Pi]) the volume of the induced graph G[Pi], by volG(Pi) the volume of Pi in
G, and by parentT (Pi) the parent of Pi on T . Then it holds for every Pi that

volG(parentT (Pi)) ≤ k · volG(Pi).

By the construction of T we have that

volG(parentT (Pi)) =

i∑
j=1

volG(Pj) ≤ i · volG(Pi) ≤ k · volG(Pi).

Note that
w(Pi, V \Pi) = volG(Pi)− vol(G[Pi]) ≤ α · volG(Pi),

(1− α) · volG(Pi) ≤ vol(G[Pi]),

and thus

volG(parentT (Pi)) ≤ k · volG(Pi) ≤
k

1− α
vol(G[Pi]).
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Combining the above, we have that615 ∑
e∈E1

costT (e) ≤
∑
e∈E1

we · log(volG(Pi))

≤
∑
e∈E1

we · log
(

1

1− α
vol(G[Pi])

)
=

∑
e∈E1

(
we · log

1

1− α
+ we · log(vol(G[Pi]))

)

≤
(
log

1

1− α
+ 1

)
·

k∑
j=1

vol(G[Pi]) · log(vol(G[Pi]))

2
,

and616 ∑
e∈E2

costT (e) ≤
k∑

j=1

w(Pi, V \Pi) · log(volG(parentT (Pi)))

≤
k∑

j=1

α

1− α
vol(G[Pi]) log

(
k

1− α
vol(G[Pi])

)

≤
k∑

j=1

α

1− α

(
1 + log

k

1− α

)
vol(G[Pi]) log(vol(G[Pi]))

=
2α

1− α

(
1 + log

k

1− α

)
·

k∑
j=1

vol(G[Pi]) · log(vol(G[Pi]))

2
.

Let T ∗ be the optimal cluster tree of G, and OPTG be the optimal value. We have

OPTG = costG(T ∗) ≥
l∑

i=1

∑
e∈E(G[Pi])

costT∗(e) ≥
l∑

i=1

OPTG[Pi].

Denote by

h(α, k) =

((
log

(
1

1− α

)
+ 1

)
+

2α

1− α

(
1 + log

k

1− α

))
.

We have617

costT (G) =
∑
e∈E1

costT (e) +
∑
e∈E2

costT (e)

≤ h(α, k) ·
k∑

j=1

vol(G[Pi]) · log(vol(G[Pi]))

2

≤ h(α, k) ·
k∑

j=1

vol(G[Pi]) · log(vol(G[Pi]))

2ΦG[Pi] · 13vol(G[Pi]) · log( 23vol(G[Pi]))
OPTG[Pi]

≤ h(α, k) ·max
i

3 log(vol(G[Pi]))

2ΦG[Pi] · log( 23vol(G[Pi]))

k∑
j=1

OPTG[Pi]

≤ h(α, k) ·max
i

3 log(vol(G[Pi]))

2ΦG[Pi] · log( 23vol(G[Pi]))
OPTG

≤ h(α, k) · 3

2β log( 43 )
OPTG

Lemma E.1 follows.618

Note that h(α, k) = O
(

1
(1−α) log

k
1−α

)
, Theorem 3.2 follows.619

19



F Experimental results on Amazon network620

We do our experiments on Amazon network 4 for which the set of ground-truth clusters has been621

given. For two sets A,B, the Jaccard Index of them is defined as J(A,B) = |A ∩B|/|A ∪B|. We622

pick the largest cluster which is a subgraph with 58283 vertices and 133178 edges. We run HCSE623

algorithm on it. For each ground-truth cluster c that appears in this subgraph, we find from the624

resulting cluster tree an internal node that has maximum Jaccard index with c. Then we calculate625

the average Jaccard index J over all such c. We also calculate cost(SE) and cost(Das). The results626

are demonstrated in Table 3. HCSE performs better for J and cost(SE), while LOUVAIN performs627

better for cost(Das). Because of unbalance in over-fitting and under-fitting traps, HLP outperforms628

none of the other two algorithms for all criteria.629

index HCSE HLP LOUVAIN

J 0.20 0.16 0.17
cost(SE) 1.85E6 2.05E6 1.89E6
cost(Das) 5.57E8 3.99E8 3.08E8

Table 3: Comparisons of the average Jaccard index (J), cost function based on structural entropy (cost(SE))
and Dasgupta’s cost function (cost(Das)).

G Some figures and pseudocodes630

Figure 3: Illustrations of stretch and compress for a u-triangle. A binary cluster tree is constructed
first by stretch, and then edge e is compressed, which yields a non-binary tree.

(a) (b)

Figure 4: Illustration of stratification for a 2-level cluster tree. The preference of (a) and (b) depends
on the average sparsity of triangles at each level.

4http://snap.stanford.edu/data/
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Algorithm 5: Stretch
Input: a u-triangle Tu

Output: a binary tree rooted at u
1 Let {v1, v2, . . . , vℓ} be the set of leaves of Tu;
2 Compute η(a, b) which is the cost reduced by merging siblings a, b into a single cluster;
3 for t ∈ [ℓ− 1] do
4 (α, β)← argmax(a,b) are siblings{η(a, b)};
5 Add a new node γ;
6 γ.parent← α.parent;
7 α.parent = γ;
8 β.parent = γ;
9 return Tu

Algorithm 6: Compress
Input: a binary tree T

1 while T ’s height is more than 2 do
2 e← argmine′∈Ê(T ){∆(e′)};
3 Denote e = (u, v) where u is the parent of v;
4 for w ∈ v.children do
5 w.parent← u;
6 Delete v from T ;
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