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ABSTRACT

Heterogeneous multi-teacher Knowledge distillation attempt to learn a versatile
student neural network from multiple pre-trained heterogeneous teachers. But
current methods face issues with a lack of independence and alignment in het-
erogeneous knowledge. To address this issue, we propose a novel method called
Multi-Expert Collaboration (MEC). Our approach aggregates multiple expert clas-
sifiers within the student model, replacing the conventional single-head architec-
ture. By ensuring that each expert’s independent classifier operates without in-
terfering with others, we enhance the independence of heterogeneous knowledge.
Inspired by Helmholtz Free Energy (HFE) theory, we introduce an anchor-based
HFE self-normalization strategy to align the heterogeneous knowledge effectively.
This method ensures consistent energy levels across all classifiers, allowing the ap-
propriate classifier to achieve the highest confidence for in-distribution data. Ex-
tensive experiments on CIFAR-100 and ImageNet-100 datasets demonstrate that
MEC significantly outperforms existing heterogeneous multi-teacher knowledge
distillation methods, achieving an average accuracy improvement of over 10%.

1 INTRODUCTION

Deep neural networks have achieved remarkable success across various applications, and numerous
deep network models optimized for different tasks and trained on diverse datasets have been made
publicly available, providing researchers with a rich repository of model resources. Despite this
abundance, effectively leveraging these heterogeneous teacher networks to train a student model
capable of handling multiple tasks remains a pressing and unresolved challenge in the field.

Knowledge Distillation (KD) Hinton et al. (2015) methods are primarily used to transfer knowledge
from a single complex teacher model to a light-weight student model. The core idea is to transfer
knowledge by having the student model mimic the output logits or soft targets generated by the
teacher model, thereby capturing the teacher’s learned representations and generalization capabili-
tiesBeyer et al. (2022); Gong et al. (2023); Agand (2024). However, heterogeneous multi-teacher
models involve multiple teachers trained based on different architectures, training data, and task ob-
jectives. KD methods, being limited to homogeneous knowledge transfer, are unable to effectively
merge knowledge from multiple pre-trained heterogeneous teacher models.

Recently, researchers have explored a heterogeneous multi-teacher knowledge distillation approach-
Knowledge Amalgamation (KA) Shen (2019); Thadajarassiri et al. (2021); Xu et al. (2022); Zhang
et al. (2023); Gao et al. (2024), which aggregates the knowledge of multiple teachers into a student
model. As shown in Figure 1a, KA methods usually adopt a dual approach of aligning common
features and extracting soft targets.

However, current heterogeneous multi-teacher knowledge distillation only refines the student’s
knowledge by simply concatenating logits of teacher models and select the class with the highest
in the student’s logit. As the number of teachers increases, the mutual interference between hetero-
geneous knowledge in the student model will affect the performance of the model. When multiple
expert models’ predictions are simply integrated into a student model, the heterogeneity of knowl-
edge makes it difficult for the student model to determine which knowledge is more representative
or accurate.
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To achieve independence and alignment of heterogeneous knowledge, this paper proposes a
novel method called Multi-Expert Collaboration (MEC), aiming to utilize these pre-trained
networks specialized in different tasks (expert networks) to learn a multi-skilled student
network. As shown in Figure 1b, our method first aggregates multiple expert classi-
fiers within the student model instead of using a single-head approach. By ensuring that
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(a) In KA method: the logit of x is evaluated
under each expert model, knowledge distil-
lation on the logit of student models through
simple concatenation, and the class with the
highest one is chosen in the student logit.
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Figure 1: Comparison of two
paradigms. The parameters of the
light blue module are frozen, while the
parameters of the dark blue module can
be learned.

each expert’s independent classifier does not interfere
with others, we enhance the independence of heteroge-
neous knowledge. Inspired by studies on Helmholtz Free
Energy (HFE) Liu et al. (2020), we observe that for a
given classifier, in-stage data typically exhibit higher free
energy (i.e., higher confidence scores) compared to out-
stage data. To tackle the challenge of aligning heteroge-
neous knowledge, we adopt an anchor-based HFE self-
normalization strategy to ensure that all classifiers oper-
ate at a consistent energy level. This method effectively
aligns the heterogeneous knowledge from different ex-
perts, ensuring that the appropriate classifier achieves the
highest confidence for in-stage data, thereby enhancing
the overall alignment of heterogeneous knowledge in the
student model.In summary, our contributions are three-
fold:

• We propose a multi expert collaborative method to ad-
dress the independence and alignment issues of het-
erogeneous knowledge in heterogeneous multi teacher
knowledge distillation.

• Multi-expert representation learning is employed to ob-
tain a universal feature extraction backbone, while the
multi-head classifier ensures the independence of het-
erogeneous knowledge. The anchor-based HFE self-
normalization method further ensures the alignment of
this heterogeneous knowledge.

• Extensive experiments on two benchmark datasets
demonstrate the superior performance of the proposed
multi-expert collaboration paradigm, achieving an av-
erage accuracy improvement of over 10% compared to
other heterogeneous multi-teacher knowledge distilla-
tion methods

2 RELATED WORK

2.1 KNOWLEDGE DISTILLATION

Knowledge Distillation (KD) Hinton et al. (2015) is an efficient technique for model reuse and com-
pression, where a smaller student model is trained to replicate the behavior of a larger, more complex
teacher model. The core idea is to transfer knowledge by having the student model mimic the out-
put logits or soft targets generated by the teacher model, thereby capturing the teacher’s learned
representations and generalization capabilities. The goal is to minimize the difference in proba-
bilistic outputs between the teacher and the student models. Research in this area primarily focuses
on exploring the potential of knowledge transfer between the teacher and student models. Vari-
ous approaches have been investigated, including aligning intermediate layersBeyer et al. (2022);
Gong et al. (2023), utilizing auxiliary teacher modelsMirzadeh et al. (2020), and selecting expert
modelsAgand (2024).

2.2 KNOWLEDGE AMALGAMATION

Knowledge amalgamation, as an extension of Knowledge distillation, Shen (2019) was first in-
troduced to merge knowledge from multiple expert models into a single student model suitable

2
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for all tasks, particularly in classification tasks. Traditionally, KA methods Ye et al. (2019); Shen
et al. (2019); Luo et al. (2019); Xu et al. (2022) train the student model by mimicking the outputs
of teacher models-(classification score learning) -and/or their intermediate representations (feature
learning). The scenario of KA has gained attention due to the prevalence of publicly available pre-
trained models with different architectures. In such cases, the student model cannot directly learn
from the features of each block of the teacher models as in typical homogeneous settings. To bal-
ance this heterogeneity, most previous KA methods—such as data-free knowledge amalgamation
Ye et al. (2020), semi-supervised knowledge amalgamation Thadajarassiri et al. (2021), weighted
amalgamation strategies Luo et al. (2020), and model-heterogeneous aggregated training Xu et al.
(2022); Zhang et al. (2023); You et al. (2024); Gao et al. (2024) —mainly rely on classification score
learning to achieve heterogeneous multi-teacher knowledge distillation.

3 PROBLEM FORMULATION

Multi-expert collaboration is defined as follows. Assume that given E = {E1, E2, ..., EN} rep-
resenting N experts, for an expert An, its data is represented as Dn = {xi, yi}Mn

i=1, where Mn

represents the total number of samples for En, xi denotes a sample and yi denotes the correspond-
ing label. The goal of multi-expert collaboration is to derive a generalist that classifies all classes as
D =

⋃N
i=1Di. To be specific, for any two experts Ei and Ej where i ̸= j, Di ̸= Dj , which means

that each expert classifies independent and different tasks, and the data class sets they possess are
unique. After collaboration, generalist can infer the classes YEi

∪ YEj
, where Y is a label space.

(a) Heterogeneous knowledge
alignment issue.

(b) Correlation between alignment
rate and prediction Accuracy.

(c) misaligned heterogeneous
knowledge distillation analysis.

Figure 2: Analysis of heterogeneous knowledge alignment in heterogeneous multi-teacher knowl-
edge distillation.

Heterogeneous knowledge alignment. each expert focuses on a specific task without being exposed
to others, which may lead to overly confident predictions that could mislead the student model. As
shown in Figure 2a, KD logit distribution is not aligned with GT logit distribution. Using misaligned
logit for knowledge distillation can negatively impact the student’s learning process. Through gra-
dient analysis, z(i)s is student logit,

L = (1− α)LCE + αLKD

= (1− α)(−logp(i)s ) + α(−
C∑
i=1

p
(i)
t logp(i)s )

(1)

∂L
∂z

(i)
s

= (1− α)(p(i)s − y(i))− α(p(i)s − p
(i)
t ) (2)

y(i) = 0, but p(i)t ≈ 1, the gradient of KL provides incorrect guidance to p
(i)
s , causing the student

model to lean towards the wrong class i.

We analyzed the relationship between the alignment rate of the KD distribution with the GT distri-
bution and the prediction accuracy of the student model during the knowledge distillation process
on the CIFAR100 dataset. As shown in Figure 2b, there is a positive correlation between prediction
accuracy and the alignment rate. Further analysis of the prediction results is presented in Figure

3
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2c. During the distillation training process, the alignment rate for class 0 was 62.4%, with 26.1%
of the samples having logits corresponding to class 1. In the testing phase of the student model, the
prediction accuracy for class 0 was 43%, with 19% of the samples being incorrectly predicted as
class 1. This demonstrates that maintaining a high alignment rate in the heterogeneous knowledge
alignment process is crucial for achieving better student model performance.

To achieve heterogeneous knowledge alignment, the output of the expert classifiers should meet the
following criteria: Criterion 1: Each stage classifer should have a higher output confidence score for
the data within the stage it belongs to (i.e., in-stage data) than others (i.e., out-stage data);Criterion 2:
The confidence scores for in-stage data should be consistent across all stages.These criteria ensure
that the knowledge from heterogeneous experts is effectively integrated, providing a more reliable
foundation for the student model’s learning process.

Heterogeneous knowledge independence. In heterogeneous multi-teacher knowledge distillation,
the student model’s output layer is a fully connected layer used to classify all classes, requiring

Figure 3: Poor classifier scalability.

model parameters to be shared among all classes. As
shown in Figure 3, when the number of experts in-
creases, the integration of diverse and potentially con-
flicting knowledge from different experts leads to inter-
ference among the heterogeneous knowledge domains,
resulting in decreased classification accuracy. Each ex-
pert model may have been trained on different datasets
with unique class distributions and feature representa-
tions, leading to distinct decision boundaries. When these
heterogeneous knowledge representations are combined
within a single-head classifier, the conflicting features and
decision boundaries can interfere with each other. This
interference makes it challenging for the shared parame-
ter matrix W ∈ RC×D (D is the feature dimension) to
effectively represent each class accurately. The overlap-
ping and inconsistent information from various experts complicates the learning process, causing
the model to misclassify inputs or fail to capture the essential characteristics of each class. Conse-
quently, the interference among heterogeneous knowledge hinders the model’s ability to generalize
across tasks, ultimately leading to degraded classification performance.

4 METHOD

In this section, we primarily introduce the paradigm of multi-expert collaboration. Through col-
laborative efforts with multiple experts, generalist can handle all previous tasks, using only a small
amount of data samples for training.

4.1 MULTI-EXPERT COLLABORATION FRAMEWORK

We conducted an in-depth investigation on leveraging multiple experts to achieve comprehensive
learning, enabling a vanilla to evolve into a generalist. We designed a unified multi-expert collabo-
ration framework U(·), which allows for moderate information exchange between multiple experts,
in order to take advantage of the complementarity of each expert and achieve generalization.

SA = φ(
⋃N

i=1Ei), (3)

where SA is the generalist, Ei denotes an expert, φ(·) denotes the approach of collaboration.

As depicted in Figure 4, we decouple the feature representation adaptation from the final classifier
in the deep network. This decoupling is facilitated through two primary modules: Multi-Expert
Representation Learning and Classifier Adaptation Learning, which together enable effective multi-
expert collaboration. For clarity, we will provide a detailed explanation of each module within the
multi-expert collaboration framework.

4
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Figure 4: Illustration of multi-expert collaboration. Model is decoupled into feature representation
and classifier. Multi-expert representation learning aims to create a universal feature representation.
Classification adaptation learning aggregates experts’ classifier into generalized classifiers, ensuring
the independence of experts classifiers and minimizing interference to the greatest extent possible.

4.1.1 MULTI-EXPERT REPRESENTATION LEARNING

We employ multi-expert representation learning to construct a universal feature extraction backbone.
This involves transforming both the experts’ features and the generalist’s features into a common
feature space. We then minimize two loss terms: feature loss LM , which encourages generalist’s
feature to align with expert’s feature in common feature space, and reconstruction loss LR, which
ensures that transformed expert’s feature can be remapped to the original space with minimal error.

To align the output feature dimensions of the experts and generalist, we apply a 1× 1 convolutional
kernel, which standardizes the output length regardless of input sizes. Directly averaging the original
features FG (from the generalist) and Fi (from expert Ei) can introduce feature heterogeneity. To
address this, we introduce a small network shared by both the expert and generalist models. This
network converts Fi and FG into a common feature space, resulting in fi and fG, which are half the
size of the original features. These transformed features are then projected into a low-dimensional
subspace, where we constrain their variations to effectively distill the important features.

To amalgamate knowledge from heterogeneous experts, we build a domain-invariant feature space
between generalist and experts via KL scatter, computed as follows:

DKLi
(fG∥fi) = H (fG, fi)−H (fG) , (4)

where H (fG, fi) denotes the cross-entropy of fi and fG, and H (fG) denotes the entropy of fG.

The pairwise KL loss between each expert and generalist is expressed as the overall difference in
shared space.

LM =

N∑
i=1

DKLi
, (5)

To further enhance joint representation learning, we add a reconstruction loss between the feature
spaces of the original experts. Let F ′

i denote the reconstructed features of the expert model and the
reconstruction loss is defined as:

LR =

N∑
i=1

||F ′
i − Fi||2, (6)

5
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4.1.2 HETEROGENEOUS KNOWLEDGE INDEPENDENCE AND ALIGNMENT

Inspired by studies on Helmholtz free energy (HFE) Liu et al. (2020); Wang et al. (2023), we ob-
served that for a given classifier, in-stage data generally exhibits higher free energy (i.e., higher
confidence scores) compared to out-stage data. To tackle the challenge of heterogeneous knowledge
alignment, we employ an anchor-based HFE self-normalization strategy, ensuring that all classifiers
operate at consistent energy levels. This approach effectively aligns the knowledge across different
experts, ensuring that the appropriate classifier achieves the highest confidence score for in-stage
data, thereby enhancing the overall alignment and integration of heterogeneous knowledge within
the generalist model.

Specifically, we employ a effective energy self-normalization loss Lal to mitigate the conflict be-
tween Lce and Lkd. The loss Lkd constrains the free energy of each classifier to a fixed anchor ∆
for improved knowledge interaction, which we detail further.

The generalist consists of a backbone fs
b (·) and a classifier fs

c (·). evolving from vanilla to generalist
to classify all classes. The generalist classifier includes the same number of classification heads
as the experts, initialized with the weights from the expert heads. For each classification head,
represented by f ti

c (·), the expert transfers features extracted by fs
b (·) to obtain the corresponding

HFEs. The classifier with the highest HFE is used for predictions. We then define a normal energy
function for a given input-label pair (x, y).

Em(x, y) = −hm(x)[y], (7)

where hm(x) = f tm
c (fs

b (x)) is the logit of the m-th expert’s classifier, and hm(x)[y] is the logit
value of y ∈ Ym.

Then the Helmholtz free energy can be expressed as the negative log partition function:

Fm(x) = −log
∑
y∈Ym

exp(−Em(x, y)), (8)

To align the HFE of different expert classifiers in the same space, we employ Lal, which constrains
the HFE of each classifier with a fixed anchor ∆, as Eq. 7.

Lm
al = Ex∼Dm

(Fm(x)−∆)2, (9)

Assuming yti represents the prediction of expert, ŷs represents the prediction of the generalist, and
its KL scatter is denoted as :

Lkd

(
p̂si || pti

)
= Ex∼D[log

p̂si/T

pti/T
], (10)

where T is the temperature parameter. To train the entire network, the overall loss consists of three
parts:

L = Lce(p
s, y) + λ1(LM + LR) + λ2(Lal +

N∑
i

Lkd), (11)

where Lce(p
s, y) is the cross-entropy loss, λ1 and λ2 are the trade-off parameters.

In the inference stage, we input the features into a classifier containing 5 classification heads, the
final prediction is made by obtaining the classifier with the highest HFE, as follows:

m∗ = argmax(−Fm(x)), (12)

Then, the final prediction can be obtained as:

ps = fm∗

c (fs
b (x)) (13)

5 EXPERIMENTS

We performed a comparative evaluation of various baselines on two datasets on which our method
achieved consistently better or equivalent performance. In the following sections, we provide details
of the datasets, baselines, experimental setup, quantitative results, and analysis.
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5.1 EXPERIMENTS SETUP

Datasets We validate our method on the widely used benchmark CIFAR-100 Krizhevsky (2009)
and ImageNet-100 Deng et al. (2009). CIFAR-100 is a classification dataset with 60,000 32 × 32
RGB images from 100 classes. Each class contains 500 training images and 100 testing images.
ImageNet-100 is composed of 100 classes with 1300 images per class for training and 500 images
per class for validation. ImageNet-100 resembles real-world scenes with a higher resolution of 256
× 256.

Implementation Details. In our study, we utilized two data partitioning methods for the CIFAR-
100 and ImageNet-100 datasets. Taking CIFAR-100 as an example: first method involved dividing
the dataset evenly among five experts, with each expert handling 20 classes. This setup is denoted
as CIFAR-100-5/20; second method involved splitting the dataset equally among ten experts, with
each expert handling 10 classes. This setup is represented as CIFAR-100-10/10.

5.2 BASELINES SETUP AND METRICS

For all expert models, we adopt ResNet-18 as feature extractor feature. Model is optimized under
Adam with learning rate λ = 10−4. All methods have been evaluated using the same computation
environment.

For each class within the expert, we selected 20 samples following the strategy of nearest class
mean. Let fk(x) represent the feature of expert Ek corresponding to input sample x. We calculated
the class mean for the class y as µy = 1

||Dy||
∑

x∈Dy
fk(x), where Dy the dataset for the class y.

Samples were then ranked according to their L2 distance to the class mean, and the top 20 samples
were chosen to be included in the sample memory. We compare the top-1 average accuracy:

ACC =
1

N

∑N
i=1A

acc
i , (14)

where Aacc
i is the average accuracy of the generalist on the i-th expert task.

5.3 BENCHMARK COMPARISON

Table 1: Comparison of average accuracy.

Method CIFAR-100-5/20 ImageNet-100-5/20 CIFAR-100-10/10 ImageNet-100-10/10

KAShen (2019) 52.0 55.1 53.0 55.4
CFL-KALuo et al. (2019) 55.8 62.0 57.8 64.6

CFAde Carvalho et al. (2022) 54.7 59.9 55.2 60.4
DDFAXu et al. (2022) 61.0 65.1 62.0 65.4

Co-KA Gao et al. (2024) 65.9 67.3 66.4 67.4
MEC 78.1 77.9 78.5 78.6

We conducted a comparison between our method and existing heterogeneous multi-teacher knowl-
edge distillation methods, with the results summarized in Table 1. This table presents the perfor-
mance metrics across two datasets (CIFAR-100 and ImageNet-100) under four different task set-
tings, where the average accuracy for each setting is recorded. Our method consistently outperforms
the baselines, showing substantial advantages across all tasks.

As shown in Table 1, traditional student models with shared output layers face challenges in hetero-
geneous knowledge processing, especially with an increase in the number of classes. This shared
parameter structure limits the model’s ability to represent information from different categories, re-
sulting in poor alignment of heterogeneous knowledge and a classification accuracy of less than
68%.

We transition to a multi expert classifier aggregation method, where each classifier head is dedicated
to handling specific classes or tasks. This design allows a single classifier head to independently
process tasks and avoid conflicts. We have introduced the Helmholtz Free Energy (HFE) self nor-
malization strategy. By using a fixed anchor to constrain the free energy of each classifier, the het-
erogeneous knowledge within the model is effectively aligned. These enhancements significantly

7
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improve the scalability and stability of the model, enabling it to achieve the highest classification
accuracy among all task configurations on the CIFAR-100 and ImageNet-100 datasets. Our method
outperforms other heterogeneous multi teacher knowledge extraction techniques, with an average
accuracy of 78%, fully verifying the effectiveness of our proposed multi-expert collaboration.

Table 2: Comparison of every expert’s task accuracy.

Dataset Task KA CFL-KA CFA DDFA Co-KA MEC

CIFAR-100

Expert1 52.3 58.0 57.0 60.9 65.3 77.1
Expert2 54.1 55.1 55.3 62.3 65.6 80.6
Expert3 48.2 56.8 53.2 60.3 66.8 76.9
Expert4 50.7 50.7 53.4 59.8 63.7 76.5
Expert5 54.8 58.6 54.7 61.9 68.4 79.2

CIFAR-100

Expert1 57.0 58.7 57.1 65.3 69.5 78.5
Expert2 54.5 59.9 60.2 60.6 66.1 79.5
Expert3 57.5 63.9 62.4 65.0 69.7 78.9
Expert4 48.5 50.7 48.5 58.5 61.1 78.2
Expert5 55.3 64.7 60.0 66.3 70.4 78.4
Expert6 46.5 50.3 46.7 60.8 65.8 77.3
Expert7 45.8 51.3 47.3 59.7 63.8 78.1
Expert8 56.7 64.0 65.0 60.7 69.3 77.3
Expert9 54.0 59.6 49.7 61.3 70.6 78.6

Expert10 53.8 55.1 55.1 61.2 57.5 80.4

ImageNet-100

Expert1 56.4 62.3 62.2 66.4 70.5 77.1
Expert2 55.6 64.1 57.1 65.6 64.0 78.0
Expert3 53.3 58.2 59.9 63.3 67.3 76.3
Expert4 57.5 60.7 60.2 67.5 67.6 79.1
Expert5 52.7 64.8 59.9 62.7 67.3 78.5

ImageNet-100

Expert1 49.8 65.5 62.4 59.8 71.1 78.8
Expert2 61.0 63.4 57.7 71.0 68.0 80.1
Expert3 55.4 71.1 64.0 65.4 68.7 77.9
Expert4 54.2 57.9 57.7 64.2 61.4 77.1
Expert5 54.6 72.3 60.8 64.6 70.3 77.7
Expert6 55.8 57.4 59.8 65.8 63.8 79.0
Expert7 54.8 55.4 59.6 64.8 62.4 78.3
Expert8 61.2 69.9 59.3 71.2 70.9 80.4
Expert9 48.2 64.8 65.2 58.2 71.2 77.1
Expert10 58.8 68.3 57.5 68.8 66.3 79.9

5.4 INDEPENDENCE AND ALIGNMENT ARE NECESSARY

(a) CIFAR-100 (b) ImageNet-100

Figure 5: Comparison of classification accuracy of collaborate
different numbers of expert models on two datasets.

We evaluated our approach of
aggregating multiple expert
classifiers, emphasizing the
independence and alignment
of heterogeneous knowledge,
on the CIFAR-100-10/10 and
ImageNet-100-10/10 datasets.
As shown in Figure 5, increasing
the number of assembled expert
models leads to a corresponding
growth in the number of classes
to be classified. Traditional
heterogeneous multi-teacher
knowledge distillation methods
use a single-head classifier that
shares parameters across all classes, leading to interference among heterogeneous knowledge and
decreased classification accuracy as the number of classes grows. In contrast, our approach employs
an aggregated multi-expert classifier framework, where each classifier head specializes in different

8
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classes and operates independently. This design ensures the independence and effective alignment
of heterogeneous knowledge, significantly enhancing the model’s scalability and generalization
capabilities. Consequently, our method maintains high accuracy even as the number of expert
models increases. Specifically, as shown in Table 2, across four experimental settings, our method
achieves an average accuracy improvement of 10% over traditional methods for each expert task.
This demonstrates that aggregating multiple expert classifiers not only allows for independent
handling of different classes but also effectively aligns heterogeneous knowledge, leading to
improved overall performance and accuracy.

5.5 ABLATION STUDY

To further verify the significance of each mod-
ule in multi-expert collaboration, we conduct
the ablation study as shown in Table 3.
When using only Multi-expert Representation
Learning (MERL), we still adopt the single clas-
sification head for logits distillation as in hetero-
geneous multi-teacher knowledge distillation,
but the performance appears to be relatively av-
erage. However, when Classifier Adaptation
Learning (CAL) is introduced, there is a sig-
nificant improvement in performance, indicat-
ing that the single head in heterogeneous multi-
teacher knowledge distillation cannot

Table 3: Ablation study on CIFAR-100 and
ImageNet-100.

Dateset MERL CAL Acc

CIFAR-100
✓ 61.9

✓ 75.7
✓ ✓ 78.5

ImageNet-100
✓ 65.4

✓ 75.0
✓ ✓ 78.6

effectively handle the issue of knowledge conflict, whereas our designed CAL effectively handle
the issue of knowledge conflict, whereas our designed CALeffectively addresses this problem. Fi-
nally, when combining MERL and CAL, the model achieves the best performance, demonstrating
that MERL helps in building a more generalized backbone network, while CAL effectively resolves
knowledge conflicts, leading to optimal overall performance.

6 CONCLUSION

In this paper, we addressed the critical challenge of utilizing heterogeneous teacher networks to train
a student network capable of handling multiple tasks. We proposed the Multi-Expert Collaboration
method, which aggregates multiple expert classifiers within the student model to ensure the inde-
pendence of heterogeneous knowledge. By introducing an anchor-based HFE self-normalization
strategy, we effectively aligned the knowledge from different experts, ensuring consistent energy
levels across classifiers and enhancing the model’s ability to integrate diverse information. Exten-
sive experiments on the CIFAR-100 and ImageNet-100 datasets validated the superiority of our
approach, showing an average accuracy improvement of over 10% compared to traditional hetero-
geneous multi-teacher knowledge distillation methods. The MEC framework not only improves
classification accuracy but also enhances scalability and generalization capabilities. Our work pro-
vides a scalable solution for integrating diverse expert models into a unified student network, paving
the way for more effective utilization of pre-trained models in multi-task learning scenarios.

REFERENCES

Pedram Agand. Knowledge distillation from single-task teachers to multi-task student for end-to-
end autonomous driving. In AAAI, pp. 23375–23376, 2024.
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