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ABSTRACT

This paper investigates a personalized version of Local Stochastic Gradient De-
scent (Local SGD). We establish improved convergence guarantees for this per-
sonalized approach, eliminating the need for extra assumptions about data or
gradient heterogeneity. Our theoretical analysis reveals that personalized Local
SGD outperforms both pure local training and federated learning algorithms that
produce a consensus model for all devices. This performance gain is primar-
ily due to over-parameterization, which allows for reducing the consensus error
between clients with more communication—something that is not observed in
non-personalized approaches. We illustrate our observations using experiments
on synthetic convex and smooth objectives.

1 INTRODUCTION

Collaborative machine learning protocols have been instrumental in driving recent scientific break-
throughs (Bergen & Petryshen, 2012). These protocols are increasingly being adopted across a
variety of sectors: from networks of hospitals (Li et al., 2019; Powell, 2019; Roth et al., 2020) and
mobile devices (McMahan & Ramage, 2017; Apple; Paulik et al., 2021), to the banking industry
(Shiffman et al., 2021), and have even proven valuable in studying COVID-19 (Dayan et al., 2021).
Most collaborative learning problems with M machines/participants can be stated as multi-criterion
optimization problems of the following form:

min
v1,...,vM∈W

(F1(v1), . . . , FM (vM )) , (1)

where Fm(v) = Ez∼Dm [f(v; z)] is the objective of machine m defined using a data distribution
Dm and a loss function f : W × Z → R. Machine m can solve its problem locally, i.e., without
collaboration, if (i) it can fully access its objective Fm through unrestricted access to Dm and (ii)
it does not have computational/time constraints. If these two assumptions hold for all machines,
Problem (1) degenerates intoM different optimization problems. However, at least one, and in most
cases, both of these assumptions fail in practice. For instance, assume each machine can only access
a data set, Sm ∼ D⊗T

m , with |Sm| = T where T is much smaller than the sample complexity to
optimize Fm to some target sub-optimality ϵ. Or even in the online setting, where at each time step,
the machine m gets a sample zmt ∼ Dm, the time complexity to reach a good solution might be too
high. As a result, using pure local training to obtain a good model can be prohibitive in the worst
case and very expensive in the best case.

Fortunately, in many real applications such as next-word prediction on a mobile keyboard (Hard
et al., 2018), these M objectives/distributions share several similarities, and sharing information
between the machines can drastically cut the total training time and sample complexity (Blum et al.,
2017; Haghtalab et al., 2022). This is the motivation behind the rapidly growing field of federated
learning (FL) (McMahan et al., 2016b;a; Kairouz et al., 2019), that usually simplifies Problem (1)
in two steps: first, by using a consensus model for all the participants,

min
v∈W

(F1(v), . . . , FM (v)) , (2)

and then by linearly scalarizing the objective to get a simple optimization problem,

min
v∈W

F (v) := 1

M

∑
m∈[M ]

Fm(v)

 . (3)
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Figure 1: The benefit of over-parameterization offered by personalization. (a) An illustration of
how the solution concept changes by incorporating additive personalization as in Problem (5). With-
out personalization, the solution of Problem (3) must be in the set ∩m∈[M ]S

⋆
m, which can be a very

small set, when the number of machines is large. On the other hand, with additive personalization,
for every shared model w, θm can be in the translated set S⋆m − w. This significantly expands the
solution set for Problem (5). See Section 3.3 for more discussions. (b) Optimization trajectories of
local GD (w/ η = 0.05) v/s personalized local GD (w/ η = 0.05, α = 1) withW = R2, M = 2,
K = 3 and R = 8. The blue machine has objective F1(v) = (v[1]− 7)2 +2(v[2]− 18)2− 1, while
the red machine has objective F2(v) = 2(v[1]− 18)2 + (v[2]− 13)2 − 1. We denote contour lines
for both functions in their respective colors. v⋆1 and v⋆2 are the optima of the machines respectively,
while v⋆ is the optimum of the average function F (v) = (F1(v) + F2(v))/2.

In low heterogeneity settings, where the data distributions are similar, Problem (3) is a good proxy
for Problem (1). This is why much effort has been put into studying optimization algorithms for
Problem (3) 1. In the extreme case when D1 = · · · = DM , i.e., the homogeneous setting, we
know the min-max complexity of smooth first-order optimization (Woodworth et al., 2021; Patel
et al., 2022) as well as tight convergence guarantees for the most popular federated optimization
algorithm, i.e., local SGD/FedAvg (Woodworth et al., 2020a; Glasgow et al., 2022).

However, in the heterogeneous setting, (I) it is unclear if Problem (3) remains a reasonable proxy
to Problem (1) as the averaged objective function might be far away from local ones. And even
if Problem (3) is a good proxy, (II) strong heterogeneity assumptions (Haddadpour & Mahdavi,
2019; Khaled et al., 2020; Woodworth et al., 2020b) are needed to analyze local SGD, or we cannot
theoretically demonstrate its practical effectiveness (Koloskova et al., 2020; Wang et al., 2022; Patel
et al., 2023) in optimizing Problem (3). This is because local update methods suffer from “client
drift” between communication rounds (Zhao et al., 2018; Charles & Konecny, 2020; Karimireddy
et al., 2020) as the client devices optimize their own objective Fm instead of the averaged objective
F (c.f., Figure 1b). This client drift is known to slow down the convergence of the local update
algorithms for Problem (3) (Glasgow et al., 2022; Patel et al., 2023).

To alleviate issues (I) and (II), we take forward (Arivazhagan et al., 2019; Liang et al., 2020; Hanzely
et al., 2021; Bietti et al., 2022; Pillutla et al., 2022; Mishchenko et al., 2023) the study of the follow-
ing personalization-aware scalarization of Problem (1):

min
ψ:=(w,θ1,...,θM )∈WM+1

F̂ (ψ) := 1

M

∑
m∈[M ]

Fm(g(w, θm))

 , (4)

1Besides providing an approximate solution for Problem (1), there are also other motivations to output a
single consensus model, such as learning a foundation model for other downstream tasks (Zhuang et al., 2023).
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where g : W2 → W is an “aggregation rule” that specifies how to combine the shared “global
model” w ∈ W and a “client-specific model” θm ∈ W . Hanzely et al. (2021) have shown that
Problem (4) recovers several personalized federated learning (PFL), multi-task learning, and meta-
learning formulations. Furthermore, Mishchenko et al. (2023) have empirically shown that this
“partial personalization” effectively leverages the shared structure across machines for several deep
learning tasks. In this paper, we study the simplest and yet, as we demonstrate, powerful, additive
aggregation rule for Problem (4), with g(w, θ) := w + θ. This results in the following problem:

min
ψ:=(w,θ1,...,θM )∈WM+1

F̂ (ψ) := 1

M

∑
m∈[M ]

Fm(w + θm)

 . (5)

The additive aggregation makes the problem under-determined for each machine and is tantamount
to directly scalarizing problem 1. For example, consider a supervised learning task like product
recommendation, where Fm(w + θm) = E(x,y)∼Dm

[l(y, ⟨w + θ, x⟩)]. Here, l represents a loss
function such as logistic loss, x is the feature vector for a product, and y is a binary label indicating
a customer’s purchase. In such cases, there exist common population-level features like average
product ratings and technical specifications, as well as machine-specific features such as budget
and color preference. The additive model enables collaboration to enhance the model for shared
features while maintaining the capability for user-specific customization. Due to its simplicity and
this modularity, the additive model has recently been studied, including by Bietti et al. (2022) in
convex settings and as a specialized case of robust aggregation by Pillutla et al. (2022). We propose
Algorithm 1, a variant of personalized local SGD generalizing both (i) pure local training and (ii)
vanilla local SGD to solve Problem (5). Our contributions are as follows:

• In the strongly convex setting (see Section 3), we identify the regime where Algorithm 1 strictly
improves over both algorithmic extremes (i) and (ii), attaining the best possible rate for any non-
accelerated collaborative first-order algorithm. We make no data heterogeneity assumptions in our
analysis, which is a significant improvement over every known vanilla local SGD analysis.

• In the general convex setting (see Section 3.2), we provide a convergence analysis in terms of
consensus error: a key quantity that appears in all local SGD analyses (Koloskova et al., 2020;
Khaled et al., 2020; Woodworth et al., 2020b). Using a theoretical hard instance, we show that
while the consensus error of vanilla local SGD between communication rounds stays constant, it
is driven to zero with personalization (c.f., Figure 2).

• We highlight that the benefit of personalization in the additive model comes from over-
parameterization (see Section 3.3). Over-parameterization expands the solution set of the un-
derlying optimization problem and, thus, makes it easier for the local-update method to converge
to the correct optima–a benefit that is crucial with higher data heterogeneity (c.f., Figure 1).

Notation. We use ⪯,≡,⪰ to denote scalar equalities and inequalities up to numerical constants.
When comparing positive semi-definite matrices, we use ⪯,⪰ to denote the Loewner order. We
will consider unconstrained optimization over the d-dimensional Euclidean space, i.e., W = Rd.
For v ∈ Rd, ∥v∥ denotes the associated Euclidean norm and v[i] denotes the ith co-ordinate of
v. For a matrix A ∈ Rd×d, λmax(A), λmin(A) denote its largest and smallest eigen-values, and
∥A∥2 = λmax(A) denotes the spectral norm of the matrix.

2 SETTING AND PRELIMINARIES

Function class. We assume each machine’s objective is (strongly) convex and smooth.
Assumption 1 (Regularity assumptions). All objective functions Fm are twice-differentiable, L-
smooth, and µ-strongly convex, where 0 ≤ µ ≤ L. We recall the following equivalent properties on
the Hessian

µ · Id ⪯ ∇2Fm(v) ⪯ L · Id,∀ v ∈ W , (6)
on the gradient bounds

µ ∥v1 − v2∥ ≤ ∥∇Fm(v1)−∇Fm(v2)∥ ≤ L ∥v1 − v2∥ , ∀v1, v2 ∈ W , (7)
and on the function bounds
µ

2
∥v1 − v2∥2 ≤ Fm(v1)− Fm(v2)− ⟨∇Fm(v2), v1 − v2⟩ ≤

L

2
∥v1 − v2∥2 , ∀v1, v2 ∈ W . (8)
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Algorithm Optimization Terms Noise Terms Heterogeneity Terms

Strongly Convex Setting: 1
M

∑∑∑
m∈[M ] E

[
∥v̂m − v⋆

m∥2
]
⪯

MB-SGD
B2e−

R
κ

σ2

µ2MKR
ζ2⋆
L2(Dekel et al., 2012)

Local SGD
κB2e−

R
κ

σ2

µ2MKR + κσ2

µ2KR2 ζ2⋆ ·
(

1
L2 + κ

µ2R2

)
(Koloskova et al., 2020)

Pure Local Training B2e−
KR
2κ

σ2

µ2KR -

Algorithm 1
B2e−

KR
2κ

σ2

µ2MKR
-(Theorem 1, (16))

Convex Setting: 1
M

∑∑∑
m∈[M ] Fm(v̂m)− F ⋆

m ⪯

MB-SGD LB2

R

σB√
MKR

ζ2⋆
L(Dekel et al., 2012)

Local SGD LB2

R
σB√
MKR

+ (Lσ2B4)1/3

K1/3R2/3
ζ2⋆
L +

(Lζ2⋆B
4)1/3

R2/3(Koloskova et al., 2020)

Pure Local Training LB2

KR
σB√
KR

-

Algorithm 1 MLB2

R
σB√
KR

+ (Lσ2M2B4)1/3

R2/3
(Lζ2⋆M

2B4)1/3

R2/3(Hanzely et al., 2021)

Algorithm 1 (w/ K = 1) LB2

R

σB√
MKR

-
(Bietti et al., 2022)

Algorithm 1 MLB2

KR

σB√
MKR

+ χ1(σ,K,R) χ2(ζ⋆, R)(Conjecture 1)

Table 1: Summary of exiting convergence rates in the (strongly) convex setting. The guarantees for
all non-personalized algorithms are translated to personalized guarantees using Assumption 3. Pure
local training refers to running SGD separately on each machine. Thus, its guarantee is standard and
can be found in Stich (2019). Bietti et al. (2022)’s and our guarantees are for additive personaliza-
tion. Furthermore, our guarantee is stated in the regime where K < K

2(1−e−1/4MR)
≤ κ < 4MKR,

as highlighted in Theorem 1. In the convex setting, due to Patel et al. (2023), local SGD is dominated
by mini-batch SGD, but we include it for completeness. For the conjectured rate for Algorithm 1 in
the convex setting, see Section 3.2.

We recall that there is a unique optimizer for strictly convex functions, i.e., when µ > 0. In the
strictly convex setting, we denote the condition number of the function by κ = L

µ . When µ = 0, we
call our functions just convex. Next, we assume the machines’ optima are bounded. In particular,
we denote the sets of optima of the average function and each machine as follows:

S⋆ := argmin
v∈W

F (v) and S⋆m := argmin
v∈W

Fm(v),∀m ∈ [M ] . (9)

Assumption 2 (Bounded local solutions). There exists B > 0, such that for every solution v⋆m ∈
S⋆m, we have ∥v⋆m∥ ≤ B.

We will also use the following heterogeneity assumption in discussing guarantees of related algo-
rithms. Note that we do not require the assumption to analyze Algorithm 1 (c.f., Theorem 1).
Assumption 3 (Bounded heterogeneity at optima). Let Fm’s satisfy Assumption 1. For a given
machine m, we define d(S⋆m, S

⋆) := argmaxv⋆m∈S⋆
m,v

⋆∈S⋆ ∥v⋆m − v⋆∥
2
2. Then, for given ζ⋆ ≥ 0,

1

M

∑
m∈[M ]

d(S⋆m, S
⋆) ≤ ζ2⋆

L2
. (10)

Remark. ForL-smooth functions, this assumption implies another less restrictive assumption which
has been used in several works both without (Koloskova et al., 2020; Woodworth et al., 2020b; Patel
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et al., 2022) and with personalization (Hanzely et al., 2021) for analyzing local update methods in
the (strongly) convex setting. In particular, for all v⋆ ∈ S⋆ and v⋆m ∈ S⋆m,

1

M

∑
m∈[M ]

∥∇Fm(v⋆)∥2 =
1

M

∑
m∈[M ]

∥∇Fm(v⋆)−∇Fm(v⋆m)∥2
(7)

≤ L2

M

∑
m∈[M ]

∥v⋆m − v⋆∥
2

(10)

≤ ζ2⋆ .

Oracle and communication model. One key benefit of using the additive model for personaliza-
tion as introduced in Problem (5) is that,

∇wFm(w + θ) = ∇θFm(w + θ) = ∇w+θFm(w + θ) .

In particular, the gradients on machine m w.r.t. its copies of the global and personal models wmt , θ
m
t

at time t are only a function of their sum, vmt := wmt + θmt . This means we do not need to com-
pute multiple gradients at any time step despite using a stronger personalized model (c.f., line 6 in
Algorithm 1) and allows us to consider the following standard stochastic oracle on each machine.

Definition 1. Each machine has access to a stochastic first-order oracle Om : W → W which
outputsOm(vmt ) = gmt at time t ∈ [T ] such that, E[gmt |vmt ] = ∇Fm(vmt ) and, V ar(gmt |vmt ) ≤ σ2,

where we define V ar(u|v) := E
[
∥u− E[u|v]∥2 |v

]
.

In our setting, the above oracle can be implemented simply by first sampling a new data point zmt ∼
Dm on machine m at time t and then returning∇f(vmt ; zmt ) for the query vmt . Finally, to model the
expensive nature of communication in collaborative learning (Wang et al., 2021), we will consider
the “intermittent communication model” (Woodworth et al., 2018; Woodworth, 2021), illustrated in
Figure 3 in Appendix A. In particular, there are T = KR time steps, and the devices communicate
R times with K time steps in between. Thus, communication happens before generating models
with index in {K, 2K, . . . ,K(R− 1),KR}.

Non-personalized to personalized guarantees. As discussed in Section 1, most optimization al-
gorithms in federated learning solve Problem (3) while personalized FL algorithms aim to minimize
the following objective, which is a scalarization of problem (1),

min
v1,...,vM∈W

1

M

∑
m∈[M ]

Fm(vm) , (11)

which is implicit in Problem (4). But we can still facilitate a comparison between personalized and
non-personalized guarantees. In particular, in the convex setting we bound the following “cost of
not personalizing”:

min
v⋆∈W

1

M

∑
m∈[M ]

Fm(v⋆)− min
v⋆1 ,...,v

⋆
M∈W

1

M

∑
m∈[M ]

Fm(v⋆m) . (12)

This is precisely the excess loss incurred by any algorithm that insists on using a consensus model
for all the devices. First, using L-smoothness of Fm followed by Assumption 3, we can show that
this cost is upper bounded by ζ2⋆/L. Furthermore, there is a convex problem instance (see proof
of Proposition 1) satisfying Assumptions 1, 2 and with 1

M

∑
m∈[M ] ∥v⋆ − v⋆m∥

2
= ζ⋆

L2 (i.e., it also

satisfies Assumption 3) such that Equation (11) is lower bounded by ζ2⋆
L . Thus, using an algorithm

for solving Problem (3), we can not hope to do better than ζ2⋆
L in terms of function sub-optimality.

Similarly, in the strongly convex setting, since we are interested in bounding the average of the
distance to the optimum v⋆m on each machine (as opposed to function sub-optimality), the cost of
not personalizing is given by

1

M

∑
m∈[M ]

∥v⋆ − v⋆m∥
2
, (13)

which is directly bounded by ζ2⋆
L2 using Assumption 3. This upper bound is also tight (assuming

ζ2⋆ ≤ 2L2B2) for problems satisfying Assumptions 1, 2 and 3. We use these reductions in Table 1.
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3 PERSONALIZED LOCAL SGD ALGORITHM AND ITS ANALYSIS

Algorithm 1 Local SGD with personalization

1: Input: inner step-size sequence ηt, outer step-size β, personalization parameter α, initializa-
tions w0, θ0

2: Initialize wm0 = w0, θ
m
0 = θ0 on all machines m ∈ [M ]

3: for t ∈ {0, . . . ,KR− 1} do
4: for m ∈ [M ] in parallel do
5: Sample zmt ∼ Dm
6: Compute the stochastic gradient∇f(wmt + θmt ; zmt )
7: θmt+1 ← θmt − αηt∇f(wmt + θmt ; zmt )
8: wmt+1 ← wmt − ηt∇f(wmt + θmt ; zmt )
9: if (t+ 1)mod K = 0 then

10: Communicate wmt+1 to server

11: Server makes update wt+1 ← wt+1−K + β 1
M

∑
m′∈[M ]

(
wm

′

t+1 − wt+1−K

)
12: Receive wt+1 from server
13: wmt+1 ← wt+1

14: end if
15: end for
16: end for
17: Output: ϕ̂ :=

(
wT + θ1T , . . . , wT + θMT

)
▷ Option I

ϕ̂ := 1
TM

∑
t∈[T ],m∈[M ]

(
wmt + θ1t , . . . , w

m
t + θMt

)
▷ Option II

ϕ̂ := 1
T

∑
t∈[T ]

(
w1
t + θ1t , . . . , w

M
t + θMt

)
▷ Option III

In Algorithm 1, we showcase a personalized local SGD algorithm that differs from vanilla local
SGD (c.f., Algorithm 2) because of the introduction of the machine-specific model θmt , and the
personalization parameter α. Varying α w.r.t. the outer step-size β controls the personalization of
the final models. As long as α > 0, our algorithm will have some personalization. Specifically, we
progressively reduce the personalization rate by increasing the ratio β/α and appropriately scaling
η to ensure that the algorithm converges. We can note the following two extreme cases:

• When α = 0, Algorithm 1 recovers the familiar local SGD algorithm with an inner-outer step-size
which has been discussed in several works such as Karimireddy et al. (2020); Charles & Konecny
(2020); Wang et al. (2022). Further setting β = 1 recovers vanilla local SGD as analyzed in
Woodworth et al. (2020b); Yuan & Ma (2020). And instead, setting ηt = η = 0 recovers large
mini-batch SGD with batch-size MK and step-size β.

• When β = 0, ηt = η tends to zero, and αη is a constant, Algorithm 1 recovers pure local training,
i.e., SGD on each machine with step-size αη. We show in Theorems 1 and 2 that Algorithm 1 can
even recover the rate of pure local training without being in this limiting regime.

An initial version of Algorithm 1 was presented by Arivazhagan et al. (2019); Liang et al. (2020),
emphasizing the empirical advantages of using global and local models. However, their work lacks
optimization results. A theoretical analysis was later provided by Hanzely et al. (2021), who ex-
plored the convergence aspects of Algorithm 1 for a general aggregation function with α = 1.
Unfortunately, their approach included unconventional assumptions, like a unique optimal point for
general convex functions. Even with these assumptions, their results are dominated by pure-local
training, as indicated in Table 1. Their strongly convex analysis is also not fully worked out, and
they rely on Assumption 3, while our analysis does not.

Building upon the insights from Bietti et al. (2022)—whose study on Algorithm 1 in the general
convex scenario (without local updates) is notable and offers better rates than Hanzely et al. (2021)
(c.f., Table 1)—our analyses go further. We provide a faster rate in the strongly convex setting
using local update steps in Theorem 1. Our exploration, as detailed in Section 3.2, reveals that
personalization mitigates the persistent consensus error due to data heterogeneity. This positive
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impact of personalization can be bestowed to over-parameterization, as elaborated in Section 3.3
and supported by recent empirical findings from Mishchenko et al. (2023).

3.1 THE STRONGLY CONVEX SETTING

The discussion above highlights that with specific settings of hyper-parameters, Algorithm 1 can
recover the guarantees of both the extremes: (i) pure local training with SGD and (ii) the most
popular federated learning algorithms, local and MB-SGD. But is it possible to show that in some
regimes, Algorithm 1 is also provably strictly better than both these extremes? We show that
this is indeed possible in the following convergence result.
Theorem 1 (Strongly Convex Functions). Assume the functions on each machine satisfy Assump-
tions 1 (with µ > 0) and 2. Define the condition number of the problems as κ = L

µ . For each
machine m, we output v̂m := wKR + θmKR, i.e., the final model on each machine m ∈ [M ] after the
Rth communication round ( Option I in Algorithm 1). Then we can get the following guarantees
for Algorithm 1 when ηt = η < 1

(1+α)L and w0 = θ0 = 0,

1

M

∑
m∈[M ]

E ∥v̂m − v⋆m∥
2
2 ≤ e

− 2αR
1+α (1−e

−η(1+α)µK)B2 +
4ησ2α

µ
·
(
1 +

β2

Mα2

)
. (14)

Furthermore, setting β ≤
√
M and α = 1, we get that for η < 1

2L ,

1

M

∑
m∈[M ]

E ∥v̂m − v⋆m∥
2
2 ≤ e

−R(1−e−2ηµK)B2 +
8ησ2

µ
. (15)

Finally, assuming K < K
2(1−e−1/4MR)

≤ κ < 4MKR2 and setting η = 1
8µMKR , we obtain that,

1

M

∑
m∈[M ]

E ∥v̂m − v⋆m∥
2
2 ≤ e

−KR
2κ B2 +

σ2

µ2MKR
. (16)

We can make several observations about the result presented in Theorem 1. Firstly, from bound (14)
with untuned hyper-parameters, we can note that the ratio β

α controls the benefit of collaboration,
i.e., the dependence of the “noise-term” on M . This is unsurprising because, as mentioned in the
discussion above, making α small while making β large will mimic local SGD without personaliza-
tion. Further from bound (15) we can see that by making this ratio

√
M , we can recover the familiar

noise term as in the analysis of SGD on a single machine (Stich, 2019). This might prompt one to
think we have lost any benefit of collaboration. However, we note that the optimization term in the
upper bound (15) is strictly better than what we get for SGD on a single machine (c.f., Section B.2).

To make this more concrete, in bound (16), we can recover the fast optimization term of pure lo-
cal training and the fast noise term typical of federated learning algorithms for a specific hyper-
parameter setting. Furthermore, we make no heterogeneity assumptions, meaning this upper bound
is better for high enough heterogeneity than all federated learning algorithms (c.f., Table 1). This
implies a regime of “complex-enough” problems, i.e., sufficiently ill-conditioned problems, where
Algorithm 1 is strictly better than pure local training and federated learning algorithms. This is the
first result of its kind, along with Bietti et al. (2022), which theoretically proves the effectiveness of
personalized federated learning.

3.2 THE GENERAL CONVEX SETTING AND DIMINISHING CONSENSUS ERROR

The result above in the strongly convex setting is encouraging and makes us wonder what we can
hope to attain in the general convex setting, i.e., when µ = 0. We provide the following result in the
general convex setting.
Theorem 2 (General Convex Functions). Assume the functions on each machine satisfy Assumptions
1 (with µ = 0) and 2. For each machine m, we output v̂m := 1

T

∑
t∈[T ] (wt + θmt ), where wt :=

2We discuss the feasibility of this regime in Section B.2.
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1
M

∑
n∈[M ] w

n
t i.e., the average of all the models on that machine ( Option II in Algorithm 1).

Then we can get the following guarantees for Algorithm 1 when η ≤ 1
2L(1+α) , α > 0, β = 1,

γ = max {1,Mα} and w0 = θ0 = 0,

E

 1

M

∑
m∈[M ]

Fm(v̂m)− Fm(v⋆m)

 ⪯ B2(1 + α)

ηαT
+
ηγσ2

M
+
L

T

T−1∑
t=0

E [ξt], (17)

where ξt = 1
M

∑
m∈[M ] ∥wmt − wt∥

2. Alternatively, outputting v̂m = 1
T

∑
t∈[T ] (w

m
t + θmt )

( Option III in Algorithm 1), setting α = β = 1 and using η = min
{

1
4L ,

√
5B

σ
√
T

}
and w0 = θ0 = 0,

E

 1

M

∑
m∈[M ]

Fm(v̂m)− Fm(v⋆m)

 ⪯ LB2

T
+
σB√
T

. (18)

The blue/third term in the convergence rate presented in (17) is usually called the consensus er-
ror, and it frequently appears in the analyses of local update algorithms (Karimireddy et al., 2020;
Woodworth et al., 2020b). It captures the cost of having local update steps, i.e., not communicating.
To compare to local SGD without personalization, we re-state the convergence guarantee for local
SGD (with β = 1) in terms of the consensus error (c.f., lemma 7 of Woodworth et al. (2020b)),

E [F (ŵ)]− 1

M

M∑
m=1

Fm(v⋆m) ⪯ B2

ηT
+
ησ2

M
+
L

T

T−1∑
t=0

E [ξt] + F (v⋆)− 1

M

M∑
m=1

Fm(v⋆m) (19)

where v⋆ ∈ S⋆, v⋆m ∈ S⋆m, and η ≤ 1
10L . This rate looks very similar to the rate pre-

sented in (17), especially when α = 1. The main difference is the red term, which comes

Figure 2: The evolution of consensus error with
time for local SGD w/ and w/o personalization for
the example presented in Proposition 1.

from translating a non-personalized guarantee
to a personalized one, as discussed in Section 2
as well as a worse noise term due to the intro-
duction of γ = max {1,Mα}. Even if the cost
of not personalizing is small, in the local SGD
analysis, there is no way3 to control the consen-
sus error without introducing additional hetero-
geneity assumptions controlling the client drift
between communications rounds.

This is because between every communication
round, the clients are solving their local prob-
lems, and thus, they must deviate from the op-
timization trajectory leading up to the optimum
of the average function F . When we add per-
sonalization, this effect is alleviated because,
with more communication, all the clients con-
verge to stationary points (see Figure 1b). Thus,
we expect the consensus error to go to zero with time. In the following proposition, we elucidate
this gap between the average consensus of local SGD with and without personalization.
Proposition 1 (Diminishing Consensus Error). There exists a quadratic problem satisfying Assump-
tions 1, 2, and 3, such that Local SGD without personalization, i.e., Algorithm 2 with β = 1, η < 1
has averaged consensus error:

1

T

T−1∑
t=0

ξ
w/o pers.
t = ζ2⋆ ·

(
1 +

1− (1− η)2K

(2− η)ηK
− 2(1− (1− η)K)

ηK

)
. (20)

This error is Θ(ζ2⋆) if 1 > η = Ω(1/K) for all values of K > 1, R ≥ 1. On the other hand, Local
SGD with personalization, i.e., Algorithm 1 with β = 1, η < 1

1+α has averaged consensus error:

1

T

T−1∑
t=0

ξ
w/ pers.
t ≤ ζ2⋆

1 + α
·
(
1− 1− (1− η(1 + α))K

η(1 + α)K

)
·
(
1− (1− η(1 + α))R

η(1 + α)R

)
. (21)

3Consensus error is trivially upper bounded by the amount of progress SGD will make in K steps on each
machine, but that is usually much larger than the control provided by heterogeneity assumptions.
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The notable fact about this error upper bound is that it goes to zero with a large R and can be
reduced by increasing the personalization through α.

We also plot the consensus error as a function of time for both these algorithms and for the example
(w/ L = 1) used in the proof of the proposition (c.f., Appendix B.6) in Figure 2. We set the step-
size η = 1

2L , β = 1 for local SGD (c.f., Algorithm 2), and α = 1, β = 1, η = 1
2(1+α)L for local

SGD with Personalization, i.e., Algorithm 1. Also, for simplicity, we choose ζ⋆ = 1. As shown in
Figure 2, consensus error goes to zero with communication and grows back to some value between
communication rounds. When there is personalization, the amplitude of this value decays in every
communication round, while without personalization, it stays fixed and approaches ζ2⋆ . We strongly
believe that this observation can be used in analyzing Algorithm 1 in the general convex setting, but
currently do not have the analytical tools to provide this convergence. We conjecture that, unlike the
strongly convex setting, we might need heterogeneity assumptions in the convex settings and can
attain the following convergence rate for Algorithm 1.

Conjecture 1 (General Convex Functions). Assume the functions on each machine satisfy Assump-
tions 1 (with µ = 0), 2 and 3. Then we can get the following guarantee for Algorithm 1 for some
appropriate output ϕ̂ and hyperparameters η, α, β,

E

 1

M

∑
m∈[M ]

Fm(v̂m)− Fm(v⋆m)

 ⪯ MLB2

T
+

σB√
MT

+ χ1(σ,K,R) + χ2(ζ⋆, R),

where limK→∞ χ1(σ,K,R) = limR→∞ χ1(σ,K,R) = 0, while limR→∞ χ2(ζ⋆, R) = 0.

The rate in the above conjecture improves over vanilla local SGD due to the strictly better optimiza-
tion term LB2

KR , which is unattainable by local SGD due to the lower bound of Patel et al. (2023).
We expect this improvement will come from the ability to choose η = Θ(1/L) for Algorithm 1 as
opposed to η = Θ(1/KL) for Algorithm 2, resulting in faster optimization (c.f., Equations (17) and
(19)). Proving the above conjecture is an important future direction.

3.3 THE ROLE OF OVER-PARAMETERIZATION

So far, we have seen that personalization can alleviate the tensions in usual federated optimization
in two different ways. First, the additive personalization model allows us to recover any optima v⋆m
on machine m by setting θm = v⋆m − w. This means there are infinitely many pairs of (w, θm) that
sum up to any optimum of Fm, making Problem (5) an under-determined problem. As illustrated
in Figure 1a, this over-parameterization (lifting the parameter space from Rd to R2d) expands the
“accessible solution set”.

In the extreme case when ∩m∈[M ]S
⋆
m is an empty set, non-personalized local update algorithms can

not even converge, as can be seen in Figure 1b. Between communication rounds, the iterates on each
machine drift and move towards the set of optima for that machine, which repeats forever (c.f., Fig-
ure 2). With personalization, because of the personal model θmt , even though the machine’s iterate
sequences move towards the average, they do not become the same at the point of communication.
This is the second benefit of over-parameterization, which stabilizes the optimization dynamics of
Algorithm 1.

4 CONCLUSION AND DISCUSSION

In this paper, we present the first analysis of personalized local SGD in the strongly convex setting
that does not require any data heterogeneity assumptions and improves over all naive baselines.
There are several questions left open by our work. In terms of theoretical results, we would like
to prove our Conjecture 1, thus confirming our intuition about the benefit of diminishing consensus
error between the machines. Beyond this, we would also like to understand the implicit bias of
Algorithm 1 and if it favors solutions concepts such as minimum norm solutions. Finally, the end
goal of this research agenda is to establish a data heterogeneity notion, which characterizes the three
different regimes where (i) pure local training, (ii) personalized federated learning, and (iii) vanilla
federated learning are the optimal strategies, respectively.
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cal and heterogeneous data. In International Conference on Artificial Intelligence and Statistics,
pp. 4519–4529. PMLR, 2020.

Anastasia Koloskova, Nicolas Loizou, Sadra Boreiri, Martin Jaggi, and Sebastian Stich. A unified
theory of decentralized sgd with changing topology and local updates. In International Confer-
ence on Machine Learning, pp. 5381–5393. PMLR, 2020.

Wenqi Li, Fausto Milletar

10

https://developer.apple.com/videos/play/wwdc2019/708
https://developer.apple.com/videos/play/wwdc2019/708


Under review as a conference paper at ICLR 2024

Paul Pu Liang, Terrance Liu, Liu Ziyin, Nicholas B Allen, Randy P Auerbach, David Brent, Ruslan
Salakhutdinov, and Louis-Philippe Morency. Think locally, act globally: Federated learning with
local and global representations. arXiv preprint arXiv:2001.01523, 2020.

Brendan McMahan and Daniel Ramage. Federated learning: Collaborative machine learning with-
out centralized training data, Apr 2017. URL https://ai.googleblog.com/2017/04/
federated-[]learning-[]collaborative.html.

H Brendan McMahan, Eider Moore, Daniel Ramage, S Hampson, and B Agüera y Arcas.
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personalized federated learning: Breaking the curse of data heterogeneity. arXiv preprint
arXiv:2305.18285, 2023.

Kumar Kshitij Patel, Lingxiao Wang, Blake Woodworth, Brian Bullins, and Nathan Srebro. To-
wards optimal communication complexity in distributed non-convex optimization. In Advances
in Neural Information Processing Systems, 2022.

Kumar Kshitij Patel, Margalit Glasgow, Lingxiao Wang, Nirmit Joshi, and Nathan Srebro. On the
still unreasonable effectiveness of federated averaging for heterogeneous distributed learning. In
Federated Learning and Analytics in Practice: Algorithms, Systems, Applications, and Opportu-
nities, 2023.

Matthias Paulik, Matt Seigel, Henry Mason, Dominic Telaar, Joris Kluivers, Rogier van Dalen,
Chi Wai Lau, Luke Carlson, Filip Granqvist, Chris Vandevelde, et al. Federated evalua-
tion and tuning for on-device personalization: System design & applications. arXiv preprint
arXiv:2102.08503, 2021.

Krishna Pillutla, Sham M Kakade, and Zaid Harchaoui. Robust aggregation for federated learning.
IEEE Transactions on Signal Processing, 70:1142–1154, 2022.

Kimberly Powell. Nvidia clara federated learning to deliver ai to hospitals while protecting patient
data. Nvidia Blog, 2019.

Holger R Roth, Ken Chang, Praveer Singh, Nir Neumark, Wenqi Li, Vikash Gupta, Sharut Gupta,
Liangqiong Qu, Alvin Ihsani, Bernardo C Bizzo, et al. Federated learning for breast density
classification: A real-world implementation. In Domain Adaptation and Representation Transfer,
and Distributed and Collaborative Learning: Second MICCAI Workshop, DART 2020, and First
MICCAI Workshop, DCL 2020, Held in Conjunction with MICCAI 2020, Lima, Peru, October
4–8, 2020, Proceedings 2, pp. 181–191. Springer, 2020.

Gary Shiffman, Juan Zarate, Nikhil Deshpande, Raghuram Yeluri, and Parviz
Peiravi. Federated learning through revolutionary technology ” con-
silient, Feb 2021. URL https://consilient.com/white-[]paper/
federated-[]learning-[]through-[]revolutionary-[]technology/.

Sebastian U Stich. Unified optimal analysis of the (stochastic) gradient method. arXiv preprint
arXiv:1907.04232, 2019.

Jianyu Wang, Zachary Charles, Zheng Xu, Gauri Joshi, H Brendan McMahan, Maruan Al-Shedivat,
Galen Andrew, Salman Avestimehr, Katharine Daly, Deepesh Data, et al. A field guide to feder-
ated optimization. arXiv preprint arXiv:2107.06917, 2021.

Jianyu Wang, Rudrajit Das, Gauri Joshi, Satyen Kale, Zheng Xu, and Tong Zhang. On the
unreasonable effectiveness of federated averaging with heterogeneous data. arXiv preprint
arXiv:2206.04723, 2022.

Blake Woodworth. The minimax complexity of distributed optimization. arXiv preprint
arXiv:2109.00534, 2021.

11

https://ai.googleblog.com/2017/04/federated-learning-collaborative.html
https://ai.googleblog.com/2017/04/federated-learning-collaborative.html
https://consilient.com/white-paper/federated-learning-through-revolutionary-technology/
https://consilient.com/white-paper/federated-learning-through-revolutionary-technology/


Under review as a conference paper at ICLR 2024

Blake Woodworth, Kumar Kshitij Patel, Sebastian Stich, Zhen Dai, Brian Bullins, Brendan Mcma-
han, Ohad Shamir, and Nathan Srebro. Is local sgd better than minibatch sgd? In International
Conference on Machine Learning, pp. 10334–10343. PMLR, 2020a.

Blake E Woodworth, Jialei Wang, Adam Smith, Brendan McMahan, and Nati Srebro. Graph or-
acle models, lower bounds, and gaps for parallel stochastic optimization. Advances in neural
information processing systems, 31, 2018.

Blake E Woodworth, Kumar Kshitij Patel, and Nati Srebro. Minibatch vs local sgd for heterogeneous
distributed learning. Advances in Neural Information Processing Systems, 33:6281–6292, 2020b.

Blake E Woodworth, Brian Bullins, Ohad Shamir, and Nathan Srebro. The min-max complexity
of distributed stochastic convex optimization with intermittent communication. In Conference on
Learning Theory, pp. 4386–4437. PMLR, 2021.

Honglin Yuan and Tengyu Ma. Federated accelerated stochastic gradient descent. Advances in
Neural Information Processing Systems, 33:5332–5344, 2020.

Yue Zhao, Meng Li, Liangzhen Lai, Naveen Suda, Damon Civin, and Vikas Chandra. Federated
learning with non-iid data. arXiv preprint arXiv:1806.00582, 2018.

Weiming Zhuang, Chen Chen, and Lingjuan Lyu. When foundation model meets federated learning:
Motivations, challenges, and future directions. arXiv preprint arXiv:2306.15546, 2023.

12



Under review as a conference paper at ICLR 2024

A MISSING DETAILS FROM SECTION 2

Figure 3: An intermittently communicating algorithm.

B MISSING DETAILS FROM SECTION 3

B.1 LOCAL SGD WITHOUT PERSONALIZATION

Algorithm 2 Local SGD

1: Input: inner step-size sequence ηt, outer step-size β, initializations w0

2: Initialize wm0 = w0 on all machines m ∈ [M ]
3: for t ∈ {0, . . . ,KR− 1} do
4: for m ∈ [M ] in parallel do
5: Sample zmt ∼ Dm
6: Compute gradient ∇wm

t
f(wmt ; zmt )

7: wmt+1 ← wmt − ηt∇wm
t
f(wmt , θ

m
t ; zmt )

8: if (t+ 1)mod K = 0 then
9: Communicate wmt+1 to server

10: Server makes update wt+1 ← wt+1−K + β 1
M

∑
m′∈[M ]

(
wm

′

t+1 − wt+1−K

)
11: Receive wt+1 from server
12: wmt+1 ← wt+1

13: end if
14: end for
15: end for
16: Output: ŵ

B.2 COMPARISON TO PURE LOCAL TRAINING

Recall the upper bound in Equation (15). Note that the noise term (i.e., the second term) is the
same as SGD on a single machine (c.f. the classic convergence result in (7) in Stich (2019)) up
to numerical constants. We can show that the optimization term in Equation (15) (i.e., the first
term) is better than SGD on a single machine. To do this, we need to compare the following two
quantities: e−R(1−e−2ηµK) and e−ηµKR. To show that the first quantity is smaller in some regimes,
it is sufficient to compare the terms in the exponent: 1 − e−2ηµK and ηµK, and show the first
quantity is larger in some regimes. To see this we simply plot the functions 1−e−2x and x in Figure
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(a) The red function is y1(x) = 1−e−2x while the
blue function is y2(x) = x.

(b) The red function is y1(x) = x while the blue
function is y2(x) = 2(1− e−x).

Figure 4: Accompanying graphs to illustrate the interpretation and feasibility of the bounds in The-
orem 1.

4a (x = ηµK). We can observe that as long ηµK ≤ 0.8, i.e., η ≤ 0.8
µK the convergence rate of the

personalized algorithm is better than pure local training for the same η. This still raises the question
of whether we can beat pure-local training when the step size is selected optimally for SGD on a
single machine. This is what the bound in Equation (16) highlights. We note a step size and a regime
of κwhere we can beat pure-local training with SGD (c.f., Theorem 5 in Stich (2019)). We also need
to ensure that this regime of κ is non-empty; in particular, we need to ensure that for some settings of
the parameters K

2(1−e−1/4MR)
< 4MKR. This is equivalent to ensuring 1

4MR < 2(1 − e−1/4MR),
which in turn can be verified by setting x = 1

4MR , and plotting the functions x and 2(1−e−x) in the
regime x < 1 (becauseM,R ≥ 1). We can note from Figure 4 that this regime of κ is non-empty for
every value of M,K,R. For instance, consider a mild parallelization with M = 10, R = 10 then, to
see theoretical domination of personalization, we would require K

2(1−e−1/400)
≤ κ < 400K which

is roughly equivalent to 201K ≤ κ ≤ 400K. This is a fairly large range of condition numbers. We
want to highlight that previous benefits of using local SGD (w/o personalization) over mini-batch
SGD (and single machine SGD) have also been identified only in a regime where κ

K is large (c.f.,
Wang et al. (2022)).

B.3 PROOF OF THEOREM 1

Proof. It would be easier to give the analysis with a slightly different notation. In particular. we
denote through wr,km and θr,km the global and personal models on machine m, leading up to the rth
communication round and after making k local updates. We also denote by wr, θrm the models after
the rth communication. In particular, we have,

θrm = θr,Km = θr+1,0
m , ∀m ∈ [M ] (22)

wr = wr−1 +
β

M

∑
n∈[M ]

(
wr,Kn − wr−1

)
= wr+1,0

m , ∀m ∈ [M ] (23)

where recall that β is the outer step size for the global model. The models are initialized at zero, i.e.,
w0 = w1,0

m = 0 and θ0m = θ1,0m = 0 for all m ∈ [M ]. We will provide the convergence for the sum
of the local and global models, so we also denote the following for all m ∈ [M ], r ∈ [0, R], and
k ∈ [0,K],

vr,km := wr,km + θr,km , (24)
vrm := wrm + θrm . (25)
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We will also slightly use the notation f(w, θ; z) := f(w + θ, z). Now recall that the following
updates happen on a machine m before communication round r for k ∈ [0,K − 1],

wr,k+1
m = wr,km − η∇f(vr,km ; zr,km ) , (26)

θr,k+1
m = θr,km − αη∇f(vr,km ; zr,km ) , (27)

where zr,km is the sample drawn for the update. Adding and subtracting the exact gradient, we get,

wr,k+1
m = wr,km − η∇Fm(vr,km ) + η

(
∇Fm(vr,km )−∇f(vr,km ; zr,km )

)
, (28)

θr,k+1
m = θr,km − αη∇Fm(vr,km ) + αη

(
∇Fm(vr,km )−∇f(vr,km ; zr,km )

)
. (29)

Let us denote the error due to stochasticity by δr,km then we get that,

wr,k+1
m = wr,km − η∇Fm(vr,km ) + ηδr,km , (30)

θr,k+1
m = θr,km − αη∇Fm(vr,km ) + αηδr,km . (31)

Applying the mean-value theorem for the above updates, we get that,

wr,k+1
m = wr,km − ηAm(vr,km , v⋆m)(vr,km − v⋆m) + ηδr,km , (32)

θr,k+1
m = θr,km − αηAm(vr,km , v⋆m)(vr,km − v⋆m) + αηδr,km , (33)

where Am(., .) is an operator function such that for every v, v′, µ · I ⪯ Am(v, v′) ⪯ L · I . For
simplicity, we can denote the updates as follows,

wr,k+1
m = wr,km − ηAr,km (vr,km − v⋆m) + ηδr,km , (34)

θr,k+1
m = θr,km − αη∇Ar,km (vr,km − v⋆m) + αηδr,km , (35)

where we must not forget that Ar,km is a random matrix. By adding equations 34, 35 and by subtract-
ing equation 35 from α times equation 34, we can get the following updates for k ∈ [0,K − 1],

vr,k+1
m = vr,km − η(1 + α)Ar,km (vr,km − v⋆m) + η(1 + α)δr,km , (36)

αwr,k+1
m − θr,k+1

m = αwr,km − θr,km . (37)

Now we subtract the optima appropriately above and instead, consider the iterates centered around
their fixed points, i.e., ṽ.,.m := v.,.m − v⋆m, θ̃.,.m := θ.,.m − θ⋆m, and w̃.,.m := w.,.m − w⋆,

ṽr,k+1
m =

(
I − η(1 + α)Ar,km

)
ṽr,km + η(1 + α)δr,km , (38)

αw̃r,k+1
m − θ̃r,k+1

m = αw̃r,km − θ̃r,km . (39)

Unrolling these two recursions and setting k = K − 1 gives us,

ṽr,Km =

K−1∏
k=0

(
I − η(1 + α)Ar,km

)
ṽr−1
m + η(1 + α)

K−1∑
k=0

K−1∏
j=K−k

(I − η(1 + α)Ar,jm )δr,K−1−k
m ,

(40)

=: Brmṽ
r−1
m + η(1 + α)δrm , (41)

αw̃r,Km − θ̃r,Km = αw̃r−1 − θ̃r−1
m , (42)

where we denote
∏K−1
j=K (I − η(1 + α)Ar,jm ) = I . Adding the equations 40, 42 and then subtracting

the equation 42 from alpha times equation 40, we get,

(1 + α)w̃r,Km = (αI +Brm) w̃r−1 − (I −Brm) θ̃r−1
m + η(1 + α)δrm , (43)

(1 + α)θ̃r,Km = −α (I −Brm) w̃r−1 + (I + αBrm) θ̃r−1
m + αη(1 + α)δrm . (44)

Re-arranging these gives,

w̃r,Km = w̃r−1 − I −Brm
1 + α

ṽr−1 + ηδrm , (45)

θ̃rm = θ̃r−1
m − α (I −Brm)

1 + α
ṽr−1 + αηδrm , (46)
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using the first equation, we can compute wr as follows,

w̃r = w̃r−1 +
β

M

∑
m∈[M ]

(
w̃r,Km − w̃r−1

)
, (47)

= w̃r−1 +
−β

M(1 + α)

∑
m∈[M ]

(I −Brm) ṽr−1 +
ηβ

M

∑
m∈[M ]

δrm . (48)

Thus we are finally ready to write a recursion for ṽrm = w̃r + θ̃rm by adding equations 47 and 48,

ṽrm = ṽr−1
m − β

M(1 + α)

∑
n∈[M ]

(I −Brn) ṽr−1
n − α (I −Brm)

1 + α
ṽr−1
m +

ηβ

M

∑
m∈[M ]

δrm + αηδrm .

(49)

Thus if we denote the vector ϕ̃r := (ṽr1, . . . , ṽ
r
M ) we can write the following recursion,

ϕ̃r = ϕ̃r−1 − 1

1 + α


(
α+ β

M

)
(I −Br1) . . . β

M (I −BrM )

...
. . .

...
β
M (I −Br1) . . .

(
α+ β

M

)
(I −BrM )

 ϕ̃r−1 + η


β
M

∑
m∈[M ] δ

r
m + αδr1

...
β
M

∑
m∈[M ] δ

r
m + αδrM

 ,

(50)

=:

(
I − Gr

1 + α

)
ϕ̃r−1 + ηδr . (51)

Taking the norm and squaring on both sides, following by taking expectations we get,

E
∥∥∥ϕ̃r∥∥∥2

2
= E

∥∥∥∥(I − Gr

1 + α

)
ϕ̃r−1 + ηδr

∥∥∥∥2
2

, (52)

= E
∥∥∥∥(I − Gr

1 + α

)
ϕ̃r−1

∥∥∥∥2
2

+ η2E ∥δr∥22 , (53)

≤ E
∥∥∥∥I − Gr

1 + α

∥∥∥∥2
2

∥∥ϕr−1
∥∥2
2
+ η2E ∥δr∥22 , (54)

the second equality follows because we have i.i.d. samples on each machine at each time step. Note
that when 0 < η < 1

L(1+α) then 0 ≺ Brm ≺ I , which ensures that I − Brm ≻ 0. This makes Gr a
block matrix of positive definite matrices, and in particular, it is a very structured matrix that can be
decomposed into a block diagonal matrix plus a positive semi-definite matrix with the same block
rows by pulling away the terms with β and α. This decomposition makes it possible to compute
its spectrum exactly. As long as β > 0, one can quickly verify the following lower bound on the
smallest eigenvalue of Gr,

λmin(G
r) ≥ α min

m∈[M ]
λmin (I −Brm) , (55)

≥ α
(
1− max

m∈[M ]
λmax (B

r
m)

)
, (56)

= α

(
1− max

m∈[M ]
λmax

(
K−1∏
k=0

(I − η(1 + α)Ar,km )

))
, (57)

≥ α

(
1−

K−1∏
k=0

max
m∈[M ]

λmax
(
I − η(1 + α)Ar,km

))
, (58)

= α

(
1−

K−1∏
k=0

max
m∈[M ]

(
1− η(1 + α)λmin(A

r,k
m )
))

, (59)

= α

(
1−

K−1∏
k=0

(
1− η(1 + α) min

m∈[M ]
λmin(A

r,k
m )

))
, (60)
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≥ α

(
1−

K−1∏
k=0

(1− η(1 + α)µ)

)
, (61)

= α
(
1− (1− η(1 + α)µ)

K
)
. (62)

With this, we can note the following in equation 54,

E
∥∥∥ϕ̃r∥∥∥2

2
≤ E

∥∥∥∥I − Gr

1 + α

∥∥∥∥2
2

∥∥ϕr−1
∥∥2
2
+ η2E ∥δr∥22 , (63)

= Eλmax
(
I − Gr

1 + α

)2 ∥∥ϕr−1
∥∥2
2
+ η2E ∥δr∥22 , (64)

≤
(
1− α

1 + α

(
1− (1− η(1 + α)µ)

K
))2

E
∥∥ϕr−1

∥∥2
2
+ η2E ∥δr∥22 . (65)

Let us first consider the exact setting when the stochastic terms are zero; in that case, we can simplify
bound 65 for r = R to,

E
∥∥∥ϕ̃R∥∥∥2

2
≤
(
1− α

1 + α

(
1− (1− η(1 + α)µ)

K
))2

E
∥∥ϕR−1

∥∥2
2
, (66)

≤
(
1− α

1 + α

(
1− (1− η(1 + α)µ)

K
))2R

E
∥∥ϕ0∥∥2

2
, (67)

≤ e−
2αR
1+α (1−e

−η(1+α)µK) , (68)

≤ e
− 2αR

1+α

(
1−e−

K
2κ

)
, (69)

where we just set the step-size to η = 1
2L(1+α) . This finishes the proof for the deterministic setting.

Now consider the stochastic setting. Let us carefully upper-bound the second term in bound 65. To
do so, note that the noise of sampling data is independent across machines and time. This gives us
the following decomposition,

E ∥δr∥22 =
∑

m∈[M ]

E

∥∥∥∥∥∥ βM
∑
n∈[M ]

δrn + αδrm

∥∥∥∥∥∥
2

2

, (70)

=
∑

m∈[M ]

E

∥∥∥∥∥∥ βM
∑
n ̸=m

δrn +

(
α+

β

M

)
δrm

∥∥∥∥∥∥
2

2

, (71)

=
∑

m∈[M ]

(α+
β

M

)2

E ∥δrm∥
2
2 +

β2

M2

∑
n ̸=m

E ∥δrn∥
2
2

 , (72)

=

((
α+

β

M

)2

+ (M − 1)
β2

M2

) ∑
m∈[M ]

E ∥δrm∥
2
2 , (73)

≤
(
2α2 +

β2

M2
+
β2

M

) ∑
m∈[M ]

E ∥δrm∥
2
2 , (74)

≤
(
2α2 +

2β2

M

) ∑
m∈[M ]

E ∥δrm∥
2
2 , (75)

Further continuing after noting that the stochastic noise is independent and mean-zero across local
steps, we get that,

E ∥δr∥22 ≤ 2

(
α2 +

β2

M

) ∑
m∈[M ]

K−1∑
k=0

E

∥∥∥∥∥∥
K−1∏
j=K−k

(I − η(1 + α)Ar,jm )δr,K−1−k
m

∥∥∥∥∥∥
2

2

, (76)

17



Under review as a conference paper at ICLR 2024

≤ 2

(
α2 +

β2

M

)K−1∑
k=0

∑
m∈[M ]

E
K−1∏
j=K−k

∥∥(I − η(1 + α)Ar,jm )
∥∥2
2

∥∥δr,K−1−k
m

∥∥2
2
, (77)

≤ 2

(
α2 +

β2

M

)
M

K−1∑
k=0

(1− η(1 + α)µ)2kE
∥∥δr,K−1−k
m

∥∥2
2
, (78)

≤ 2
(
α2M + β2

)
σ2

K−1∑
k=0

(1− η(1 + α)µ)2k , (79)

= 2
(
α2M + β2

)
σ2 1− (1− η(1 + α)µ)2K

1− (1− η(1 + α)µ)2
, (80)

≤ 2
(
α2M + β2

)
σ2 1− (1− η(1 + α)µ)2K

η(1 + α)µ
, (81)

where in the last inequality we use that η ≤ 1
(1+α)µ . Plugging bound 81 in bound 65, we get,

E
∥∥∥ϕ̃r∥∥∥2

2
≤
(
1− α

1 + α

(
1− (1− η(1 + α)µ)

K
))2

E
∥∥ϕr−1

∥∥2
2
+

2η
(
α2M + β2

)
σ2

(1 + α)µ

(
1− (1− η(1 + α)µ)2K

)
,

(82)

Setting r = R and unrolling this recursion and averaging we get, we get,

1

M
E
∥∥vRm − v⋆m∥∥22 ≤ (1− α

1 + α

(
1− (1− η(1 + α)µ)

K
))2R

1

M

∑
m∈[M ]

∥v⋆m∥
2
2 (83)

+
2η
(
α2M + β2

)
σ2

M(1 + α)µ
· 1− (1− η(1 + α)µ)2K

1−
(
1− α

1+α

(
1− (1− η(1 + α)µ)

K
))2 , (84)

≤
(
1− α

1 + α

(
1− (1− η(1 + α)µ)

K
))2R

B2 (85)

+
2η
(
α2M + β2

)
σ2

Mαµ
· 1− (1− η(1 + α)µ)2K

1− (1− η(1 + α)µ)
K

, (86)

≤
(
1− α

1 + α

(
1− e−η(1+α)µK

))2R

B2 +
4η
(
α2M + β2

)
σ2

Mαµ
, (87)

≤ e−
2αR
1+α (1−e

−η(1+α)µK)B2 +
4η
(
α2M + β2

)
σ2

Mαµ
, (88)

= e−
2αR
1+α (1−e

−η(1+α)µK)B2 +
4ησ2

µ

(
α+

β2

Mα

)
, (89)

= e
− 2βR√

M+β

(
1−e−η(1+β/

√
M)µK

)
B2 +

8ηβσ2

√
Mµ

, (90)

= e−R(1−e
−2ηµK)B2 +

8ησ2

µ
, (91)

where we pick α = β√
M

and β =
√
M and η is constrained by η < 1

2L . Now let us pick η =
1

8µMKR , this is possible only when κ < 4MKR, then we get the following rate,

1

M
E
∥∥vRm − v⋆m∥∥22 ≤ e−R(

1−e−
1

4MR

)
B2 +

σ2

µ2MKR
. (92)

Now we want the first term to match the bias term of the non-collaborative baseline asymptotically.
In particular, note that we can show the following when κ ≥ K

2(1−e−
1

4MR )
,

κ ≥ K

2(1− e− 1
4MR )

, (93)
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≡ (1− e− 1
4MR ) ≥ K

2κ
, (94)

≡ R(1− e− 1
4MR ) ≥ KR

2κ
, (95)

≡ e−R
(
1−e−

1
4MR

)
B2 ≤ e−KR

2κ B2 , (96)

which is exactly the bias term of the non-collaborative baseline. Now all we need to check is if the
two conditions on the condition number κ can be satisfied simultaneously. In particular, we want to
satisfy the following:

K

2(1− e− 1
4MR )

< 4MKR , (97)

≡ 1

8MR
< 1− e− 1

4MR , (98)

≡ y

2
< 1− e−y, y =

1

4MR
, (99)

the above condition is always true when 1
4MR ≤ 1, which is always true as M,R ≥ 1. To see this,

note the functions plotted in Figure 4. Furthermore, note that κ = L
µ ≥ 1. Thus the assumption

lower bounding κ is binding only when,

1 ≤ K

2(1− e−1/4MR)
, (100)

≡ 2(1− e−1/4MR) ≤ K . (101)

Note that since MR > 1, the left-hand term above is always smaller than 1, which means the lower
bound on κ is always binding. This finishes the proof.

B.4 PROOF OF THEOREM 2

Proof. Throughout the proof, we will assume W = Rd. We will first define the following lifted
vectors that will be useful for our analysis:

wt :=
1

M

∑
m∈[M ]

wmt , ψ
m
t =


wmt
θ1t
...
θMt

 , ψt = 1

M

∑
m∈[M ]

ψmt =


wt
θ1t
...
θMt

 .
We also define the following stochastic gradient vector for all m ∈ [M ] by lifting the dimension of
the stochastic gradient of Fm,

imt =



∇wfm(wmt + θmt ; zmt )
0
...

∇θf(wmt + θmt ; zmt )
...
0


We will also define it := 1

M

∑
m∈[M ] i

m
t as well as its conditional expectation w.r.t. the filtration

Ht = σ
(
w1
t , . . . , w

M
t , θ

1
t , . . . , θ

M
t

)
,

gmt := E[imt |Ht] = ∇ψF̂m(wmt , θ
m
t ) =



∇wFm(wmt + θmt )
0
...

∇θFm(wmt + θmt )
...
0


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The following two gradients will also be useful,

gt =
1

M

∑
m∈[M ]

gmt =


1
M

∑
m∈[M ]∇wFm(wmt + θmt )
1
M∇θF1(w

1
t + θ1t )

...
1
M∇θFM (wMt + θMt )

 , ht =


1
M

∑
m∈[M ]∇wFm(wt + θmt )
1
M∇θF1(wt + θ1t )

...
1
M∇θFM (wt + θMt )

 ,
where we can note that gt ̸= ht unless (t)mod K = 0. We will also consider an arbitrary parame-
terization of the optima of different machines as,

ψ⋆ =


w⋆

θ⋆1
...
θ⋆M

 ∈ WM+1, w⋆ + θ⋆m ∈ argmin
v∈W

Fm(v), F ⋆ := F̂ (ψ⋆).

Since this parameterization is arbitrary, we can choose the minimum-norm parameterization (in any
norm). We will use this fact later. Finally, we define,

H =

[
Id 0
0 1

MαIMd

]
, and H−1 =

[
Id 0
0 MαIMd

]
.

Note that if α = 0, we will reduce to the non-personalized setting, and we can let H = H−1 = Id
and not lift the dimension of the parameter space, i.e., ϕ = w ∈ W . With this disclaimer, we can
write for α > 0,

ψt+1 =


1
M

∑
m∈[M ] w

m
t − ηt∇wFm(wmt + θmt )

θ1t − αηt∇θF1(w
1
t + θ1t )

...
θMt − αηt∇θFM (wMt + θMt )

+


ηt
M

∑
m∈[M ] (∇wFm(wmt + θmt )−∇wf(wmt + θmt ; zmt ))

αηt
(
∇θF1(w

1
t + θ1t )−∇θf(w1

t + θ1t ; z
1
t )
)

...
αηt

(
∇θFM (wMt + θMt )−∇θf(wMt + θMt ; zMt )

)
 ,

= ψt − ηt


1
M

∑
m∈[M ]∇wFm(wmt + θmt )

α∇θF1(w
1
t + θ1t )

...
α∇θFM (wMt + θMt )

+ ηt


1
M

∑
m∈[M ] (∇wFm(wmt + θmt )−∇wf(wmt + θmt ; zmt ))

α
(
∇θF1(w

1
t + θ1t )−∇θf(w1

t + θ1t ; z
1
t )
)

...
α
(
∇θFM (wMt + θMt )−∇θf(wMt + θMt ; zMt )

)
 ,

= ψt − ηtH−1gt + ηtH
−1 (gt − it) .

First let us bound the expected norm of the last term as follows,

E
[∥∥H−1 (gt − it)

∥∥2
H
|Ht
]
= E

[
∥gt − it∥2H−1 |Ht

]
,

= E

[∥∥∥∥∥∥ 1

M

∑
m∈[M ]

∇wf(wmt + θmt ; zmt )−∇wFm(wmt + θmt )

∥∥∥∥∥∥
2

+ αM
∑

m∈[M ]

1

M2
∥∇θf(wmt + θmt ; zmt )−∇θFm(wmt + θmt )∥2 |Ht

]
,

=
1

M2

∑
m∈[M ]

E
[
∥∇wf(wmt + θmt ; zmt )−∇wFm(wmt + θmt )∥2

]
+

α

M

∑
m∈[M ]

E
[
∥∇θf(wmt + θmt ; zmt )−∇θFm(wmt + θmt )∥2 |Ht

]
,

≤ σ2

M
+ ασ2.

Defining γ = max {1, αM} we can re-write this as,

E
[
∥gt − it∥2H−1 |Ht

]
≤ 2γ

σ2

M
. (102)
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We will use this bound now. First subtracting ψ⋆ from ψt+1 and taking the norm, we can write the
following recurrence,

E
[
∥ψt+1 − ψ⋆∥2H |Ht

]
= E

[∥∥ψt − ηtH−1gt + ηtH
−1 (gt − it)− ψ⋆

∥∥2
H
|Ht
]
,

= ∥ψt − ψ⋆∥2H + η2t ∥gt∥
2
H−1 − 2ηt ⟨gt, ψt − ψ⋆⟩+ η2tE


∥∥∥∥∥∥ 1

M

∑
m∈[M ]

(gmt − imt )

∥∥∥∥∥∥
2

H−1

|Ht

 ,
≤ ∥ψt − ψ⋆∥2H + 2η2t ∥gt − ht∥

2
H−1 + 2η2t ∥ht∥

2
H−1 − 2ηt

1

M

∑
m∈[M ]

⟨gmt , ψt − ψ⋆⟩+
2η2t γσ

2

M
.

(103)

Now, we can upper-bound the blue and red terms separately. First, let’s bound the red term as
follows,

∥ht∥2H−1 =
∥∥∥ht −∇ψF̂ (ψ⋆)∥∥∥2

H−1
,

=

∥∥∥∥∥∥ 1

M

∑
m∈[M ]

∇wF̂m(wt, θ
m
t )−∇wF̂m(w⋆, θ⋆m)

∥∥∥∥∥∥
2

+Mα
∑

m∈[M ]

1

M2

∥∥∥∇θF̂m(wt, θ
m
t )−∇θF̂m(w⋆, θ⋆m)

∥∥∥2 ,
≤ 1

M

∑
m∈[M ]

∥∥∥∇wF̂m(wt, θ
m
t )−∇wF̂m(w⋆, θ⋆m)

∥∥∥+ α

M

∑
m∈[M ]

∥∥∥∇θF̂m(wt, θ
m
t )−∇θF̂m(w⋆, θ⋆m)

∥∥∥2 ,
≤ 1 + α

M

∑
m∈[M ]

∥∥∥∇ψF̂m(wt, θ
m
t )−∇ψF̂m(w⋆, θ⋆m)

∥∥∥2 ,
≤ 1 + α

M

∑
m∈[M ]

∥∥∥∇ψF̂m(wt, θ
m
t )−∇ψF̂m(w⋆, θ⋆m)

∥∥∥2 ,
≤ 1 + α

M

∑
m∈[M ]

2L
(
F̂m(wmt , θ

m
t )− F̂m(w⋆, θ⋆m) +

〈
∇ψF̂m(w⋆, θ⋆m), ψt − ψ⋆

〉)
,

= 2L(1 + α) ·
(
F̂ (ψt)− F̂ (ψ⋆) +

〈
∇ψF̂ (ψ⋆), ψt − ψ⋆

〉)
,

= 2L(1 + α) ·
(
F̂ (ψt)− F̂ (ψ⋆)

)
,

= 2L(1 + α) ·
(
F̂ (ψt)− F̂ (ψ⋆)

)
.

Next, we will bound the blue term as follows,

∥gt − ht∥2H−1 =

∥∥∥∥∥∥ 1

M

∑
m∈[M ]

∇wF̂m(wmt , θ
m
t )−∇wF̂m(wt, θ

m
t )

∥∥∥∥∥∥
2

+
α

M

∑
m∈[M ]

∥∥∥∇θF̂m(wmt , θ
m
t )−∇θF̂m(wt, θ

m
t )
∥∥∥2 ,

≤ L2

M

∑
m∈[M ]

∥wmt − wt∥
2
+
L2α

M

∑
m∈[M ]

∥wmt − wt∥
2
,

≤ L2(1 + α)

M

∑
m∈[M ]

∥wmt − wt∥
2
,

≤ L2(1 + α)ξt,

where we define ξt := 1
M

∑
m∈[M ] ∥wmt − wt∥

2, i.e., the consensus error (Karimireddy et al., 2020;
Woodworth et al., 2020b) of the shared model. Putting back the upper bounds on the red and blue
terms in (103) above, and taking full expectation we get,

E ∥ψt+1 − ψ⋆∥2H ≤ E ∥ψt − ψ⋆∥2H + 2η2t (1 + α)L2Eξt + 2η2tL(1 + α) · E [F (ψt)− F (ψ⋆)]
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− 2ηt
M

∑
m∈[M ]

E ⟨gmt , ψt − ψ⋆⟩+
2η2t γσ

2

M
,

= E ∥ψt − ψ⋆∥2H + 2η2tL
2(1 + α)Eξt + 2η2tL(1 + α) · E [F (ψt)− F (ψ⋆)]−

2ηt
M

∑
m∈[M ]

E ⟨gmt , ψmt − ψ⋆⟩

+
2ηt
M

∑
m∈[M ]

⟨gmt , ψmt − ψt⟩+
2η2t γσ

2

M
,

≤ E ∥ψt − ψ⋆∥2H + 2η2tL
2(1 + α)Eξt −

2ηt
M

∑
m∈[M ]

E
[
F̂m(wmt , θ

m
t )− F̂m(w⋆, θ⋆m)

]
+

2ηt
M

∑
m∈[M ]

E
[
F̂m(wmt , θ

m
t )− F̂m(wt, θ

m
t ) +

L

2
∥wmt − wt∥

2

]

+ 2η2tL(1 + α)E
[
F̂ (ψt)− F̂ (ψ⋆)

]
+

2η2t γσ
2

M
,

= E ∥ψt − ψ⋆∥2H +
(
2η2tL

2(1 + α) + ηtL
)
Eξt −

(
2ηt − 2η2tL(1 + α)

)
· E
[
F̂ (ψt)− F̂ (ψ⋆)

]
+

2η2t γσ
2

M
,

= E ∥ψt − ψ⋆∥2H + ηtL(1 + 2ηtL(1 + α))Eξt − 2ηt(1− ηtL(1 + α)) · E [F (ψt)− F (ψ⋆)]

+
2η2t γσ

2

M
,

≤ E ∥ψt − ψ⋆∥2H + 2ηLEξt − ηt · E [F (ψt)− F (ψ⋆)] +
2η2t γσ

2

M
,

where we assume ηt ≤ 1
2L(1+α) . Re-arranging this, we get,

E [F (ϕt)− F (ϕ⋆)] ≤
1

ηt

(
E ∥ϕt − ϕ⋆∥2H − E ∥ϕt+1 − ϕ⋆∥2H

)
+ 2LEξt +

2ηtγσ
2

M
.

Choose ηt = η, then average this over time. Using the convexity of F , and using that, we initialize
at zero, we get that for α > 0,

E

[
F

(
1

T

T−1∑
t=0

ϕt

)
− F ⋆

]
≤
∥ϕ⋆∥2H
ηT

+
2L

T

T−1∑
t=0

Eξt +
2ηγσ2

M
,

=
∥w⋆∥2 + 1

αM

∑
m∈[M ] ∥θ⋆m∥

2

ηT
+

2L

T

T−1∑
t=0

Eξt +
2ηγσ2

M
,

=

1
M

∑
m∈[M ]

(
∥w⋆∥2 + 1

α ∥θ
⋆
m∥

2
)

ηT
+

2L

T

T−1∑
t=0

Eξt +
2ηγσ2

M
, (104)

First, we note that when α = 0, we don’t lift the dimension, and then we recover the usual local SGD
upper bound (Woodworth et al., 2020b). Now, we recall that the above upper bound holds for any
parameterization of any F̂ optima. Thus, to minimize the numerator in the first term, we want to min-
imize the quantity 1

M

∑
m∈[M ]

(
∥w⋆∥2 + 1

α ∥v
⋆
m − w⋆∥

2
)

for any given v⋆m ∈ argminv∈W Fm(v).

A simple calculation shows that this is minimized when w⋆ =
1
M

∑
m∈[M] v

⋆
m

1+α . Using this choice, we
can bound the numerator in the first term of (104) as follows,

1

M

∑
m∈[M ]

(
∥w⋆∥2 + 1

α
∥θ⋆m∥

2

)
=

1

M

∑
m∈[M ]

(
∥w⋆∥2 + 1

α
∥v⋆m − w⋆∥

2

)
,

≤ 1

M

∑
m∈[M ]

((
1 +

2

α

)
∥w⋆∥2 + 2

α
∥v⋆m∥

2

)
,

22



Under review as a conference paper at ICLR 2024

≤ 1

M

∑
m∈[M ]

((
1 +

2

α

)
B2

(1 + α)2
+

2

α
B2

)
,

≤
((

1 +
2

α

)
1

(1 + α)2
+

2

α

)
B2,

≤ 5B2 1 + α

α
,

where we used Assumption 2. Replacing this in bound (104) we get the following final result for
η ≤ 1

2L(1+α) ,

E

[
F

(
1

T

T−1∑
t=0

ϕt

)
− F ⋆

]
≤ 5B2(1 + α)

ηαT
+

2ηγσ2

M
+

2L

T

T−1∑
t=0

Eξt,

which finishes the proof.

B.5 ALTERNATE PROOF OF THEOREM 2

Proof. Throughout the proof, we will assume W = Rd. We will first define the following lifted
vectors that will be useful for our analysis:

wt :=
1

M

∑
m∈[M ]

wmt , ϕ
m
t =


wmt
θ1t
...
θMt

 , ϕt = 1

M

∑
m∈[M ]

ϕmt =


wt
θ1t
...
θMt

 .
Next, we define,

H =

[
Id 0
0 1

MαIMd

]
, and H−1 =

[
Id 0
0 MαIMd

]
.

Note that if α = 0, we will reduce to the non-personalized setting, and we can let H = H−1 = Id
and not lift the dimension of the parameter space, i.e., ϕ = w ∈ W . We also define the following
gradient for all m ∈ [M ] by lifting the dimension of gradient of Fm,

gmt = ∇ϕF̂m(wmt , θ
m
t ) =



∇wfm(wmt + θmt ; zmt )
0
...

∇θf(wmt + θmt ; zmt )
...
0


The following gradient will also be useful,

gt =
1

M

∑
m∈[M ]

gmt =


1
M

∑
m∈[M ]∇wf(wmt + θmt ; zmt )
1
M∇θf(w

1
t + θ1t ; z

1
t )

...
1
M∇θf(w

M
t + θMt ; zMt )

 .
As well as its conditional expectation w.r.t. the filtrationHt = σ

(
w1
t , . . . , w

M
t , θ

1
t , . . . , θ

M
t

)
,

ht = E[gt|Ht] =


1
M

∑
m∈[M ]∇wFm(wmt + θmt )
1
M∇θF1(w

1
t + θ1t )

...
1
M∇θFM (wMt + θMt )

 .
We can note the following about this vector,

E
[
∥gt − ht∥2H−1 |Ht

]
= E

[∥∥∥∥∥∥ 1

M

∑
m∈[M ]

∇wf(wmt + θmt ; zmt )−∇wFm(wmt + θmt )

∥∥∥∥∥∥
2
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+ αM
∑

m∈[M ]

1

M2
∥∇θf(wmt + θmt ; zmt )−∇θFm(wmt + θmt )∥2 |Ht

]
,

=
1

M2

∑
m∈[M ]

E
[
∥∇wf(wmt + θmt ; zmt )−∇wFm(wmt + θmt )∥2

]
+

α

M

∑
m∈[M ]

E
[
∥∇θf(wmt + θmt ; zmt )−∇θFm(wmt + θmt )∥2 |Ht

]
,

≤ σ2

M
+ ασ2.

Defining γ = max {1, αM} we can re-write this as,

E
[
∥gt − ht∥2H−1 |Ht

]
≤ 2γ

σ2

M
. (105)

We will use this bound later. We will also consider an arbitrary parametrization of the optima of
different machines as,

ϕ⋆ =


w⋆

θ⋆1
...
θ⋆M

 ∈ WM+1, w⋆ + θ⋆1 ∈ argmin
v∈W

Fm(v), F ⋆ := F̂ (ϕ⋆).

Since this parameterization is arbitrary, we can choose the minimum-norm parameterization (in any
norm). We will use this fact later. With this disclaimer, we can write for α > 0,

ϕt+1 = ϕt − ηtH−1gt.

Subtracting ϕ⋆ and taking the norm induced byH , we can write the following recurrence by defining
γ = max {1, αM},

E
[
∥ϕt+1 − ϕ⋆∥2H |Ht

]
= E

[∥∥ϕt − ηtH−1gt − ϕ⋆
∥∥2
H
|Ht
]
,

= ∥ϕt − ϕ⋆∥2H + η2tE
[
∥gt∥2H−1 |Ht

]
− 2ηt ⟨E (gt|Ht) , ϕt − ϕ⋆⟩ ,

= ∥ϕt − ϕ⋆∥2H + η2tE
[
∥gt − ht + ht∥2H−1 |Ht

]
− 2ηt ⟨ht, ϕt − ϕ⋆⟩ ,

= ∥ϕt − ϕ⋆∥2H + η2tE
[
∥gt − ht∥2H−1 |Ht

]
+ η2tE

[
∥ht∥2H−1 |Ht

]
− 2ηt ⟨ht, ϕt − ϕ⋆⟩ ,

where we used the fact that the cross terms are zero because ht is measurable under Ht and ht =
E[gt|Ht]. Defining hmt = E[gmt |Ht], so that ht = 1

M

∑
m∈[M ] h

m
t and using the variance bound in

(105) we get that,

E
[
∥ϕt+1 − ϕ⋆∥2H |Ht

]
≤ ∥ϕt − ϕ⋆∥2H + 2γη2t

σ2

M
+ η2t

∥∥∥∥∥∥ 1

M

∑
m∈[M ]

∇wFm(wmt + θmt )

∥∥∥∥∥∥
2

+ η2tαM
∑

m∈[M ]

1

M2
∥∇Fm(wmt + θmt )∥2 − 2ηt

M

∑
m∈[M ]

⟨hmt , ϕt − ϕ⋆⟩ ,

≤ ∥ϕt − ϕ⋆∥2H + 2γη2t
σ2

M
+
η2t (1 + α)

M

∑
m∈[M ]

∥∇wFm(wmt + θmt )∥2

− 2ηt
M

∑
m∈[M ]

(⟨∇Fm(wmt + θmt ), wt − w⋆⟩+ ⟨∇Fm(wmt + θmt ), θmt − θ⋆m⟩) ,

≤ ∥ϕt − ϕ⋆∥2H + 2γη2t
σ2

M
+

2Lη2t (1 + α)

M

∑
m∈[M ]

(Fm(wmt + θmt )− F ⋆m)

− 2ηt
M

∑
m∈[M ]

⟨∇Fm(wmt + θmt ), wt + θmt − v⋆m⟩ ,
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≤ ∥ϕt − ϕ⋆∥2H + 2γη2t
σ2

M
+

2Lη2t (1 + α)

M

∑
m∈[M ]

(Fm(wmt + θmt )− F ⋆m)

− 2ηt
M

∑
m∈[M ]

(Fm(wmt + θmt )− F ⋆m) ,

= ∥ϕt − ϕ⋆∥2H + 2γη2t
σ2

M
−
(
2ηt − 2(1 + α)Lη2t

) 1

M

∑
m∈[M ]

(Fm(wmt + θmt )− F ⋆m) ,

≤ ∥ϕt − ϕ⋆∥2H + 2γη2t
σ2

M
− ηt
M

∑
m∈[M ]

(Fm(wmt + θmt )− F ⋆m) ,

where we used that ηt ≤ 1
2L(1+α) . Re-arranging this using ηt = η, we get that,

1

M

∑
m∈[M ]

(Fm(wmt + θmt )− F ⋆m) ≤
∥ϕt − ϕ⋆∥2H − ∥ϕt+1 − ϕ⋆∥2H

η
+ 2γη

σ2

M
.

Averaging both sides over time and using the convexity of Fm’s we get that.

1

M

∑
m∈[M ]

(
Fm

(
1

T

T−1∑
t=0

wmt + θmt

)
− F ⋆m

)
≤
∥ϕ⋆∥2H
ηT

+ 2γη
σ2

M
. (106)

Now, we recall that the above upper bound holds for any parameterization of any F̂ op-
tima. Thus, to minimize the numerator in the first term, we want to minimize the quantity
1
M

∑
m∈[M ]

(
∥w⋆∥2 + 1

α ∥v
⋆
m − w⋆∥

2
)

for any given v⋆m ∈ argminv∈W Fm(v). A simple cal-

culation shows that this is minimized when w⋆ =
1
M

∑
m∈[M] v

⋆
m

1+α . Using this choice, we can bound
the numerator in the first term of (104) as follows,

1

M

∑
m∈[M ]

(
∥w⋆∥2 + 1

α
∥θ⋆m∥

2

)
=

1

M

∑
m∈[M ]

(
∥w⋆∥2 + 1

α
∥v⋆m − w⋆∥

2

)
,

≤ 1

M

∑
m∈[M ]

((
1 +

2

α

)
∥w⋆∥2 + 2

α
∥v⋆m∥

2

)
,

≤ 1

M

∑
m∈[M ]

((
1 +

2

α

)
B2

(1 + α)2
+

2

α
B2

)
,

≤
((

1 +
2

α

)
1

(1 + α)2
+

2

α

)
B2,

≤ 5B2 1 + α

α
,

where we used Assumption 2. Replacing this in bound (106), we get the following final result for
η ≤ 1

2(1+α)L ,

1

M

∑
m∈[M ]

(
Fm

(
1

T

T−1∑
t=0

wmt + θmt

)
− F ⋆m

)
≤ 5B2(1 + α)

ηαT
+ 2η

σ2

M
max{1, αM},

which finishes the proof.

B.6 PROOF OF PROPOSITION 1

Proof. To elucidate this, we consider the following simple problem withL = 1 in a single dimension
with two clients, i.e.,W = R:

F1(v) =
1

2
(v − (v⋆ − ζ⋆)2 ,
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F2(v) =
1

2
(v − (v⋆ + ζ⋆))

2
, (107)

F (v) =
F1(v) + F2(v)

2
,

=
1

2
(v − v⋆)2 + ζ2⋆

2L
, (108)

We note that this problem satisfies Assumption 1 with µ = 0 as the client objectives have directions
of no information. We will also assume that the ζ⋆ and v⋆ ∈ R3 are such that the problem satisfies
Assumption 2. Finally, we note that the objective satisfied the bounded heterogeneity Assumption
3. Using more or less the same series of calculations as in the proof of Theorem 1 in the noiseless
setting, one can derive the sequence of iterates of the global and the personal models. In particular,
following similar steps, one gets the following form for the consensus error,

1

2

∑
m∈[2]

∥∥wmt+1 − wt+1

∥∥2 =

(
ανK + 1

α+ 1

)τ(t)/K
· ζ2⋆
1 + α

·
(
1− νt−1−τ(t)

)
,

where τ(t) is the last time smaller than or equal to t when communication happened and ν := 1 −
η(1+α). Simplifying this and averaging it over time gives the desired result in the proposition.

26


	Introduction
	Setting and Preliminaries
	Personalized Local SGD Algorithm and its Analysis
	The Strongly Convex Setting
	The General Convex Setting and Diminishing Consensus Error
	The Role of Over-Parameterization

	Conclusion and Discussion
	Missing Details from Section 2
	Missing Details from Section 3
	Local SGD Without Personalization
	Comparison to Pure Local Training
	Proof of Theorem 1
	Proof of Theorem 2
	Alternate Proof of Theorem 2
	Proof of Proposition 1


