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Abstract001

In recent years, research on transforming002
natural language into graph query language003
(NL2GQL) has been increasing. Most existing004
methods focus on single-turn transformation005
from NL to GQL. In practical applications, user006
interactions with graph databases are typically007
multi-turn, dynamic, and context-dependent.008
While single-turn methods can handle straight-009
forward queries, more complex scenarios often010
require users to iteratively adjust their queries,011
investigate the connections between entities, or012
request additional details across multiple dia-013
logue turns. Research focused on single-turn014
conversion fails to effectively address multi-015
turn dialogues and complex context dependen-016
cies. Additionally, the scarcity of high-quality017
multi-turn NL2GQL datasets further hinders018
the progress of this field. To address this019
challenge, we propose an automated method020
for constructing multi-turn NL2GQL datasets021
based on Large Language Models (LLMs) ,022
and apply this method to develop the MTGQL023
dataset, which is constructed from a financial024
market graph database and will be publicly re-025
leased for future research. Moreover, we pro-026
pose three types of baseline methods to assess027
the effectiveness of multi-turn NL2GQL trans-028
lation, thereby laying a solid foundation for029
future research.030

1 Introduction031

As data complexity and interconnectedness grow032

across various domains, graph data structures have033

become essential for effectively representing and034

analyzing relationships (Zhao et al., 2022a; Sui035

et al., 2024). This increasing demand for efficient036

data representation has driven the widespread adop-037

tion of graph databases. Consequently, graph query038

language (GQL) has emerged as a crucial tool for039

interacting with these systems, playing a pivotal040

role in tasks such as database management, infor-041

mation retrieval, and data analysis (Lopes et al.,042

2023; Wang et al., 2020; Pavliš, 2024), as shown 043

in Figure 1. However, translating natural language 044

(NL) queries into GQL presents a significant chal- 045

lenge, as it requires users to possess technical exper- 046

tise in database operations and a deep understand- 047

ing of specific query syntax and patterns. This com- 048

plexity creates a substantial barrier for individuals 049

without a technical background (Zhao et al., 2022b, 050

2023). To address this challenge, numerous auto- 051

matic NL2GQL methods have been proposed (Guo 052

et al., 2022; Zhou et al., 2024b; Liang et al., 2024a; 053

Tao et al., 2024; Tran et al., 2024), making graph 054

databases accessible to more audiences. 055

Recent advances in NL2GQL are primarily 056

derived from the Seq2Seq framework, such as 057

those demonstrated in (Guo et al., 2022) and 058

CoBGT (Tran et al., 2024). With the rise of 059

LLMs, performance has been further enhanced, 060

leading to the development of numerous LLM- 061

based methods (Zhou et al., 2024b; Liang et al., 062

2024a; Tao et al., 2024; Liang et al., 2024b; Liu 063

et al., 2024). Alongside these methods, several 064

NL2GQL datasets have been developed, includ- 065

ing SpCQL (Guo et al., 2022), CySpider (Zhao 066

et al., 2023), Text2Cypher (Ozsoy et al., 2024), 067

R3-NL2GQL(Zhou et al., 2024b), TCMGQL, 068

EduGQL(Liu et al., 2024), and StockGQL (Liang 069

et al., 2024b). The proposed methods and datasets 070

mainly focus on single-turn queries. 071

While single-turn NL2GQL translation can han- 072

dle relatively simple queries, multi-turn interac- 073

tions introduce several complexities that require 074

advanced handling. First, the system must maintain 075

context across multiple historical queries, as each 076

new query builds upon the information provided 077

in previous ones. This necessitates robust con- 078

text management to accurately capture the user’s 079

evolving intent and ensure the generation of con- 080

sistent, relevant queries. Second, as users refine 081

or expand their queries during the interaction, the 082

system must dynamically adjust the context to ac- 083
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User: Which securities stock opened at the highest price today?
System: CITIC Securities.
(GQL: match (s:stock)-[:belong_to]->(i:industry) WHERE i.name = ’securities’ return s.name
order by s.opening_price desc limit 1)
User: What price?
System: ¥30.26
(GQL: match (s:stock {name: ’CITIC Securities’})-[:has_data]->(d:stock_data {date: ’2025-01-
08’}) return d.opening_price )
User: And yesterday?
System: ¥36.25
(GQL: match (s:stock {name: ’CITIC Securities’})-[:has_data]->(d:stock_data {date: ’2025-01-
07’}) return d.opening_price )
User: How about Guotai Junan?
System: ¥20.00
(GQL: match (s:stock {name: ’ Guotai Junan Securities’})-[:has_data]->(d:stock_data {date:
’2025-01-08’}) return d.opening_price )

Figure 1: An example of a multi-turn interaction between a User and a System, with the orange sections representing
the corresponding Cypher-based GQL for each question. The color coding highlights the contextual dependencies,
such as opening price , CITIC Securities and Guotai Junan Securities.

commodate these changes. Last but not least, cur-084

rent datasets are primarily designed for single-turn085

queries, resulting in limited data available for train-086

ing and evaluating multi-turn systems. This con-087

straint hampers the development of more sophisti-088

cated, context-aware solutions.089

To tackle the challenge posed by the scarcity090

of multi-turn NL2GQL datasets, we propose a091

dependency-aware multi-turn dataset construc-092

tion framework, which performs collaborative op-093

timization between LLMs, graph data, and dialogue094

dependency in an iterative way. Our framework is095

composed of four essential components: a Con-096

text Manager, Question Generator, GQL Generator,097

and GQL Optimizer. Here, context manager plays098

as a central unit to integrate the information of di-099

alogue history and graph data and send to other100

constituents. Question generator, GQL generator,101

and GQL optimizer are LLM-based constituents102

to analysis the information from the context man-103

ager and output the generated questions, GQLs,104

and answers. They also interact with each other105

for mutual checking and correction. Using this106

framework, we have created the MTGQL dataset,107

a Chinese multi-turn NL2GQL dataset based on a108

financial market NebulaGraph database.109

Our main contributions are as follows:110

• A Standard Framework: We propose a111

novel framework for constructing multi-turn112

NL2GQL datasets. To the best of our knowl-113

edge, this is the first method specifically de-114

signed for building such datasets. 115

• MTGQL Dataset: By applying our approach 116

to a Chinese financial NebulaGraph database, 117

we built MTGQL, the first Chinese multi-turn 118

NL2GQL dataset. 119

• Benchmark Methods: We introduce the 120

Backmarch methods for the MTGQL dataset, 121

establishing a strong foundation for future re- 122

search. 123

2 Related Work 124

2.1 NL2GQL 125

Early work in NL2GQL focused on template gen- 126

eration and heuristic rule-based systems. Recent 127

advancements in NL2GQL tasks have seen a shift 128

to deep learning-based approaches. Among the 129

pioneering studies, the work (Guo et al., 2022) 130

was the first to apply a Seq2Seq framework to 131

NL2GQL, introducing a copying mechanism along- 132

side the Seq2Seq model to enhance GQL gener- 133

ation. This approach paved the way for subse- 134

quent deep learning-based models in this space. 135

The CoBGT model (Tran et al., 2024) further 136

advanced this field by integrating key-value ex- 137

traction, relation-property prediction, and Cypher 138

query generation. This model combines BERT, 139

GraphSAGE, and Transformer architectures to ad- 140

dress the NL2GQL task. 141

The emergence of LLMs has further advanced 142

the research in NL2GQL. The paper (Tao et al., 143
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2024) presented a revision-based method for144

NL2GQL, leveraging LLMs without fine-tuning,145

further simplifying the process of adapting LLMs146

for NL2GQL tasks. R3-NL2GQL (Zhou et al.,147

2024b) integrates small and large foundation mod-148

els for ranking, rewriting, and refining tasks, en-149

hancing query quality by better understanding con-150

text and relationships. The work in (Liang et al.,151

2024a) proposed aligning LLMs with domain-152

specific graph databases to enhance query accuracy153

and domain relevance. It emphasizes the adapt-154

ability of LLMs when tailored to specific graph155

schemas, ensuring that generated queries are con-156

textually appropriate. In another study, (Liang157

et al., 2024b) proposed a three-agent system for158

NL2GQL, comprising a Preprocessor for data han-159

dling, a Generator for GQL creation, and a Refiner160

that refines queries based on execution results. This161

multi-agent approach provides a more structured162

and efficient translation process, addressing both163

query generation and validation. The method (Liu164

et al., 2024) proposed using template-filling and165

problem rewriting techniques with LLMs to pro-166

vide contextual information, improving the model’s167

comprehension of the complex relationships be-168

tween NL, graph schemas, and database data.169

These methods are all based on the single-turn170

NL2GQL task1.171

2.2 NL2GQL Dataset172

The development of NL2GQL datasets has also173

evolved alongside advances in model architectures.174

Several datasets have been proposed in recent years,175

each addressing different aspects of the NL2GQL176

task. The SpCQL (Guo et al., 2022) dataset is177

constructed by manually annotating 10,000 NL178

queries with corresponding Cypher queries based179

on a single Neo4j graph database. CySpider (Zhao180

et al., 2023) dataset is constructed by developing181

a SQL2Cypher algorithm that maps SQL queries182

to Cypher clauses, which are then paired with the183

original natural language queries to create a par-184

allel corpus. Text2Cypher (Ozsoy et al., 2024)185

combined, cleaned, and organized several publicly186

available datasets into a total of 44,387 instances to187

enable effective fine-tuning and evaluation. R3-188

NL2GQL (Zhou et al., 2024b) constructed the189

dataset by manually creating NL-GQL pairs, using190

foundation models to generate diverse interpreta-191

tions, and refining them manually.192

1A more detailed comparison with similar tasks is provided
in the Appendix 9.1.

Recently, using LLMs to construct data has 193

become an effective solution to the problem of 194

data scarcity, especially for tasks in specific do- 195

mains (Ding et al., 2024; Long et al., 2024; Zhou 196

et al., 2024a). The TCMGQL and EduGQL (Liu 197

et al., 2024) datasets were constructed from real- 198

world databases, ensuring standardized types and 199

diversity. Over ten NL and GQL templates were 200

developed based on database schema information, 201

further enhanced by LLMs. The work (Liang et al., 202

2024a) constructs datasets by first generating NL- 203

GQL pairs from a graph database, followed by a 204

two-step data augmentation process using Chat- 205

GPT to ensure diverse and comprehensive query 206

coverage. The generated pairs are then grounded 207

and verified. Building upon the work in (Liang 208

et al., 2024a), the work (Liang et al., 2024b) in- 209

troduced improvements by incorporating subgraph 210

extraction related to GQL and the colloquializa- 211

tion of named entities, while also constructing the 212

StockGQL dataset. Unlike these methods, we focus 213

on developing a multi-turn NL2GQL dataset. 214

3 Multi-turn NL2GQL Task Formulation 215

A graph database G consists of a large number of 216

connected data (nodes and edges). 217

We first define single-turn NL2GQL as fol- 218

lows. Given a graph database G and a question 219

Q, the NL2GQL system is supposed to return an 220

executable GQL command that can be executed 221

against G and produce an answer A: 222

GQLt = F(Q,G). 223

Here, F is a function that generates the graph query 224

language GQL based on Q, and G. In single-turn 225

NL2GQL, different question-answer pairs in the 226

dataset D = {(Q1, A1), (Q2, A2), ...} are indepen- 227

dent. 228

In comparison, the interdependent question- 229

answer pairs in multi-turn NL2GQL problem 230

form a complete dialogue, denoted as C = 231

((Q1, A1), (Q2, A2), ..., (Qm, Am)) and a set of di- 232

alogues forms a dataset D = {C1, C2, ...}. We 233

refer to each question-answer pair as one round of 234

the dialogue. In the multi-turn NL2GQL, at the 235

t-th round, given multiple rounds of historical in- 236

teraction between the user Ct, the objective is to 237

generate the GQL, denoted as GQLt, correspond- 238

ing to the question Qt: 239

GQLt = F(Qt, Ct, G), 240
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Figure 2: Our framework consists of five synergistic components: the Context Manager, Question Generator, GQL
Generator, GQL Validator and Optimizer, and Dataset Filter. These components work collaboratively to handle
question generation, GQL generation, GQL validation and refinement, and dataset filtering. Steps 1, 2, and 3 are
iteratively executed for each data point to generate multi-turn data.

where Ct = {Q1, A1, ..., Q(t−1), A(t−1)} includes241

all relevant user inputs and system responses exe-242

cuted against G via the GQLs.243

4 A Dependency-aware Multi-turn244

Dataset Construction Framework245

4.1 Overview246

To construct a multi-turn NL2GQL dataset, we fol-247

low three key criteria that distinguish it from single-248

turn NL2GQL: (1) Graph Grounding: Each ques-249

tion should be factually grounded via G to ensure250

its corresponding answers can be successfully re-251

trieved from the graph data with a GQL. (2) Inter-252

dependent Turns: The question-answer pairs in253

a dialogue should be interdependent. Specifically,254

the question in the current round could be linked to255

the dialogue history via either questions or answers256

in the previous rounds. (3) Diverse Dependency257

Types: The types of the questions and dialogue258

dependencies should present diversity to cover the259

application of practical scenario.260

As showed in Figure 2, the framework com-261

prises five interconnected components: Context262

Manager, Question Generator, GQL Generator,263

GQL Validator and Optimizer, and Dataset Fil-264

ter. Next, we will detail the implementation and265

role of each core component.266

4.2 Context Manager 267

The Context Manager is the control components 268

of the system, Its functions include the following 269

aspects: 270

Updating the Dialogue History: The Context 271

Manager is responsible for maintaining the dia- 272

logue history, which includes Ct, the set of entities 273

and relations, and the expansion pattern history. It 274

continuously updates the dialogue history to ensure 275

that all interactions are accurately tracked. 276

Fulfilling Masked Questions: Since the Ques- 277

tion Generator generates specific entity names for 278

certain questions but may not have access to the 279

available entities in the database, placeholders are 280

used. Therefore, another responsibility of the Con- 281

text Manager is to replace the placeholders with 282

actual entity names from the graph database. 283

Controlling the Generation Process: The Con- 284

text Manager oversees the entire data generation 285

process, controlling both the start and end. It is 286

also responsible for selecting question expansion 287

patterns based on the set of entities and relations 288

in the history. To ensure the generation of high- 289

quality questions, we have designed six fundamen- 290

tal expansion patterns, as shown in Table 1, and the 291

expansion pattern selection algorithm is detailed in 292

Appendix 9.2. We adjust the number of conversa- 293

tion rounds iteratively, keeping the total rounds per 294
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Pattern Description Example

P1: Attribute Follow-up Generates follow-up questions about an entity’s at-
tributes based on the previous query. Q1: What is the largest stock in the liquor industry?

A1: Moutai.
Q2: What is the registered capital?

P2: Temporal Shift Introduces the time dimension to generate
queries related to historical data. Q1: What is the highest price of Moutai today?

A1: 20.5
Q2: What was the closing price yesterday?

P3: Relation Extension Expands the dialogue by querying related rela-
tionships. Q1: What is the stock code for Tencent?

A1: HK0700
Q2: What is the industry data?

P4: Same-Type Entity Used for comparative reasoning between mul-
tiple entities. Q1: What is the opening price of Baidu today?

A1: 150
Q2: What about Alibaba?

P5: Aggregation Calculation Involves queries requiring aggregation calcu-
lations such as averages or sums. Q1: What is the opening price of Tengfei today?

A1: 417
Q3: What is the day-on-day growth?

P6: Conditional Filtering Filters data based on specific conditions. Q1: Which funds have a management fee below 1%?
A1: Fund A, Fund B
Q2: Which ones have a size greater than 5 billion?

Table 1: Patterns for expanding subsequent questions.

data point between 5 and 8 to maintain appropriate295

depth and complexity.296

4.3 Question Generator297

We use an LLM as the Question Generator, cate-298

gorizing questions into initial and follow-up types.299

The initial question is randomly generated based300

on the schema of G, while subsequent questions301

follow the expansion patterns from the Context302

Manager. These questions must inherit context,303

promoting diversity, complexity, and a colloquial304

tone.305

To better guide the LLM in generating high-306

quality questions, we instruct it to produce more307

colloquial, informal, and ambiguous expressions308

that more accurately simulate real user queries.309

The prompt format is shown in Appendix 9.3. It is310

important to note that since the Question Genera-311

tor is only aware of the schema of G and does not312

have access to the specific entities stored within313

the database, questions involving entities are gener-314

ated as placeholder templates. For example, What315

is the opening price of [s] stock today?316

where [s] represents a placeholder for the stock317

entity name.318

4.4 GQL Generator319

The GQL Generator is responsible for generating320

the corresponding GQL based on the schema of G321

and the complete question provided by the Context322

Manager. To enhance generation efficiency, we use323

the full schema to construct the prompt for fine- 324

tuning the LLM, as outlined in Paper (Liang et al., 325

2024a). With the fine-tuned LLM, the GQL Gener- 326

ator ensures accurate understanding and handling 327

of the graph database’s schema when generating 328

GQL. 329

4.5 GQL Validator and Optimizer 330

The GQL Validator and Optimizer play a crucial 331

role in ensuring that the GQL are both syntactically 332

and semantically correct. The workflow of the GQL 333

Validator and Optimizer proceeds as follows: first, 334

Syntax Validation, followed by Semantic Valida- 335

tion. Only GQLs containing syntax or semantic 336

errors will undergo optimization for improvement. 337

Syntax Validation: This ensures that the gener- 338

ated GQL statements are syntactically correct and 339

executable in the graph database. The GQL is ex- 340

ecuted on the database, and if it runs successfully 341

with expected results, it is syntactically correct; 342

otherwise, it is flagged for optimization. 343

Semantic Validation: This ensures that the GQL 344

accurately reflects the original question’s intent. 345

We utilize the reverse generation validation method 346

introduced in paper (Liang et al., 2024a) to infer the 347

original question from the generated GQL. If the 348

vector embedding similarity between the inferred 349

and original question is low, it indicates that the 350

generated GQL requires further optimization. 351

GQL Optimization: When syntax errors are de- 352

tected, the system combines the original ques- 353
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tion, generated GQL, and error information into354

a prompt for the LLM to correct. The modified355

GQL is then re-validated for syntax. For semantic356

optimization, if the GQL doesn’t align with the357

original question’s intent, both the question and358

GQL are input into the LLM for correction. The359

corrected GQL undergoes semantic validation, and360

this process repeats up to three times. If all attempts361

fail, the system instructs the Context Manager to362

regenerate the question.363

4.6 Dataset Filter364

After dataset generation, while the methods out-365

lined above ensure the quality of each data point,366

they cannot guarantee the absence of similarity and367

redundancy. To address this, we apply two filtering368

methods.369

GQL-based Filtering: We replace entity names in370

the GQL with placeholders and collect the masked371

GQL into a set. By comparing sets across data372

points, we calculate their similarity. If more than373

three identical masked GQL are found, one is dis-374

carded as redundant, effectively reducing dupli-375

cates in the dataset.376

Embedding-based Filtering: To prevent high sim-377

ilarity between questions across data points, we378

concatenate all questions within each data entry and379

encode them using the all-MiniLM-L6-v2 model380

from Sentence-BERT to obtain high-dimensional381

semantic representations. We then compute the co-382

sine similarity between these vector embeddings383

across all data points. Any data point pair with384

cosine similarity exceeding a threshold of 0.6 is385

considered semantically redundant and discarded.386

Finally, we applied our approach to a Chinese387

financial market NebulaGraph database to develop388

the MTGQL dataset based on nGQL syntax.389

5 Data Analysis390

5.1 Dataset Statistics391

As shown in Table 3, the dataset contains 4,500392

multi-turn dialogues, split into 3,000 for training,393

500 for development, and 1,000 for testing. Each394

dialogue has an average of 6.49 turns, reflecting395

balanced dialogue depth. In total, there are 29,196396

GQL statements, with multiple queries per dia-397

logue, indicating the dataset’s complexity. On aver-398

age, each dialogue involves 4.79 entities and 5.59399

relations, requiring models to handle rich and di-400

verse graph structures. The slightly higher averages401

in the test set suggest a more challenging evalua-402

tion setting. Overall, the dataset is well-structured 403

and suitable for training and evaluating models on 404

dialogue-based graph query tasks. 405

5.2 Human Evaluation 406

We evaluated the quality of the dataset by asking 407

three domain experts to rate 200 randomly selected 408

dialogues from each of the training, validation, and 409

test sets. The evaluation focused on four dimen- 410

sions: coherence, question diversity, coverage, and 411

semantic accuracy, using a 1–5 scale. As shown in 412

Table 2, the results confirm the dataset’s effective- 413

ness for training and evaluating dialogue systems. 414

Additionally, we recalculated Cohen’s Kappa and 415

obtained a score of 85.76, indicating a high level 416

of inter-rater agreement. More information on the 417

manual evaluation can be found in Appendix ??.

train dev test

Coherence 4.48 4.31 4.17

Question Diversity 4.16 4.08 4.01

Semantic Accuracy 4.68 4.52 4.38

Table 2: Human evaluation results. 418

5.3 Comparison with Other Datasets 419

As shown in Table 4, the table compares several 420

NL2GQL datasets, with MTGQL standing out as 421

the only multi-turn dataset. Unlike other single- 422

turn datasets, MTGQL is specifically designed to 423

handle more complex, multi-turn queries, making 424

it particularly suitable for tasks that require mul- 425

tiple interactions. Therefore, MTGQL will play 426

a pivotal role in advancing research in multi-turn 427

NL2GQL. For a more detailed description of the 428

dataset generation methodology and dataset analy- 429

sis, please refer to Appendix 9.4. 430

6 Models and Experimental Setup 431

6.1 Benchmark Methods 432

In-context learning with all schema method 433

(ICL-AS): This method provides a set of exam- 434

ples within the input prompt, which concatenates 435

all schema information and the question, guiding 436

the LLM to generate the corresponding GQL. 437

Related schema extraction method (RSE): Dur- 438

ing training, this method uses the related schema 439

and question as input, with the labeled GQL as 440

output, while fine-tuning the LLM. In inference, it 441

guides the LLM to extract related schema. 442
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train dev test total

Number of Data Points 3000 500 1000 4500

Total Number of GQLs 19320 3252 6624 29196

Average Dialogue Turns per Data 6.44 6.50 6.62 6.49

Average entity per Data 4.64 4.89 5.17 4.79

Average relation per Data 5.47 5.65 5.93 5.59

Table 3: Basic Statistics of the Dataset.

Dataset Language Multi or Single Domain Syntax Number

SpCQL (Guo et al., 2022) Chinese Single Open-domain Cypher 10000

CySpider (Zhao et al., 2023) English Single Open-domain Cypher 4929

Text2Cypher (Ozsoy et al., 2024) English Single Open-domain Cypher 44387

FinGQL (Liang et al., 2024a) Chinese Single Finance nGQL -

MediGQL (Liang et al., 2024a) Chinese Single Medicine Cypher -

R3-NL2GQL (Zhou et al., 2024b) Chinese
English Single Open-domain nGQL -

StockGQL (Liang et al., 2024b) Chinese Single Stock nGQL 6456

TCMGQL (Liu et al., 2024) Chinese Single Medicine Cypher -

EduGQL (Liu et al., 2024) Chinese Single Education Cypher -

MTGQL(Ours) Chinese Multi Stock nGQL 4500

Table 4: A summary of the main NL2GQL datasets. From this, we can conclude that MTGQL is the only multi-turn
dataset. The "-" in the Number column indicates that the dataset has not been open-sourced yet.

Fine-tuning with with all schema method (FT-443

AS): Approach concatenates all schema informa-444

tion with the question as input while applying445

LoRA for parameter-efficient fine-tuning of the446

base LLM.447

Dependency-aware method (DA): We adapt the448

Dependency-aware Multi-turn Dataset Construc-449

tion Framework with minor modifications and fol-450

low the method proposed in (Liang et al., 2024b)451

to construct a dependency-aware baseline. The452

adapted method comprises three key modules: a453

Context Manager, a GQL Generator, and a GQL454

Refiner. First, the Context Manager maintains the455

dialogue history, including previous questions, cor-456

responding GQL queries and answers, as well as457

the involved entities and relations. It reformulates458

the current question based on the dialogue history459

to make it more formal and information-rich. Ad-460

ditionally, it extracts the relevant sub-schema for461

the current turn. Second, the GQL Generator462

generates a GQL query based on the reformulated463

question and the extracted sub-schema. Third, the464

GQL Refiner improves the generated query by re-465

fining it based on its execution results to enhance466

accuracy and relevance. More details are provided467

in Appendix 9.8. 468

6.2 Experimental Setup 469

Evaluation Metrics. The work in (Guo et al., 470

2022) introduced Exact Match (EM) and Exact 471

Explanation (EX) for single-turn tasks. For multi- 472

turn tasks, we propose Overall Exact Match (AEM) 473

and Overall Exact Explanation (AEX), where all 474

turns in a dialogue must be correct for the data 475

to be considered successful. The formulas are as 476

follows: 477

EM =
number of GQLs with a correct logical form

total number of GQL
(1) 478

AEM =

number of data points with all GQLs
having correct logical form

total number of data points
(2) 479

EX =
number of GQLs with a correct execution result

total number of GQL
(3) 480

AEX =

number of data points with all GQLs
having correct execution results

total number of data points
(4) 481

482

Implementation Details. Our experiments 483

were conducted on an A800 GPU. We selected 484

Qwen2.5-14B-Instruct (Team, 2024), LLaMA-3.1- 485

8B-Instruct (Dubey et al., 2024), and GLM-4-9B- 486

Chat (GLM et al., 2024) as the LLM backbone 487
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Method Backbones EM(%) AEM(%) EX(%) AEX(%)

ICL-AS

GLM-4-9B-Chat 31.13 6.50 30.01 5.80
LLaMA-3.1-8B-Instruct 27.66 6.10 27.76 6.40
Qwen2.5-14B-Instruct 32.55 7.50 29.70 7.20
ChatGPT-4o 38.29 10.9 36.28 8.80

RES GLM-4-9B-Chat 56.91 25.70 53.64 22.30
LLaMA-3.1-8B-Instruct 58.76 27.10 56.63 26.70
Qwen2.5-14B-Instruct 59.60 28.30 57.71 26.80

FT-AS GLM-4-9B-Chat 60.14 30.60 56.16 28.80
LLaMA-3.1-8B-Instruct 61.23 31.10 60.19 29.20
Qwen2.5-14B-Instruct 63.56 31.50 61.70 31.20

DA GLM-4-9B-Chat 65.53 38.70 63.47 36.60
LLaMA-3.1-8B-Instruct 66.73 38.40 63.36 37.20
Qwen2.5-14B-Instruct 68.45 40.60 65.39 38.30

Table 5: The comparison between the baseline methods is shown, with the bold numbers indicating the best results.

models. In this paper, all sequence encoding is per-488

formed using the all-MiniLM-L6-v2 model, with489

the embedding dimension set to 384. All the num-490

ber of demonstrations K are set as 4.491

7 Results492

7.1 Main Results493

Based on the results presented in Table 5, the494

DA method consistently outperforms all other ap-495

proaches across all evaluation metrics. Notably,496

when combined with the Qwen2.5-14B-Instruct497

backbone, DA achieves the highest scores in EM498

(68.45%), AEM (40.60%), EX (65.39%), and499

AEX (38.30%). In contrast, the ICL-AS method500

yields comparatively lower results, which can be at-501

tributed to the absence of high-quality GQL-related502

corpora during the pretraining of its underlying503

models. Moreover, performance differences ob-504

served across various backbone models within the505

same method underscore the substantial impact of506

model architecture and backbone selection on the507

final outcomes. This highlights the necessity of508

carefully choosing and aligning the model back-509

bone with the specific demands of the task. Never-510

theless, it is worth noting that the overall accuracy511

on this task remains relatively low, suggesting that512

there is still considerable room for improvement.513

7.2 Breakdown Results by Round514

Table 6 presents the results of the best baseline515

method across different rounds, showing a clear516

decline in performance as rounds increase. This517

decrease is likely due to the increasing complexity518

of multi-turn interactions, which challenges the519

model’s ability to maintain context and generate520

consistent responses.521

Round EM(%) EX(%)
R1 84.21 82.88
R2 73.66 73.13
R3 60.25 58.44
R4 47.84 46.18
R5+ 31.23 30.96

Table 6: The breakdown of results by round, where
R1-R4 represent rounds 1 to 4, and R5+ denotes round
5 and beyond.

Round EM(%) EX(%)
P1 70.47 68.49
P2 64.70 63.66
P3 66.52 64.12
P4 73.84 71.68
P5 62.59 62.32
P6 67.36 66.46

Table 7: Results by the question expansion pattern.

Table 7 shows performance across different ques- 522

tion expansion patterns, with notable variations. 523

These fluctuations indicate that the model is more 524

effective with simpler question expansions (like 525

P1 and P4), while more complex patterns (like P2 526

and P5) lead to lower accuracy, likely due to the 527

increased difficulty of generating precise answers. 528

More experimental analyses are provided in Ap- 529

pendix 9.9. 530

8 Conclusion 531

In this paper, we introduce a dependency-aware 532

multi-turn dataset construction framework for 533

building multi-turn NL2GQL datasets. Using this 534

framework, we create MTGQL, the first multi- 535

turn NL2GQL dataset. Finally, we propose three 536

baseline methods based on this dataset, laying the 537

groundwork for future advancements in the field. 538
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Limitations539

There are several limitations that we would like to540

address in future work.541

First, although we have developed a Chinese542

multi-turn NL2GQL dataset, we have not yet com-543

pleted the translation into English due to the ex-544

tensive amount of entity and relation names that545

require translation from the graph database. Once546

this process is completed, we plan to release a bilin-547

gual (Chinese-English) version of the dataset as548

open source to facilitate broader research adoption.549

Second, while our dataset supports multi-turn550

queries involving complex contextual dependen-551

cies, the current benchmark methods rely on manu-552

ally designed schemas or dependency-aware mod-553

ules. These methods may not generalize well554

to unseen domains or schema structures. Future555

work could explore schema-agnostic approaches or556

large-scale pretraining on multi-turn graph query-557

ing tasks.558

Third, the current evaluation focuses primarily559

on execution accuracy of generated GQL. How-560

ever, execution correctness may not fully capture561

semantic correctness or partial matching of sub-562

graph intents. Incorporating human evaluation or563

developing more fine-grained metrics could pro-564

vide better insights into model behavior.565

Lastly, although our dataset construction process566

includes context reformulation and sub-schema ex-567

traction, the pipeline still involves certain heuristic568

rules and prompt designs that may not scale well569

across diverse graph domains. We aim to further570

automate and generalize the dataset construction571

framework to reduce reliance on manual tuning.572
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9 Appendix723

9.1 Comparison with Similar Tasks724

Text2SQL725

While numerous highly effective Text2SQL726

methods have been developed (Caferoğlu and Ulu-727

soy, 2024; Wang et al., 2023; Talaei et al., 2024),728

the fundamental differences between GQL and729

SQL present significant challenges for directly ap-730

plying these methods to the NL2GQL task. Sev-731

eral studies have examined the differences between732

Text2SQL and NL2GQL (Guo et al., 2022; Liang733

et al., 2024a; Zhou et al., 2024b), and we highlight734

the key distinctions in the following areas:735

• Differences in standard syntax: Unlike736

SQL, which follows a standardized query lan-737

guage, GQL lacks a unified standard. Dif-738

ferent graph databases adopt distinct query739

languages such as Cypher, nGQL, and Grem-740

lin. This fragmentation complicates dataset741

construction, model generalization, and the742

development of consistent training paradigms.743

• Differences in query types: GQL surpasses744

the typical CRUD operations by offering ad-745

vanced query types like sub-graph and path746

queries that enable complex data traversal. Its747

extensive keyword set further enhances its748

flexibility, making it a powerful tool for a wide749

range of data manipulation needs.750

• Differences in translation difficulties:751

NL2GQL involves understanding graph752

structures, path reasoning, and pattern753

matching, requiring high query flexibility,754

which may lead to issues such as path755

combination explosion. In contrast, Text-to-756

SQL faces challenges like pattern matching,757

table/column name mapping, and SQL syntax758

parsing, but the overall query structure759

remains relatively stable.760

• Differences in language model capabilities:761

Text-to-SQL benefits from a large corpus and762

extensive datasets, while NL2GQL has far763

fewer resources. Given that most widely used764

pre-trained models, especially LLMs, rely on765

pre-training followed by fine-tuning, this dis-766

parity in resources directly impacts their per-767

formance on these tasks.768

In conclusion, due to the substantial differences769

between the two, it is essential to develop special-770

ized approaches for NL2GQL rather than simply 771

adapting Text-to-SQL methods. 772

Multi-turn Dialogue 773

Multi-turn dialogue systems involve an iterative, 774

back-and-forth exchange between a user and a sys- 775

tem, where the conversation evolves over multiple 776

turns. These systems aim to refine user queries, 777

explore topics in more depth, and generate con- 778

textually appropriate responses based on previ- 779

ous interactions. Unlike single-turn dialogue sys- 780

tems, which address isolated queries, multi-turn 781

dialogues manage dynamic and context-sensitive 782

information flows (Yi et al., 2024). 783

Multi-turn NL2GQL is a specialized form of 784

Multi-turn Dialogue. Unlike other Multi-turn Dia- 785

logue systems, NL2GQL focuses on converting nat- 786

ural language into GQL based on a graph database. 787

This distinction makes Multi-turn NL2GQL ideal 788

for dynamic interactions with graph-based data, 789

where each query may involve traversing different 790

paths or nodes. The model must not only under- 791

stand the current query but also retain information 792

from previous interactions to generate accurate, 793

contextually relevant graph queries. This ability 794

to maintain coherence across multiple turns poses 795

challenges in handling complex graph traversals 796

and evolving contexts. 797

Multi-turn Knowledge Base Question Answer- 798

ing. A knowledge graph is a structured knowledge 799

base represented as a graph, designed to organize 800

vast amounts of real-world information in a flexible 801

and scalable manner. Its primary goal is to enable 802

machines to understand this information and per- 803

form reasoning and inference (Zhao et al., 2022b; 804

Pan et al., 2024). In contrast, a graph database pri- 805

marily focuses on efficient data storage and query 806

optimization, rather than on knowledge reasoning 807

and semantic understanding. As such, KBQA em- 808

phasizes knowledge-based reasoning and semantic 809

understanding to extract answers from structured 810

knowledge bases, while NL2GQL focuses on con- 811

structing effective graph queries. 812

A typical example of a problem that NL2GQL 813

can solve but KBQA cannot is as follows: 814

Problem: Find all users who participated in 815

at least two projects in 2023, and whose friends 816

include at least one person from the R&D depart- 817

ment. 818

NL2GQL Solution: The complex graph traver- 819

sal logic can be directly expressed using graph 820

query languages like Cypher Pseudo-code: 821
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MATCH (u:User)-[:PARTICIPATED_IN]->(822

p:Project {year: 2023})823

WITH u, COUNT(p) AS project_count824

WHERE project_count >= 2825

MATCH (u)-[:FRIEND_OF]->(f:User)-826

[:BELONGS_TO]->(:Dept {name: "R&D"})827

RETURN u.name, COLLECT(f.name)828

AS friends_in_rd829

Why KBQA Struggles with This Problem:830

• Multi-hop Relationship Traversal: This831

problem requires reasoning across 4 hops:832

User → Project → Count → Friend → Depart-833

ment. Traditional KBQA systems typically834

handle only single-hop or fixed-path queries835

and are not equipped to flexibly manage dy-836

namic path lengths (e.g., recursive traversal of837

the "FRIEND_OF" relationship).838

• Aggregation and Conditional Combination:839

The task involves both an aggregation opera-840

tion (e.g., COUNT(p) >= 2) and a conditional841

filter (e.g., friends from the R&D department).842

KBQA systems usually cannot combine ag-843

gregation functions with multiple entity con-844

ditions within the same query.845

• Implicit Logical Dependencies: The con-846

dition "at least one friend belongs to the847

R&D department" necessitates an existence848

check (EXISTS) rather than a simple attribute849

match. KBQA typically returns explicitly850

stored triples and cannot dynamically infer851

such existence conditions.852

Other NL2GQL-exclusive Capabilities include853

the following question examples:854

• Path Queries: Question: “Find the shortest855

collaboration path from User A to User B,856

where all nodes in the path are employees857

who joined after 2020.”858

Cypher Pseudo-code:859

MATCH (a:User {name: "UserA"}),860

(b:User {name: "UserB"}),861

path = shortestPath((a)-862

[:COLLABORATES_WITH*]-(b))863

WHERE ALL(node IN nodes(path)864

WHERE node:Employee AND865

node.join_date >= '2020-01-01')866

RETURN path867

• Dynamic Pattern Reasoning: Question: 868

“Count the managers in all departments 869

who have more than 10 subordinates and 870

whose subordinates have participated in cross- 871

departmental projects.” 872

Cypher Pseudo-code: 873

MATCH (dept:Department) 874

<-[:MANAGES]-(manager:Manager) 875

WITH dept, manager, [(manager)- 876

[:MANAGES]->(emp:Employee) | emp] 877

AS subordinates 878

WHERE size(subordinates) > 10 879

AND ANY(emp IN subordinates 880

WHERE EXISTS { 881

MATCH (emp)-[:PARTICIPATED_IN] 882

->(proj:Project) 883

WHERE proj.department 884

<> dept.name 885

}) 886

RETURN dept.name AS department, 887

manager.name AS manager, 888

size(subordinates) AS emp_count 889

• Temporal Graph Analysis: Question: “List 890

all stocks that experienced a drop of more than 891

5% in a single day after 5 consecutive days of 892

price increases.” 893

Cypher Pseudo-code: 894

MATCH (s:Stock)-[r:HAS_DAILY_DATA] 895

->(d:DailyData) 896

WITH s, d ORDER BY d.date ASC 897

WITH s, COLLECT(d) AS data 898

WHERE size(data) >= 6 899

AND ANY(i IN RANGE(0, 900

size(data)-6) 901

WHERE 902

REDUCE(isRising = true, 903

j IN [0..4] | 904

isRising AND 905

data[i+j+1].close_price > 906

data[i+j].close_price 907

) 908

AND (data[i+5].close_price - 909

data[i+6].close_price) / 910

data[i+5].close_price >= 0.05 911

RETURN s.name AS stock, 912

data[i+5].date AS peak_date, 913

data[i+6].date AS drop_date 914
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Algorithm 1: Question Expansion Pattern Selection Algorithm
Input: Set of entities and relations {E,R}, schema of G, set of expansion patterns

{P1, P2, P3, P4, P5, P6}
Output: Selected expansion pattern and corresponding entities and relations

1 Step 1: Expansion Pattern Filtering
2 for each expansion pattern Pi in {P1, P2, . . . , P6} do
3 if Pattern Pi meets the predefined conditions based on E, R, and G then
4 Include Pi in the set of valid patterns

5 else
6 Remove Pi from the set of valid patterns

7 Step 2: Expansion Pattern Selection
8 for each valid expansion pattern Pi do
9 Set initial weight of Pi as w(Pi) =

1
6

10 for each previously used expansion pattern Pi do
11 Halve its weight: w(Pi) =

w(Pi)
2

12 Redistribute the halved weight equally among other remaining patterns

13 Select the expansion pattern Pselected with the highest weight:
14 Pselected = argmaxPi w(Pi)
15 Step 3: Entity and Relation Selection
16 Determine the potential candidate entities Ecandidates based on Pselected
17 for each candidate entity e ∈ Ecandidates do
18 Set initial weight of entity e as w(e) = 1

|Ecandidates|
19 if e has been referenced in the previous dialogue step then
20 Increase w(e) by 1

4 , indicating higher likelihood of selection

21 Redistribute the increased weight evenly among other remaining entities

22 Determine the potential relations Rcandidates based on Pselected
23 for each relation r ∈ Rcandidates do
24 Assign weight to r using a similar process as entity selection

25 return Selected expansion pattern Pselected, selected entities, and selected relations

9.2 Question expansion patterns selection915

algorithm.916

In this section, we present our question expansion917

pattern selection algorithm, a key innovation of918

this work. As described in Section 4.2, the Context919

Manager stores a set of entities and relations, along920

with six expansion patterns.921

As illustrated in Algorithm 1, our algorithm fol-922

lows three main steps:923

• Expansion Pattern Filtering: Based on the924

set of entities, relations, and the schema of925

G, we sequentially evaluate the conditions for926

each of the six expansion patterns (P1-P6) us-927

ing predefined rules. We filter out the patterns928

that do not meet the necessary conditions.929

• Expansion Pattern Selection: From the re-930

maining expansion patterns, we select the 931

most appropriate one according to their as- 932

signed weights. Initially, each pattern is given 933

a weight of 1/6. If a pattern has already been 934

used, its weight is halved, and the reduced 935

weight is evenly distributed among the other 936

remaining patterns. 937

• Entity and Relation Selection: Once the ex- 938

pansion pattern is selected, we proceed to 939

choose the corresponding entities and rela- 940

tions. In the entity selection process, we 941

first identify the potential candidate entities 942

based on the chosen pattern. Then, we as- 943

sign weights to these entities. Initially, each 944

potential entity receives an equal weight of 945

1/|E|, where |E| is the total number of can- 946

didate entities. If an entity has been refer- 947
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enced in the previous step of the dialogue, its948

weight increases by 1/4, indicating a higher949

likelihood of its selection in the current step.950

The increased weight is evenly redistributed951

among the remaining entities to maintain bal-952

ance. The relation selection follows a similar953

approach.954

9.3 Prompt for Question Generation955

As shown in Figure 3, this prompt generates clear956

and contextually relevant questions based on a957

schema and dialogue history, following a question958

expansion pattern. It guides the LLM to produce959

either an opening question or a follow-up ques-960

tion that incorporates colloquial, informal, and am-961

biguous expressions to better simulate real user962

queries, using entity placeholders according to the963

expansion pattern. The output includes both a raw964

question with references and a fully disambiguated965

version, free of placeholders and references, ensur-966

ing contextual relevance and structural clarity. It967

is worth noting that, since we are constructing a968

Chinese dataset, the prompt is originally written in969

Chinese. For ease of reading, however, we have970

provided an English translation.971

9.4 Analysis of Dataset Generation972

Methodology and Dataset Characteristics973

9.4.1 Detailed Mechanisms of Dataset974

Construction Components975

In order to explain more detailed descriptions of976

the internal mechanisms of our dataset construction977

framework components, we provide the following978

explanations for the key modules: Question Gen-979

erator, GQL Generator, and GQL Validator and980

Optimizer.981

Question Generator. The Question Generator982

leverages a LLM to produce contextually coherent983

questions by conditioning on the dialogue history984

and relevant schema information. Specifically, the985

LLM is prompted with both previous turns in the986

conversation and masked templates to ensure that987

the generated questions maintain semantic continu-988

ity and relevance to the evolving dialogue context.989

Detailed prompt designs and example outputs are990

provided in Figure 3.991

GQL Generator. To convert natural language992

questions into executable GQL commands, the993

GQL Generator employs a fine-tuned LLM guided994

by the complete database schema. The genera-995

tor incorporates the full schema context and uses996

the reformulated question, which includes disam- 997

biguated references and expanded context, to pro- 998

duce accurate and context-aware GQL queries. 999

This approach is inspired by the method described 1000

in (Liang et al., 2024b), which effectively integrates 1001

schema constraints to generate GQL. 1002

GQL Validator and Optimizer. The GQL Val- 1003

idator and Optimizer modules are responsible for 1004

the semantic verification and refinement of gener- 1005

ated queries. The Validator executes the generated 1006

GQL query against the graph database and com- 1007

pares the results with the expected outcomes in- 1008

ferred from the dialogue context to identify any dis- 1009

crepancies. Upon detecting inconsistencies, the Op- 1010

timizer uses carefully designed prompts—identical 1011

to the refiner prompts described in (Liang et al., 1012

2024b)—to guide the LLM in iteratively revising 1013

and improving the query. These prompts empha- 1014

size error correction, adherence to the database 1015

schema, and maintaining contextual consistency. 1016

Further details regarding the prompt design and the 1017

iterative optimization process can be found in lines 1018

355–368 of this paper. 1019

Together, these components form a tightly inte- 1020

grated framework that ensures generated questions 1021

and GQL queries are both contextually coherent 1022

and semantically accurate, thereby effectively sup- 1023

porting the construction of a high-quality multi- 1024

turn NL2GQL dataset. 1025

9.4.2 Effectiveness of Dataset-Based Training 1026

for GQL Generation 1027

The core question raised concerns the ability of 1028

current LLMs to generate high-quality multi-turn 1029

GQL dialogues, particularly in the absence of task- 1030

specific training data. While LLMs such as Chat- 1031

GPT or Qwen2.5 can generate GQL queries with- 1032

out fine-tuning, the accuracy of such outputs is far 1033

from guaranteed. Our framework incorporates a 1034

dataset-driven training process to enhance the pre- 1035

cision of generated queries and reduce the loss of 1036

usable data due to filtering invalid outputs. To date, 1037

there exists no more effective method for reliably 1038

improving GQL generation quality, especially in 1039

complex multi-turn scenarios. 1040

To better understand the effectiveness of our 1041

training method and the necessity of filtering, we 1042

conducted two additional evaluations: 1043

• (1) Direct generation without filtering: We 1044

generated 1,000 multi-turn dialogue samples 1045

without applying any error filtering or training. 1046
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Instruction:
You are an expert in both language processing and NebulaGraph. Given the schema, question expansion
pattern, and dialogue history, generate a clear, relevant, and contextually appropriate question by following
the rules below:

1. Generate a question based on the schema and dialogue context, ensuring it is contextually relevant and
logically continues the conversation. The question should be conversational in style, incorporating
ellipses, omissions, and vague expressions wherever appropriate.

2. Use placeholders for entities, such as: [s] for stock, [c] for chairman, [h] for stockholder, [t] for
trade, [p] for public offering fund, [f] for fund manager, [i] for industry, [d] for time, and [m] for
numbers.

3. If the dialogue history is empty, create an opening question. If there is existing dialogue, generate a
follow-up question that aligns with the provided question expansion pattern.

4. Generate the raw question in a conversational style, incorporating relevant references.

5. Generate the formal question based on the raw question. The formal question should be a disam-
biguated version of the raw question, clarified and free of placeholders or references.

Input:
1. Schema Information:
{SCHEMA}
2. Dialogue History:
{DIALOGUE_HISTORY}
3. Question Expansion Pattern:
{QUESTION_EXPANDING_PATTERN}

Output:
Provide the generated raw question after "Question" and the formal question after "Complete Question"
directly.

Question:

Complete Question:

Figure 3: The prompt for question generation.

The results show that the execution accuracy1047

(EX) for single-turn queries was only 39.8%,1048

while the overall multi-turn accuracy (AEX)1049

dropped to just 8.4%. This highlights the poor1050

reliability of direct generation without task-1051

specific fine-tuning or filtering mechanisms1052

• (2) Fine-tuning with limited data: We fine-1053

tuned the GQL generator using only 500 an-1054

notated samples under the "fine-tuning with1055

all schema" setting and evaluated it on the1056

same benchmark test set as in our main1057

experiments. The resulting execution ac-1058

curacy (EX) and average execution accu-1059

racy (AEX) were 29.99% and 15.42%, re-1060

spectively—substantially lower than the best-1061

performing results reported in our main paper 1062

(EX: 65.39%, AEX: 38.30%). These results 1063

further confirm the importance of using a high- 1064

quality, sufficiently large training set for accu- 1065

rate GQL generation in multi-turn settings. 1066

Moreover, Table 6 reveals a dramatic 50% per- 1067

formance drop in both EM and EX scores from 1068

Round 1 (R1) to Rounds 5+ (R5+), highlighting 1069

that the primary bottleneck lies in maintaining con- 1070

textual understanding and reasoning across multi- 1071

ple dialogue turns, rather than in single-turn query 1072

generation. 1073

These findings suggest that the key limitation is 1074

not the dataset itself but rather the inherent diffi- 1075

culty of maintaining dialogue coherence and rea- 1076
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soning across multiple conversational turns. Con-1077

sequently, targeted dataset design and fine-tuning1078

remain critical components in improving multi-turn1079

GQL generation.1080

It is worth reiterating that directly using1081

LLMs to generate GQL queries often results1082

in low accuracy, far from being satisfactory for1083

practical use. This necessitates a post-processing1084

pipeline that filters and optimizes the generated1085

GQLs. Our primary goal is to construct a high-1086

quality multi-turn NL2GQL dataset, where main-1087

taining the coherence and scalability of natural lan-1088

guage questions is crucial. Given the initially low1089

quality of GQLs produced by the LLM, we apply1090

strict filtering to remove a large portion of erro-1091

neous intermediate outputs, thereby ensuring the1092

reliability of the final dataset.1093

Furthermore, as shown in Table 5, the LLM1094

fine-tuned on our generated dataset significantly1095

outperforms the ICL-based approach across multi-1096

ple evaluation metrics. This demonstrates that our1097

dataset effectively enhances the LLM’s ability to1098

understand and generate accurate graph queries in1099

multi-turn scenarios.1100

9.4.3 Handling of Historical Information in1101

Multi-turn NL2GQL1102

In our MTGQL dataset and baseline methods, we1103

explicitly model the interdependency of dialogue1104

history to handle multi-turn queries. Specifically,1105

rather than simply concatenating the entire dia-1106

logue sequence, we employ a structured approach1107

in which the dialogue context consists of:1108

• Previous questions — to provide linguistic1109

and semantic context;1110

• Previously generated GQL queries — to1111

preserve formal query structures and con-1112

straints;1113

• Execution results or answers of prior1114

queries — to help verify correctness and1115

guide refinements;1116

• Entities and relations involved in prior1117

turns — to focus on relevant schema com-1118

ponents.1119

This structured context is maintained and man-1120

aged by the Context Manager module (described in1121

Section 4.2), which reformulates the current user1122

question into a more explicit and self-contained1123

query by referencing the above components. This1124

reformulated question, together with an extracted 1125

relevant sub-schema, is then passed to the GQL 1126

generation and refinement modules. 1127

We use prompt templates that incorporate these 1128

historical elements to guide the language model in 1129

generating accurate and context-aware GQL state- 1130

ments. This approach goes beyond naive sequence 1131

concatenation by leveraging execution feedback 1132

and schema relevance, improving the handling of 1133

coreferences, ellipsis, and multi-turn dependencies. 1134

9.4.4 Keyword Analysis 1135

To evaluate the richness and syntactic diversity of 1136

query expressions in the StockGQL dataset, we 1137

conducted a keyword frequency analysis across the 1138

training, development, and test sets. Specifically, 1139

we focused on core nGQL-related terms, categorized 1140

as follows: 1141

• Query Control: MATCH, GO, FETCH, LOOKUP, 1142

WHERE, YIELD, WITH, LIMIT, ORDER BY, GROUP 1143

BY, RETURN 1144

• Logical Operators: AND, OR, NOT, XOR 1145

• Graph Traversal: VERTEX, EDGE, OVER, 1146

REVERSELY, BIDIRECT 1147

• Aggregation Functions: COUNT, SUM, AVG, 1148

MAX, MIN, COLLECT, DISTINCT 1149

Excluding structural keywords such as MATCH 1150

and RETURN, which appear in nearly all queries 1151

by default, the results in Table 8 show that each 1152

dataset split contains a substantial number of in- 1153

formative and diverse keywords. Notably, the test 1154

set contains an average of more than 2.1 such key- 1155

words per sample. This reflects the high syntactic 1156

complexity and operational diversity of StockGQL, 1157

highlighting its effectiveness as a benchmark for 1158

evaluating the expressive capabilities of NL2GQL 1159

models. 1160

Total Keywords GQL Count Avg

Train 20479 19320 1.06
Dev 3448 3252 1.16
Test 7352 6624 1.11

Table 8: Statistics of nGQL keyword usage in the Stock-
GQL dataset.
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9.4.5 Query Type Statistics1161

To better understand the distribution of query in-1162

tents in the MTGQL dataset, we following the1163

question type categorization framework proposed1164

in (Liang et al., 2024a), we conducted a compre-1165

hensive statistical analysis of StockGQL. As shown1166

in Table 9, StockGQL covers a diverse range of1167

query types, with particularly high representation1168

in complex categories such as Numerical Sorting,1169

Relationship Filtering, and Relationship Inference.1170

train dev test

Entity property 2145 345 770
Numerical sorting 4039 841 1448
Relationship inference 2585 415 891
Yes/No question 1281 249 473
Relationship filtering 4276 602 1396
Attribute comparison 1897 274 782
Edge property 1923 272 635
String filtering 1174 254 229

Table 9: Performance of our method on various types
of queries in the FinGQL dataset.

9.5 Expansion Patterns and Alignment with1171

User Behavior1172

While it is inherently challenging to ensure that1173

automatically generated questions fully capture the1174

diversity of real user behavior, our goal is to ap-1175

proximate realistic multi-turn interaction scenarios1176

as closely as possible.1177

To this end, we define six expansion pat-1178

terns, each designed to reflect common user in-1179

tents—such as refining a previous query, shifting1180

focus to related entities, or requesting aggregated1181

information. As shown in Table 1, these patterns1182

offer structural guidance during data generation.1183

We also include representative examples to illus-1184

trate how each pattern constrains and informs the1185

generation of follow-up questions in a multi-turn1186

setting.1187

Furthermore, as demonstrated in Prompt 3, these1188

patterns are explicitly embedded in the prompt in-1189

structions provided to the LLM. We additionally re-1190

quire that the generated questions adopt a conversa-1191

tional tone, featuring ellipses, omissions, and vague1192

expressions where appropriate. These expansion1193

patterns act as soft constraints that help the LLM1194

maintain coherence, contextual relevance, and logi-1195

cal progression across dialogue turns, thereby im-1196

proving the plausibility and utility of the resulting1197

dataset.1198

9.6 Generalization to Other Datasets 1199

To evaluate the generalization capability of our 1200

proposed multi-turn dataset MTGQL, we con- 1201

ducted cross-dataset transfer experiments on Stock- 1202

GQL(Liang et al., 2024b). Specifically, following 1203

the method in(Liang et al., 2024b), we fine-tuned 1204

the same GQL generator model on MTGQL and 1205

directly evaluated it on the StockGQL test set, with- 1206

out any further fine-tuning on StockGQL data. 1207

The results are summarized in Table 10. We 1208

observe that, although the model trained solely on 1209

MTGQL does not surpass models directly trained 1210

on StockGQL, it still achieves competitive perfor- 1211

mance, with EM and EX scores exceeding 80 1212

Additionally, we explored a joint training strat- 1213

egy where the model was first trained on MTGQL 1214

and then fine-tuned on StockGQL. This setting 1215

yielded consistent improvements of approximately 1216

4.5% across all metrics compared to training on 1217

StockGQL alone. These results suggest that MT- 1218

GQL serves as a valuable complementary resource, 1219

enhancing the generalization ability and robustness 1220

of models for NL2GQL tasks. 1221

Training Dataset EM (%) EX (%)

StockGQL only 85.44 86.25
MTGQL only 81.61 80.23
MTGQL + StockGQL 90.15 90.89

Table 10: Cross-dataset evaluation: training on MTGQL
and testing on StockGQL.

9.7 Manual Evaluation Protocol 1222

To assess the dataset’s quality, we conducted a 1223

human evaluation involving three domain experts. 1224

They independently rated 200 randomly sampled 1225

dialogues from each split (train, dev, test), totaling 1226

600 dialogues. Each dialogue was evaluated on 1227

four dimensions: 1228

• Coherence: logical flow across dialogue 1229

turns. 1230

• Question Diversity: variety in question types 1231

and forms. 1232

• Coverage: breadth of entities and relations 1233

involved. 1234

• Semantic Accuracy: alignment of questions 1235

with the schema and their meaningfulness. 1236
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Each dimension was scored on a 1–5 scale,1237

where 1 = very poor, 2 = poor, 3 = fair, 4 = good,1238

and 5 = excellent. Detailed guidelines for the scor-1239

ing are as follows:1240

• Coherence:1241

– 1: Dialogue is incoherent or inconsistent.1242

– 2: Frequent logical gaps.1243

– 3: Partially coherent with some abrupt1244

transitions.1245

– 4: Mostly logical and connected.1246

– 5: Fully coherent and natural dialogue1247

flow.1248

• Question Diversity:1249

– 1: Highly repetitive questions.1250

– 2: Limited variation in question form or1251

content.1252

– 3: Moderate diversity.1253

– 4: Good variation in question types.1254

– 5: Broad and rich variety of question1255

forms and intents.1256

• Coverage:1257

– 1: Very narrow focus on one topic or1258

entity.1259

– 2: Minor variation in entities or relations.1260

– 3: Involves a few distinct schema ele-1261

ments.1262

– 4: Covers a range of entity and relation1263

types.1264

– 5: Broad and comprehensive schema cov-1265

erage.1266

• Semantic Accuracy:1267

– 1: Questions are semantically invalid or1268

nonsensical.1269

– 2: Multiple inconsistencies with schema.1270

– 3: Generally valid but with minor seman-1271

tic flaws.1272

– 4: Mostly correct and meaningful.1273

– 5: Fully accurate, meaningful, and well-1274

grounded in the schema.1275

Each dialogue was evaluated independently by1276

all three experts, and the final score per dimension1277

was averaged. To ensure consistency in annotation,1278

we computed inter-rater agreement using Cohen’s1279

Kappa, which yielded a score of 85.76, indicating1280

a high level of annotation reliability.1281

9.7.1 Example Case Analysis 1282

Here is a sample dialogue excerpt and its evalua- 1283

tion: 1284

• Dialogue: 1285

– Q1: “Who is the CEO of [Company A]?” 1286

– Q2: “What subsidiaries does it own?” 1287

– Q3: “Among them, which were founded 1288

after 2010?” 1289

• Expert Scores: 1290

– Coherence: 5 — Each turn builds natu- 1291

rally on the previous. 1292

– Diversity: 4 — Mix of factoid and tem- 1293

poral questions. 1294

– Coverage: 5 — Involves various en- 1295

tity types (company, person, subsidiary, 1296

time). 1297

– Semantic Accuracy: 5 — All questions 1298

align well with the schema and are mean- 1299

ingful. 1300

9.8 Dependency-aware Method 1301

To address the challenge of modeling multi- 1302

turn dependencies in NL2GQL, we propose a 1303

Dependency-aware Method (DA), which extends 1304

the Dependency-aware Multi-turn Dataset Con- 1305

struction Framework with necessary adaptations, 1306

following the approach of (Liang et al., 2024b) and 1307

tailoring it to the MTGQL dataset setting. 1308

The proposed DA method comprises three key 1309

components: a Context Manager, a GQL Gener- 1310

ator, and a GQL Refiner. These components are 1311

designed to collaboratively maintain dialogue co- 1312

herence, support context-sensitive reasoning, and 1313

generate accurate graph queries in multi-turn inter- 1314

actions. The pseudocode of the algorithm is shown 1315

in Algorithm 2. 1316

Context Manager. This module is responsible 1317

for maintaining and organizing the dialogue his- 1318

tory across turns. For each turn, it constructs a 1319

structured context that includes: 1320

• Natural language questions from previous 1321

turns; 1322

• Corresponding GQL queries generated in ear- 1323

lier turns; 1324

• Execution results of those queries; 1325
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Algorithm 2: Dependency-aware Multi-turn NL2GQL Inference
Input: Graph database G; multi-turn dialogue C = {(Q1, A1), . . . , (Qt−1, At−1)}; current

question Qt

Output: Executable GQL query GQLt

1 Initialize: Structured contextH ← ∅;
2 for i← 1 to t− 1 do
3 Extract (Qi, Ai) from C;
4 GQLi ← previously generated query for Qi;
5 Entitiesi, Relationsi ← Analyze(GQLi, Ai);
6 H ← H∪ {Qi, GQLi, Ai, Entitiesi, Relationsi};

7 Q
explicit
t ← Reformulate(Qt,H); // Resolve coreference and ellipsis

8 SubSchemat ← ExtractRelevantSubSchema(G,H, Qexplicit
t );

9 GQLinit
t ← GQLGenerator(Qexplicit

t , SubSchemat);
10 A

pred
t ← Execute(GQLinit

t , G);
11 if IsAligned(Apred

t , Qt,H) then
12 GQLt ← GQLinit

t ;
13 else
14 GQLt ← Refine(GQLinit

t , A
pred
t , Qt,H);

15 return GQLt

• Involved entities and relations, representing1326

the dynamic subgraph explored so far.1327

Before generating the current turn’s query, the Con-1328

text Manager reformulates the user question into a1329

more explicit, context-independent version. This1330

includes resolving coreferences (e.g., “their”, “its”)1331

and filling in ellipses. It also retrieves a relevant1332

sub-schema by identifying schema elements men-1333

tioned in both the dialogue history and the current1334

turn, ensuring precise grounding.1335

GQL Generator. Given the reformulated ques-1336

tion and the retrieved sub-schema, this module uti-1337

lizes a fine-tuned large language model (LLM) to1338

generate a candidate GQL query. Following the1339

method described in (Liang et al., 2024b), the gen-1340

erator aims to produce structurally and semantically1341

accurate queries aligned with the user’s intent in1342

the current dialogue context.1343

GQL Refiner. Due to the inherent difficulty of1344

GQL generation in complex multi-turn settings,1345

we introduce a post-generation refinement step.1346

The Refiner evaluates whether the generated query1347

aligns with the intended meaning of the user input1348

by analyzing its execution result. If inconsisten-1349

cies are detected, the Refiner prompts the model to1350

revise the query, improving execution correctness1351

and robustness.1352

Collaboration Mechanism. The three compo- 1353

nents operate in a tightly coupled workflow. The 1354

Context Manager ensures that rich contextual infor- 1355

mation is provided to the GQL Generator, enabling 1356

it to account for prior dialogue turns. The GQL 1357

Generator then produces an initial query candidate, 1358

which is further validated and refined by the GQL 1359

Refiner. This collaborative mechanism ensures con- 1360

tinuity, contextual fidelity, and high-quality query 1361

generation throughout the multi-turn process. 1362

Overall, this dependency-aware pipeline bridges 1363

the gap between natural conversational flow and the 1364

generation of accurate, executable graph queries, 1365

thereby enabling robust and interpretable NL2GQL 1366

performance in complex multi-turn scenarios. 1367

9.9 Further Experimental Results 1368

9.9.1 Error Analysis 1369

To better understand the limitations of our pro- 1370

posed baseline methods on the MTGQL dataset, 1371

we conduct a detailed error analysis across the four 1372

benchmark baselines: ICL-AS, RSE, FT-AS, and 1373

DA. We manually analyze 300 error cases sampled 1374

from the test set, categorizing them into distinct 1375

failure types inspired by prior analyses in Spider 1376

2.0 (Lei et al., 2024) and adapted to the multi-turn 1377

NL2GQL setting. 1378
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Error Type ICL-AS RSE FT-AS DA

Schema Selection Errors 29% 25% 27% 18%
Contextual Understanding Failures 37% 28% 34% 21%
Logical Form Generation Errors 14% 22% 19% 13%
Ambiguity / Underspecification 13% 15% 12% 12%
Execution-based Errors 7% 10% 8% 6%

Table 11: Distribution of error types among different baseline methods on 300 sampled error cases.

Turn(s) and Prediction Details and Error Type

Turn 1: Show me the companies invested by
Baidu.
Turn 2: What about their subsidiaries?
Prediction (ICL-AS): Returns subsidiaries of
all companies.

Fails to resolve “their” as referring to companies invested by Baidu.
Contextual history is not retained, leading to incorrect scope.
Error Type: Contextual Understanding Failure.

Turn: Which listed companies are controlled by
Tencent and operate in the finance sector?
Prediction (RSE): Omits “listed” constraint.

Schema extraction covers “Tencent” and “finance sector”, but “listed”
is ignored in generation due to weak schema grounding.
Error Type: Logical Form Generation Error.

Turn: How about its most recent investment?
Prediction (FT-AS): Returns any investment
without ordering.

Fails to interpret “most recent” as temporal ordering. Lacks temporal
reasoning or clarification strategy.
Error Type: Ambiguity / Underspecification.

Table 12: Representative errors and analysis on MTGQL dataset.

1. Schema Selection Errors (26%) These errors1379

arise when the model selects incorrect or incom-1380

plete schema elements (i.e., node or edge types) for1381

the current turn. This is especially problematic in1382

ICL-AS and FT-AS, which must reason over the en-1383

tire schema without contextual focus. In multi-turn1384

scenarios, the lack of dynamic schema narrowing1385

often causes confusion, especially when the current1386

utterance implicitly refers to earlier entities.1387

2. Contextual Understanding Failures (32%)1388

These include failures where the model misun-1389

derstands the dependencies between the current1390

utterance and the previous turns. For instance,1391

co-reference resolution (e.g., “What about its sub-1392

sidiaries?”) or omitted subject/object references1393

lead to incorrect query generation. While DA per-1394

forms better by maintaining structured dialogue1395

history, it still suffers in complex chained questions1396

where the dependency is not linear or when entity1397

grounding fails.1398

3. Logical Form Generation Errors (18%)1399

These involve syntactically valid but semantically1400

incorrect GQL outputs. Common examples include1401

incorrect filtering conditions, missing relation con-1402

straints, or reversed edges. The RSE method par-1403

ticularly struggles here when the related schema1404

extraction is too coarse, leading to semantically1405

under-constrained queries.1406

4. Ambiguity and Underspecification (14%) 1407

These errors stem from under-specified questions, 1408

where even humans may interpret multiple valid 1409

GQLs. For example, “How about their latest in- 1410

vestment?” may refer to different temporal orders 1411

depending on context. Models often make arbitrary 1412

choices without proper grounding, especially in 1413

ICL-AS where no external clarification mechanism 1414

exists. 1415

5. Execution-based Errors (10%) Some errors 1416

only become evident after query execution, such as 1417

returning empty results due to overly specific filters 1418

or semantic mismatches. The DA method mitigates 1419

this partially using its GQL Refiner module, but 1420

residual issues persist due to imperfect execution 1421

feedback alignment. 1422

Summary of Trends We observe that multi-turn 1423

interaction introduces new challenges absent in 1424

single-turn NL2GQL tasks: co-reference resolu- 1425

tion, context propagation, and entity linking across 1426

turns are key failure points. Baselines relying on 1427

static prompts (ICL-AS) or full-schema inputs (FT- 1428

AS) tend to suffer from information overload or 1429

misalignment. Dependency-aware methods (DA) 1430

show promise but remain sensitive to entity track- 1431

ing and reformulation quality. 1432

20



9.9.2 Representative Error Cases1433

To further illustrate the limitations of baseline meth-1434

ods on the MTGQL dataset, we present representa-1435

tive error cases, highlighting how multi-turn con-1436

text and schema interaction contribute to failures.1437

As shown in Table 12, these representative cases1438

reveal that multi-turn NL2GQL tasks go beyond1439

simple slot-filling. Models must integrate con-1440

textual memory, resolve references, and incorpo-1441

rate implicit constraints (e.g., time, status). Cur-1442

rent baselines lack robust mechanisms for resolv-1443

ing such ambiguities, motivating future work to-1444

ward hybrid symbolic-neural architectures or multi-1445

agent dialogue managers.1446
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