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Abstract

In recent years, research on transforming
natural language into graph query language
(NL2GQL) has been increasing. Most existing
methods focus on single-turn transformation
from NL to GQL. In practical applications, user
interactions with graph databases are typically
multi-turn, dynamic, and context-dependent.
While single-turn methods can handle straight-
forward queries, more complex scenarios often
require users to iteratively adjust their queries,
investigate the connections between entities, or
request additional details across multiple dia-
logue turns. Research focused on single-turn
conversion fails to effectively address multi-
turn dialogues and complex context dependen-
cies. Additionally, the scarcity of high-quality
multi-turn NL2GQL datasets further hinders
the progress of this field. To address this
challenge, we propose an automated method
for constructing multi-turn NL2GQL datasets
based on Large Language Models (LLMs) ,
and apply this method to develop the MTGQL
dataset, which is constructed from a financial
market graph database and will be publicly re-
leased for future research. Moreover, we pro-
pose three types of baseline methods to assess
the effectiveness of multi-turn NL2GQL trans-
lation, thereby laying a solid foundation for
future research.

1 Introduction

As data complexity and interconnectedness grow
across various domains, graph data structures have
become essential for effectively representing and
analyzing relationships (Zhao et al., 2022a; Sui
et al., 2024). This increasing demand for efficient
data representation has driven the widespread adop-
tion of graph databases. Consequently, graph query
language (GQL) has emerged as a crucial tool for
interacting with these systems, playing a pivotal
role in tasks such as database management, infor-
mation retrieval, and data analysis (Lopes et al.,

2023; Wang et al., 2020; Pavlis, 2024), as shown
in Figure 1. However, translating natural language
(NL) queries into GQL presents a significant chal-
lenge, as it requires users to possess technical exper-
tise in database operations and a deep understand-
ing of specific query syntax and patterns. This com-
plexity creates a substantial barrier for individuals
without a technical background (Zhao et al., 2022b,
2023). To address this challenge, numerous auto-
matic NL2GQL methods have been proposed (Guo
et al., 2022; Zhou et al., 2024b; Liang et al., 2024a;
Tao et al., 2024; Tran et al., 2024), making graph
databases accessible to more audiences.

Recent advances in NL2GQL are primarily
derived from the Seq2Seq framework, such as
those demonstrated in (Guo et al., 2022) and
CoBGT (Tran et al., 2024). With the rise of
LLMs, performance has been further enhanced,
leading to the development of numerous LLM-
based methods (Zhou et al., 2024b; Liang et al.,
2024a; Tao et al., 2024; Liang et al., 2024b; Liu
et al., 2024). Alongside these methods, several
NL2GQL datasets have been developed, includ-
ing SpCQL (Guo et al., 2022), CySpider (Zhao
et al., 2023), Text2Cypher (Ozsoy et al., 2024),
R3-NL2GQL(Zhou et al., 2024b), TCMGQL,
EduGQL(Liu et al., 2024), and StockGQL (Liang
et al., 2024b). The proposed methods and datasets
mainly focus on single-turn queries.

While single-turn NL2GQL translation can han-
dle relatively simple queries, multi-turn interac-
tions introduce several complexities that require
advanced handling. First, the system must maintain
context across multiple historical queries, as each
new query builds upon the information provided
in previous ones. This necessitates robust con-
text management to accurately capture the user’s
evolving intent and ensure the generation of con-
sistent, relevant queries. Second, as users refine
or expand their queries during the interaction, the
system must dynamically adjust the context to ac-



System: CITIC Securities.

opening_price
: What price?
System: ¥30.26
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Figure 1: An example of a multi-turn interaction between a
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commodate these changes. Last but not least, cur-
rent datasets are primarily designed for single-turn
queries, resulting in limited data available for train-
ing and evaluating multi-turn systems. This con-
straint hampers the development of more sophisti-
cated, context-aware solutions.

To tackle the challenge posed by the scarcity
of multi-turn NL2GQL datasets, we propose a
dependency-aware multi-turn dataset construc-
tion framework, which performs collaborative op-
timization between LLMs, graph data, and dialogue
dependency in an iterative way. Our framework is
composed of four essential components: a Con-
text Manager, Question Generator, GQL Generator,
and GQL Optimizer. Here, context manager plays
as a central unit to integrate the information of di-
alogue history and graph data and send to other
constituents. Question generator, GQL generator,
and GQL optimizer are LLM-based constituents
to analysis the information from the context man-
ager and output the generated questions, GQLs,
and answers. They also interact with each other
for mutual checking and correction. Using this
framework, we have created the MTGQL dataset,
a Chinese multi-turn NL2GQL dataset based on a
financial market NebulaGraph database.

Our main contributions are as follows:

* A Standard Framework: We propose a
novel framework for constructing multi-turn
NL2GQL datasets. To the best of our knowl-
edge, this is the first method specifically de-

and a System, with the orange sections representing

for each question. The color coding highlights the contextual dependencies,

signed for building such datasets.

* MTGQL Dataset: By applying our approach
to a Chinese financial NebulaGraph database,
we built MTGQL, the first Chinese multi-turn
NL2GQL dataset.

* Benchmark Methods: We introduce the
Backmarch methods for the MTGQL dataset,
establishing a strong foundation for future re-
search.

2 Related Work

2.1 NL2GQL

Early work in NL2GQL focused on template gen-
eration and heuristic rule-based systems. Recent
advancements in NL2GQL tasks have seen a shift
to deep learning-based approaches. Among the
pioneering studies, the work (Guo et al., 2022)
was the first to apply a Seq2Seq framework to
NL2GQL, introducing a copying mechanism along-
side the Seq2Seq model to enhance GQL gener-
ation. This approach paved the way for subse-
quent deep learning-based models in this space.
The CoBGT model (Tran et al., 2024) further
advanced this field by integrating key-value ex-
traction, relation-property prediction, and Cypher
query generation. This model combines BERT,
GraphSAGE, and Transformer architectures to ad-
dress the NL2GQL task.

The emergence of LLMs has further advanced
the research in NL2GQL. The paper (Tao et al.,



2024) presented a revision-based method for
NL2GQL, leveraging LL.Ms without fine-tuning,
further simplifying the process of adapting LLMs
for NL2GQL tasks. R®-NL2GQL (Zhou et al.,
2024b) integrates small and large foundation mod-
els for ranking, rewriting, and refining tasks, en-
hancing query quality by better understanding con-
text and relationships. The work in (Liang et al.,
2024a) proposed aligning LLMs with domain-
specific graph databases to enhance query accuracy
and domain relevance. It emphasizes the adapt-
ability of LLMs when tailored to specific graph
schemas, ensuring that generated queries are con-
textually appropriate. In another study, (Liang
et al., 2024b) proposed a three-agent system for
NL2GQL, comprising a Preprocessor for data han-
dling, a Generator for GQL creation, and a Refiner
that refines queries based on execution results. This
multi-agent approach provides a more structured
and efficient translation process, addressing both
query generation and validation. The method (Liu
et al., 2024) proposed using template-filling and
problem rewriting techniques with LL.Ms to pro-
vide contextual information, improving the model’s
comprehension of the complex relationships be-
tween NL, graph schemas, and database data.
These methods are all based on the single-turn
NL2GQL task'.

2.2 NL2GQL Dataset

The development of NL2GQL datasets has also
evolved alongside advances in model architectures.
Several datasets have been proposed in recent years,
each addressing different aspects of the NL2GQL
task. The SpCQL (Guo et al., 2022) dataset is
constructed by manually annotating 10,000 NL
queries with corresponding Cypher queries based
on a single Neo4j graph database. CySpider (Zhao
et al., 2023) dataset is constructed by developing
a SQL2Cypher algorithm that maps SQL queries
to Cypher clauses, which are then paired with the
original natural language queries to create a par-
allel corpus. Text2Cypher (Ozsoy et al., 2024)
combined, cleaned, and organized several publicly
available datasets into a total of 44,387 instances to
enable effective fine-tuning and evaluation. R3-
NL2GQL (Zhou et al., 2024b) constructed the
dataset by manually creating NL-GQL pairs, using
foundation models to generate diverse interpreta-
tions, and refining them manually.

' A more detailed comparison with similar tasks is provided
in the Appendix 9.1.

Recently, using LLMs to construct data has
become an effective solution to the problem of
data scarcity, especially for tasks in specific do-
mains (Ding et al., 2024; Long et al., 2024; Zhou
et al., 2024a). The TCMGQL and EduGQL (Liu
et al., 2024) datasets were constructed from real-
world databases, ensuring standardized types and
diversity. Over ten NL and GQL templates were
developed based on database schema information,
further enhanced by LLMs. The work (Liang et al.,
2024a) constructs datasets by first generating NL-
GQL pairs from a graph database, followed by a
two-step data augmentation process using Chat-
GPT to ensure diverse and comprehensive query
coverage. The generated pairs are then grounded
and verified. Building upon the work in (Liang
et al., 2024a), the work (Liang et al., 2024b) in-
troduced improvements by incorporating subgraph
extraction related to GQL and the colloquializa-
tion of named entities, while also constructing the
StockGQL dataset. Unlike these methods, we focus
on developing a multi-turn NL2GQL dataset.

3  Multi-turn NL2GQL Task Formulation

A graph database G consists of a large number of
connected data (nodes and edges).

We first define single-turn NL2GQL as fol-
lows. Given a graph database G and a question
Q, the NL2GQL system is supposed to return an
executable GQL command that can be executed
against GG and produce an answer A:

GQL =F(Q,G).

Here, I is a function that generates the graph query
language GQL based on (), and G. In single-turn
NL2GQL, different question-answer pairs in the
dataset D = {(Q1, A1), (Q2, A2), ...} are indepen-
dent.

In comparison, the interdependent question-
answer pairs in multi-turn NL2GQL problem
form a complete dialogue, denoted as C =
((Q1,A41),(Q2,A2), ..., (Qm, Ap)) and a set of di-
alogues forms a dataset D = {C4,Cy,...}. We
refer to each question-answer pair as one round of
the dialogue. In the multi-turn NL2GQL, at the
t-th round, given multiple rounds of historical in-
teraction between the user (Y, the objective is to
generate the GQL, denoted as G() L., correspond-
ing to the question Q;:

GQL; = F(Q4, Cy, G),
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Figure 2: Our framework consists of five synergistic components: the Context Manager, Question Generator, GQL
Generator, GQL Validator and Optimizer, and Dataset Filter. These components work collaboratively to handle
question generation, GQL generation, GQL validation and refinement, and dataset filtering. Steps 1, 2, and 3 are
iteratively executed for each data point to generate multi-turn data.

where Cy = {Q1, A1, ..., Q—1), A—1)} includes
all relevant user inputs and system responses exe-
cuted against ¢ via the GQLs.

4 A Dependency-aware Multi-turn
Dataset Construction Framework

4.1 Overview

To construct a multi-turn NL2GQL dataset, we fol-
low three key criteria that distinguish it from single-
turn NL2GQL: (1) Graph Grounding: Each ques-
tion should be factually grounded via G to ensure
its corresponding answers can be successfully re-
trieved from the graph data with a GQL. (2) Inter-
dependent Turns: The question-answer pairs in
a dialogue should be interdependent. Specifically,
the question in the current round could be linked to
the dialogue history via either questions or answers
in the previous rounds. (3) Diverse Dependency
Types: The types of the questions and dialogue
dependencies should present diversity to cover the
application of practical scenario.

As showed in Figure 2, the framework com-
prises five interconnected components: Context
Manager, Question Generator, GQL Generator,
GQL Validator and Optimizer, and Dataset Fil-
ter. Next, we will detail the implementation and
role of each core component.

4.2 Context Manager

The Context Manager is the control components
of the system, Its functions include the following
aspects:

Updating the Dialogue History: The Context
Manager is responsible for maintaining the dia-
logue history, which includes C}, the set of entities
and relations, and the expansion pattern history. It
continuously updates the dialogue history to ensure
that all interactions are accurately tracked.
Fulfilling Masked Questions: Since the Ques-
tion Generator generates specific entity names for
certain questions but may not have access to the
available entities in the database, placeholders are
used. Therefore, another responsibility of the Con-
text Manager is to replace the placeholders with
actual entity names from the graph database.
Controlling the Generation Process: The Con-
text Manager oversees the entire data generation
process, controlling both the start and end. It is
also responsible for selecting question expansion
patterns based on the set of entities and relations
in the history. To ensure the generation of high-
quality questions, we have designed six fundamen-
tal expansion patterns, as shown in Table 1, and the
expansion pattern selection algorithm is detailed in
Appendix 9.2. We adjust the number of conversa-
tion rounds iteratively, keeping the total rounds per



Pattern Description

Example

P1: Attribute Follow-up

Generates follow-up questions about an entity’s at-
tributes based on the previous query.

Q1: What is the largest stock in the liquor industry?

Al: Moutai.
Q2: What is the registered capital?

P2: Temporal Shift queries related to historical data.

Introduces the time dimension to generate

Q1: What is the highest price of Moutai today?

Al:20.5
Q2: What was the closing price yesterday?

P3: Relation Extension . .
tionships.

Expands the dialogue by querying related rela-

Q1: What is the stock code for Tencent?

Al: HK0700
Q2: What is the industry data?

P4: Same-Type Entity tiple entities.

Used for comparative reasoning between mul-

Q1: What is the opening price of Baidu today?

Al: 150
Q2: What about Alibaba?

P5: Aggregation Calculation .
geres lations such as averages or sums.

Involves queries requiring aggregation calcu-

Q1: What is the opening price of Tengfei today?

Al: 417
Q3: What is the day-on-day growth?

P6: Conditional Filtering

Filters data based on specific conditions. Q1: Which funds have a management fee below 1%?

Al: Fund A, Fund B
Q2: Which ones have a size greater than 5 billion?

Table 1: Patterns for expanding subsequent questions.

data point between 5 and 8 to maintain appropriate
depth and complexity.

4.3 Question Generator

We use an LLM as the Question Generator, cate-
gorizing questions into initial and follow-up types.
The initial question is randomly generated based
on the schema of (G, while subsequent questions
follow the expansion patterns from the Context
Manager. These questions must inherit context,
promoting diversity, complexity, and a colloquial
tone.

To better guide the LLM in generating high-
quality questions, we instruct it to produce more
colloquial, informal, and ambiguous expressions
that more accurately simulate real user queries.
The prompt format is shown in Appendix 9.3. It is
important to note that since the Question Genera-
tor is only aware of the schema of GG and does not
have access to the specific entities stored within
the database, questions involving entities are gener-
ated as placeholder templates. For example, What
is the opening price of [s] stock today?
where [s] represents a placeholder for the stock
entity name.

4.4 GQL Generator

The GQL Generator is responsible for generating
the corresponding GQL based on the schema of G
and the complete question provided by the Context
Manager. To enhance generation efficiency, we use

the full schema to construct the prompt for fine-
tuning the LLM, as outlined in Paper (Liang et al.,
2024a). With the fine-tuned LLM, the GQL Gener-
ator ensures accurate understanding and handling
of the graph database’s schema when generating
GQL.

4.5 GQL Validator and Optimizer

The GQL Validator and Optimizer play a crucial
role in ensuring that the GQL are both syntactically
and semantically correct. The workflow of the GQL
Validator and Optimizer proceeds as follows: first,
Syntax Validation, followed by Semantic Valida-
tion. Only GQLs containing syntax or semantic
errors will undergo optimization for improvement.
Syntax Validation: This ensures that the gener-
ated GQL statements are syntactically correct and
executable in the graph database. The GQL is ex-
ecuted on the database, and if it runs successfully
with expected results, it is syntactically correct;
otherwise, it is flagged for optimization.
Semantic Validation: This ensures that the GQL
accurately reflects the original question’s intent.
We utilize the reverse generation validation method
introduced in paper (Liang et al., 2024a) to infer the
original question from the generated GQL. If the
vector embedding similarity between the inferred
and original question is low, it indicates that the
generated GQL requires further optimization.
GOQL Optimization: When syntax errors are de-
tected, the system combines the original ques-



tion, generated GQL, and error information into
a prompt for the LLM to correct. The modified
GQL is then re-validated for syntax. For semantic
optimization, if the GQL doesn’t align with the
original question’s intent, both the question and
GQL are input into the LLM for correction. The
corrected GQL undergoes semantic validation, and
this process repeats up to three times. If all attempts
fail, the system instructs the Context Manager to
regenerate the question.

4.6 Dataset Filter

After dataset generation, while the methods out-
lined above ensure the quality of each data point,
they cannot guarantee the absence of similarity and
redundancy. To address this, we apply two filtering
methods.
GQL-based Filtering: We replace entity names in
the GQL with placeholders and collect the masked
GQL into a set. By comparing sets across data
points, we calculate their similarity. If more than
three identical masked GQL are found, one is dis-
carded as redundant, effectively reducing dupli-
cates in the dataset.
Embedding-based Filtering: To prevent high sim-
ilarity between questions across data points, we
concatenate all questions within each data entry and
encode them using the al1-MinilM-L6-v2 model
from Sentence-BERT to obtain high-dimensional
semantic representations. We then compute the co-
sine similarity between these vector embeddings
across all data points. Any data point pair with
cosine similarity exceeding a threshold of 0.6 is
considered semantically redundant and discarded.
Finally, we applied our approach to a Chinese
financial market NebulaGraph database to develop
the MTGQL dataset based on nGQL syntax.

S Data Analysis

5.1 Dataset Statistics

As shown in Table 3, the dataset contains 4,500
multi-turn dialogues, split into 3,000 for training,
500 for development, and 1,000 for testing. Each
dialogue has an average of 6.49 turns, reflecting
balanced dialogue depth. In total, there are 29,196
GQL statements, with multiple queries per dia-
logue, indicating the dataset’s complexity. On aver-
age, each dialogue involves 4.79 entities and 5.59
relations, requiring models to handle rich and di-
verse graph structures. The slightly higher averages
in the test set suggest a more challenging evalua-

tion setting. Overall, the dataset is well-structured
and suitable for training and evaluating models on
dialogue-based graph query tasks.

5.2 Human Evaluation

We evaluated the quality of the dataset by asking
three domain experts to rate 200 randomly selected
dialogues from each of the training, validation, and
test sets. The evaluation focused on four dimen-
sions: coherence, question diversity, coverage, and
semantic accuracy, using a 1-5 scale. As shown in
Table 2, the results confirm the dataset’s effective-
ness for training and evaluating dialogue systems.
Additionally, we recalculated Cohen’s Kappa and
obtained a score of 85.76, indicating a high level
of inter-rater agreement. More information on the
manual evaluation can be found in Appendix ??.

train dev test

Coherence 448 431 4.17
Question Diversity 4.16 4.08 4.01
Semantic Accuracy 4.68 4.52 4.38

Table 2: Human evaluation results.

5.3 Comparison with Other Datasets

As shown in Table 4, the table compares several
NL2GQL datasets, with MTGQL standing out as
the only multi-turn dataset. Unlike other single-
turn datasets, MTGQL is specifically designed to
handle more complex, multi-turn queries, making
it particularly suitable for tasks that require mul-
tiple interactions. Therefore, MTGQL will play
a pivotal role in advancing research in multi-turn
NL2GQL. For a more detailed description of the
dataset generation methodology and dataset analy-
sis, please refer to Appendix 9.4.

6 Models and Experimental Setup

6.1 Benchmark Methods

In-context learning with all schema method
(ICL-AS): This method provides a set of exam-
ples within the input prompt, which concatenates
all schema information and the question, guiding
the LLM to generate the corresponding GQL.
Related schema extraction method (RSE): Dur-
ing training, this method uses the related schema
and question as input, with the labeled GQL as
output, while fine-tuning the LLM. In inference, it
guides the LLM to extract related schema.



train dev test total

Number of Data Points 3000 500 1000 4500

Total Number of GQLs 19320 3252 6624 29196

Average Dialogue Turns per Data 6.44 6.50 6.62 6.49

Average entity per Data 4.64 4.89 5.17 4.79

Average relation per Data 5.47 5.65 5.93 5.59

Table 3: Basic Statistics of the Dataset.

Dataset Language Multi or Single Domain Syntax Number
SpCQL (Guo et al., 2022) Chinese Single Open-domain Cypher 10000
CySpider (Zhao et al., 2023) English Single Open-domain Cypher 4929
Text2Cypher (Ozsoy et al., 2024)  English Single Open-domain Cypher 44387
FinGQL (Liang et al., 2024a) Chinese Single Finance nGQL -
MediGQL (Liang et al., 2024a) Chinese Single Medicine Cypher -
R3-NL2GQL (Zhou et al., 2024b) %ﬂlgr}f;f Single ~ Open-domain nGQL -
StockGQL (Liang et al., 2024b) Chinese Single Stock nGQL 6456
TCMGQL (Liu et al., 2024) Chinese Single Medicine Cypher -
EduGQL (Liu et al., 2024) Chinese Single Education ~ Cypher -
MTGQL(Ours) Chinese Multi Stock nGQL 4500

Table 4: A summary of the main NL2GQL datasets. From this, we can conclude that MTGQL is the only multi-turn
dataset. The "-" in the Number column indicates that the dataset has not been open-sourced yet.

Fine-tuning with with all schema method (FT-
AS): Approach concatenates all schema informa-
tion with the question as input while applying
LoRA for parameter-efficient fine-tuning of the
base LLM.

Dependency-aware method (DA): We adapt the
Dependency-aware Multi-turn Dataset Construc-
tion Framework with minor modifications and fol-
low the method proposed in (Liang et al., 2024b)
to construct a dependency-aware baseline. The
adapted method comprises three key modules: a
Context Manager, a GQL Generator, and a GQL
Refiner. First, the Context Manager maintains the
dialogue history, including previous questions, cor-
responding GQL queries and answers, as well as
the involved entities and relations. It reformulates
the current question based on the dialogue history
to make it more formal and information-rich. Ad-
ditionally, it extracts the relevant sub-schema for
the current turn. Second, the GQL Generator
generates a GQL query based on the reformulated
question and the extracted sub-schema. Third, the
GOQL Refiner improves the generated query by re-
fining it based on its execution results to enhance
accuracy and relevance. More details are provided

in Appendix 9.8.

6.2 Experimental Setup

Evaluation Metrics. The work in (Guo et al.,
2022) introduced Exact Match (EM) and Exact
Explanation (EX) for single-turn tasks. For multi-
turn tasks, we propose Overall Exact Match (AEM)
and Overall Exact Explanation (AEX), where all
turns in a dialogue must be correct for the data
to be considered successful. The formulas are as

follows: , )
number of GQLs with a correct logical form

EM =
total number of GQL
number of data points with all GQLs
AEM = having correct logical form 2)

total number of data points
number of GQLs with a correct execution result

EX = 3
total number of GQL )

number of data points with all GQLs
having correct execution results 4)

total number of data points

AEX =

Implementation Details.  Our experiments
were conducted on an A800 GPU. We selected
Qwen2.5-14B-Instruct (Team, 2024), LLaMA-3.1-
8B-Instruct (Dubey et al., 2024), and GLM-4-9B-
Chat (GLM et al., 2024) as the LLM backbone



Method Backbones EM(%) AEM(%) EX(%) AEX(%)
GLM-4-9B-Chat 31.13 6.50 30.01 5.80
ICL-AS LLaMA-3.1-8B-Instruct 27.66 6.10 27.76 6.40
) Qwen2.5-14B-Instruct 32.55 7.50 29.70 7.20
ChatGPT-40 38.29 10.9 36.28 8.80
RES GLM-4-9B-Chat 56.91 25.70 53.64 22.30
LLaMA-3.1-8B-Instruct  58.76 27.10 56.63 26.70
Qwen2.5-14B-Instruct 59.60 28.30 57.71 26.80
FT-AS GLM-4-9B-Chat 60.14 30.60 56.16 28.80
LLaMA-3.1-8B-Instruct ~ 61.23 31.10 60.19 29.20
Qwen2.5-14B-Instruct 63.56 31.50 61.70 31.20
DA GLM-4-9B-Chat 65.53 38.70 63.47 36.60
LLaMA-3.1-8B-Instruct ~ 66.73 38.40 63.36 37.20
Qwen2.5-14B-Instruct 68.45 40.60 65.39 38.30

Table 5: The comparison between the baseline methods is shown, with the bold numbers indicating the best results.

models. In this paper, all sequence encoding is per-
formed using the all-MiniLM-L6-v2 model, with
the embedding dimension set to 384. All the num-
ber of demonstrations K are set as 4.

7 Results
7.1 Main Results

Based on the results presented in Table 5, the
DA method consistently outperforms all other ap-
proaches across all evaluation metrics. Notably,
when combined with the Qwen2.5-14B-Instruct
backbone, DA achieves the highest scores in EM
(68.45%), AEM (40.60%), EX (65.39%), and
AEX (38.30%). In contrast, the ICL-AS method
yields comparatively lower results, which can be at-
tributed to the absence of high-quality GQL-related
corpora during the pretraining of its underlying
models. Moreover, performance differences ob-
served across various backbone models within the
same method underscore the substantial impact of
model architecture and backbone selection on the
final outcomes. This highlights the necessity of
carefully choosing and aligning the model back-
bone with the specific demands of the task. Never-
theless, it is worth noting that the overall accuracy
on this task remains relatively low, suggesting that
there is still considerable room for improvement.

7.2 Breakdown Results by Round

Table 6 presents the results of the best baseline
method across different rounds, showing a clear
decline in performance as rounds increase. This
decrease is likely due to the increasing complexity
of multi-turn interactions, which challenges the
model’s ability to maintain context and generate
consistent responses.

Round EM(%) EX(%)
R1 84.21 82.88
R2 73.66 73.13
R3 60.25 58.44
R4 47.84 46.18
R5+ 31.23 30.96

Table 6: The breakdown of results by round, where
R1-R4 represent rounds 1 to 4, and R5+ denotes round
5 and beyond.

Round EM(%) EX(%)
P1 70.47 68.49
P2 64.70 63.66
P3 66.52 64.12
P4 73.84 71.68
P5 62.59 62.32
P6 67.36 66.46

Table 7: Results by the question expansion pattern.

Table 7 shows performance across different ques-
tion expansion patterns, with notable variations.
These fluctuations indicate that the model is more
effective with simpler question expansions (like
P1 and P4), while more complex patterns (like P2
and P5) lead to lower accuracy, likely due to the
increased difficulty of generating precise answers.
More experimental analyses are provided in Ap-
pendix 9.9.

8 Conclusion

In this paper, we introduce a dependency-aware
multi-turn dataset construction framework for
building multi-turn NL2GQL datasets. Using this
framework, we create MTGQL, the first multi-
turn NL2GQL dataset. Finally, we propose three
baseline methods based on this dataset, laying the
groundwork for future advancements in the field.



Limitations

There are several limitations that we would like to
address in future work.

First, although we have developed a Chinese
multi-turn NL2GQL dataset, we have not yet com-
pleted the translation into English due to the ex-
tensive amount of entity and relation names that
require translation from the graph database. Once
this process is completed, we plan to release a bilin-
gual (Chinese-English) version of the dataset as
open source to facilitate broader research adoption.

Second, while our dataset supports multi-turn
queries involving complex contextual dependen-
cies, the current benchmark methods rely on manu-
ally designed schemas or dependency-aware mod-
ules. These methods may not generalize well
to unseen domains or schema structures. Future
work could explore schema-agnostic approaches or
large-scale pretraining on multi-turn graph query-
ing tasks.

Third, the current evaluation focuses primarily
on execution accuracy of generated GQL. How-
ever, execution correctness may not fully capture
semantic correctness or partial matching of sub-
graph intents. Incorporating human evaluation or
developing more fine-grained metrics could pro-
vide better insights into model behavior.

Lastly, although our dataset construction process
includes context reformulation and sub-schema ex-
traction, the pipeline still involves certain heuristic
rules and prompt designs that may not scale well
across diverse graph domains. We aim to further
automate and generalize the dataset construction
framework to reduce reliance on manual tuning.
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9 Appendix

9.1 Comparison with Similar Tasks

Text2SQL

While numerous highly effective Text2SQL
methods have been developed (Caferoglu and Ulu-
soy, 2024; Wang et al., 2023; Talaei et al., 2024),
the fundamental differences between GQL and
SQL present significant challenges for directly ap-
plying these methods to the NL2GQL task. Sev-
eral studies have examined the differences between
Text2SQL and NL2GQL (Guo et al., 2022; Liang
et al., 2024a; Zhou et al., 2024b), and we highlight
the key distinctions in the following areas:

 Differences in standard syntax: Unlike
SQL, which follows a standardized query lan-
guage, GQL lacks a unified standard. Dif-
ferent graph databases adopt distinct query
languages such as Cypher, nGQL, and Grem-
lin. This fragmentation complicates dataset
construction, model generalization, and the
development of consistent training paradigms.

* Differences in query types: GQL surpasses
the typical CRUD operations by offering ad-
vanced query types like sub-graph and path
queries that enable complex data traversal. Its
extensive keyword set further enhances its
flexibility, making it a powerful tool for a wide
range of data manipulation needs.

* Differences in translation difficulties:
NL2GQL involves understanding graph
structures, path reasoning, and pattern
matching, requiring high query flexibility,
which may lead to issues such as path
combination explosion. In contrast, Text-to-
SQL faces challenges like pattern matching,
table/column name mapping, and SQL syntax
parsing, but the overall query structure
remains relatively stable.

* Differences in language model capabilities:
Text-to-SQL benefits from a large corpus and
extensive datasets, while NL2GQL has far
fewer resources. Given that most widely used
pre-trained models, especially LLMs, rely on
pre-training followed by fine-tuning, this dis-
parity in resources directly impacts their per-
formance on these tasks.

In conclusion, due to the substantial differences
between the two, it is essential to develop special-
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ized approaches for NL2GQL rather than simply
adapting Text-to-SQL methods.

Multi-turn Dialogue

Multi-turn dialogue systems involve an iterative,
back-and-forth exchange between a user and a sys-
tem, where the conversation evolves over multiple
turns. These systems aim to refine user queries,
explore topics in more depth, and generate con-
textually appropriate responses based on previ-
ous interactions. Unlike single-turn dialogue sys-
tems, which address isolated queries, multi-turn
dialogues manage dynamic and context-sensitive
information flows (Yi et al., 2024).

Multi-turn NL2GQL is a specialized form of
Multi-turn Dialogue. Unlike other Multi-turn Dia-
logue systems, NL2GQL focuses on converting nat-
ural language into GQL based on a graph database.
This distinction makes Multi-turn NL2GQL ideal
for dynamic interactions with graph-based data,
where each query may involve traversing different
paths or nodes. The model must not only under-
stand the current query but also retain information
from previous interactions to generate accurate,
contextually relevant graph queries. This ability
to maintain coherence across multiple turns poses
challenges in handling complex graph traversals
and evolving contexts.

Multi-turn Knowledge Base Question Answer-
ing. A knowledge graph is a structured knowledge
base represented as a graph, designed to organize
vast amounts of real-world information in a flexible
and scalable manner. Its primary goal is to enable
machines to understand this information and per-
form reasoning and inference (Zhao et al., 2022b;
Pan et al., 2024). In contrast, a graph database pri-
marily focuses on efficient data storage and query
optimization, rather than on knowledge reasoning
and semantic understanding. As such, KBQA em-
phasizes knowledge-based reasoning and semantic
understanding to extract answers from structured
knowledge bases, while NL2GQL focuses on con-
structing effective graph queries.

A typical example of a problem that NL2GQL
can solve but KBQA cannot is as follows:

Problem: Find all users who participated in
at least two projects in 2023, and whose friends
include at least one person from the R&D depart-
ment.

NL2GQL Solution: The complex graph traver-
sal logic can be directly expressed using graph
query languages like Cypher Pseudo-code:



MATCH (u:User)-[:PARTICIPATED_IN]->(
p:Project {year: 2023})
WITH u, COUNT(p) AS project_count
WHERE project_count >= 2
MATCH (u)-[:FRIEND_OF]->(f:User)-
[ :BELONGS_TO]->(:Dept {name: "R&D"})
RETURN u.name, COLLECT(f.name)

AS friends_in_rd

Why KBQA Struggles with This Problem:

* Multi-hop Relationship Traversal: This
problem requires reasoning across 4 hops:
User — Project — Count — Friend — Depart-
ment. Traditional KBQA systems typically
handle only single-hop or fixed-path queries
and are not equipped to flexibly manage dy-
namic path lengths (e.g., recursive traversal of
the "FRIEND_OF" relationship).

* Aggregation and Conditional Combination:
The task involves both an aggregation opera-
tion (e.g., COUNT(p) >= 2) and a conditional
filter (e.g., friends from the R&D department).
KBQA systems usually cannot combine ag-
gregation functions with multiple entity con-
ditions within the same query.

* Implicit Logical Dependencies: The con-
dition "at least one friend belongs to the
R&D department” necessitates an existence
check (EXISTS) rather than a simple attribute
match. KBQA typically returns explicitly
stored triples and cannot dynamically infer
such existence conditions.

Other NL2GQL-exclusive Capabilities include

the following question examples:

¢ Path Queries: Question: “Find the shortest
collaboration path from User A to User B,
where all nodes in the path are employees
who joined after 2020.”

Cypher Pseudo-code:

MATCH (a:User {name: "UserA"}),

(b:User {name: "UserB"}),

path = shortestPath((a)-

[ : COLLABORATES_WITHx1-(b))
WHERE ALL(node IN nodes(path)
WHERE node:Employee AND

node. join_date >= '2020-01-01")
RETURN path

* Dynamic Pattern Reasoning: Question:
“Count the managers in all departments
who have more than 10 subordinates and
whose subordinates have participated in cross-
departmental projects.”

Cypher Pseudo-code:

MATCH (dept:Department)
<-[:MANAGES]-(manager :Manager)
WITH dept, manager, [(manager)-
[ :MANAGES]->(emp:Employee) | emp]
AS subordinates
WHERE size(subordinates) > 10
AND ANY(emp IN subordinates
WHERE EXISTS {
MATCH (emp)-[:PARTICIPATED_IN]
->(proj:Project)
WHERE proj.department
<> dept.name
1))
RETURN dept.name AS department,
manager.name AS manager,
size(subordinates) AS emp_count

Temporal Graph Analysis: Question: “List
all stocks that experienced a drop of more than
5% in a single day after 5 consecutive days of
price increases.”

Cypher Pseudo-code:

MATCH (s:Stock)-[r:HAS_DAILY_DATA]
->(d:DailyData)
WITH s, d ORDER BY d.date ASC
WITH s, COLLECT(d) AS data
WHERE size(data) >= 6
AND ANY(i IN RANGE(@Q,
size(data)-6)

WHERE
REDUCE(isRising = true,
j IN [0..4] |

isRising AND
datali+j+1].close_price >
datal[i+j].close_price

)

AND (datal[i+5].close_price -
datali+6].close_price) /
datali+5].close_price >= 0.05

RETURN s.name AS stock,
data[i+5].date AS peak_date,
datali+6].date AS drop_date



Algorithm 1: Question Expansion Pattern Selection Algorithm

Input: Set of entities and relations { £/, R}, schema of G, set of expansion patterns

{P1, P2, P3, P4, P5, P6}

Output: Selected expansion pattern and corresponding entities and relations

—

Step 1: Expansion Pattern Filtering

for each expansion pattern P; in { P1, P2,..., P6} do

2
3 if Pattern P; meets the predefined conditions based on E, R, and G then
4

L Include P; in the set of valid patterns

else
L Remove P; from the set of valid patterns

w

2

Step 2: Expansion Pattern Selection
for each valid expansion pattern P; do

9 L Set initial weight of P; as w(P;) = &

=)

10 for each previously used expansion pattern P; do

1 L Halve its weight: w(P;) = @

Redistribute the halved weight equally among other remaining patterns

13 Select the expansion pattern Piejected With the highest weight:

14 Pielected = arg maxp, ’lU(R)
15 Step 3: Entity and Relation Selection

16 Determine the potential candidate entities Fcapdidates based on Pyelected

17 for each candidate entity e € E qngidates 0
18 Set initial weight of entity e as w(e)

- |Ecandidates|
19 if e has been referenced in the previous dialogue step then
20 L Increase w(e) by %, indicating higher likelihood of selection
21 Redistribute the increased weight evenly among other remaining entities

22 Determine the potential relations Rcandidates based on Pyelected

23 for each relation v € R qngidates 40O

2 L Assign weight to r using a similar process as entity selection

25 return Selected expansion pattern Piejecroq, Selected entities, and selected relations

9.2 Question expansion patterns selection
algorithm.

In this section, we present our question expansion
pattern selection algorithm, a key innovation of
this work. As described in Section 4.2, the Context
Manager stores a set of entities and relations, along
with six expansion patterns.

As illustrated in Algorithm 1, our algorithm fol-
lows three main steps:

* Expansion Pattern Filtering: Based on the
set of entities, relations, and the schema of
(7, we sequentially evaluate the conditions for
each of the six expansion patterns (P1-P6) us-
ing predefined rules. We filter out the patterns
that do not meet the necessary conditions.

* Expansion Pattern Selection: From the re-
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maining expansion patterns, we select the
most appropriate one according to their as-
signed weights. Initially, each pattern is given
a weight of 1/6. If a pattern has already been
used, its weight is halved, and the reduced
weight is evenly distributed among the other
remaining patterns.

Entity and Relation Selection: Once the ex-
pansion pattern is selected, we proceed to
choose the corresponding entities and rela-
tions. In the entity selection process, we
first identify the potential candidate entities
based on the chosen pattern. Then, we as-
sign weights to these entities. Initially, each
potential entity receives an equal weight of
1/IEl, where |El is the total number of can-
didate entities. If an entity has been refer-



enced in the previous step of the dialogue, its
weight increases by 1/4, indicating a higher
likelihood of its selection in the current step.
The increased weight is evenly redistributed
among the remaining entities to maintain bal-
ance. The relation selection follows a similar
approach.

9.3 Prompt for Question Generation

As shown in Figure 3, this prompt generates clear
and contextually relevant questions based on a
schema and dialogue history, following a question
expansion pattern. It guides the LLM to produce
either an opening question or a follow-up ques-
tion that incorporates colloquial, informal, and am-
biguous expressions to better simulate real user
queries, using entity placeholders according to the
expansion pattern. The output includes both a raw
question with references and a fully disambiguated
version, free of placeholders and references, ensur-
ing contextual relevance and structural clarity. It
is worth noting that, since we are constructing a
Chinese dataset, the prompt is originally written in
Chinese. For ease of reading, however, we have
provided an English translation.

9.4 Analysis of Dataset Generation
Methodology and Dataset Characteristics

9.4.1 Detailed Mechanisms of Dataset
Construction Components

In order to explain more detailed descriptions of
the internal mechanisms of our dataset construction
framework components, we provide the following
explanations for the key modules: Question Gen-
erator, GQL Generator, and GQL Validator and
Optimizer.

Question Generator. The Question Generator
leverages a LLM to produce contextually coherent
questions by conditioning on the dialogue history
and relevant schema information. Specifically, the
LLM is prompted with both previous turns in the
conversation and masked templates to ensure that
the generated questions maintain semantic continu-
ity and relevance to the evolving dialogue context.
Detailed prompt designs and example outputs are
provided in Figure 3.

GQL Generator. To convert natural language
questions into executable GQL commands, the
GQL Generator employs a fine-tuned LLM guided
by the complete database schema. The genera-
tor incorporates the full schema context and uses
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the reformulated question, which includes disam-
biguated references and expanded context, to pro-
duce accurate and context-aware GQL queries.
This approach is inspired by the method described
in (Liang et al., 2024b), which effectively integrates
schema constraints to generate GQL.

GQL Validator and Optimizer. The GQL Val-
idator and Optimizer modules are responsible for
the semantic verification and refinement of gener-
ated queries. The Validator executes the generated
GQL query against the graph database and com-
pares the results with the expected outcomes in-
ferred from the dialogue context to identify any dis-
crepancies. Upon detecting inconsistencies, the Op-
timizer uses carefully designed prompts—identical
to the refiner prompts described in (Liang et al.,
2024b)—to guide the LLM in iteratively revising
and improving the query. These prompts empha-
size error correction, adherence to the database
schema, and maintaining contextual consistency.
Further details regarding the prompt design and the
iterative optimization process can be found in lines
355-368 of this paper.

Together, these components form a tightly inte-
grated framework that ensures generated questions
and GQL queries are both contextually coherent
and semantically accurate, thereby effectively sup-
porting the construction of a high-quality multi-
turn NL2GQL dataset.

9.4.2 Effectiveness of Dataset-Based Training
for GQL Generation

The core question raised concerns the ability of
current LL.Ms to generate high-quality multi-turn
GQL dialogues, particularly in the absence of task-
specific training data. While LL.Ms such as Chat-
GPT or Qwen2.5 can generate GQL queries with-
out fine-tuning, the accuracy of such outputs is far
from guaranteed. Our framework incorporates a
dataset-driven training process to enhance the pre-
cision of generated queries and reduce the loss of
usable data due to filtering invalid outputs. To date,
there exists no more effective method for reliably
improving GQL generation quality, especially in
complex multi-turn scenarios.

To better understand the effectiveness of our
training method and the necessity of filtering, we
conducted two additional evaluations:

* (1) Direct generation without filtering: We
generated 1,000 multi-turn dialogue samples
without applying any error filtering or training.



Instruction:

You are an expert in both language processing and NebulaGraph. Given the schema, question expansion
pattern, and dialogue history, generate a clear, relevant, and contextually appropriate question by following
the rules below:

1. Generate a question based on the schema and dialogue context, ensuring it is contextually relevant and
logically continues the conversation. The question should be conversational in style, incorporating
ellipses, omissions, and vague expressions wherever appropriate.

2. Use placeholders for entities, such as: [s] for stock, [c] for chairman, [h] for stockholder, [t] for
trade, [p] for public offering fund, [f] for fund manager, [i] for industry, [d] for time, and [m] for
numbers.

3. If the dialogue history is empty, create an opening question. If there is existing dialogue, generate a
follow-up question that aligns with the provided question expansion pattern.

4. Generate the raw question in a conversational style, incorporating relevant references.

5. Generate the formal question based on the raw question. The formal question should be a disam-
biguated version of the raw question, clarified and free of placeholders or references.

Input:

1. Schema Information:

{SCHEMA }

2. Dialogue History:
{DIALOGUE_HISTORY }

3. Question Expansion Pattern:
{QUESTION_EXPANDING_PATTERN}

Output:
Provide the generated raw question after "Question" and the formal question after "Complete Question"
directly.

Question:

Complete Question:

Figure 3: The prompt for question generation.

The results show that the execution accuracy performing results reported in our main paper
(EX) for single-turn queries was only 39.8%, (EX: 65.39%, AEX: 38.30%). These results
while the overall multi-turn accuracy (AEX) further confirm the importance of using a high-
dropped to just 8.4%. This highlights the poor quality, sufficiently large training set for accu-
reliability of direct generation without task- rate GQL generation in multi-turn settings.

specific fine-tuning or filtering mechanisms
Moreover, Table 6 reveals a dramatic 50% per-

¢ (2) Fine-tuning with limited data: We fine- formance drop in both EM and EX scores from
tuned the GQL generator using only 500 an- Round 1 (R1) to Rounds 5+ (R5+), highlighting
notated samples under the "fine-tuning with  that the primary bottleneck lies in maintaining con-
all schema" setting and evaluated it on the  textual understanding and reasoning across multi-
same benchmark test set as in our main  ple dialogue turns, rather than in single-turn query
experiments. The resulting execution ac-  generation.
curacy (EX) and average execution accu- These findings suggest that the key limitation is
racy (AEX) were 29.99% and 15.42%, re- not the dataset itself but rather the inherent diffi-
spectively—substantially lower than the best-  culty of maintaining dialogue coherence and rea-
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soning across multiple conversational turns. Con-
sequently, targeted dataset design and fine-tuning
remain critical components in improving multi-turn
GQL generation.

It is worth reiterating that directly using
LLMs to generate GQL queries often results
in low accuracy, far from being satisfactory for
practical use. This necessitates a post-processing
pipeline that filters and optimizes the generated
GQLs. Our primary goal is to construct a high-
quality multi-turn NL2GQL dataset, where main-
taining the coherence and scalability of natural lan-
guage questions is crucial. Given the initially low
quality of GQLs produced by the LLM, we apply
strict filtering to remove a large portion of erro-
neous intermediate outputs, thereby ensuring the
reliability of the final dataset.

Furthermore, as shown in Table 5, the LLM
fine-tuned on our generated dataset significantly
outperforms the ICL-based approach across multi-
ple evaluation metrics. This demonstrates that our
dataset effectively enhances the LLM’s ability to
understand and generate accurate graph queries in
multi-turn scenarios.

9.4.3 Handling of Historical Information in
Multi-turn NL2GQL

In our MTGQL dataset and baseline methods, we
explicitly model the interdependency of dialogue
history to handle multi-turn queries. Specifically,
rather than simply concatenating the entire dia-
logue sequence, we employ a structured approach
in which the dialogue context consists of:

* Previous questions — to provide linguistic
and semantic context;

* Previously generated GQL queries — to
preserve formal query structures and con-
straints;

¢ Execution results or answers of prior
queries — to help verify correctness and
guide refinements;

* Entities and relations involved in prior
turns — to focus on relevant schema com-
ponents.

This structured context is maintained and man-
aged by the Context Manager module (described in
Section 4.2), which reformulates the current user
question into a more explicit and self-contained
query by referencing the above components. This
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reformulated question, together with an extracted
relevant sub-schema, is then passed to the GQL
generation and refinement modules.

We use prompt templates that incorporate these
historical elements to guide the language model in
generating accurate and context-aware GQL state-
ments. This approach goes beyond naive sequence
concatenation by leveraging execution feedback
and schema relevance, improving the handling of
coreferences, ellipsis, and multi-turn dependencies.

9.4.4 Keyword Analysis

To evaluate the richness and syntactic diversity of
query expressions in the StockGQL dataset, we
conducted a keyword frequency analysis across the
training, development, and test sets. Specifically,
we focused on core nGQL-related terms, categorized
as follows:

* Query Control: MATCH, GO, FETCH, LOOKUP,
WHERE, YIELD, WITH, LIMIT, ORDER BY, GROUP
BY, RETURN

* Logical Operators: AND, OR, NOT, XOR

* Graph Traversal:
REVERSELY, BIDIRECT

VERTEX, EDGE, OVER,

* Aggregation Functions: COUNT, SUM, AVG,
MAX, MIN, COLLECT, DISTINCT

Excluding structural keywords such as MATCH
and RETURN, which appear in nearly all queries
by default, the results in Table 8 show that each
dataset split contains a substantial number of in-
formative and diverse keywords. Notably, the test
set contains an average of more than 2.1 such key-
words per sample. This reflects the high syntactic
complexity and operational diversity of StockGQL,
highlighting its effectiveness as a benchmark for
evaluating the expressive capabilities of NL2GQL
models.

Total Keywords GQL Count Avg
Train 20479 19320 1.06
Dev 3448 3252 1.16
Test 7352 6624 1.11

Table 8: Statistics of nGQL keyword usage in the Stock-
GQL dataset.



9.4.5 Query Type Statistics

To better understand the distribution of query in-
tents in the MTGQL dataset, we following the
question type categorization framework proposed
in (Liang et al., 2024a), we conducted a compre-
hensive statistical analysis of StockGQL. As shown
in Table 9, StockGQL covers a diverse range of
query types, with particularly high representation
in complex categories such as Numerical Sorting,
Relationship Filtering, and Relationship Inference.

train  dev test

2145 345 770
4039 841 1448
2585 415 891

Entity property
Numerical sorting
Relationship inference

Yes/No question 1281 249 473
Relationship filtering 4276 602 1396
Attribute comparison 1897 274 782

1923 272 635
1174 254 229

Edge property
String filtering

Table 9: Performance of our method on various types
of queries in the FinGQL dataset.

9.5 Expansion Patterns and Alignment with
User Behavior

While it is inherently challenging to ensure that
automatically generated questions fully capture the
diversity of real user behavior, our goal is to ap-
proximate realistic multi-turn interaction scenarios
as closely as possible.

To this end, we define six expansion pat-
terns, each designed to reflect common user in-
tents—such as refining a previous query, shifting
focus to related entities, or requesting aggregated
information. As shown in Table 1, these patterns
offer structural guidance during data generation.
We also include representative examples to illus-
trate how each pattern constrains and informs the
generation of follow-up questions in a multi-turn
setting.

Furthermore, as demonstrated in Prompt 3, these
patterns are explicitly embedded in the prompt in-
structions provided to the LLM. We additionally re-
quire that the generated questions adopt a conversa-
tional tone, featuring ellipses, omissions, and vague
expressions where appropriate. These expansion
patterns act as soft constraints that help the LLM
maintain coherence, contextual relevance, and logi-
cal progression across dialogue turns, thereby im-
proving the plausibility and utility of the resulting
dataset.

9.6 Generalization to Other Datasets

To evaluate the generalization capability of our
proposed multi-turn dataset MTGQL, we con-
ducted cross-dataset transfer experiments on Stock-
GQL(Liang et al., 2024b). Specifically, following
the method in(Liang et al., 2024b), we fine-tuned
the same GQL generator model on MTGQL and
directly evaluated it on the StockGQL test set, with-
out any further fine-tuning on StockGQL data.

The results are summarized in Table 10. We
observe that, although the model trained solely on
MTGQL does not surpass models directly trained
on StockGQL, it still achieves competitive perfor-
mance, with EM and EX scores exceeding 80

Additionally, we explored a joint training strat-
egy where the model was first trained on MTGQL
and then fine-tuned on StockGQL. This setting
yielded consistent improvements of approximately
4.5% across all metrics compared to training on
StockGQL alone. These results suggest that MT-
GQL serves as a valuable complementary resource,
enhancing the generalization ability and robustness
of models for NL2GQL tasks.

Training Dataset EM (%) EX (%)

StockGQL only 85.44 86.25
MTGQL only 81.61 80.23
MTGQL + StockGQL ~ 90.15 90.89

Table 10: Cross-dataset evaluation: training on MTGQL
and testing on StockGQL.

9.7 Manual Evaluation Protocol

To assess the dataset’s quality, we conducted a
human evaluation involving three domain experts.
They independently rated 200 randomly sampled
dialogues from each split (train, dev, test), totaling
600 dialogues. Each dialogue was evaluated on
four dimensions:

* Coherence:
turns.

logical flow across dialogue

* Question Diversity: variety in question types
and forms.

* Coverage: breadth of entities and relations
involved.

* Semantic Accuracy: alignment of questions
with the schema and their meaningfulness.



Each dimension was scored on a 1-5 scale,
where 1 = very poor, 2 = poor, 3 = fair, 4 = good,
and 5 = excellent. Detailed guidelines for the scor-
ing are as follows:

¢ Coherence:

— 1: Dialogue is incoherent or inconsistent.

— 2: Frequent logical gaps.

— 3: Partially coherent with some abrupt
transitions.

— 4: Mostly logical and connected.

— 5: Fully coherent and natural dialogue
flow.

* Question Diversity:

— 1: Highly repetitive questions.

— 2: Limited variation in question form or
content.

— 3: Moderate diversity.

— 4: Good variation in question types.

— 5: Broad and rich variety of question
forms and intents.

* Coverage:

— 1: Very narrow focus on one topic or
entity.

— 2: Minor variation in entities or relations.

— 3: Involves a few distinct schema ele-
ments.

— 4: Covers a range of entity and relation
types.

— 5: Broad and comprehensive schema cov-
erage.

* Semantic Accuracy:

— 1: Questions are semantically invalid or
nonsensical.

— 2: Multiple inconsistencies with schema.

— 3: Generally valid but with minor seman-
tic flaws.

— 4: Mostly correct and meaningful.

— 5: Fully accurate, meaningful, and well-
grounded in the schema.

Each dialogue was evaluated independently by
all three experts, and the final score per dimension
was averaged. To ensure consistency in annotation,
we computed inter-rater agreement using Cohen’s
Kappa, which yielded a score of 85.76, indicating
a high level of annotation reliability.
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9.7.1 Example Case Analysis

Here is a sample dialogue excerpt and its evalua-
tion:

* Dialogue:

— Q1: “Who is the CEO of [Company A]?”
— Q2: “What subsidiaries does it own?”

— Q3: “Among them, which were founded
after 2010?”

* Expert Scores:

— Coherence: 5 — Each turn builds natu-
rally on the previous.

— Diversity: 4 — Mix of factoid and tem-
poral questions.

— Coverage: 5 — Involves various en-
tity types (company, person, subsidiary,
time).

— Semantic Accuracy: 5 — All questions
align well with the schema and are mean-
ingful.

9.8 Dependency-aware Method

To address the challenge of modeling multi-
turn dependencies in NL2GQL, we propose a
Dependency-aware Method (DA), which extends
the Dependency-aware Multi-turn Dataset Con-
struction Framework with necessary adaptations,
following the approach of (Liang et al., 2024b) and
tailoring it to the MTGQL dataset setting.

The proposed DA method comprises three key
components: a Context Manager, a GOL Gener-
ator, and a GQL Refiner. These components are
designed to collaboratively maintain dialogue co-
herence, support context-sensitive reasoning, and
generate accurate graph queries in multi-turn inter-
actions. The pseudocode of the algorithm is shown
in Algorithm 2.

Context Manager. This module is responsible
for maintaining and organizing the dialogue his-
tory across turns. For each turn, it constructs a
structured context that includes:

* Natural language questions from previous
turns;

* Corresponding GQL queries generated in ear-
lier turns;

* Execution results of those queries;



Algorithm 2: Dependency-aware Multi-turn NL2GQL Inference

Input: Graph database G; multi-turn dialogue C' = {(Q1, A1),

question
Output: Executable GQL query GQ Ly
Initialize: Structured context H < 0;
fori < 1tot —1do
Extract (Q;, A;) from C;

A U R W N =

:xpliCit < Reformulate(Q:, H);

2

explicit

GQLM + GQLGenerator(Q;
AP o Execute(GQLM, &);
if IsAligned(A?*, Qy, 7) then

| GQLy + GQLM,
else

t GQL; + Refine(GQLitn“, Afred, Q, H);
return GQL;

10

11
12
13
14

15

GQL; < previously generated query for @;;
Entities;, Relations; < Analyze(GQL;, A;);
H <+ HU{Q;, GQL;, A;, Entities;, Relations;};

ooy (Qi—1, As—1)}; current

// Resolve coreference and ellipsis

SubSchema; + ExtractRelevantSubSchema(G, H, Q:"p“c“);
, SubSchemay);

* Involved entities and relations, representing
the dynamic subgraph explored so far.

Before generating the current turn’s query, the Con-
text Manager reformulates the user question into a
more explicit, context-independent version. This
includes resolving coreferences (e.g., “their”, “its”)
and filling in ellipses. It also retrieves a relevant
sub-schema by identifying schema elements men-
tioned in both the dialogue history and the current
turn, ensuring precise grounding.

GQL Generator. Given the reformulated ques-
tion and the retrieved sub-schema, this module uti-
lizes a fine-tuned large language model (LLM) to
generate a candidate GQL query. Following the
method described in (Liang et al., 2024b), the gen-
erator aims to produce structurally and semantically
accurate queries aligned with the user’s intent in
the current dialogue context.

GQL Refiner. Due to the inherent difficulty of
GQL generation in complex multi-turn settings,
we introduce a post-generation refinement step.
The Refiner evaluates whether the generated query
aligns with the intended meaning of the user input
by analyzing its execution result. If inconsisten-
cies are detected, the Refiner prompts the model to
revise the query, improving execution correctness
and robustness.
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Collaboration Mechanism. The three compo-
nents operate in a tightly coupled workflow. The
Context Manager ensures that rich contextual infor-
mation is provided to the GQL Generator, enabling
it to account for prior dialogue turns. The GQL
Generator then produces an initial query candidate,
which is further validated and refined by the GQL
Refiner. This collaborative mechanism ensures con-
tinuity, contextual fidelity, and high-quality query
generation throughout the multi-turn process.

Overall, this dependency-aware pipeline bridges
the gap between natural conversational flow and the
generation of accurate, executable graph queries,
thereby enabling robust and interpretable NL2GQL
performance in complex multi-turn scenarios.

9.9 Further Experimental Results

9.9.1 Error Analysis

To better understand the limitations of our pro-
posed baseline methods on the MTGQL dataset,
we conduct a detailed error analysis across the four
benchmark baselines: ICL-AS, RSE, FT-AS, and
DA. We manually analyze 300 error cases sampled
from the test set, categorizing them into distinct
failure types inspired by prior analyses in Spider
2.0 (Lei et al., 2024) and adapted to the multi-turn
NL2GQL setting.



Error Type ICL-AS RSE FT-AS DA
Schema Selection Errors 29% 25% 27% 18%
Contextual Understanding Failures 37% 28% 34% 21%
Logical Form Generation Errors 14% 22% 19% 13%
Ambiguity / Underspecification 13% 15% 12% 12%
Execution-based Errors 7% 10% 8% 6%

Table 11: Distribution of error types among different baseline methods on 300 sampled error cases.

Turn(s) and Prediction

Details and Error Type

Turn 1: Show me the companies invested by
Baidu.

Turn 2: What about their subsidiaries?
Prediction (ICL-AS): Returns subsidiaries of
all companies.

Fails to resolve “their” as referring to companies invested by Baidu.
Contextual history is not retained, leading to incorrect scope.
Error Type: Contextual Understanding Failure.

Tuarn: Which listed companies are controlled by
Tencent and operate in the finance sector?
Prediction (RSE): Omits “listed” constraint.

Schema extraction covers “Tencent” and “finance sector”, but “listed”
is ignored in generation due to weak schema grounding.
Error Type: Logical Form Generation Error.

Turn: How about its most recent investment?
Prediction (FT-AS): Returns any investment
without ordering.

Fails to interpret “most recent” as temporal ordering. Lacks temporal
reasoning or clarification strategy.
Error Type: Ambiguity / Underspecification.

Table 12: Representative errors and analysis on MTGQL dataset.

1. Schema Selection Errors (26%) These errors
arise when the model selects incorrect or incom-
plete schema elements (i.e., node or edge types) for
the current turn. This is especially problematic in
ICL-AS and FT-AS, which must reason over the en-
tire schema without contextual focus. In multi-turn
scenarios, the lack of dynamic schema narrowing
often causes confusion, especially when the current
utterance implicitly refers to earlier entities.

2. Contextual Understanding Failures (32%)
These include failures where the model misun-
derstands the dependencies between the current
utterance and the previous turns. For instance,
co-reference resolution (e.g., “What about its sub-
sidiaries?””) or omitted subject/object references
lead to incorrect query generation. While DA per-
forms better by maintaining structured dialogue
history, it still suffers in complex chained questions
where the dependency is not linear or when entity
grounding fails.

3. Logical Form Generation Errors (18%)
These involve syntactically valid but semantically
incorrect GQL outputs. Common examples include
incorrect filtering conditions, missing relation con-
straints, or reversed edges. The RSE method par-
ticularly struggles here when the related schema
extraction is too coarse, leading to semantically
under-constrained queries.
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4. Ambiguity and Underspecification (14%)
These errors stem from under-specified questions,
where even humans may interpret multiple valid
GQLs. For example, “How about their latest in-
vestment?” may refer to different temporal orders
depending on context. Models often make arbitrary
choices without proper grounding, especially in
ICL-AS where no external clarification mechanism
exists.

5. Execution-based Errors (10%) Some errors
only become evident after query execution, such as
returning empty results due to overly specific filters
or semantic mismatches. The DA method mitigates
this partially using its GQL Refiner module, but
residual issues persist due to imperfect execution
feedback alignment.

Summary of Trends We observe that multi-turn
interaction introduces new challenges absent in
single-turn NL2GQL tasks: co-reference resolu-
tion, context propagation, and entity linking across
turns are key failure points. Baselines relying on
static prompts (ICL-AS) or full-schema inputs (FT-
AS) tend to suffer from information overload or
misalignment. Dependency-aware methods (DA)
show promise but remain sensitive to entity track-
ing and reformulation quality.



9.9.2 Representative Error Cases

To further illustrate the limitations of baseline meth-
ods on the MTGQL dataset, we present representa-
tive error cases, highlighting how multi-turn con-
text and schema interaction contribute to failures.

As shown in Table 12, these representative cases
reveal that multi-turn NL2GQL tasks go beyond
simple slot-filling. Models must integrate con-
textual memory, resolve references, and incorpo-
rate implicit constraints (e.g., time, status). Cur-
rent baselines lack robust mechanisms for resolv-
ing such ambiguities, motivating future work to-
ward hybrid symbolic-neural architectures or multi-
agent dialogue managers.
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