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Abstract

Large language models (LLMs) are increasingly adopted in materials science,
enabling automated literature mining, domain-specific scientific reasoning, and
autonomous materials design. However, most existing systems are still limited to
single-modality inputs, preventing the use of rich multimodal information inherent
in the field. The electronic structure of materials is essential for predicting material
properties, understanding their origins, and guiding new materials design, yet its
integration into multimodal LLM (MLLM) frameworks has been rarely explored.
Here, we present the first systematic benchmark of pre-trained MLLMs for density
of states (DOS) interpretation. Using a high-fidelity dataset from first-principles
calculations, we evaluate MLLMs on visual question answering and captioning
tasks related to the interpretation of electronic structures, with captions scored by
both human experts and MLLM-based evaluators. Our results reveal the capabilities
and limitations of MLLMs in electronic structure analysis and provide a foundation
for developing next-generation multimodal AI systems for materials design.

1 Introduction

Large language models (LLMs) are playing an increasingly pivotal role in materials science, offering
new opportunities to accelerate materials discovery and deepen scientific understanding[1–3]. Recent
studies have explored their use in automated literature mining from large corpora[4–7], domain-
specific chatbots capable of responding to scientific queries[8, 9], and autonomous agents for materials
discovery and design[10–13]. By leveraging their reasoning capabilities, LLM-based systems have
the potential to assist researchers in hypothesis generation, data interpretation, and decision-making
throughout the materials development process[14].

However, most existing LLM applications in materials science are limited to single-modality inputs,
typically relying only on textual data. This limitation prevents them from exploiting the rich
multimodal information available in the field, such as charge densities, microscopy images, and
spectroscopic data, which provide essential insights for materials discovery and design. In recent
years, progress has been made toward multimodal approaches, such as MatterChat[15], which
integrates crystal graph representation with text. Nevertheless, one of the most critical modalities
for understanding and designing materials, the electronic structure, remains largely unexplored for
integration to multimodal LLM (MLLM) systems.

The electronic structure determines many fundamental properties of materials, such as electrical con-
ductivity, optical absorption, and catalytic activity. The density of states (DOS) is a core representation
of this structure, providing detailed insights into the distribution of the system’s electronic energy
levels. Accurate interpretation of DOS requires both visual pattern recognition and domain-specific
reasoning—capabilities that, if endowed to AI systems, could substantially enhance automated mate-
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rials analysis, literature interpretation, and data-driven materials design. While several benchmarks
for MLLMs in materials science have been developed in recent years [16, 17], there is no systematic
benchmark dedicated to electronic structure interpretation that conducts both comprehensive quanti-
tative and qualitative evaluations. Such evaluations are essential, as DOS analysis involves not only
the quantitative extraction of values such as the band gap but also the qualitative interpretation of
peak shapes and their relation to material properties.

In this work, we evaluate the capabilities of pre-trained MLLMs to perform inferential and critical
analysis of electronic structures from DOS diagrams provided as image inputs, examining the
applicability of their visual reasoning abilities to materials research. A key challenge in developing
such a benchmark lies in the difficulty of preparing high-quality datasets that pair domain-specific
visual representations with reliable ground-truth annotations, as data collected from literature often
vary in format and consistency, making it challenging to construct a reliable dataset[18]. To address
this, our study constructs an ab initio dataset based on high-accuracy first-principles calculations
to enable rigorous and reproducible evaluation of MLLM performance. To conduct comprehensive
evaluations, we introduce two complementary tasks: visual question answering (VQA) to test
quantitative inference from DOS data, and captioning to assess qualitative interpretive ability. The
captioning task is evaluated by both human experts and MLLM-based evaluators, allowing us to
assess whether, beyond quantitative prediction accuracy, MLLMs align with human judgment in the
qualitative interpretation of electronic structures. Our benchmark not only provides a snapshot of
current MLLMs in materials science but also lays the foundation for future AI systems that natively
integrate electronic structure information.

2 Experimental Setup

2.1 Task definition

In this study, the performance of MLLMs in interpreting DOS diagrams was evaluated through two
complementary tasks: quantitative VQA task and qualitative captioning task, as illustrated in Figure1.
The VQA task involved predicting physical properties from DOS diagrams, including the valence
band maximum (VBM), conduction band minimum (CBM), band gap, position of the Fermi level,
and DOS at the Fermi level, which are key quantities that directly characterize the electronic structure
and are essential for understanding material properties. The captioning task required generating
a textual interpretation of the DOS, focusing on its features, the related electronic properties, and
their correlations with material characteristics; this task was assessed by both human experts and
MLLM-based evaluators. Each evaluator rated the generated captions on a five-point scale across
three criteria: accuracy (the correctness of the description), depth (the depth of scientific insight
provided), and fluency (appropriate use of the technical terminology and clarity of expression).
Details of the scoring criteria and prompt templates for each task are provided in Appendix A.

Figure 1: Overview of the evaluation framework for benchmarking MLLMs on DOS analysis and
interpretation. (a) VQA task: given a prompt and DOS diagram, the model predicts key properties
(VBM, CBM, band gap, position of the Fermi level, and DOS at the Fermi level). (b) Captioning
task: the model generates a detailed textual interpretation of the DOS, evaluated by human experts
and MLLMs.
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2.2 Datasets and Models

All-electron density functional theory (DFT)[19, 20] calculations were performed with FHI-aims[21,
22] to construct an ab initio dataset linking DOS images with corresponding physical properties,
spanning metallic, semiconductor, and insulating materials. For DOS image preparation, the Fermi
level was aligned to 0 eV, and the x-axis covered –15 to 8 eV relative to the Fermi level. The y-axis
range was determined from the maximum DOS value (DOSmax, in states/eV/atom) within this
energy window and set to span from 0 to 1.1×DOSmax. In the VQA and captioning tasks, 899 and
20 DOS samples were used, respectively. Detailed information on dataset construction is provided in
Appendix B.

In this study, we evaluated the following MLLMs: o4-mini[23], GPT-4.1-mini[24], GPT-4o[25], and
GPT-4o-mini[26], as well as publicly available open-weight models of moderate scale, including
Llama-3.2-11B-Vision-Instruct[27], Pixtral-12B-2409[28], and Qwen2.5-VL-7B-Instruct[29]. The
temperature parameter was set to 0.1.

3 Results

3.1 VQA-based DOS analysis

Table 1 shows the prediction results for key physical properties obtained from DOS plots, including
the VBM, CBM, band gap, position of the Fermi level, and DOS at the Fermi level.

Table 1: Mean absolute error (MAE) for physical property predictions. Units for VBM, CBM, band
gap, and EF are eV; the unit for DOS at EF is states/eV/atom. The smallest MAE in each column is
shown in bold, and the second smallest is underlined.

Model VBM CBM Band gap EF DOS at EF

o4-mini 0.842 0.742 1.131 0.002 0.049
GPT-4.1-mini 1.292 1.056 1.766 0.000 0.085
GPT-4o 1.154 0.886 1.694 0.000 0.217
GPT-4o-mini 5.549 1.674 3.195 1.498 0.941
Llama-3.2-11B-Vision-Instruct 2.385 2.734 1.778 0.953 0.840
Pixtral-12B-2409 6.991 1.480 2.401 1.056 0.540
Qwen2.5-VL-7B-Instruct 8.635 2.673 3.693 2.348 1.064

From Table 1, o4-mini shows the highest prediction accuracy across almost all physical properties,
followed by GPT-4o and GPT-4.1-mini. In our dataset, the Fermi level is aligned to 0 eV, following
the convention in electronic structure analysis. Consequently, correctly predicting its position requires
recognizing the x-axis label "E −EF (eV)" accurately. The models o4-mini, GPT-4o, and GPT-4.1-
mini answered this almost without error, and models that predicted the Fermi level position with high
accuracy also tended to achieve relatively low MAE in predicting the DOS at EF. In addition, across
all models, VBM predictions tended to show larger MAE compared to those of the CBM.

Figure 2 shows scatter plots of predicted versus ground-truth values for (a) the VBM and (b) the
CBM. From (a) and (b), we observe that the predictions by o4-mini follow the distribution of the
ground-truth values, indicating that this model can relatively reliably extract VBM and CBM values
from DOS diagrams. For VBM predictions, Pixtral 12B and Qwen2.5-VL 7B tended to output values
on the lower-energy side of the valence band, whereas Llama-3.2 11B often produced values near the
Fermi level. For CBM predictions, Pixtral 12B and Qwen2.5-VL7B frequently predicted values on
the higher-energy side of the conduction band, while Llama-3.2 11B occasionally produced energies
that actually fell within the valence band.

To examine how prediction accuracy varies among materials with different electronic structures,
Figure 3 presents scatter plots showing the relationship between the ground-truth band gap and the
prediction errors for each physical property. The region corresponding to materials with relatively
small band gaps (≤ 2.5 eV), typically exhibiting semiconductor behavior, is shaded in gray, whereas
the region with larger band gaps (> 2.5 eV) is highlighted in lavender.
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Figure 2: Scatter plots comparing ground-truth values and MLLM predictions for (a) the valence
band maximum (VBM) energy and (b) the conduction band minimum (CBM) energy.

A nearly linear relationship is observed between the prediction errors and the ground-truth band gaps
for (a) VBM, (b) CBM, and (c) band gap. This indicates that the LLMs do not fully capture the DOS
features and tend to output several discrete preferred values regardless of the true band gap, producing
multiple parallel trends. As a result, the models overestimate small band gaps and underestimate
large ones, with predictions concentrated around 1.25–5 eV. This behavior may partly arise from
pretraining bias. While o4-mini generates more diverse predictions that better reflect the underlying
DOS features, a residual bias of this kind remains, and achieving more DOS-consistent predictions
would likely require additional training or guidance through carefully designed prompts. For EF

predictions, Qwen2.5-VL 7B shows a similar tendency to output fixed values around −5 eV, and for
DOS at EF, large errors are observed for materials with vanishing band gaps, whereas these errors
are substantially reduced in o4-mini.

Figure 3: Scatter plots showing the relationship between the prediction errors for each physical
property and the ground-truth band gap values. The region corresponding to band gaps between 0
and 2.5 eV are shaded in gray, while the region above 2.5 eV is highlighted in lavender.

3.2 Captioning-based DOS Interpretation

A captioning task was designed to assess DOS interpretation by MLLMs, focusing on interpretative
aspects of scientific reasoning beyond quantitative prediction. The results are shown in Figure 4, which
reports the mean and standard error of accuracy, depth, and fluency scores for captions generated by
the MLLMs, as evaluated by human experts and MLLM-based evaluators. An example of generated
captions is provided in Appendix C. The results indicate that MLLMs such as o4-mini, GPT-4.1-mini,
and GPT-4o, which achieved high performance in the VQA task, also obtained high scores in accuracy,
depth, and fluency in the captioning task under human evaluation. Notably, o4-mini obtained the
highest scores in both accuracy and depth metrics, demonstrating reasoning that links DOS features
to established principles in materials science (see Appendix C), suggesting the potential of MLLMs
to provide deeper insights and support researchers beyond human limitations. Furthermore, when
used as evaluators, these models showed scoring patterns broadly consistent with human assessments,
highlighting their potential role as proxy evaluators for future model development and large-scale
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benchmarking. A closer examination, however, reveals notable differences: GPT-4o tended to assign
higher scores compared to both human experts and other MLLMs, GPT-4.1-mini produced evaluations
more closely aligned with human judgments, and o4-mini also showed reasonable agreement but
occasionally underestimated scores. For fluency, human evaluators consistently assigned lower scores,
likely reflecting greater sensitivity to technical terminology and clarity of expression, suggesting the
need for better alignment between human and MLLM evaluations.

Figure 4: Scores of DOS captions generated by each LLM, evaluated by six human experts and
LLM-based evaluators (GPT-4o, GPT-4.1-mini, and o4-mini). Accuracy, Depth, and Fluency scores
were rated on a 1-5 scale. Bars show mean scores, with error bars denoting standard errors.

4 Conclusion

In this study, we conducted a systematic benchmark of pre-trained MLLMs for DOS interpretation,
providing both quantitative and qualitative evaluations. In both VQA and captioning tasks, models
such as GPT-4.1-mini and o4-mini demonstrated strong performance, indicating that current state-
of-the-art MLLMs can capture certain structured aspects of electronic structure data. However,
achieving more reliable predictions of quantitative physical properties such as band gaps would still
require further domain adaptation. When used to evaluate DOS captions generated by MLLMs,
their assessments generally aligned with human experts, though discrepancies remained in areas
such as fluency, suggesting the need for better alignment between automated and human evaluations.
This benchmark lays the groundwork for future research, including testing MLLM capabilities in
more complex electronic structure analyses, such as orbital hybridization and spin polarization, and
developing next-generation models that can reliably reason over these modalities.
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A Prompt Templates and Evaluation Criteria

Figures 4 and 5 show the prompt templates for the VQA task and the captioning task, respectively.

Figure 5: Prompt template for the VQA task on VBM energy inference. Values of "property," "value,"
and "unit" are varied depending on the target physical property.
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Figure 6: Prompt template for captioning task.

Figure 6 presents the prompt template used in the scoring task for evaluating captions generated
in the captioning task. In the scoring task, DOS captions generated by the LLMs are evaluated on
three criteria—accuracy, depth, and fluency—using a five-point scale. Accuracy is scored higher
when the caption correctly captures the features of the DOS; depth is scored higher when the caption
provides deeper reasoning and stronger connections to material properties; and fluency is scored
higher when technical terminology is used appropriately and the description is clear and concise. The
same evaluation criteria were also applied in the assessments conducted by human experts.

Figure 7: Prompt template for the scoring task. The placeholder <LLM-generated DOS caption> is
replaced with a DOS caption generated by an LLM.

B Dataset preparation

The structural data obtained from the Materials Project[30] were used to calculate electronic structures
with FHI-aims[21, 22], an all-electron DFT code employing numeric atom-centered orbitals. In
this study, calculations were restricted to spin-unpolarized structures containing atoms with atomic
numbers not exceeding 53 and fewer than 80 atoms in total. For the electronic structure relaxation, the
light basis set was used, and the PBE[31] functional within the GGA approximation was employed
as the exchange–correlation functional. As a result, a dataset of 8,991 converged calculations was
obtained, each linking the computed DOS with the corresponding physical property values. DOS
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data were stored as images with a resolution of 800 × 800 pixels. Here, the DOS was broadened
using a Gaussian smearing width of 0.5 eV. Among all the data, 899 entries (10%) were sampled for
the VQA task, and 20 entries were sampled for the captioning task.

C Example of DOS captions

Figure 8 presents an example of the input used in the captioning task, while Figures 9, 10, and 11
show the captions generated for this input by o4-mini, GPT-4o, and GPT-4.1-mini, respectively.

As shown in Figure 8, the DOS is provided in image form, and the prompt instructs the model to
describe its key features, interpret the electronic structure, and discuss how these relate to material
properties. In this example, the DOS illustrated in the figure represents the electronic structure of
CaSO4, as obtained from DFT calculations.

Figure 8: Example of inputs for the captioning task: a DOS diagram and the fixed text prompt used
for all cases.

Based on this prompt, as shown in Figures 9, 10, and 11, the LLMs generate captions that describe
peak features such as positions and intensities, provide interpretations of electronic properties from
the electronic structure, and discuss their relation to material characteristics.

Figure 12 presents an example of captions generated by o4-mini for different DOS diagrams in the
captioning task. Among the evaluated models, o4-mini achieved the highest scores in both accuracy
and depth. The model was able not only to accurately extract multiple peak energies and DOS values
but also, as shown in Figure 12, to include interpretations that relate DOS features to principles such
as Hume–Rothery stabilization, offering insights that human experts also found insightful.
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Figure 9: Example of a caption generated by o4-mini in the DOS captioning task.

Figure 10: Example of a caption generated by GPT-4o in the DOS captioning task.
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Figure 11: Example of a caption generated by GPT-4.1-mini in the DOS captioning task.

Figure 12: Example of a caption generated by o4-mini in the DOS captioning task.
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