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Abstract

We introduce the Fourier Learning Machine (FLM), a neural network (NN) architecture de-
signed to represent a multidimensional nonharmonic Fourier series. The FLM uses a simple
feedforward structure with cosine activation functions to learn the frequencies, amplitudes,
and phase shifts of the series as trainable parameters. This design allows the model to cre-
ate a problem–specific spectral basis adaptable to both periodic and nonperiodic functions.
Unlike previous Fourier–inspired NN models, the FLM is the first architecture able to rep-
resent a multidimensional Fourier series with a complete set of basis functions in separable
form, doing so by using a standard Multilayer Perceptron–like architecture. A one–to–one
correspondence between the Fourier coefficients and amplitudes and phase-shifts is demon-
strated, allowing for the translation between a full, separable basis form and the cosine
phase–shifted one. Additionally, we evaluate the performance of FLMs on several scien-
tific computing problems, including benchmark Partial Differential Equations (PDEs) and
a family of Optimal Control Problems (OCPs). Computational experiments show that the
performance of FLMs is comparable, and often superior, to that of established architectures
like SIREN and vanilla feedforward NNs.

1 Introduction

Approximating functions as a composition or weighted sum of simpler basis elements is a fundamental
approach in both classical analysis and modern machine learning. Two typical examples of this idea are the
Fourier series and artificial neural networks (NNs). The Fourier series decomposes a periodic function (or,
for nonperiodic functions, their periodic extension) into a linear combination of a fixed and predetermined
set of sinusoidal (sines and cosines) basis functions and gives an interpretable spectral representation of
it. While nonperiodic functions can also be handled by defining a periodic extension over a finite interval,
this often introduces discontinuities at the boundaries and leads to oscillatory behavior, known as the Gibbs
phenomenon. Moreover, these Fourier bases are fixed and not adaptable to the specific features of the data.
NNs, on the other hand, are computational models that approximate any function through compositions
of parametrized nonlinear transformations of linear combinations of the data with (trainable) weights and
biases. These parameters composing a NN are learned and adapted to the data during training (the process
of optimizing the network parameters) using nonlinear optimization techniques. However, these weights and
biases are numbers with little interpretation, and the network itself works as a black–box. Despite these
differences, both approaches share the basic underlying principle of building complex functions from simpler
components.

Motivated by Joseph Fourier’s early 19th century idea that any arbitrary function, regardless of its complexity
or continuity, could be represented as a sum of sines and cosines, and by the successful application of NNs as
universal function approximators since the late 20th century, we propose in this paper a new Fourier–inspired
NN model, and we shall name it the Fourier Learning Machine (FLM). Unlike typical black–box NN models,
the FLM’s internal structure is built to directly represent an m−dimensional nonharmonic Fourier series. It
achieves this by relying solely on the foundational components of a classical multilayer perceptron (MLP):
namely, affine transformations followed by nonlinear activation functions (in the context of this paper, these

1



Under review as submission to TMLR

being pure cosines). This design choice eschews more complicated architectural features, such as multiplica-
tion nodes, recurrent relations or any other customized components, previously found in predecessor models.
With hardwired integer weights in its input–to–hidden layer, the FLM represents an m−dimensional, full-
basis classical (finite) Fourier series as a special case. In order to tackle the approximation of nonperiodic
functions, we relax the integrality constraints of the frequency components, thus configuring the frequencies
as learnable parameters of the FLM. This allows for the search for the sinusoidal basis functions that best
represent the target map. While maintaining interpretability, FLMs build a function–specific spectral repre-
sentation for a wide variety of functions, including nonperiodic ones. As such, our proposed model combines
the interpretability of Fourier series with the data–driven nature of NNs (and, in particular, the simplic-
ity of the MLP architecture), effectively representing a nonharmonic Fourier series (Young, 1981; Duffin &
Schaeffer, 1952) in which the basis functions are learned and adapted to the target function it is meant to
approximate.

The challenge of representing Fourier series with traditional MLP−like NNs can be understood by first
considering a one−dimensional Fourier series on the interval [−π, π] (without loss of generality) in the
cosine phase–shifted form, i.e.,

f̂(t) = a0 +
N∑

n=1
An cos(nt − ϕn),

where An and ϕn denote the amplitude and the phase shift for the nth frequency component, respectively.
For such a form of the Fourier series, it is straightforward to see that the approximation f̂ can be naturally
represented by a single–layer NN with cosine activation functions. Nonetheless, generalizing this idea to
higher dimensions requires extra care since, as we demonstrate in this paper, the NN structure then either
departs too far from the MLP–like architecture or fails to represent an actual, truncated nonharmonic Fourier
series. As a result, a certain degree of architectural ingenuity is required so that the model retains both a
simple architecture and the integrity of the nonharmonic Fourier representation in higher dimensions.

In this paper, we show that the proposed FLM does not only combine an interpretable structure with
adaptable bases, but also achieves approximation accuracy comparable to, and in some cases exceeding, that
of established NN architectures. Although we focus on using FLMs to solve Partial Differential Equations
(PDEs) and an Optimal Control Problem (OCP), this model can be applied to a wide range of problems,
such as signal and image reconstruction, spectral analysis, and surrogate modeling for high–dimensional
systems, where both interpretability and adaptability are desired. The main contributions of this paper are:

1. We provide a comprehensive review of all previous attempts to construct such a function approxima-
tor, typically referred in the literature as “Fourier Neural Networks", departing from foundational
works (Gallant & White, 1988) and covering up to recent architectures with trigonometric acti-
vation functions (Sitzmann et al., 2020). Within this context, we demonstrate that the FLM is
not only architecturally simpler than previous models but also computationally competitive, often
outperforming established, traditional NN models.

2. By defining the m–Lexi Sign Matrix, we show how the FLM, a feedforward NN, can simultaneously
represent a full basis finite Fourier series in m–dimensions in both separable and cosine phase–shifted
forms, with a one–to–one correspondence between Fourier coefficients, frequencies and phase–shift
and the NN weights and biases. To the best of the author’s knowledge, this flexibility to represent
a full–basis classical Fourier series in a MLP–like architecture, is unique in the literature. In the
nonharmonic case, it is shown that such a representation feature is directly translated to a more
computationally efficient parameter optimization when compared to other traditional and Fourier–
based NN models.

3. Through a series of carefully designed computational experiments, we empirically demonstrate the
FLM’s approximation capabilities for solving PDEs and optimization problems. In particular, we
apply the FLM to the numerical solution of a multidimensional OCP arising from the evolutionary
dynamics of a Rock–Paper–Scissors (odd–circulant) game, demonstrating its capability to solve
complex, nonlinear problems.
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The remainder of the paper is organized as follows: Section 2 reviews related literature and prior work on
Fourier–related NNs. Section 3 introduces a few mathematical preliminaries and introduces the inherent
challenges of representing a (nonharmonic) Fourier series with a MLP–like NN architecture. Section 4
constructs, formalizes and presents the proposed FLM architecture in detail. Section 5 reports computational
experiments and compares the FLM’s performance with established NN architectures. Finally, Section 6
concludes the paper and discusses potential future research directions.

2 Related Literature

The idea of a Fourier series–inspired NN was first proposed in the late 1980s, just before NNs were shown
to possess universal function approximation properties (Hornik et al., 1989). This pioneer architecture,
called “Fourier Network” (FN) was proposed by Gallant & White (1988). In their work, they carefully
constructed a Fourier series representation into a NN by defining a “cosine–squasher” activation function, a
domain–constrained, monotonic, cosine function. By fixing the input–to–hidden layer weights, this NN was
demonstrated to mimic a finite multidimensional Fourier series. This “cosine–squasher" is a monotonic and
piecewise differentiable function, F : R → [0, 1] , defined as

F (net) =


0 if − ∞ < net ≤ − π

2[
cos

(
net + 3π

2
)

+ 1
]

/2 if − π
2 ≤ net ≤ π

2
1 if π

2 ≤ net < ∞.

(1)

While F (·) is not strictly periodic, the FN constructs the Fourier cosine bases by constraining and summing
multiple hidden units within a group of neurons called “clumps”. This activation function is designed to
fit the “squashing" paradigm of early NNs (Rumelhart et al., 1986) while allowing for the construction of
a NN replicating the approximation properties of Fourier series. A single “clump” is depicted in Fig. 1.
As such, the output of each of these “clumps” forms one of the cosine or sine basis (by adding a phase–
shift) present in a Fourier series. To create a single cosine basis, the weighted sum of the inputs, i.e.,

Figure 1: A “clump” of neurons that outputs the ith single cosine basis of the Fourier Network appearing
in Gallant & White (1988).

the pre–activation neti = w⊤
i x + bi is preprocessed and activated using the cosine–squasher function. By

constraining ξim = δim = 2θi, where i = 1, 2, . . . , K and m = −Mi, . . . , 0, . . . , Mi, the output of the FN is

3



Under review as submission to TMLR

given by,

o =
K∑

i=1

Mi∑
m=−Mi

[
2θi F (−neti + π

2 − m2π) + 2θi F (neti − 3π
2 + m2π)

]
︸ ︷︷ ︸

oi

=
K∑

i=1
θi cos(neti) −

K∑
i=1

[θi − θi 2(2Mi + 1)] ,

which is a classical Fourier series in cosine phase-shifted form when an extra term δ0 = θ0 +∑K
i=1 [θi − θi 2(2Mi + 1)] is added to the output. The role of Mi is to bound the range within which the

output neti can vary. As the input x varies in the (perturbed) hypercube [ϵ, 2π − ϵ]m, neti varies in the
interval [−2πMi, 2π(Mi + 1)]. Therefore, Mi is inherently dependent on the “hardwired” parameters wi

and bi in the first layer. Furthermore, Mi increases with i, that is, the inclusion of higher frequency modes
requires more neurons within a “clump”. For smaller network sizes, while the authors claim that by undoing
the “hardwiring” (in wi and bi) and removing the constraint in ξim and δim the FN could potentially perform
better, doing so nullifies its exact correspondence with a finite Fourier series: making wi and bi trainable
implies that one could not determine a specific value for each Mi before training the FN. Thus, it is unclear
how to pick Mi under the aforementioned construction. Lastly, by construction, removing the constraint
ξim = δim = 2θi would hinder the ith “clump” to create a cosine basis. Therefore, such an attempt would
not lead the network to represent a nonharmonic Fourier series.

It is worth noticing that the requirement of a “monotonic” activation function was later dropped based on
the universal approximation (and convergence) result in Leshno et al. (1993), which established that non-
polynomial and bounded functions (e.g., cosine) can be also serve as activation functions in NNs. Therefore,
such an intricate design proposed in Gallant & White (1988) can be partially justified by the lack of such a
result when their architecture was developed.

In the context of systems control and identification, Zhu & Paul (1995) proposed the first NN capable of
mimicking a finite Fourier series by using pure sines and cosines, naming it the “Fourier Series Neural
Network” (FSNN). Despite their NN capability to represent a full-basis Fourier series, given a fixed set of
nontrainable “frequency weights”, the architecture chosen relies on multiplicative nodes to compose each
of the basis functions. The training process in this case is rather simple, given the linearity (with respect
to the Fourier coefficients) of the output layer, thus yielding a linear optimization problem. More recently,
Benrabah et al. (2021) introduced an adaptive controller where a FSNN is used to compute and adjust the
gains of a PID controller online.

With an emphasis on similarities of its model with the brain neurophysiology, Silvescu (1999) proposed an
architecture relying on multiplicative nodes that attempted to reproduce a finite Fourier series in cosine
phase–shifted form (optionally “squeezed” through a sigmoid function). This network, named “Fourier
Neural Network” (the first appearance of such a term in the literature) assumed the form

f(x1, . . . , xm) = σ

∑
i

ci

m∏
j=1

cos(wijxj + φij)

 . (2)

However, it is implicit in Silvescu (1999) that the trainable parameters w and φ are not fixed or constrained
to be either natural numbers (including zero) or odd–multiple of π

2 , respectively. Therefore, despite its
similarities with a Fourier series, f(·) fails to represent either a finite, classical Fourier series or a (typical)
nonharmonic one. In its current form, a classical Fourier series could be attained from Equation 2 by fixing
w’s to a predetermined set of integers and making some φ ∈ {(2k +1) π

2 | k ∈ Z}. Conversely, a nonharmonic
series can only be obtained in the form of a sum of cosine–only basis functions, which would configure a very
specific (and arguably weak) form of nonharmonic Fourier series, allowing one to approximate even functions
only. For a depiction of this FN model, the reader is pointed to Uteuliyeva et al. (2020).

In Yang et al. (2003), a single–input, multiple–output NN is proposed, wherein each output corresponds to
that of an individual finite Fourier series. In this architecture, all the series share the same basis functions
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but each have their own set of (trainable) Fourier coefficients. Besides being of limited applicability (once it
is design to approximate single variable functions only), Yang et al. (2003) also fails to make any reference
to previously proposed, Fourier–inspired NN already in existence in the literature at that time.

Halawa (2008) uses a Discrete Fourier Transform to find the hidden–to–output weights for the FSNN model
from Zhu & Paul (1995). This neural network formulation, however, is unnecessary for the task, as the
calculation provides little advantage over a direct computation performed outside of an NN framework.

In Liu (2013), another type of FNN is proposed, this version utilizing a vector form of the multidimensional,
finite Fourier series. This NN assumes the form

f(x) =
N∑

i=1

[
ai sin

(
c⊤

i x
)

+ bi cos
(

d⊤
i x

)]
, (3)

where, the (real–valued) numbers ci, di, ai and bi are the learnable parameters of the corresponding NN.
Unless the frequency components are constrained to be equal position-wise, i.e., ci = di, this representation
is a trigonometric expansion, but it is not strictly a nonharmonic Fourier series. This is because the use of
different frequency vectors inside the sine and cosine prevents Equation 3 to be written as its equivalent
exponential or separable basis forms. Therefore, in its original form presented, Equation 3 represents neither
a classical Fourier series nor a nonharmonic one.

A comparative study on the performance of the FN model of Gallant & White (1988), the FNN of Silvescu
(1999) and the FNN of Liu (2013) is presented in Uteuliyeva et al. (2020), which concluded that the top
performing model among these three is the early FN model of Gallant & White (1988). However, this
FN model of Gallant & White (1988) was shown to underperform a vanilla feedforward NN with sigmoid
activation function. The reason behind this result, as hypothesized by the authors, is that, outside the
interval [− π

2 , π
2 ], the “cosine–squasher” as written in Equation 1 is constant, whereas the sigmoid employed

in the vanilla feedforward NN is asymptotically constant outside of this same interval.

A comprehensive and critical investigation on the use of sine functions as activation functions in NNs
has appeared in Parascandolo et al. (2017). In this work, the authors claim that the wave–like behavior
introduced in the loss function by the presence of sines introduces many local minima, making such models
harder to train. However, the output of the NNs chosen for the experiments shown in Parascandolo et al.
(2017) are not meant to represent a Fourier series in any form. Furthermore, the performance of such
activation function is not studied for a simple feedforward NN structure, but in the context of encoder–
decoder architectures based on recurrent and long short–term memory NNs. Related to this idea, Ozmermer
(2020) designs a “Sinusoidal Neural Network (SNN)", with a newly defined sine–based node operations
inspired by information propagation in the brain. Even though empirical results presented are promising,
no theoretical background is provided to guarantee the convergence of this NN.

A (deep) NN with sine activation functions, called SIREN (Sinusoidal Representation Network) is introduced
in Sitzmann et al. (2020), tailored for applications in digital media processing. The authors customize the first
layer of this NN in order to extract high–frequency components of the target data (image, video or audio),
doing so by multiplying the weighted sum of the input by a relatively large constant term ω0 (keeping the bias
untouched), while all the other activation functions assume the form y 7−→ sin y. We note that a SIREN–1,
that is, a SIREN with one single layer, for ω0 = 1 can be shown, under certain trigonometric identities, to
assume the mathematical form of

f(x) =
N∑

i=1

[
ai sin

(
w⊤

i x
)

+ bi cos
(

w⊤
i x

)]
. (4)

Furthermore, we note that Equation 4 is identical to Equation 3 for when ci = di. Thus, similar to the case
of Liu (2013), a SIREN–1 represents a Fourier series by fixing the components of w as integers (noted only
later on by Benbarka et al. (2022)), and a nonharmonic series otherwise. It is worth noting that in Sitzmann
et al. (2020) there is no mention to any potential relations between a SIREN NN and any form of a Fourier
series. However, as it is also the case of the FNN of Liu (2013), this Fourier series cannot be represented in
a full–basis, separable form.
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In the context of scientific machine learning, Ngom & Marin (2021) introduced a one–dimensional FNN
as function approximators. Their FNN model assumes the form of a nonharmonic (phase–shifted cosine)
Fourier series (with trainable frequency components). Nonetheless, all the numerical experiments reported
considered only the approximation of periodic functions that can be fully decomposed as a finite Fourier
series, thus not fully exploring the potential of their model in the approximation of nonperiodic functions.

In order to avoid confusion by the use of similar terms and concepts, other scientific contributions that
somehow involve the use of Fourier analysis (but do not attempt to construct a NN that replicates a Fourier
series) must be mentioned in order to avoid confusion. Recently, the Fourier Neural Operator (FNO) gained
tremendous attention in the scientific machine learning community (Li et al., 2020). The FNO primary
goal is to approximate a operator, that is, a mapping between function spaces. Thus, it is suitable to learn
operators in the context of approximating the solution of entire parametric families of PDEs. In this regard,
the “Fourier” comes from the fact that the integral kernel is parameterized in Fourier space. The FLM model
presented in this paper, instead, aims to approximate a mapping from a higher–dimension Euclidean space
to a real number. In Tancik et al. (2020), preprocessing input vectors with a Fourier feature mapping allows
this NN to overcome its inherent spectral bias, i.e., the tendency to learn low–frequency components and
therefore facilitating learning of high–frequency functions. Lastly, by automatically determining the optimal
sampling frequency and number of neurons, Fourier–based extreme learning machines are applied in Ma
et al. (2022) for the solution of PDEs.

Some of the models described above move toward learnable spectral bases, while others are constrained
by the integrality of their frequency components. Nonetheless, in either case, they often lack a systematic
architecture allowing them to represent a complete, separable, and interpretable Fourier series of the target
function (either classical or nonharmonic). Even though SIREN–1 and the FNN in Ngom & Marin (2021)
fulfill the aforementioned criteria for a single input, these properties don’t hold true when considering the
general, multidimensional case. As we will show later in this paper, FLMs fill this gap, being the first
Fourier–replicating NN that is capable of representing both finite and nonharmonic Fourier series in a full,
separable basis form in m dimensions by using only MLP–like, feedforward NN operations.

Next, we present a few mathematical preliminaries before introducing the proposed FLM architecture. Un-
less the reader is well–versed in Fourier analysis, reading the next section is strictly necessary in order to
understand the architecture introduced later in Section 4.

3 Mathematical Preliminaries

In this section, we establish the mathematical foundation for our approach, using the classical Fourier series
as a departing point. Our goal is to generalize this representation by treating the frequencies as arbitrary
real–valued parameters, instead of fixed integer multiples of the fundamental frequency. In doing so, we
transform the classical Fourier series into a nonharmonic one.

Let f : [−π, π]m → R be a square–integrable function and f̂H be the Fourier series expansion of its 2π–
periodic extension in each variable. We consider the domain [−π, π]m for simplicity, however, this can be
generalized to any domain [−L1, L1]× [−L2, L2]×· · ·× [−Lm, Lm] by scaling the input variables accordingly.
The Fourier series of f in complex exponential form is given by

f̂H(x) =
∑

n∈Zm

cn ein·x, (5)

where x = (x1, x2, . . . , xm) ∈ [−π, π]m , n = (n1, n2, . . . , nm) ∈ Zm and n · x represents their dot product.
The analytical expression for calculating the Fourier coefficients is

cn = 1
(2π)m

∫
[−π,π]m

f(x) e−in·x dx,

although in this paper we are interested in approximating them numerically. Alternatively, the same series
f̂H can be expressed using real separable basis functions (products of the fundamental sine and cosine
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functions) as
f̂H(x) =

∑
n∈Nm

0

[
a

(n)
1 cos(n1x1) cos(n2x2) . . . cos(nmxm)

+ a
(n)
2 cos(n1x1) cos(n2x2) . . . sin(nmxm) + . . .

+ a
(n)
2m sin(n1x1) sin(n2x2) . . . sin(nmxm)

]
,

(6)

for input x = (x1, x2, . . . , xm) ∈ [−π, π]m and frequency components n = (n1, n2, . . . , nm) ∈ N0 =
{0, 1, 2, . . . }. This trigonometric separable form has the advantage that the set of basis functions, associated
with n, simultaneously accounts for all possible 2m symmetric frequency components. Here, symmetric
components refer to the sign–flipped versions of a frequency vector, i.e., (±n1, ±n2, . . . , ±nm), which are
always grouped together in the spectrum of a real–valued function. As a result, redundant terms that would
otherwise appear in the complex exponential form in Equation 5 are implicitly bundled together, allowing
real–valued functions to be expressed more efficiently while still spanning the complete set of available basis
functions.

The classical Fourier series Equation 5 and Equation 6, which are defined by a rigid, evenly–spaced grid
of frequencies, can be generalized into the nonharmonic Fourier series (Duffin & Schaeffer, 1952; Young,
1981). This concept provides a mathematical bridge to the Fourier Transform (FT), which uses a continuous
spectrum of all possible frequencies. The nonharmonic series occupies a middle ground: like a classical
series, it is a discrete sum of sinusoids, but it inherits the flexibility of the FT by allowing its frequencies
to be arbitrary real numbers. This transformation is formally achieved by replacing the fixed set of integer
frequency vectors, Nm

0 , with a general finite (for practical implementation) set of real–valued vectors, N =
{n1, n2, . . . , nN }. This flexibility allows for the construction of an adaptive, task-specific Fourier basis
capable of efficiently capturing the dominant spectral features of both periodic and nonperiodic functions.
From this point forward, unless specified otherwise, we will use the term “Fourier series” to refer to this
more general nonharmonic form, where the frequencies are from the set N . The classical harmonic series
will be considered a special case for when N ⊆ Nm

0 .

With this change of frequency set just described, the classical series defined in Equations Equation 5 and
Equation 6 are generalized to their nonharmonic forms. The complex exponential form Equation 5 is gener-
alized using a frequency set N ⊆ Rm as

f̂NH(x) =
∑

n∈N
cnein·x, (7)

and the real trigonometric separable form Equation 6 is generalized using a frequency set of nonnegative real
vectors, N ⊆ Rm

≥0 as

f̂NH(x) =
∑

n∈N

[
a

(n)
1 cos(n1x1) cos(n2x2) . . . cos(nmxm)

+ a
(n)
2 cos(n1x1) cos(n2x2) . . . sin(nmxm) + . . .

+ a
(n)
2m sin(n1x1) sin(n2x2) . . . sin(nmxm)

]
.

(8)

To begin with, we set the frequencies to nonnegative vectors (N ⊆ Rm
≥0), for two reasons: (i) in practice, this

constraint reduces the search space for the optimal frequencies from 2m possible orthants to a single one,
which leads to a more efficient and stable search process. This is justified since each frequency vector comes
implicitly with its symmetrical equivalent in all the other 2m − 1 remaining orthants, and; (ii) in theory,
this is justified because any sign flip in the components of a frequency vector only affects the sign of the
coefficients, not the basis functions themselves, thus keeping the representation intact.

While both Equation 7 and Equation 8 represent standard forms of the Fourier series, they are not readily
compatible with NN architectures: in the exponential form Equation 7, the basis functions are complex expo-
nentials, which require complex–valued weights, activations, and gradient updates. Since traditional NNs are
designed for real–valued computation, this would necessitate specialized handling or an explicit separation
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into real and imaginary parts, increasing implementation complexity. Additionally, the trigonometric form
Equation 8 expresses each multidimensional basis as a product of one–dimensional sine and cosine factors.
Thus, these bases become difficult to be represented by traditional NNs, which combine inputs additively
through weighted sums before applying nonlinear activations.

To resolve the representation issues above, we opt for the cosine phase–shifted form, where, by phase shift
we mean the translation of a cosine wave along its direction of oscillation. By converting the Fourier
basis into a sum of cosines with phase shifts, we eliminate the need for complex numbers in Equation 7
and avoid the multiplicative interactions present in the trigonometric form of Equation 8. This makes the
resulting representation more compatible with the additive structure of traditional, feedforward NNs. Next,
we rewrite the standard separable trigonometric Fourier series in a cosine phase–shifted form, beginning
with the two–dimensional case before generalizing to m dimensions. We also show the relationship between
the Fourier coefficients in the separable trigonometric form and the amplitudes and phase shifts in the cosine
phase–shifted form.

3.1 Cosine Phase–Shifted Basis for Two–dimensional Input

Consider the two−dimensional Fourier series

f̂NH(x1, x2) =
∑

n∈N

[
a

(n)
1 cos(n1x1) cos(n2x2) + a

(n)
2 cos(n1x1) sin(n2x2)

+ a
(n)
3 sin(n1x1) cos(n2x2) + a

(n)
4 sin(n1x1) sin(n2x2)

]
,

(9)

where n = (n1, n2). Alternatively, Equation 9 can be expressed in the cosine phase-shift form

f̂NH(x1, x2) =
∑

n∈N

[
A

(n)
1 cos

(
n1x1 + n2x2 − ϕ

(n)
1

)
+ A

(n)
2 cos

(
n1x1 − n2x2 − ϕ

(n)
2

)]
=

∑
n∈N

Hn,
(10)

where Hn = A
(n)
1 cos

(
n1x1 + n2x2 − ϕ

(n)
1

)
+ A

(n)
2 cos

(
n1x1 − n2x2 − ϕ

(n)
2

)
can be viewed as an implicit

linear combination of the four separable Fourier basis functions associated with n. A
(n)
1 and A

(n)
2 are

the amplitudes of the phase–shifted cosines, and ϕ1, ϕ2 are the respective phase shifts. The equivalence
of Equation 9 and Equation 10 is shown in Appendix A with the detailed derivation of the relation that
expresses the Fourier coefficients a

(n)
1 , a

(n)
2 , a

(n)
3 and a

(n)
4 in terms of the amplitudes and phase shifts as

a
(n)
1 = A

(n)
1 cos ϕ

(n)
1 + A

(n)
2 cos ϕ

(n)
2 , a

(n)
2 = A

(n)
1 sin ϕ

(n)
1 − A

(n)
2 sin ϕ

(n)
2 ,

a
(n)
3 = A

(n)
1 sin ϕ

(n)
1 + A

(n)
2 sin ϕ

(n)
2 , a

(n)
4 = −A

(n)
1 cos ϕ

(n)
1 + A

(n)
2 cos ϕ

(n)
2 .

(11)

Notice how the linear combination of two phase–shifted cosine bases in Equation 10 is implicitly generating
the linear combination of the four separable trigonometric bases in Equation 9, both associated with same
frequency components. The same frequency pair (n1, n2) occurs inside both cosine bases with different
amplitudes and phase–shifts, and with the sign of the second element flipped. To extend this idea of
expressing separable trigonometric bases with phase–shifted cosines to m dimensions, we define the following
matrix.

Definition 1 (m–Lexi Sign Matrix) Let m ≥ 2 be a positive integer and l = 2m−1. The m–Lexi Sign
Matrix S(m) is the l × m matrix whose rows are denoted by

e(i) =
(
e

(i)
1 , e

(i)
2 , . . . , e(i)

m

)
, i = 1, 2, . . . , l,
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with e
(i)
1 = 1 and

(
e

(i)
2 , e

(i)
3 , . . . , e

(i)
m

)
∈ {1, −1}m−1, i.e., the (m−1)–fold Cartesian product of the set {1, −1}.

The rows e(i) are arranged in lexicographic order with 1 taken to have higher priority than −1. Explicitly,

S(m) =



e(1)

e(2)

e(3)

e(4)

...
e(l−1)

e(l)


=



1 1 1 . . . 1 1
1 1 1 . . . 1 −1
1 1 1 . . . −1 1
1 1 1 . . . −1 −1
...

...
...

. . .
...

...
1 −1 −1 . . . −1 1
1 −1 −1 . . . −1 −1


l×m

. (12)

For instance, for the cases of m = 2 and m = 3, we have

S(2) =
[
1 1
1 −1

]
, S(3) =


1 1 1
1 1 −1
1 −1 1
1 −1 −1

 .

S(m) helps us to construct the cosine phase–shifted form in m−dimensions, which we discuss next.

3.2 Cosine Phase-Shifted Basis for m−dimensional Input

In a similar fashion as in the two–dimensional case, Hn represents the linear combination of l = 2m−1 phase–
shifted cosines, which is equivalent to a linear combination of 2m separable Fourier basis in Equation 8 and
can be written as

Hn =
l∑

i=1
A

(n)
i cos

(
(e(i) ⊙ n) · x − ϕ

(n)
i

)
,

where e(i) is the ith row of the m−Lexi Sign Matrix S and e(i) ⊙ n represents its Hadamard (element wise)
product with the frequency vector n. The m−dimensional Fourier series can be expressed in a single compact
summation as

f̂NH(x) =
∑

n∈N
Hn. (13)

The relationship between the Fourier coefficients from Equation 8 and the amplitudes and phase shifts of this
equivalent form Equation 13 is presented below. Stating this relationship for a general dimension m requires
a more descriptive framework than the sequential indexing (e.g., a

(n)
1 , a

(n)
2 ) suitable for the two–dimensional

case. We aim to calculate the coefficient a
(n)
k corresponding to the basis function

∏
p∈Ic

k

cos(npxp)
∏

q∈Ik

sin(nqxq),

where the set Ik ⊆ {1, . . . , m} and its complement Ic
k = {1, . . . , m} \ Ik specify the indices of the sine and

cosine terms, respectively, for the basis corresponding to the index k ∈ {1, . . . , 2m}. The index set Ik is
determined from the sequential index k using the m–bit binary representation of k−1: an index j is included
in Ik if and only if the jth bit from the left is 1. Given the amplitudes A

(n)
i and the phase shifts ϕ

(n)
i , the

9
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separable product–basis Fourier coefficients a
(n)
k , are related by

a
(n)
k =



l∑
i=1

A
(n)
i si,k cos ϕ

(n)
i , |Ik| ≡ 0 (mod 4),

l∑
i=1

A
(n)
i si,k sin ϕ

(n)
i , |Ik| ≡ 1 (mod 4),

−
l∑

i=1
A

(n)
i si,k cos ϕ

(n)
i , |Ik| ≡ 2 (mod 4),

−
l∑

i=1
A

(n)
i si,k sin ϕ

(n)
i , |Ik| ≡ 3 (mod 4),

where the sign factor si,k ∈ {−1, 1} is defined as

si,k =
∏

j∈Ik

e
(i)
j .

4 Model Construction and Architecture

In this section, we discuss the architectural construction of FLMs. We begin with the standard definition of
a single–layer feedforward NN followed by a formal definition of the FLM.

Definition 2 (Single-Layer Feedforward Neural Network) A single–hidden–layer NN with an input
vector x ∈ Rm, l hidden neurons, and a single output f̂(x) ∈ R is a function defined as:

f̂(x) = g

 l∑
j=1

wout
j · σ(win

j · x − bj)


where win

j is the input–to–hidden weight vector, bj is the hidden neuron bias, σ(·) is the hidden layer acti-
vation function, wout

j is the hidden–to–output weight, and g(·) is the output layer activation function.

Definition 3 (Fourier Learning Machine (FLM)) The FLM is composed of N parallel sub–networks,
each consisting of a complete single–layer NN conforming to Definition 2, with its hidden activation function
σ : x 7→ cos(x), and its output activation, g : x 7→ x. The weight applied to the input to the top neuron in the
hidden–layer of each sub–network is set to be a row vector n. To each subsequent neuron in the hidden-layer,
the same weight vector is used, with the respective sign of its components determined by the m–Lexi Sign
Matrix. The final output of the entire FLM is the ordinary sum of the outputs from all these individual
sub–networks.

Next, we present three instances of possible sub–networks, first for the two-input and three-input cases and
then for the general m−input case.

Example 4.1 (FLM sub–networks with Two Inputs) An FLM with two inputs is composed of N sub–
networks, each parameterized by a learnable weight vector n, with input (x1, x2), two hidden–neurons with
a cosine activation function and bias. The vector n = (n1, n2) contains the weights from the input–layer to
the first hidden–neuron. For the second hidden–neuron, the same weights are reused except that the second
element n2 has opposite sign. The output of the sub–network is the weighted sum of outputs of the two
cosine–activated hidden–neurons, i.e.,

Ĥn = Â
(n)
1 cos(n1x1 + n2x2 − b

(n)
1 ) + Â

(n)
2 cos(n1x1 − n2x2 − b

(n)
2 ).

The output of the FLM is the ordinary sum of the sub–network outputs

f̂(x1, x2) =
∑

n∈N
Ĥn(x1, x2), (14)

10
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Figure 2: FLM with two inputs. The sub–network associated with frequency pair n (Left) and the main
network with N sub–networks (Right).

Figure 3: (a) FLM with 3 inputs and the S(3) matrix defining the sign of the frequency components n1, n2
and n3. These components are illustrated, respectively, in (b) − (d).

where N is the set of learnable frequency vectors, one from each sub–network. Equation 14 has the same
form of the Fourier series in Equation 10. The hidden–to–output layer weights Â

(n)
i of the sub–network can

be interpreted as the amplitudes A
(n)
i and the biases b

(n)
i as phase shifts ϕ

(n)
i , respectively, for i = 1, 2. Fig. 2

illustrates a FLM sub–network with two inputs and the FLM itself.

Additionally, a FLM with 3 inputs is shown in Fig. 3 alongside its underlying S(3) matrix. Now we dis-
cuss the structure of the FLM sub–networks in general for m–inputs and explain the interpretation of the
multidimensional FLM.

Example 4.2 (FLM Sub–Networks with m inputs) An m–input FLM has N parallel sub–networks,
each of which is associated with a weight vector n = (n1, n2, . . . , nm). It has inputs x1, x2, . . . , xm and
l = 2m−1 hidden nodes with cosine activation function and biases b

(n)
i for i = 1, . . . , l. The input–to–hidden

layer weights for the ith node of the sub–network is the Hadamard (element wise) product e(i) ⊙ n where

11
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the row vector e(i) is the ith row of the m–Lexi Sign Matrix S(m) (Equation 12). An illustration of the
m–dimensional FLM sub–network is presented in Fig. 4.

… …

Figure 4: m−dimensional FLM sub–network (biases are not shown).

The same node operations to the 2–dimensional case are used and the weighted sum of the activation is
calculated. Then the output of the sub–network becomes

Ĥn =
l∑

i=1
Â

(n)
i cos

[(
e

(i)
1 n1x1 + e

(i)
2 n2x2 + · · · + e(i)

m nmxm

)
− b

(n)
i

]
=

l∑
i=1

Â
(n)
i cos

(
(e(i) ⊙ n) · x − b

(n)
i

)
.

Therefore, the output of the main network is given by

f̂(x1, x2, . . . , xm) =
∑

n∈N
Ĥn(x1, x2, . . . , xm),

where N is the finite set containing the learnable frequency vector from each sub–network. Notice that Ĥn

matches the form of Hn and, consequently, f̂ with the Fourier series f̂NH itself in Equation 13. The hidden–
to–output layer weights Â

(n)
i of the sub–network can be interpreted as the amplitudes A

(n)
i and the biases

b
(n)
i as phase shifts ϕ

(n)
i , respectively for i = 1, . . . , l. We note that the 2m−1 neurons per sub–network grow

exponentially with m, which is an inherent consequence of representing an m–dimensional Fourier basis in
separable form. Thus, each sub–network with 2m−1 neurons explicitly generates a composition of 2m−1 m–
dimensional phase–shifted cosines or implicitly 2m separable Fourier basis with a specific frequency vector.
The relative contributions of each individual Fourier component are learned through the sub–network biases
and output layer weights. Although the network does not perform explicit projection onto the orthogonal bases,
it learns both the amplitude and phase of each learned basis function, enabling a structured and interpretable
approximation of the target map.

We have demonstrated in this section that a MLP–like, feedforward NN with traditional node operations can
represent a m–dimensional nonharmonic Fourier series. In the next section, we compare the performance of
the our FLM model against other NN models.

12
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5 Computational Results

In this section we test and compare the performance of our proposed FLM model in the computation
of numerical solutions of fourthree PDEs and an OCP arising from an odd–circulant evolutionary game.
Additionally, we design a series of computational experiments aimed at comparing the performance of our
proposed model against other traditionally employed NN architectures.

The PDEs considered herein are: the one–dimensional heat equation, the two–dimensional Poisson equa-
tion, the generalized Black–Scholes model, and the one–dimensional inviscid Burgers’ equation. Besides the
emerging interest in machine learning techniques for the solution of PDEs, demonstrated, for example, in
Ngom & Marin (2021); Ma et al. (2022), the solution of OCPs by such methods was also recently brought to
attention (see, e.g., Nicolosi et al. (2022); Nicolosi & Griffin (2023); Nicolosi et al. (2025); Rubel & Nicolosi
(2025); Lundqvist & Oliveira (2025)). Thus, we consider in this paper an OCP arising from the evolutionary
dynamics of a Rock–Paper–Scissors game, as studied in Griffin & Fan (2022). Its nonlinear dynamics along-
side its state space configuration make this OCP particularly challenging to be solved analytically, so our
solution shall be tested against an (indirect) numerical solution based on the Pontryagin’s Minimum Prin-
ciple (PMP). While traditional techniques like Finite Elements and Finite Differences are well–established
methods, the recent rise in interest on machine learning-based techniques has introduced a new class of
powerful, mesh–free solvers based on NNs (Raissi et al., 2019). In this section, we demonstrate the efficacy
of our proposed FLMs in solving several benchmark PDEs and a class of OCPs.

In all experiments, the frequency vectors of the FLMs are initialized at a finite subset of integer grid points in
Nm

0 , chosen sequentially from the lattice: for example, (0, 0), (0, 1), (1, 0), (1, 1) in the two–dimensional case
with four sub–networks. However, we do not constrain them to remain within Rm

≥0 during the training. The
reason for this lies in the inclusion of sign–flipped versions of the frequency vectors within each sub–network,
together with the even symmetry of the cosine function. If any component of the frequency vector becomes
negative, the FLM automatically accounts for its symmetrical equivalent, thus adjusting the corresponding
coefficients to mitigate this effect. In each sub–network, biases (phase–shifts) are randomly sampled from
the normal distribution N(0, π

3 ) and hidden–to–output layer weights (amplitudes) are initialized to 0. This
initialization strategy is primarily motivated by empirical observations from our experiments and we keep it
as an open question whether there is any mathematical way of determining a better set of initial weights.
Next, we introduce each PDE considered, as well as the customized loss function.

5.1 Numerical Experiments for Partial Differential Equations

We consider a general nonlinear PDE defined on the spatio–temporal domain Ω × [0, T ], where Ω ⊂ Rm−1,
and is given by

F [u](x, t) = 0, (x, t) ∈ Ω × (0, T ],
u(x, 0) = u0(x), x ∈ Ω,

B[u](x, t) = g(x, t), (x, t) ∈ ∂Ω × (0, T ].

Here, ∂Ω is the spatial boundary of Ω, F [·] and B[·] denote general (possibly nonlinear) differential operators,
u(x, t) is the unknown solution, and u0(x) and g(x, t) define the initial and boundary conditions, respectively.

We approximate the solution u(x, t) using a FLM uΘ(x, t) parameterized by its weights and biases, col-
lectively denoted as Θ. The network is trained by minimizing a composite loss function L(Θ) (such as
in Cuomo et al. (2022)), that penalizes deviations from the governing PDE and its associated initial and
boundary conditions

L(Θ) = LIC + LBC + LPDE, (15)

13
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where

LIC = 1
NIC

NIC∑
i=1

∣∣uΘ(xi, 0) − u0(xi)
∣∣2

,

LBC = 1
NBC

NBC∑
j=1

∣∣B[uΘ](xj , tj) − g(xj , tj)
∣∣2

,

LPDE = 1
NPDE

NPDE∑
k=1

∣∣F [uΘ](xk, tk)
∣∣2

.

Each component of the loss function Equation 15 is a mean square error (MSE) computed over a distinct set
of collocation points, defining the training set. These points are randomly sampled from their corresponding
domains: {xi} from the spatial domain Ω at t = 0, {(xj , tj)} from the boundary ∂Ω × [0, T ], and {(xk, tk)}
from the interior Ω × (0, T ]. The integers NIC, NBC, and NPDE are the number of the training points used
to enforce the initial, boundary, and PDE constraints in the loss function, respectively. The differential
operators F [·] and B[·] are evaluated on these points using automatic differentiation, and the loss function
is then minimized with adaptive momentum gradient descent algorithm (ADAM) (Kingma & Ba, 2014).

To test the model’s final accuracy, a separate test set is constructed from a evenly spaced grid covering the
entire domain. On this test set, we compare the FLM–approximated solution to the exact solution using
three standard error metrics. We have reported the MSE, which is the average of squared differences; the
Mean Absolute Errors (MAE), the average of absolute differences; and the Max Error, which is the largest
point–wise absolute difference. Now we examine the effectiveness of FLMs to solve PDEs and see how their
performance compared to those of other popular NN architectures, listed in Table 1. Each network in the
table has Nhidden neurons per hidden–layer.

Table 1: Description of other NN architectures for performance benchmarking against FLMs.

Model Description
SIREN–1 SIREN with 1 hidden layer (ω0 = 1)
SIREN–2 SIREN with 2 hidden layers (ω0 = 1)
SIREN–3 SIREN with 3 hidden layers (ω0 = 1)
V Relu Vanilla feedforward NN with Relu activation function and 3 hidden layers
V LRelu Vanilla feedforward NN with Leaky Relu activation function and 3 hidden layers
V Tanh Vanilla feedforward NN with Tanh activation function and 3 hidden layers

We trained FLMs and diverse NN models with multiple hyperparameter configurations, selected the best
using a hierarchical statistical testing procedure, and further trained the top configuration for 30,000 epochs
with a stricter loss tolerance. Details are shown in Appendix C.

Example 5.1 (One–Dimensional Heat Equation) We consider the one–dimensional heat equation on
the domain x ∈ [0, 1], t ∈ [0, 1], given by

∂u

∂t
= α

∂2u

∂x2 , x ∈ (0, 1), t ∈ (0, 1],

u(x, 0) = sin(πx), x ∈ [0, 1].

u(0, t) = 0, u(1, t) = 0, t ∈ [0, 1],

where the thermal diffusivity constant is set to be α = 0.1. The analytical solution to this initial–boundary
value problem is u(x, t) = sin(πx) e−απ2t.

Fig. 5a illustrates the comparison between the exact solution and the FLM approximated solution. The
performances of all models are summarized in Table 2a.
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Example 5.2 (Two-Dimensional Poisson Equation) Consider the Poisson equation on the unit square
with homogeneous Dirichlet boundary conditions:

∂2u

∂x2 + ∂2u

∂y2 = −2π2 sin(πx) sin(πy), (x, y) ∈ Ω = (0, 1)2,

u(x, y) = 0, (x, y) ∈ ∂Ω.

The exact solution is u(x, y) = sin(πx) sin(πy).

Fig. 5b shows the comparison between the exact solution and the FLM approximated solution. The results
are summarized in Table 2b.

Example 5.3 (Generalized Black-Scholes Equation) Consider the PDE extracted from Ma et al.
(2022), with initial and boundary condition

∂u

∂t
= a(x, t)∂2u

∂x2 + b(x, t)∂u

∂x
+ c(x, t)u + d(x, t), (x, t) ∈ (−2, 2) × (0, 1],

u(x, 0) = ex, x ∈ [−2, 2],
u(−2, t) = e−2−t, u(2, t) = e2−t, t ∈ [0, 1].

The coefficient functions are chosen as

a(x, t) = 0.08 (2 + (1 − t) sin(ex))2
,

b(x, t) = 0.06(1 + t e−ex

) − 0.02e−t−ex

− a(x, t),
c(x, t) = −0.06(1 + t e−ex

),
d(x, t) = 0.02ex−ex−2t − ex−t.

The exact solution is u(x, t) = ex−t.

The comparison between the exact solution and the FLM approximated solution is presented in Fig. 5c. The
results are presented in Table 2c.

Example 5.4 (Inviscid Burgers’ Equation)
∂u

∂t
+ u

∂u

∂x
= 0, 0 ≤ x ≤ 1, 0 ≤ t ≤ 1,

u(x, 0) = 1.0 + 0.35 sin(2πx),

u(0, t) = u(1, t).

This PDE has discontinuous solution and the boundary condition u(0, t) = u(1, t) induces a discontinuity
in the boundary as well. In this case, we compare the approximated solution with the numerical solution
obtained by Godunov’s method. The results are illustrated in Fig. 5d and summarized in Table 2d.

The numerical experiments demonstrate that FLMs consistently outperform other NN models across a set of
multidimensional PDEs. While SIREN and vanilla feedforward NNs perform well when the target function
contains similar mathematical behavior as the activation function they use, FLMs achieve significantly lower
error metrics and faster convergence (see tables in Appendix C) regardless of the PDE. In terms of the
MSE and MAE metrics, FLMs were shown to perform better than all models considered for each PDE,
with the exception of Burgers’ PDE. This difficulty in approximating the solution of Burgers’ equation was
anticipated, mainly because of the presence of a discontinuity. However, the FLM was still able to attain
an MSE of the same order of magnitude of the best performing model, the Vanilla Tan NN. In terms of
Max Error, FLMs also showed an overall superior performance, even though not always dominating the
other models. In general, out of all of the competing models, SIREN NNs are the models with the closest
performance to that of FLMs. In the next section, we apply the proposed FLM model to the solution of a
family of OCPs.
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(a)

(b)

(c)

(d)

Figure 5: Solution surfaces of the Heat (a), Poisson (b), GBS (c), and Burgers’ (d) equations, showing exact
solution (left), FLM approximation (middle), and absolute error (right).
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Table 2: Approximation Errors for Various PDEs Using Different Models

(a) Heat PDE

Models MSE MAE Max Error
FLM 6.24 × 10−8 2.01 × 10−4 7.37 × 10−4

SIREN–1 5.07 × 10−7 5.29 × 10−4 1.97 × 10−3

SIREN–2 3.07 × 10−6 1.18 × 10−3 8.06 × 10−3

SIREN–3 5.40 × 10−5 3.90 × 10−3 2.00 × 10−2

V Relu 6.39 × 10−2 2.03 × 10−1 6.72 × 10−1

V Tan 9.24 × 10−6 1.39 × 10−3 4.08 × 10−3

(b) Poisson PDE

Models MSE MAE Max Error
FLM 1.34 × 10−7 2.04 × 10−4 6.74 × 10−4

SIREN–1 2.01 × 10−7 3.95 × 10−4 1.86 × 10−3

SIREN–2 8.07 × 10−5 7.09 × 10−3 3.43 × 10−2

V Relu 2.45 × 10−1 3.97 × 10−1 9.99 × 10−1

V Tan 2.64 × 10−4 9.95 × 10−3 6.56 × 10−2

(c) Generalized Black–Scholes PDE

Models MSE MAE Max Error
FLM 3.80 × 10−7 4.44 × 10−4 4.53 × 10−3

SIREN–1 4.09 × 10−5 4.84 × 10−3 3.44 × 10−2

SIREN–2 8.37 × 10−7 7.39 × 10−4 2.91 × 10−3

V LRelu 6.53 × 10−2 1.75 × 10−1 9.85 × 10−1

V Tan 6.06 × 10−6 2.02 × 10−3 5.54 × 10−3

(d) Burgers’ PDE

Models MSE MAE Max Error
FLM 6.55 × 10−3 4.07 × 10−2 3.73 × 10−1

SIREN–1 2.13 × 10−2 1.15 × 10−1 3.89 × 10−1

SIREN–2 9.80 × 10−3 5.86 × 10−2 3.59 × 10−1

SIREN–3 6.96 × 10−3 4.34 × 10−2 3.68 × 10−1

V Relu 3.09 × 10−2 1.46 × 10−1 3.74 × 10−1

V Tan 4.58 × 10−3 2.88 × 10−2 4.44 × 10−1

5.2 Numerical Experiments for Optimal Control Problems

Both NN and Fourier series have been proven to be very effective to solve OCPs in recent years (Effati &
Pakdaman, 2013; Nicolosi et al., 2022; Nicolosi & Griffin, 2023; Nicolosi et al., 2025; Rubel & Nicolosi, 2025).
To show the effectiveness of FLMs to solve OCPs, we consider the optimal control of a system governed by
the dynamics of a 3–strategy odd–circulant evolutionary game, namely, a Rock–Paper–Scissors game (Griffin
& Fan, 2022). The state of the system, a vector u(t) = (u1, u2, u3)⊤ with u1 + u2 + u3 = 1, represents the
proportion of a population playing each strategy. The goal is to push these proportions toward the desired
equilibrium point u∗ = (1/3, 1/3, 1/3)⊤ representing an equally balanced population.

The system’s evolution is described by the replicator dynamics and is influenced by an external control input,
γ(t). This control actively alters the game’s payoff matrix, which is defined as A3(γ) = L3 + γM3, where
L3 is the standard payoff matrix and M3 is an actuating matrix and given by

L3 =

 0 −1 1
1 0 −1

−1 1 0

 , M3 =

0 0 1
1 0 0
0 1 0

 .

The objective is to find an optimal control strategy γ(t) that minimizes a cost functional over a time horizon
[0, T ]. This cost has two components: a term that penalizes the squared distance of the state u(t) from the
target equilibrium u∗, and a term that penalizes the squared control effort γ(t)2.

An important point to note is that the given OCP possesses a cyclic symmetry. If u∗(t) =
(u∗

1(t), u∗
2(t), u∗

3(t))⊤ is the optimal state trajectory, γ∗(t) is the optimal control and J∗ is the optimal
objective value for an initial condition u0 = (u01, u02, u03)⊤, then any cyclic permutation of this initial
state will yield the same optimal control solution and objective value. Consequently, the new optimal state
trajectory will be the corresponding cyclic permutation of the original trajectory, u∗(t). For instance, if
the initial state is permuted to (u02, u03, u01), the optimal trajectory becomes (u∗

2(t), u∗
3(t), u∗

1(t)), while the
optimal control and objective value remain unchanged. The numerical approximation of the solution of the
OCP with our proposed model is presented in the next example.
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Consider a class of the OCP described above, where the initial condition u0 varies withing a given range,
written as

min J(u, γ) =
∫ T

0

(
1
2∥u − u∗∥2

2 + r

2γ2
)

dt

s.t. u̇ = F (u) + γ(t)G(u) (16)
u(0) = u0 ∈ U0,

where u(t) ∈ ∆2 lies on the 2–simplex. The vector fields, for i = 1, 2, 3, are given by

Fi(u) = ui

(
(ei − u)T L3u

)
, (17)

Gi(u) = ui

(
(ei − u)T M3u

)
.

Let ûi(t, u0; Θui
) be the FLM that learns the approximation of state variable ui(t, u0), i.e., u ≈ û =

(û1, û2, û3)⊤ and γ̂(t, u0; Θγ) be the FLM that learns the control variable γ(t, u0) for any trajectory departing
from U0, where Θ = {Θu1 , Θu2 , Θu3 , Θγ} is the collection of all network parameters of the respective networks.
Given the complex nature of the OCP above, the training process is different than it was for the PDEs and
so is the construction of the training loss function. We train all the FLM simultaneously by minimizing
the training loss using a penalty method (Ch. 9 in Bazaraa et al. (2006)). We define an unconstrained loss
function that incorporates the objective functional and penalties for dynamics and initial condition violations
as

L(Θ) = 1
NIC

∑
u0∈U0

[
J + 1

2µ⊤
1 Vdyn + 1

2µ⊤
2 V init

]
, (18)

with

J (Θ) =
∫ T

0

(
1
2∥û − u∗∥2 + r

2 γ̂2
)

dt,

Vdyn(Θ) =
∫ T

0

(
˙̂u − F (û) − γ̂G(û)

)
⊙

(
˙̂u − F (û) − γ̂G(û)

)
dt,

V init(Θ) = (û(0) − u0) ⊙ (û(0) − u0) ,

where µ1, µ2 are vectors of positive penalty coefficients. Minimizing the total loss L with respect to Θu and
Θγ forces the FLM to approximate the optimal state trajectory and control signal that solve the original
OCP. Next, we consider two cases: a fixed initial condition case, for a given u0, and a for a range of initial
conditions U0 ⊂ ∆2.

5.2.1 Fixed Initial Condition OCP

First we solve the OCP for fixed initial condition with a one–dimensional FLM, which is a NN with one
hidden–layer and cosine activation function. We consider three such FLMs, two for the state variables u1
and u2 and one for the control γ. The third state variable is calculated using the relation u3 = 1 − u1 − u2.
The training is performed with default learning rate 0.001 and betas β1 = 0.99 and β2 = 0.999 with
the ADAM optimizer as well. To test the accuracy of our model, we compare its performance against a
numerical solution obtained via PMP to formulate a two–point boundary value problem, which was then
solved numerically to a high precision (tolerance of 10−8) using the solve_bvp function from Python’s SciPy
library. The FLM approximated solutions and the PMP–based numerical solutions for three different, fixed
initial conditions are shown in Fig. 6. The approximated optimal objective function values have absolute
percentage errors of 0.47%, 0.37%, and 0.34% respectively. Fig. 7 shows the state trajectory for the initial
point u0 = (0.20, 0.20, 0.60)⊤. The parameters of the OCP, as in Griffin & Fan (2022), are chosen as T = 6.0,
r = 0.2.

We note that the PMP–based method we compare our results against is an indirect method, thus it is
contingent upon the existence of a Hamiltonian function associated to that particular system. On the other
hand, our FLM–based method is a direct one (i.e., it translates the OCP to a discrete, nonlinear optimization
problem), neither based on the existence of a Hamiltonian nor on any convexity assumptions, thus applicable
to solve both convex and nonconvex OCPs.
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Figure 6: The PMP-based numerical solution vs the FLM approximation for different initial conditions with
N = 5 sub–networks.

Figure 7: Optimal state trajectories for u0 = (0.20, 0.20, 0.60), T = 6 and r = 0.2.

5.2.2 Varying Initial Condition OCP

We solve the same OCP considered thus far, but now varying the initial condition u0 in a set U0, defined
as a disk on the 2–simplex, centered at (0.20, 0.20, 0.60), with radius 0.15. Three FLMs with with N = 27
and three inputs (t, u01, u02) (we recall that the third state variable and its initial value is dependent on the
other two), are used to approximate the two state and one control variables. The three FLMs are trained on
250 random points inside the disk, and then tested in 100 newly generated random points on the disk with
center at (0.20, 0.20, 0.60). Given the cyclic symmetry of the 2–simplex and the underlying payoff matrix,
two other disks, centered at (0.20, 0.60, 0.20) and (0.60, 0.20, 0.20), provided a sampling of 200 hundred extra
points used as initial conditions for testing. This choice of testing points is a mere illustration on how one
could leverage the inherent cyclic symmetry of this OCP in order to reduce the training space required to
learn the approximated optimal control law. This is attained by informing the controller on what disk it
is actuating on, allowing it to use the appropriate coordinate control learned at the disk used for training.
Nonetheless, such a training choice does not undermine the results reported herein had we chosen to focus
on a single disk in the 2–simplex.

The hyperparameters are tuned and a learning rate of 5×10−4 and beta values of 0.95 and 0.97, respectively,
are selected for training. To quantify the approximation accuracy, we define the Mean Absolute Percentage
Error (MAPE) on the objective function as follows:

MAPE = 1
100

100∑
j=1

∣∣∣JF LM
j − JP MP

j

JP MP
j

∣∣∣ × 100%︸ ︷︷ ︸
Percentage Error in the jth test point

, (19)
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where JF LM
j and JP MP

j are the the objective function values obtained from the FLM–approximated solution
and the PMP–based solution, respectively, for the jth test point. Over the test points on each of the three
disks, The MAPEs are calculated to be 0.81%, 0.85%, and 0.72% respectively, while the respective MAEs
are calculated to be 2.54 × 10−3, 2.74 × 10−3 and 1.81 × 10−3. Fig. 8 demonstrates the percentage errors
and the absolute errors (point–wise) in the test points in the three disks. These numerical results represent
a substantial improvement from the ones initially reported in Nicolosi (2023), where a finite Fourier series
failed to approximate the optimal control law of this OCP in this case of varying initial condition.

Figure 8: (Left) Absolute percentage errors and (right) absolute errors in the objective function value on test
points within the circular disks on the simplex plane centered at (0.2, 0.2, 0.6) and its cyclic permutations
with a radius of 0.15.

5.2.3 Varying Initial Condition 5–dimensional OCP

To demonstrate the scalability of FLMs, we solve the 5–strategy extension of RPS, known as RPSSL (Rock–
Paper–Scissors–Spock–Lizard). We extend the OCP in Equation 16 by replacing the matrices L3 and M3,
respectively, in Equation 17 with

L5 =


0 −1 1 −1 1
1 0 −1 1 −1

−1 1 0 −1 1
1 −1 1 0 −1

−1 1 −1 1 0

 , M5 =


0 0 1 0 1
1 0 0 1 0
0 1 0 0 1
1 0 1 0 0
0 1 0 1 0

 .

For this experiment, 4 FLMs with 5 inputs and N = 16 sub–networks were used to approximate four states
and an FLM with 5 inputs and N = 32 sub–networks was employed to approximate the optimal control.
All of the FLMs were trained and tested following the same method discussed before with a learning rate of
10−4 and beta values of 0.95 and 0.97. Training the models with initial conditions (uniformly) sampled from
a hyperdisk in the 4−simplex ∆4 of radius 0.0451 centered at (0.11, 0.11, 0.11, 0.11, 0.56), we have achieved
an MAPE of 0.67% with MAE of 2.10 × 10−3.

Our results show that FLMs arewas capable of numerically solving PDEs with the same level of accuracy
of other traditional NN models, often outperforming them in terms of error metrics considered. The OCP
example also illustrated how FLMs can approximate the state trajectory and the optimal control of a high–
dimensional family of OCPs.

6 Conclusions and Future Work

We have introduced the FLM, a neural architecture that learns optimal frequencies directly while systemati-
cally representing a multidimensional nonharmonic Fourier series, thereby bridging the gap between classical

1This choice of radius length is such that the density of sampled initial conditions is the same as in the RPS case.
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spectral methods and modern NN architectures. By jointly training frequencies, amplitudes, and phase
shifts, FLMs overcome the restrictions of fixed harmonic Fourier series and adapts naturally to both periodic
and nonperiodic problems. Its implementation as a NN allows it to leverage scientific computational and
optimization tools, such as backpropagation, automatic differentiation and state–of–the–art solvers. Com-
putational experiments on benchmark PDEs demonstrate that FLMs can match or outperform established
architectures such as SIREN and vanilla feedforward NNs. Additionally, FLMs solve a family of OCPs with
high accuracy, demonstrating it generalization capability and its potential for high–dimensional, nonlinear
problems.
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Appendix

A Detailed Derivation of The Relation Between Separable Coefficients and
Phase–Shifted Cosine Parameters in Two–Input Case

Hn = A
(n)
1 cos

(
n1x1 + n2x2 − ϕ

(n)
1

)
+ A

(n)
2 cos

(
n1x1 − n2x2 − ϕ

(n)
2

)
= A

(n)
1

[
cos ϕ

(n)
1 cos(n1x1 + n2x2) + sin ϕ

(n)
1 sin(n1x1 + n2x2)

]
+ A

(n)
2

[
cos ϕ

(n)
2 cos(n1x1 − n2x2) + sin ϕ

(n)
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]
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(n)
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+ sin ϕ
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Comparing with Equation 9 we get,

a
(n)
1 = A

(n)
1 cos ϕ

(n)
1 + A
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2 cos ϕ
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2 , a

(n)
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1 sin ϕ
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1 − A
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(n)
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(n)
2 , a

(n)
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1 cos ϕ

(n)
1 + A

(n)
2 cos ϕ

(n)
2 .

B FLM For Time Series Imputation

To demonstrate the potential of FLMs for time series imputation tasks, we present in this Appendix some
numerical results derived from a brief set of computational experiments using data from the Electricity
Transformer Temperature (ETT) dataset Zhou et al. (2021). This dataset is widely used in time series
forecasting and imputation benchmarks due to its strong quasi–periodic patterns and significant fluctuations,
making it a good testbed candidate to evaluate the frequency–learning capabilities of our model. We compare
the performance of FLMs to the models presented in Du et al. (2024), also evaluated for the ETT data set.

B.1 Dataset and Experimental Setup

We utilize the ETTh1 (Electricity Transformer Temperature – 1 hour) subset, which contains hourly records
of oil temperature (OT) and other load features from electricity transformers over a period of two years. For
this experiment, we focus on the univariate imputation of the OT channel only, which exhibits both daily
and yearly seasonality alongside high–frequency oscillations.

We replicate the data preprocessing and experimental protocol present in Du et al. (2024):

• Preprocessing: The data is normalized using a standard scaler (zero mean, unit variance). The
time index t is mapped to the domain [−π, π].

• Splitting: We employ a chronological split of 60% for training, 20% for validation, and 20% for
testing.
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• Masking: To simulate missing values, we apply random point-wise masking at three different
missingness rates: 10%, 30%, and 50%.

• Training: The model is trained to minimize the MSE on the observed (non-masked) data points
of the training set. After hyperparameter tuning, we utilize the Adam optimizer with a learning
rate of 1 × 10−4 and a hidden layer size of N = 8. The training runs for 10,000 epochs with early
stopping based on validation loss.

B.2 Results

We report the FLM approximation error on the held-out masked values of the test set. The performance is
evaluated using MAE and Root Mean Squared Error (RMSE). Table 3 summarizes the results averaged over
10 independent runs with different random seeds. For comparative baselines, we refer to the comprehensive
results established in Du et al. (2024), noting that the FLM achieved a competitive performance (although
not superior) with a significantly fewer number of parameters and much simpler architecture than most of the
models considered in Du et al. (2024) (mostly Deep NN models). In particular, referring to the performance
of models in Du et al. (2024) for the dataset considered, FLMs would rank 26 and 24 out of 29 for the cases
of 10% and 50% of point–wise missing data, respectively. We emphasize that such performance was attained
with a single–input FLM only. These preliminary results indicate that FLMs have great potential to be
explored in this domain, and perhaps can be further studied or adapted for the specific task of time series
imputation.

Table 3: FLM imputation results on ETTh1 (Mean ± SD over 10 seeds) against some of the performance of
state-of-the-art models considered in Du et al. (2024) (** refers to the top performing and * to the lowest
ranked one).

MAE
Model Mean (Standard Deviation)

10% Missing Rate
FLM 0.57 (0.15)

MRNN* (Yoon et al. (2018)) 0.79 (0.02)
Mean (Du et al. (2024)) 0.74 (–)

Median (Du et al. (2024)) 0.71 (–)
SAITS** (Du et al. (2023)) 0.14 (0.01)

50% Missing Rate
FLM 0.66 (0.18)

AutoFormer* (Wu et al. (2021)) 0.98 (0.01)
Mean (Du et al. (2024)) 0.74 (–)

Median (Du et al. (2024)) 0.71 (–)
SAITS** 0.22 (0.01)

C Numerical Results for Hyperparameter Selection

When numerically solving each PDE, we trained FLMs and other NN models for 18–27 different hyperpa-
rameter configurations, with a maximum of 10,000 epochs and a training loss tolerance of 10−4. All error
metrics (MSE, MAE, Max Error) and the number of epochs required to reach the specified training loss
tolerance were averaged over 10 runs with different random seeds. The performances of all tested models
applied to each PDE are reported in Tables 5–26. Table 4 shows the number of trainable parameters in each
model for different number of hidden units.

To select the best hyperparameter combination for each model applied to each PDE, we performed a hierar-
chical statistical testing procedure. For each metric (MSE, MAE, Max Error, and number of epochs, in that
order), we first tested for normality using the Shapiro-Wilk test. If all hyperparameter sets were normally

25



Under review as submission to TMLR

Table 4: Number of trainable parameters for different models. For FLM, N denotes the number of sub–
networks. For all other models, Nhidden denotes the number of neurons in each hidden layer. For each row,
parameter counts are reported in the same order as the listed N or Nhidden values.

Model Hidden Units Formula Trainable Parameters
FLM N = {04, 16, 25, 49, 64} 6N {24, 96, 150, 294, 384}

SIREN–1 Nhidden = {06, 24, 37, 73, 93} 4Nhidden + 1 {25, 97, 149, 293, 373}

SIREN–2 Nhidden = {03, 08, 10, 15, 17} N2
hidden + 5Nhidden + 1 {25, 105, 151, 301, 375}

SIREN–3, V-ReLU,
V-LReLU, V-Tanh Nhidden = {02, 06, 07, 11, 12} 2N2

hidden + 6Nhidden + 1 {21, 109, 141, 309, 361}

distributed (p > 0.05) in their respective metric, we applied one–way ANOVA followed by Tukey’s HSD test
for pairwise comparisons; otherwise, we used the nonparametric Friedman test followed by the Nemenyi test.
We identified the set with the lowest respective metric mean (or average rank in the nonparametric case) for
the current metric and grouped hyperparameter configurations not significantly different (p > 0.05 or within
the critical difference) from it. This top group was carried forward to the next metric, repeating the process
sequentially. If multiple groups remained statistically equivalent after all metrics had been evaluated, we
selected the one with the smallest network size as the tiebreaker.

With the best performing hyperparameter configuration (highlighted in each table below) selected by follow-
ing the aforementioned procedure, we train the NN models for 30, 000 new additional epochs with a training
loss tolerance of 10−8, and report the error metrics for each PDE in their respective tables.

Table 5: Heat Equation with FLM

N LR Betas MSE ± SD MAE ± SD Max Error ± SD Epochs ± SD

4

0.001
(0.9, 0.999) (5.59 ± 1.51)E-06 (1.88 ± 0.23)E-03 (8.54 ± 1.58)E-03 8611 ± 1087
(0.95, 0.97) (1.05 ± 0.26)E-05 (2.54 ± 0.38)E-03 (1.39 ± 0.32)E-02 2941 ± 627
(0.97, 0.95) (1.05 ± 0.23)E-05 (2.57 ± 0.28)E-03 (1.34 ± 0.23)E-02 2802 ± 275

0.005
(0.9, 0.999) (5.03 ± 1.36)E-06 (1.76 ± 0.21)E-03 (8.70 ± 2.08)E-03 3876 ± 1254
(0.95, 0.97) (8.71 ± 2.08)E-06 (2.36 ± 0.29)E-03 (1.13 ± 0.30)E-02 1173 ± 649
(0.97, 0.95) (7.42 ± 2.88)E-06 (2.12 ± 0.39)E-03 (1.13 ± 0.38)E-02 1129 ± 334

0.01
(0.9, 0.999) (4.89 ± 1.31)E-06 (1.75 ± 0.22)E-03 (8.41 ± 2.09)E-03 3233 ± 1807
(0.95, 0.97) (7.28 ± 2.43)E-06 (2.13 ± 0.44)E-03 (1.03 ± 0.33)E-02 927 ± 609
(0.97, 0.95) (7.98 ± 3.49)E-06 (2.23 ± 0.59)E-03 (9.66 ± 2.29)E-03 1097 ± 502

16

0.001
(0.9, 0.999) (1.69 ± 0.46)E-06 (9.84 ± 0.80)E-04 (6.72 ± 2.97)E-03 2793 ± 592
(0.95, 0.97) (2.22 ± 0.72)E-06 (1.13 ± 0.18)E-03 (6.34 ± 1.34)E-03 594 ± 115
(0.97, 0.95) (2.86 ± 1.10)E-06 (1.28 ± 0.27)E-03 (7.57 ± 2.19)E-03 598 ± 68

0.005
(0.9, 0.999) (1.83 ± 0.63)E-06 (1.04 ± 0.11)E-03 (6.67 ± 2.14)E-03 1005 ± 253
(0.95, 0.97) (2.81 ± 1.25)E-06 (1.31 ± 0.33)E-03 (6.29 ± 1.43)E-03 348 ± 41
(0.97, 0.95) (4.16 ± 2.32)E-06 (1.60 ± 0.49)E-03 (8.01 ± 2.07)E-03 381 ± 37

0.01
(0.9, 0.999) (1.99 ± 0.88)E-06 (1.09 ± 0.17)E-03 (6.87 ± 1.71)E-03 643 ± 139
(0.95, 0.97) (5.55 ± 3.13)E-06 (1.93 ± 0.62)E-03 (6.87 ± 1.58)E-03 295 ± 29
(0.97, 0.95) (5.71 ± 2.31)E-06 (1.87 ± 0.43)E-03 (8.35 ± 1.94)E-03 338 ± 31

25

0.001
(0.9, 0.999) (1.34 ± 0.52)E-06 (8.75 ± 1.23)E-04 (8.09 ± 4.70)E-03 2509 ± 428
(0.95, 0.97) (1.45 ± 0.67)E-06 (9.32 ± 2.02)E-04 (6.94 ± 2.65)E-03 491 ± 45
(0.97, 0.95) (1.64 ± 0.47)E-06 (9.79 ± 1.54)E-04 (7.79 ± 2.93)E-03 505 ± 25

0.005
(0.9, 0.999) (1.05 ± 0.37)E-06 (7.89 ± 1.10)E-04 (7.18 ± 3.89)E-03 860 ± 188
(0.95, 0.97) (2.49 ± 1.70)E-06 (1.19 ± 0.41)E-03 (7.33 ± 3.75)E-03 336 ± 52
(0.97, 0.95) (3.54 ± 2.90)E-06 (1.48 ± 0.63)E-03 (7.77 ± 3.07)E-03 353 ± 35

0.01
(0.9, 0.999) (1.08 ± 0.38)E-06 (8.00 ± 1.11)E-04 (6.80 ± 4.21)E-03 568 ± 158
(0.95, 0.97) (6.16 ± 2.95)E-06 (2.02 ± 0.53)E-03 (8.27 ± 3.50)E-03 292 ± 60
(0.97, 0.95) (8.26 ± 4.61)E-06 (2.30 ± 0.71)E-03 (7.92 ± 1.69)E-03 319 ± 39

26
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Table 6: Heat Equation with SIREN–1

Nhidden LR Betas MSE ± SD MAE ± SD Max Error ± SD Epochs ± SD

6

0.001
(0.9, 0.999) (2.83 ± 1.58)E-05 (4.04 ± 1.19)E-03 (2.32 ± 0.90)E-02 9999 ± 0
(0.95, 0.97) (1.11 ± 0.27)E-05 (2.60 ± 0.34)E-03 (1.59 ± 0.44)E-02 6269 ± 2156
(0.97, 0.95) (9.97 ± 2.77)E-06 (2.49 ± 0.38)E-03 (1.35 ± 0.24)E-02 5255 ± 1420

0.005
(0.9, 0.999) (1.14 ± 0.99)E-05 (2.47 ± 0.92)E-03 (1.34 ± 0.73)E-02 9444 ± 1148
(0.95, 0.97) (9.18 ± 2.22)E-06 (2.39 ± 0.33)E-03 (1.27 ± 0.30)E-02 3904 ± 2088
(0.97, 0.95) (8.88 ± 2.96)E-06 (2.37 ± 0.43)E-03 (1.12 ± 0.26)E-02 2658 ± 1019

0.01
(0.9, 0.999) (9.23 ± 3.38)E-06 (2.41 ± 0.42)E-03 (1.22 ± 0.44)E-02 8432 ± 1932
(0.95, 0.97) (8.64 ± 4.76)E-06 (2.27 ± 0.74)E-03 (1.12 ± 0.32)E-02 3803 ± 1919
(0.97, 0.95) (1.06 ± 0.24)E-05 (2.64 ± 0.35)E-03 (1.17 ± 0.26)E-02 1938 ± 753

24

0.001
(0.9, 0.999) (2.08 ± 1.19)E-05 (3.43 ± 1.01)E-03 (2.26 ± 0.60)E-02 9879 ± 379
(0.95, 0.97) (1.18 ± 0.10)E-05 (2.67 ± 0.19)E-03 (1.84 ± 0.35)E-02 6588 ± 1250
(0.97, 0.95) (1.16 ± 0.13)E-05 (2.61 ± 0.27)E-03 (1.95 ± 0.34)E-02 5990 ± 811

0.005
(0.9, 0.999) (9.12 ± 5.90)E-06 (2.23 ± 0.74)E-03 (1.52 ± 0.57)E-02 7008 ± 2507
(0.95, 0.97) (9.81 ± 2.20)E-06 (2.33 ± 0.38)E-03 (1.85 ± 0.34)E-02 5093 ± 1462
(0.97, 0.95) (1.01 ± 0.11)E-05 (2.24 ± 0.20)E-03 (2.06 ± 0.22)E-02 3288 ± 929

0.01
(0.9, 0.999) (1.20 ± 1.02)E-05 (2.66 ± 1.30)E-03 (1.27 ± 0.48)E-02 6689 ± 2824
(0.95, 0.97) (1.07 ± 0.29)E-05 (2.61 ± 0.55)E-03 (1.54 ± 0.34)E-02 4371 ± 1796
(0.97, 0.95) (1.20 ± 0.56)E-05 (2.63 ± 0.80)E-03 (1.61 ± 0.45)E-02 2566 ± 802

37

0.001
(0.9, 0.999) (1.53 ± 0.99)E-05 (2.96 ± 0.99)E-03 (1.92 ± 0.69)E-02 9617 ± 743
(0.95, 0.97) (1.27 ± 0.22)E-05 (2.82 ± 0.36)E-03 (1.83 ± 0.34)E-02 7915 ± 1354
(0.97, 0.95) (1.27 ± 0.12)E-05 (2.79 ± 0.25)E-03 (1.80 ± 0.41)E-02 6416 ± 746

0.005
(0.9, 0.999) (9.55 ± 4.03)E-06 (2.43 ± 0.55)E-03 (1.42 ± 0.46)E-02 7341 ± 2075
(0.95, 0.97) (1.13 ± 0.47)E-05 (2.62 ± 0.74)E-03 (1.65 ± 0.37)E-02 6120 ± 2289
(0.97, 0.95) (1.05 ± 0.36)E-05 (2.45 ± 0.49)E-03 (1.61 ± 0.52)E-02 4219 ± 1018

0.01
(0.9, 0.999) (1.00 ± 0.50)E-05 (2.51 ± 0.75)E-03 (1.31 ± 0.44)E-02 7143 ± 2049
(0.95, 0.97) (1.10 ± 0.49)E-05 (2.59 ± 0.77)E-03 (1.45 ± 0.55)E-02 5468 ± 2671
(0.97, 0.95) (1.45 ± 0.57)E-05 (3.01 ± 0.79)E-03 (1.27 ± 0.29)E-02 2840 ± 1014

Table 7: Heat Equation with SIREN–2

Nhidden LR Betas MSE ± SD MAE ± SD Max Error ± SD Epochs ± SD

3

0.001
(0.9, 0.999) (2.35 ± 1.70)E-05 (3.65 ± 1.40)E-03 (1.89 ± 0.98)E-02 9999 ± 0
(0.95, 0.97) (5.87 ± 4.70)E-06 (1.79 ± 0.80)E-03 (1.15 ± 0.57)E-02 7297 ± 3557
(0.97, 0.95) (4.12 ± 2.24)E-06 (1.55 ± 0.47)E-03 (1.01 ± 0.32)E-02 6144 ± 2993

0.005
(0.9, 0.999) (1.73 ± 1.18)E-05 (3.25 ± 1.47)E-03 (1.43 ± 0.59)E-02 9218 ± 1647
(0.95, 0.97) (7.03 ± 6.13)E-06 (1.93 ± 0.90)E-03 (9.41 ± 3.58)E-03 5834 ± 3426
(0.97, 0.95) (5.84 ± 6.57)E-06 (1.69 ± 0.96)E-03 (1.11 ± 0.60)E-02 5149 ± 3420

0.01
(0.9, 0.999) (7.23 ± 20.80)E-05 (3.82 ± 6.09)E-03 (1.38 ± 1.44)E-02 9959 ± 126
(0.95, 0.97) (9.54 ± 8.34)E-06 (2.26 ± 0.86)E-03 (1.24 ± 0.82)E-02 6205 ± 3561
(0.97, 0.95) (4.86 ± 1.75)E-06 (1.74 ± 0.31)E-03 (9.53 ± 3.95)E-03 5585 ± 3913

8

0.001
(0.9, 0.999) (1.90 ± 0.99)E-06 (9.79 ± 1.89)E-04 (8.73 ± 3.20)E-03 7476 ± 1894
(0.95, 0.97) (2.27 ± 1.37)E-06 (1.12 ± 0.33)E-03 (7.86 ± 2.06)E-03 1432 ± 408
(0.97, 0.95) (1.83 ± 1.05)E-06 (1.02 ± 0.29)E-03 (6.76 ± 2.07)E-03 1506 ± 305

0.005
(0.9, 0.999) (1.99 ± 1.05)E-06 (9.85 ± 2.31)E-04 (1.02 ± 0.36)E-02 4380 ± 1700
(0.95, 0.97) (2.92 ± 1.37)E-06 (1.32 ± 0.36)E-03 (9.41 ± 3.78)E-03 891 ± 300
(0.97, 0.95) (2.97 ± 1.11)E-06 (1.35 ± 0.27)E-03 (8.62 ± 3.00)E-03 810 ± 206

0.01
(0.9, 0.999) (3.10 ± 1.87)E-06 (1.29 ± 0.42)E-03 (1.08 ± 0.59)E-02 2569 ± 1112
(0.95, 0.97) (7.20 ± 2.06)E-06 (2.25 ± 0.36)E-03 (8.21 ± 1.82)E-03 853 ± 423
(0.97, 0.95) (5.43 ± 2.13)E-06 (1.86 ± 0.38)E-03 (9.76 ± 2.30)E-03 652 ± 172

10

0.001
(0.9, 0.999) (2.07 ± 0.92)E-06 (1.03 ± 0.21)E-03 (9.84 ± 2.88)E-03 7124 ± 1546
(0.95, 0.97) (2.67 ± 1.22)E-06 (1.24 ± 0.33)E-03 (7.46 ± 1.30)E-03 1487 ± 398
(0.97, 0.95) (2.32 ± 0.72)E-06 (1.15 ± 0.24)E-03 (8.62 ± 3.05)E-03 1455 ± 281

0.005
(0.9, 0.999) (2.70 ± 2.47)E-06 (1.17 ± 0.57)E-03 (9.60 ± 2.58)E-03 4110 ± 1315
(0.95, 0.97) (4.48 ± 1.57)E-06 (1.76 ± 0.41)E-03 (9.67 ± 2.89)E-03 1051 ± 353
(0.97, 0.95) (4.16 ± 1.71)E-06 (1.60 ± 0.44)E-03 (1.01 ± 0.20)E-02 904 ± 235

0.01
(0.9, 0.999) (2.01 ± 0.84)E-06 (1.05 ± 0.25)E-03 (8.77 ± 2.49)E-03 2917 ± 902
(0.95, 0.97) (1.05 ± 0.30)E-05 (2.77 ± 0.56)E-03 (1.11 ± 0.29)E-02 919 ± 143
(0.97, 0.95) (6.22 ± 2.93)E-06 (2.06 ± 0.62)E-03 (8.96 ± 1.66)E-03 761 ± 172
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Table 8: Heat Equation with SIREN–3

Nhidden LR Betas MSE ± SD MAE ± SD Max Error ± SD Epochs ± SD

2

0.001
(0.9, 0.999) (4.46 ± 3.58)E-05 (4.92 ± 1.90)E-03 (3.08 ± 1.12)E-02 9999 ± 0
(0.95, 0.97) (1.19 ± 0.76)E-05 (2.65 ± 0.81)E-03 (1.64 ± 0.77)E-02 9729 ± 853
(0.97, 0.95) (5.48 ± 14.99)E-05 (3.66 ± 4.79)E-03 (1.89 ± 2.52)E-02 9080 ± 1963

0.005
(0.9, 0.999) (4.35 ± 7.13)E-05 (4.51 ± 3.81)E-03 (2.10 ± 1.13)E-02 9999 ± 0
(0.95, 0.97) (6.72 ± 17.28)E-05 (4.41 ± 5.11)E-03 (2.21 ± 2.62)E-02 9640 ± 1135
(0.97, 0.95) (6.41 ± 17.45)E-05 (3.95 ± 5.26)E-03 (2.00 ± 2.67)E-02 8225 ± 2878

0.01
(0.9, 0.999) (6.25 ± 15.12)E-05 (4.28 ± 4.77)E-03 (2.42 ± 2.62)E-02 9904 ± 301
(0.95, 0.97) (8.64 ± 21.95)E-05 (5.03 ± 5.85)E-03 (2.43 ± 2.78)E-02 9576 ± 1339
(0.97, 0.95) (8.08 ± 16.63)E-05 (5.29 ± 5.21)E-03 (2.68 ± 3.14)E-02 9507 ± 1146

6

0.001
(0.9, 0.999) (3.67 ± 2.60)E-06 (1.38 ± 0.47)E-03 (1.17 ± 0.39)E-02 6447 ± 1848
(0.95, 0.97) (3.80 ± 1.34)E-06 (1.44 ± 0.30)E-03 (1.11 ± 0.40)E-02 1233 ± 519
(0.97, 0.95) (2.49 ± 1.14)E-06 (1.16 ± 0.22)E-03 (9.21 ± 4.43)E-03 1199 ± 335

0.005
(0.9, 0.999) (5.09 ± 4.76)E-06 (1.64 ± 0.88)E-03 (1.04 ± 0.31)E-02 3164 ± 1713
(0.95, 0.97) (5.26 ± 2.47)E-06 (1.75 ± 0.49)E-03 (1.00 ± 0.29)E-02 922 ± 596
(0.97, 0.95) (5.24 ± 3.08)E-06 (1.83 ± 0.57)E-03 (9.33 ± 1.94)E-03 929 ± 550

0.01
(0.9, 0.999) (4.29 ± 3.05)E-06 (1.52 ± 0.68)E-03 (1.05 ± 0.33)E-02 2423 ± 1488
(0.95, 0.97) (9.77 ± 4.94)E-06 (2.52 ± 0.63)E-03 (1.08 ± 0.35)E-02 884 ± 623
(0.97, 0.95) (1.09 ± 0.72)E-05 (2.72 ± 1.03)E-03 (1.11 ± 0.24)E-02 848 ± 627

7

0.001
(0.9, 0.999) (3.85 ± 1.36)E-06 (1.48 ± 0.31)E-03 (1.18 ± 0.47)E-02 7256 ± 1718
(0.95, 0.97) (4.17 ± 1.72)E-06 (1.50 ± 0.40)E-03 (1.27 ± 0.24)E-02 1415 ± 621
(0.97, 0.95) (3.31 ± 0.89)E-06 (1.34 ± 0.25)E-03 (1.22 ± 0.27)E-02 1323 ± 242

0.005
(0.9, 0.999) (2.77 ± 1.73)E-06 (1.21 ± 0.37)E-03 (9.68 ± 3.06)E-03 3584 ± 1547
(0.95, 0.97) (7.23 ± 3.91)E-06 (2.12 ± 0.75)E-03 (1.28 ± 0.36)E-02 1049 ± 436
(0.97, 0.95) (6.76 ± 4.71)E-06 (2.05 ± 0.92)E-03 (1.05 ± 0.40)E-02 1072 ± 364

0.01
(0.9, 0.999) (3.94 ± 1.42)E-06 (1.49 ± 0.32)E-03 (1.11 ± 0.39)E-02 2740 ± 1005
(0.95, 0.97) (1.50 ± 0.45)E-05 (3.28 ± 0.65)E-03 (1.38 ± 0.42)E-02 1201 ± 734
(0.97, 0.95) (1.23 ± 0.82)E-05 (2.84 ± 1.08)E-03 (1.16 ± 0.29)E-02 900 ± 694

Table 9: Heat Equation with Vanilla Relu

Nhidden LR Betas MSE ± SD MAE ± SD Max Error ± SD Epochs ± SD

2

0.001
(0.9, 0.999) (7.14 ± 1.11)E-02 (2.11 ± 0.11)E-01 (7.00 ± 0.74)E-01 10000 ± 0
(0.95, 0.97) (7.17 ± 1.14)E-02 (2.13 ± 0.13)E-01 (6.84 ± 0.61)E-01 10000 ± 0
(0.97, 0.95) (6.27 ± 0.88)E-02 (2.02 ± 0.15)E-01 (6.58 ± 0.51)E-01 10000 ± 0

0.005
(0.9, 0.999) (6.92 ± 1.12)E-02 (2.09 ± 0.11)E-01 (6.84 ± 0.61)E-01 10000 ± 0
(0.95, 0.97) (6.67 ± 0.88)E-02 (2.08 ± 0.11)E-01 (6.67 ± 0.18)E-01 10000 ± 0
(0.97, 0.95) (6.42 ± 1.07)E-02 (2.03 ± 0.16)E-01 (6.49 ± 0.51)E-01 10000 ± 0

0.01
(0.9, 0.999) (6.91 ± 1.10)E-02 (2.09 ± 0.12)E-01 (6.82 ± 0.62)E-01 10000 ± 0
(0.95, 0.97) (6.43 ± 1.09)E-02 (2.03 ± 0.16)E-01 (6.50 ± 0.50)E-01 10000 ± 0
(0.97, 0.95) (6.44 ± 1.10)E-02 (2.03 ± 0.16)E-01 (6.50 ± 0.51)E-01 10000 ± 0

6

0.001
(0.9, 0.999) (8.03 ± 0.65)E-02 (2.26 ± 0.09)E-01 (6.51 ± 0.16)E-01 4973 ± 3984
(0.95, 0.97) (7.80 ± 0.83)E-02 (2.23 ± 0.10)E-01 (6.52 ± 0.18)E-01 5508 ± 4738
(0.97, 0.95) (8.17 ± 0.15)E-02 (2.25 ± 0.07)E-01 (6.60 ± 0.53)E-01 4297 ± 4030

0.005
(0.9, 0.999) (7.84 ± 0.86)E-02 (2.23 ± 0.11)E-01 (6.56 ± 0.14)E-01 6297 ± 4786
(0.95, 0.97) (8.04 ± 0.62)E-02 (2.25 ± 0.07)E-01 (6.59 ± 0.24)E-01 6181 ± 4929
(0.97, 0.95) (8.03 ± 0.63)E-02 (2.24 ± 0.07)E-01 (6.59 ± 0.26)E-01 6852 ± 4256

0.01
(0.9, 0.999) (7.68 ± 0.83)E-02 (2.20 ± 0.13)E-01 (6.61 ± 0.43)E-01 4994 ± 4755
(0.95, 0.97) (8.19 ± 0.17)E-02 (2.26 ± 0.07)E-01 (6.68 ± 0.52)E-01 4958 ± 4232
(0.97, 0.95) (8.28 ± 0.26)E-02 (2.25 ± 0.07)E-01 (6.91 ± 0.73)E-01 7183 ± 4536

7

0.001
(0.9, 0.999) (8.23 ± 0.07)E-02 (2.29 ± 0.02)E-01 (6.46 ± 0.15)E-01 5614 ± 3938
(0.95, 0.97) (8.23 ± 0.08)E-02 (2.29 ± 0.01)E-01 (6.42 ± 0.16)E-01 947 ± 329
(0.97, 0.95) (8.20 ± 0.09)E-02 (2.28 ± 0.01)E-01 (6.43 ± 0.16)E-01 2130 ± 2790

0.005
(0.9, 0.999) (8.21 ± 0.08)E-02 (2.28 ± 0.02)E-01 (6.44 ± 0.19)E-01 3628 ± 3880
(0.95, 0.97) (8.24 ± 0.14)E-02 (2.29 ± 0.02)E-01 (6.42 ± 0.18)E-01 1921 ± 3169
(0.97, 0.95) (7.97 ± 0.72)E-02 (2.24 ± 0.11)E-01 (6.63 ± 0.49)E-01 4461 ± 4786

0.01
(0.9, 0.999) (7.98 ± 0.70)E-02 (2.25 ± 0.08)E-01 (6.39 ± 0.11)E-01 2833 ± 3213
(0.95, 0.97) (8.13 ± 0.17)E-02 (2.26 ± 0.05)E-01 (6.49 ± 0.19)E-01 3401 ± 4438
(0.97, 0.95) (8.20 ± 0.18)E-02 (2.26 ± 0.07)E-01 (6.60 ± 0.59)E-01 4811 ± 4720

28



Under review as submission to TMLR

Table 10: Heat Equation with Vanilla Tan

Nhidden LR Betas MSE ± SD MAE ± SD Max Error ± SD Epochs ± SD

2

0.001
(0.9, 0.999) (8.63 ± 20.28)E-03 (5.32 ± 5.69)E-02 (2.14 ± 1.62)E-01 9999 ± 0
(0.95, 0.97) (9.75 ± 11.43)E-04 (2.06 ± 1.41)E-02 (9.93 ± 7.48)E-02 9999 ± 0
(0.97, 0.95) (1.09 ± 1.20)E-03 (2.19 ± 1.43)E-02 (1.07 ± 0.75)E-01 9999 ± 0

0.005
(0.9, 0.999) (8.79 ± 20.22)E-03 (5.44 ± 5.64)E-02 (2.22 ± 1.59)E-01 9999 ± 0
(0.95, 0.97) (1.79 ± 1.48)E-03 (3.00 ± 1.63)E-02 (1.43 ± 0.77)E-01 9999 ± 0
(0.97, 0.95) (1.25 ± 1.16)E-03 (2.46 ± 1.23)E-02 (1.25 ± 0.70)E-01 9999 ± 0

0.01
(0.9, 0.999) (2.05 ± 1.45)E-03 (3.29 ± 1.47)E-02 (1.54 ± 0.76)E-01 9999 ± 0
(0.95, 0.97) (1.22 ± 1.49)E-03 (2.33 ± 1.69)E-02 (1.12 ± 0.73)E-01 9999 ± 0
(0.97, 0.95) (7.94 ± 10.03)E-04 (1.85 ± 1.24)E-02 (1.03 ± 0.66)E-01 9999 ± 0

6

0.001
(0.9, 0.999) (5.81 ± 2.69)E-06 (1.76 ± 0.49)E-03 (1.34 ± 0.44)E-02 5322 ± 1494
(0.95, 0.97) (5.86 ± 3.11)E-06 (1.75 ± 0.55)E-03 (1.47 ± 0.49)E-02 1628 ± 697
(0.97, 0.95) (6.80 ± 2.34)E-06 (1.95 ± 0.48)E-03 (1.52 ± 0.41)E-02 1733 ± 949

0.005
(0.9, 0.999) (9.86 ± 11.34)E-06 (2.32 ± 1.40)E-03 (1.40 ± 0.19)E-02 3072 ± 1540
(0.95, 0.97) (9.88 ± 6.36)E-06 (2.47 ± 1.07)E-03 (1.46 ± 0.36)E-02 1410 ± 884
(0.97, 0.95) (8.96 ± 3.56)E-06 (2.18 ± 0.64)E-03 (1.66 ± 0.37)E-02 1299 ± 1080

0.01
(0.9, 0.999) (5.21 ± 2.95)E-06 (1.64 ± 0.60)E-03 (1.35 ± 0.27)E-02 2110 ± 1195
(0.95, 0.97) (1.67 ± 0.92)E-05 (3.41 ± 1.13)E-03 (1.64 ± 0.54)E-02 1089 ± 589
(0.97, 0.95) (2.57 ± 1.91)E-05 (4.17 ± 1.76)E-03 (1.71 ± 0.19)E-02 921 ± 435

7

0.001
(0.9, 0.999) (5.70 ± 1.72)E-06 (1.80 ± 0.31)E-03 (1.38 ± 0.36)E-02 4635 ± 2253
(0.95, 0.97) (6.35 ± 2.42)E-06 (1.82 ± 0.44)E-03 (1.53 ± 0.35)E-02 1539 ± 726
(0.97, 0.95) (8.15 ± 2.54)E-06 (2.12 ± 0.44)E-03 (1.66 ± 0.28)E-02 1340 ± 202

0.005
(0.9, 0.999) (5.22 ± 1.87)E-06 (1.66 ± 0.34)E-03 (1.40 ± 0.36)E-02 1771 ± 463
(0.95, 0.97) (1.07 ± 0.50)E-05 (2.59 ± 0.91)E-03 (1.57 ± 0.42)E-02 797 ± 182
(0.97, 0.95) (1.31 ± 0.47)E-05 (2.93 ± 0.87)E-03 (1.70 ± 0.24)E-02 717 ± 143

0.01
(0.9, 0.999) (4.84 ± 1.74)E-06 (1.58 ± 0.33)E-03 (1.41 ± 0.31)E-02 1565 ± 763
(0.95, 0.97) (1.74 ± 0.71)E-05 (3.54 ± 1.02)E-03 (1.57 ± 0.38)E-02 745 ± 394
(0.97, 0.95) (2.13 ± 0.59)E-05 (3.85 ± 0.77)E-03 (1.81 ± 0.38)E-02 597 ± 157

Table 11: Poisson Equation with FLM

N LR Betas MSE ± SD MAE ± SD Max Error ± SD Epochs ± SD

4

0.001
(0.9, 0.999) (9.38 ± 1.46)E-04 (2.88 ± 0.20)E-02 (5.59 ± 0.67)E-02 10000 ± 0
(0.95, 0.97) (1.71 ± 1.32)E-05 (3.23 ± 1.45)E-03 (1.30 ± 0.22)E-02 3817 ± 2113
(0.97, 0.95) (1.16 ± 0.35)E-05 (2.55 ± 0.43)E-03 (1.52 ± 0.25)E-02 3307 ± 619

0.005
(0.9, 0.999) (6.75 ± 2.99)E-05 (7.50 ± 1.75)E-03 (1.67 ± 0.48)E-02 8981 ± 1277
(0.95, 0.97) (2.10 ± 0.49)E-05 (3.71 ± 0.64)E-03 (1.44 ± 0.30)E-02 814 ± 93
(0.97, 0.95) (2.47 ± 0.72)E-05 (3.85 ± 0.66)E-03 (1.50 ± 0.14)E-02 874 ± 49

0.01
(0.9, 0.999) (4.37 ± 1.82)E-05 (6.04 ± 1.41)E-03 (1.28 ± 0.31)E-02 6494 ± 2428
(0.95, 0.97) (1.86 ± 0.50)E-05 (3.34 ± 0.61)E-03 (1.43 ± 0.17)E-02 630 ± 60
(0.97, 0.95) (2.21 ± 0.81)E-05 (3.67 ± 0.92)E-03 (1.33 ± 0.33)E-02 667 ± 24

16

0.001
(0.9, 0.999) (9.28 ± 6.97)E-06 (2.27 ± 0.87)E-03 (1.34 ± 0.56)E-02 9988 ± 32
(0.95, 0.97) (7.76 ± 6.19)E-06 (2.03 ± 1.09)E-03 (1.14 ± 0.47)E-02 1785 ± 528
(0.97, 0.95) (7.96 ± 5.61)E-06 (2.15 ± 0.89)E-03 (1.12 ± 0.43)E-02 1279 ± 229

0.005
(0.9, 0.999) (4.53 ± 2.24)E-06 (1.55 ± 0.35)E-03 (9.67 ± 2.88)E-03 5865 ± 365
(0.95, 0.97) (3.67 ± 2.58)E-06 (1.36 ± 0.46)E-03 (7.35 ± 1.80)E-03 1069 ± 154
(0.97, 0.95) (4.93 ± 1.22)E-06 (1.77 ± 0.28)E-03 (8.12 ± 1.68)E-03 957 ± 181

0.01
(0.9, 0.999) (4.90 ± 2.29)E-06 (1.63 ± 0.34)E-03 (9.72 ± 3.02)E-03 4471 ± 363
(0.95, 0.97) (6.38 ± 3.11)E-06 (2.04 ± 0.50)E-03 (6.95 ± 1.81)E-03 1129 ± 151
(0.97, 0.95) (8.11 ± 4.31)E-06 (2.34 ± 0.79)E-03 (8.72 ± 2.76)E-03 859 ± 127

25

0.001
(0.9, 0.999) (7.35 ± 2.01)E-06 (2.08 ± 0.31)E-03 (1.23 ± 0.25)E-02 8751 ± 672
(0.95, 0.97) (5.18 ± 3.52)E-06 (1.58 ± 0.52)E-03 (9.56 ± 3.70)E-03 1412 ± 314
(0.97, 0.95) (6.45 ± 3.02)E-06 (1.78 ± 0.46)E-03 (1.20 ± 0.32)E-02 1508 ± 429

0.005
(0.9, 0.999) (5.10 ± 1.93)E-06 (1.68 ± 0.23)E-03 (1.02 ± 0.16)E-02 4796 ± 532
(0.95, 0.97) (5.08 ± 2.47)E-06 (1.71 ± 0.50)E-03 (8.31 ± 2.58)E-03 1491 ± 493
(0.97, 0.95) (5.54 ± 2.89)E-06 (1.74 ± 0.46)E-03 (9.85 ± 3.09)E-03 1632 ± 632

0.01
(0.9, 0.999) (4.89 ± 2.28)E-06 (1.65 ± 0.38)E-03 (9.83 ± 2.67)E-03 3632 ± 337
(0.95, 0.97) (1.26 ± 0.80)E-05 (2.91 ± 0.94)E-03 (8.42 ± 1.68)E-03 2132 ± 626
(0.97, 0.95) (8.97 ± 5.42)E-06 (2.40 ± 0.86)E-03 (9.77 ± 3.26)E-03 2039 ± 780

29
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Table 12: Poisson Equation with SIREN–1

Nhidden LR Betas MSE ± SD MAE ± SD Max Error ± SD Epochs ± SD

6

0.001
(0.9, 0.999) (2.07 ± 1.77)E-03 (3.55 ± 1.62)E-02 (1.70 ± 0.82)E-01 10000 ± 0
(0.95, 0.97) (4.33 ± 10.44)E-05 (3.57 ± 4.12)E-03 (1.79 ± 1.85)E-02 8115 ± 2465
(0.97, 0.95) (9.23 ± 10.75)E-06 (1.99 ± 1.26)E-03 (1.01 ± 0.60)E-02 6335 ± 2371

0.005
(0.9, 0.999) (7.71 ± 6.69)E-05 (6.62 ± 3.37)E-03 (3.30 ± 1.38)E-02 10000 ± 0
(0.95, 0.97) (2.14 ± 3.11)E-05 (2.96 ± 2.31)E-03 (1.49 ± 1.12)E-02 8946 ± 1519
(0.97, 0.95) (9.50 ± 4.94)E-06 (2.37 ± 0.64)E-03 (1.12 ± 0.34)E-02 2573 ± 1848

0.01
(0.9, 0.999) (7.35 ± 5.51)E-05 (6.37 ± 3.11)E-03 (3.27 ± 1.51)E-02 9996 ± 14
(0.95, 0.97) (1.04 ± 1.14)E-05 (2.25 ± 1.27)E-03 (1.05 ± 0.71)E-02 8550 ± 2006
(0.97, 0.95) (1.25 ± 0.65)E-05 (2.87 ± 0.96)E-03 (1.09 ± 0.31)E-02 1553 ± 861

24

0.001
(0.9, 0.999) (2.29 ± 1.27)E-04 (1.23 ± 0.34)E-02 (6.26 ± 1.95)E-02 10000 ± 0
(0.95, 0.97) (9.69 ± 6.54)E-06 (2.21 ± 1.00)E-03 (1.16 ± 0.42)E-02 10000 ± 0
(0.97, 0.95) (1.95 ± 1.33)E-06 (9.99 ± 4.43)E-04 (5.38 ± 1.72)E-03 10000 ± 0

0.005
(0.9, 0.999) (3.66 ± 3.81)E-05 (4.53 ± 2.72)E-03 (1.65 ± 0.60)E-02 10000 ± 0
(0.95, 0.97) (7.38 ± 3.09)E-06 (2.18 ± 0.53)E-03 (8.38 ± 2.07)E-03 10000 ± 0
(0.97, 0.95) (2.26 ± 2.04)E-06 (1.09 ± 0.40)E-03 (4.92 ± 2.25)E-03 10000 ± 0

0.01
(0.9, 0.999) (4.15 ± 4.58)E-05 (5.07 ± 2.80)E-03 (1.74 ± 0.50)E-02 10000 ± 0
(0.95, 0.97) (1.00 ± 0.59)E-05 (2.51 ± 1.02)E-03 (9.44 ± 1.78)E-03 10000 ± 0
(0.97, 0.95) (5.09 ± 3.03)E-06 (1.87 ± 0.68)E-03 (5.29 ± 1.43)E-03 9286 ± 1507

37

0.001
(0.9, 0.999) (1.30 ± 0.45)E-04 (9.53 ± 1.81)E-03 (4.63 ± 1.03)E-02 10000 ± 0
(0.95, 0.97) (1.03 ± 0.92)E-05 (2.44 ± 1.30)E-03 (1.30 ± 0.56)E-02 10000 ± 0
(0.97, 0.95) (2.80 ± 3.14)E-06 (1.13 ± 0.82)E-03 (5.86 ± 4.73)E-03 10000 ± 0

0.005
(0.9, 0.999) (2.69 ± 1.60)E-05 (3.94 ± 1.77)E-03 (1.89 ± 0.77)E-02 10000 ± 0
(0.95, 0.97) (6.45 ± 3.84)E-06 (2.06 ± 0.82)E-03 (6.91 ± 1.62)E-03 10000 ± 0
(0.97, 0.95) (2.40 ± 1.29)E-06 (1.23 ± 0.40)E-03 (5.01 ± 1.74)E-03 10000 ± 0

0.01
(0.9, 0.999) (1.99 ± 1.44)E-05 (3.44 ± 1.54)E-03 (1.65 ± 0.48)E-02 10000 ± 0
(0.95, 0.97) (1.86 ± 0.88)E-05 (3.67 ± 1.09)E-03 (9.49 ± 2.68)E-03 10000 ± 0
(0.97, 0.95) (1.15 ± 1.24)E-05 (2.77 ± 1.50)E-03 (6.54 ± 2.96)E-03 9618 ± 808

Table 13: Poisson Equation with SIREN–2

Nhidden LR Betas MSE ± SD MAE ± SD Max Error ± SD Epochs ± SD

3

0.001
(0.9, 0.999) (2.00 ± 1.53)E-03 (3.20 ± 1.39)E-02 (1.58 ± 0.78)E-01 10000 ± 0
(0.95, 0.97) (2.56 ± 2.46)E-04 (1.13 ± 0.57)E-02 (5.68 ± 2.89)E-02 10000 ± 0
(0.97, 0.95) (2.84 ± 2.30)E-04 (1.27 ± 0.45)E-02 (5.78 ± 1.92)E-02 10000 ± 0

0.005
(0.9, 0.999) (6.95 ± 6.00)E-04 (1.94 ± 0.72)E-02 (8.87 ± 3.51)E-02 10000 ± 0
(0.95, 0.97) (2.48 ± 2.81)E-04 (1.10 ± 0.60)E-02 (5.64 ± 2.68)E-02 10000 ± 0
(0.97, 0.95) (1.63 ± 0.66)E-04 (9.78 ± 2.40)E-03 (4.92 ± 1.53)E-02 10000 ± 0

0.01
(0.9, 0.999) (6.84 ± 11.74)E-04 (1.74 ± 1.39)E-02 (7.27 ± 4.92)E-02 10000 ± 0
(0.95, 0.97) (1.78 ± 0.81)E-04 (1.05 ± 0.28)E-02 (5.04 ± 1.76)E-02 10000 ± 0
(0.97, 0.95) (2.89 ± 2.75)E-04 (1.20 ± 0.70)E-02 (5.46 ± 3.08)E-02 10000 ± 0

8

0.001
(0.9, 0.999) (1.61 ± 0.90)E-04 (9.70 ± 3.16)E-03 (5.49 ± 2.05)E-02 10000 ± 0
(0.95, 0.97) (9.87 ± 6.17)E-05 (8.14 ± 2.69)E-03 (4.29 ± 1.01)E-02 10000 ± 0
(0.97, 0.95) (9.33 ± 5.82)E-05 (7.86 ± 2.92)E-03 (3.94 ± 1.28)E-02 9818 ± 575

0.005
(0.9, 0.999) (1.44 ± 0.83)E-04 (9.61 ± 2.97)E-03 (4.97 ± 1.49)E-02 10000 ± 0
(0.95, 0.97) (1.08 ± 0.51)E-04 (8.58 ± 2.22)E-03 (4.51 ± 1.11)E-02 10000 ± 0
(0.97, 0.95) (1.04 ± 0.50)E-04 (8.50 ± 2.44)E-03 (4.16 ± 1.32)E-02 10000 ± 0

0.01
(0.9, 0.999) (1.19 ± 1.22)E-04 (8.21 ± 4.91)E-03 (3.63 ± 1.46)E-02 10000 ± 0
(0.95, 0.97) (1.09 ± 0.52)E-04 (8.50 ± 2.69)E-03 (4.28 ± 1.59)E-02 10000 ± 0
(0.97, 0.95) (9.18 ± 6.45)E-05 (7.62 ± 3.64)E-03 (3.56 ± 1.49)E-02 10000 ± 0

10

0.001
(0.9, 0.999) (1.46 ± 0.73)E-04 (9.75 ± 2.77)E-03 (5.00 ± 0.97)E-02 10000 ± 0
(0.95, 0.97) (1.12 ± 0.68)E-04 (8.61 ± 3.04)E-03 (4.55 ± 1.04)E-02 10000 ± 0
(0.97, 0.95) (8.47 ± 4.48)E-05 (7.48 ± 2.70)E-03 (4.09 ± 0.74)E-02 10000 ± 0

0.005
(0.9, 0.999) (1.77 ± 0.98)E-04 (1.07 ± 0.40)E-02 (5.54 ± 1.35)E-02 10000 ± 0
(0.95, 0.97) (9.95 ± 6.78)E-05 (7.94 ± 3.44)E-03 (4.33 ± 1.20)E-02 10000 ± 0
(0.97, 0.95) (7.46 ± 5.48)E-05 (6.91 ± 3.05)E-03 (3.59 ± 0.91)E-02 10000 ± 0

0.01
(0.9, 0.999) (1.29 ± 1.49)E-04 (7.75 ± 4.85)E-03 (3.92 ± 1.91)E-02 10000 ± 0
(0.95, 0.97) (8.04 ± 5.90)E-05 (7.00 ± 2.77)E-03 (3.65 ± 1.40)E-02 10000 ± 0
(0.97, 0.95) (5.53 ± 5.36)E-05 (5.65 ± 3.26)E-03 (2.91 ± 1.22)E-02 9718 ± 891

30
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Table 14: Poisson Equation with Vanilla Relu

Nhidden LR Betas MSE ± SD MAE ± SD Max Error ± SD Epochs ± SD

2

0.001
(0.9, 0.999) (2.45 ± 0.00)E-01 (3.97 ± 0.00)E-01 (1.00 ± 0.00)E+00 10000 ± 0
(0.95, 0.97) (2.45 ± 0.00)E-01 (3.97 ± 0.00)E-01 (1.00 ± 0.00)E+00 10000 ± 0
(0.97, 0.95) (2.45 ± 0.00)E-01 (3.97 ± 0.00)E-01 (1.00 ± 0.00)E+00 10000 ± 0

0.005
(0.9, 0.999) (2.45 ± 0.00)E-01 (3.97 ± 0.00)E-01 (1.00 ± 0.00)E+00 10000 ± 0
(0.95, 0.97) (2.45 ± 0.00)E-01 (3.97 ± 0.00)E-01 (1.00 ± 0.00)E+00 10000 ± 0
(0.97, 0.95) (2.45 ± 0.00)E-01 (3.97 ± 0.00)E-01 (1.00 ± 0.00)E+00 10000 ± 0

0.01
(0.9, 0.999) (2.45 ± 0.00)E-01 (3.97 ± 0.00)E-01 (1.00 ± 0.00)E+00 10000 ± 0
(0.95, 0.97) (2.45 ± 0.00)E-01 (3.97 ± 0.00)E-01 (1.00 ± 0.00)E+00 10000 ± 0
(0.97, 0.95) (2.45 ± 0.00)E-01 (3.97 ± 0.00)E-01 (1.00 ± 0.00)E+00 10000 ± 0

6

0.001
(0.9, 0.999) (2.45 ± 0.01)E-01 (3.97 ± 0.00)E-01 (1.00 ± 0.01)E+00 10000 ± 0
(0.95, 0.97) (2.45 ± 0.06)E-01 (3.97 ± 0.05)E-01 (1.00 ± 0.01)E+00 10000 ± 0
(0.97, 0.95) (2.45 ± 0.06)E-01 (3.97 ± 0.05)E-01 (9.99 ± 0.11)E-01 10000 ± 0

0.005
(0.9, 0.999) (2.45 ± 0.06)E-01 (3.97 ± 0.05)E-01 (9.99 ± 0.13)E-01 10000 ± 0
(0.95, 0.97) (2.45 ± 0.06)E-01 (3.97 ± 0.05)E-01 (9.99 ± 0.09)E-01 10000 ± 0
(0.97, 0.95) (2.45 ± 0.14)E-01 (3.97 ± 0.12)E-01 (9.99 ± 0.36)E-01 10000 ± 0

0.01
(0.9, 0.999) (2.45 ± 0.06)E-01 (3.97 ± 0.07)E-01 (1.00 ± 0.07)E+00 10000 ± 0
(0.95, 0.97) (2.45 ± 0.04)E-01 (3.97 ± 0.04)E-01 (1.00 ± 0.08)E+00 10000 ± 0
(0.97, 0.95) (2.45 ± 0.13)E-01 (3.97 ± 0.11)E-01 (9.99 ± 0.32)E-01 10000 ± 0

7

0.001
(0.9, 0.999) (2.45 ± 0.02)E-01 (3.97 ± 0.01)E-01 (1.00 ± 0.03)E+00 10000 ± 0
(0.95, 0.97) (2.45 ± 0.05)E-01 (3.97 ± 0.04)E-01 (9.99 ± 0.12)E-01 10000 ± 0
(0.97, 0.95) (2.45 ± 0.07)E-01 (3.97 ± 0.05)E-01 (9.99 ± 0.19)E-01 10000 ± 0

0.005
(0.9, 0.999) (2.45 ± 0.06)E-01 (3.97 ± 0.05)E-01 (9.99 ± 0.12)E-01 10000 ± 0
(0.95, 0.97) (2.45 ± 0.01)E-01 (3.97 ± 0.02)E-01 (1.00 ± 0.02)E+00 10000 ± 0
(0.97, 0.95) (2.45 ± 0.01)E-01 (3.97 ± 0.01)E-01 (1.00 ± 0.01)E+00 10000 ± 0

0.01
(0.9, 0.999) (2.45 ± 0.01)E-01 (3.97 ± 0.01)E-01 (1.00 ± 0.01)E+00 10000 ± 0
(0.95, 0.97) (2.45 ± 0.02)E-01 (3.97 ± 0.02)E-01 (1.00 ± 0.02)E+00 10000 ± 0
(0.97, 0.95) (2.45 ± 0.01)E-01 (3.97 ± 0.02)E-01 (1.00 ± 0.02)E+00 10000 ± 0

Table 15: Poisson Equation with Vanilla Tan

Nhidden LR Betas MSE ± SD MAE ± SD Max Error ± SD Epochs ± SD

2

0.001
(0.9, 0.999) (8.64 ± 2.17)E-01 (7.79 ± 0.89)E-01 (2.15 ± 0.67)E+00 10000 ± 0
(0.95, 0.97) (9.87 ± 2.68)E-01 (8.33 ± 1.24)E-01 (2.30 ± 0.60)E+00 10000 ± 0
(0.97, 0.95) (8.91 ± 2.41)E-01 (8.00 ± 1.09)E-01 (2.02 ± 0.36)E+00 10000 ± 0

0.005
(0.9, 0.999) (8.14 ± 1.01)E-01 (7.65 ± 0.30)E-01 (2.00 ± 0.43)E+00 10000 ± 0
(0.95, 0.97) (8.85 ± 2.13)E-01 (7.91 ± 0.87)E-01 (2.21 ± 0.69)E+00 10000 ± 0
(0.97, 0.95) (9.01 ± 2.08)E-01 (7.94 ± 0.84)E-01 (2.35 ± 0.76)E+00 10000 ± 0

0.01
(0.9, 0.999) (8.11 ± 1.21)E-01 (7.63 ± 0.38)E-01 (2.07 ± 0.56)E+00 10000 ± 0
(0.95, 0.97) (8.12 ± 2.17)E-01 (7.61 ± 0.99)E-01 (2.01 ± 0.45)E+00 10000 ± 0
(0.97, 0.95) (7.89 ± 2.21)E-01 (7.58 ± 1.03)E-01 (1.87 ± 0.19)E+00 10000 ± 0

6

0.001
(0.9, 0.999) (3.29 ± 0.67)E-03 (4.93 ± 0.61)E-02 (2.39 ± 0.22)E-01 10000 ± 0
(0.95, 0.97) (1.14 ± 0.83)E-03 (2.68 ± 1.08)E-02 (1.50 ± 0.58)E-01 10000 ± 0
(0.97, 0.95) (6.43 ± 6.85)E-04 (1.81 ± 1.05)E-02 (1.14 ± 0.69)E-01 10000 ± 0

0.005
(0.9, 0.999) (1.91 ± 0.95)E-03 (3.58 ± 1.06)E-02 (1.93 ± 0.46)E-01 10000 ± 0
(0.95, 0.97) (1.24 ± 0.85)E-03 (2.74 ± 1.31)E-02 (1.45 ± 0.64)E-01 10000 ± 0
(0.97, 0.95) (6.72 ± 4.79)E-04 (2.00 ± 0.70)E-02 (1.26 ± 0.51)E-01 10000 ± 0

0.01
(0.9, 0.999) (2.02 ± 1.13)E-03 (3.69 ± 1.26)E-02 (1.90 ± 0.57)E-01 10000 ± 0
(0.95, 0.97) (1.27 ± 0.81)E-03 (2.85 ± 1.08)E-02 (1.63 ± 0.39)E-01 10000 ± 0
(0.97, 0.95) (6.35 ± 5.62)E-04 (1.93 ± 0.85)E-02 (1.08 ± 0.68)E-01 10000 ± 0

7

0.001
(0.9, 0.999) (2.94 ± 0.77)E-03 (4.66 ± 0.71)E-02 (2.19 ± 0.22)E-01 10000 ± 0
(0.95, 0.97) (1.18 ± 0.72)E-03 (2.76 ± 1.01)E-02 (1.46 ± 0.59)E-01 10000 ± 0
(0.97, 0.95) (4.18 ± 5.46)E-04 (1.45 ± 0.96)E-02 (8.28 ± 4.99)E-02 10000 ± 0

0.005
(0.9, 0.999) (2.47 ± 0.64)E-03 (4.18 ± 0.67)E-02 (2.19 ± 0.27)E-01 10000 ± 0
(0.95, 0.97) (9.37 ± 9.26)E-04 (2.26 ± 1.34)E-02 (1.23 ± 0.74)E-01 10000 ± 0
(0.97, 0.95) (5.58 ± 7.99)E-04 (1.59 ± 1.28)E-02 (1.00 ± 0.56)E-01 10000 ± 0

0.01
(0.9, 0.999) (1.86 ± 0.85)E-03 (3.52 ± 0.95)E-02 (1.92 ± 0.59)E-01 10000 ± 0
(0.95, 0.97) (9.58 ± 8.35)E-04 (2.40 ± 1.20)E-02 (1.30 ± 0.53)E-01 10000 ± 0
(0.97, 0.95) (4.72 ± 4.84)E-04 (1.57 ± 0.97)E-02 (9.99 ± 5.85)E-02 10000 ± 0
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Table 16: GBS Equation with FLM

N LR Betas MSE ± SD MAE ± SD Max Error ± SD Epochs ± SD

25

0.001
(0.9, 0.999) (8.34 ± 2.24)E-06 (1.86 ± 0.27)E-03 (2.41 ± 1.02)E-02 10000 ± 0
(0.95, 0.97) (1.89 ± 0.64)E-06 (9.28 ± 1.57)E-04 (1.28 ± 0.54)E-02 4781 ± 1334
(0.97, 0.95) (1.86 ± 0.50)E-06 (8.92 ± 1.27)E-04 (1.19 ± 0.38)E-02 3208 ± 619

0.005
(0.9, 0.999) (6.39 ± 5.95)E-06 (1.66 ± 0.93)E-03 (1.36 ± 0.57)E-02 9965 ± 111
(0.95, 0.97) (5.13 ± 2.47)E-06 (1.75 ± 0.46)E-03 (1.24 ± 0.48)E-02 5116 ± 2025
(0.97, 0.95) (4.57 ± 1.32)E-06 (1.72 ± 0.28)E-03 (1.11 ± 0.36)E-02 3985 ± 1380

0.01
(0.9, 0.999) (2.01 ± 3.26)E-05 (2.52 ± 2.40)E-03 (1.56 ± 0.49)E-02 9790 ± 432
(0.95, 0.97) (2.31 ± 2.21)E-05 (3.62 ± 1.58)E-03 (1.25 ± 0.40)E-02 6768 ± 2400
(0.97, 0.95) (1.46 ± 0.87)E-05 (3.03 ± 0.98)E-03 (1.11 ± 0.31)E-02 5732 ± 1903

49

0.001
(0.9, 0.999) (9.73 ± 8.01)E-06 (1.87 ± 0.68)E-03 (2.05 ± 0.57)E-02 10000 ± 0
(0.95, 0.97) (2.59 ± 1.51)E-06 (1.01 ± 0.24)E-03 (1.22 ± 0.30)E-02 4739 ± 833
(0.97, 0.95) (2.19 ± 1.42)E-06 (9.50 ± 2.28)E-04 (1.03 ± 0.24)E-02 3252 ± 433

0.005
(0.9, 0.999) (1.20 ± 1.51)E-05 (2.20 ± 1.80)E-03 (1.26 ± 0.34)E-02 9473 ± 960
(0.95, 0.97) (6.91 ± 2.49)E-06 (2.09 ± 0.40)E-03 (1.04 ± 0.30)E-02 5493 ± 1427
(0.97, 0.95) (6.00 ± 2.50)E-06 (1.92 ± 0.48)E-03 (1.16 ± 0.49)E-02 3947 ± 1313

0.01
(0.9, 0.999) (2.27 ± 1.11)E-06 (9.54 ± 2.37)E-04 (1.06 ± 0.40)E-02 7291 ± 935
(0.95, 0.97) (1.64 ± 0.91)E-05 (3.14 ± 0.94)E-03 (1.14 ± 0.27)E-02 8876 ± 1423
(0.97, 0.95) (2.48 ± 1.45)E-05 (3.98 ± 1.27)E-03 (1.16 ± 0.21)E-02 7146 ± 1947

Table 17: GBS Equation with SIREN–1

Nhidden LR Betas MSE ± SD MAE ± SD Max Error ± SD Epochs ± SD

37

0.001
(0.9, 0.999) (2.38 ± 1.53)E-04 (1.17 ± 0.43)E-02 (8.47 ± 2.29)E-02 10000 ± 0
(0.95, 0.97) (5.76 ± 1.92)E-05 (5.65 ± 0.86)E-03 (5.07 ± 0.76)E-02 10000 ± 0
(0.97, 0.95) (8.13 ± 4.64)E-05 (6.78 ± 2.09)E-03 (5.22 ± 1.32)E-02 10000 ± 0

0.005
(0.9, 0.999) (2.24 ± 2.36)E-04 (1.14 ± 0.66)E-02 (6.02 ± 2.22)E-02 10000 ± 0
(0.95, 0.97) (9.91 ± 4.64)E-05 (7.63 ± 1.64)E-03 (5.13 ± 1.18)E-02 10000 ± 0
(0.97, 0.95) (7.80 ± 2.61)E-05 (6.82 ± 1.25)E-03 (4.91 ± 0.79)E-02 10000 ± 0

0.01
(0.9, 0.999) (1.55 ± 2.62)E-04 (8.36 ± 6.27)E-03 (5.36 ± 1.83)E-02 10000 ± 0
(0.95, 0.97) (1.86 ± 1.10)E-04 (1.08 ± 0.37)E-02 (5.37 ± 1.97)E-02 10000 ± 0
(0.97, 0.95) (1.12 ± 0.48)E-04 (8.61 ± 1.93)E-03 (4.81 ± 1.70)E-02 10000 ± 0

73

0.001
(0.9, 0.999) (1.74 ± 1.04)E-04 (9.92 ± 3.05)E-03 (6.11 ± 1.68)E-02 10000 ± 0
(0.95, 0.97) (6.89 ± 1.74)E-05 (6.25 ± 0.79)E-03 (4.35 ± 0.52)E-02 10000 ± 0
(0.97, 0.95) (6.24 ± 1.53)E-05 (5.92 ± 0.71)E-03 (4.11 ± 0.35)E-02 10000 ± 0

0.005
(0.9, 0.999) (2.48 ± 3.87)E-04 (1.06 ± 0.98)E-02 (4.06 ± 1.47)E-02 10000 ± 0
(0.95, 0.97) (1.20 ± 0.46)E-04 (8.85 ± 1.86)E-03 (4.61 ± 1.14)E-02 10000 ± 0
(0.97, 0.95) (8.68 ± 4.94)E-05 (7.10 ± 2.21)E-03 (3.91 ± 0.63)E-02 10000 ± 0

0.01
(0.9, 0.999) (8.81 ± 17.50)E-04 (1.98 ± 2.09)E-02 (5.62 ± 2.97)E-02 10000 ± 0
(0.95, 0.97) (2.58 ± 1.16)E-04 (1.32 ± 0.28)E-02 (5.93 ± 1.06)E-02 10000 ± 0
(0.97, 0.95) (1.59 ± 1.08)E-04 (9.51 ± 3.68)E-03 (4.32 ± 0.59)E-02 10000 ± 0

Table 18: GBS Equation with SIREN–2

Nhidden LR Betas MSE ± SD MAE ± SD Max Error ± SD Epochs ± SD

10

0.001
(0.9, 0.999) (9.49 ± 19.00)E-06 (1.74 ± 1.76)E-03 (1.47 ± 1.51)E-02 9866 ± 302
(0.95, 0.97) (2.05 ± 0.80)E-06 (1.08 ± 0.25)E-03 (1.05 ± 0.62)E-02 3179 ± 1260
(0.97, 0.95) (2.56 ± 0.68)E-06 (1.21 ± 0.11)E-03 (1.02 ± 0.59)E-02 3176 ± 718

0.005
(0.9, 0.999) (2.04 ± 0.92)E-06 (1.04 ± 0.24)E-03 (8.63 ± 4.52)E-03 7790 ± 1604
(0.95, 0.97) (2.35 ± 1.10)E-05 (4.09 ± 1.28)E-03 (1.13 ± 0.30)E-02 3765 ± 1829
(0.97, 0.95) (2.07 ± 0.89)E-05 (3.67 ± 1.15)E-03 (1.59 ± 0.48)E-02 3491 ± 1829

0.01
(0.9, 0.999) (4.09 ± 5.13)E-06 (1.44 ± 0.94)E-03 (8.26 ± 3.51)E-03 7468 ± 2652
(0.95, 0.97) (7.58 ± 4.12)E-05 (7.01 ± 2.52)E-03 (2.04 ± 0.65)E-02 5043 ± 2902
(0.97, 0.95) (7.96 ± 3.28)E-05 (7.63 ± 1.60)E-03 (2.10 ± 0.51)E-02 3415 ± 2026

15

0.001
(0.9, 0.999) (4.30 ± 7.94)E-06 (1.29 ± 1.16)E-03 (8.47 ± 6.21)E-03 9856 ± 295
(0.95, 0.97) (3.21 ± 1.51)E-06 (1.38 ± 0.28)E-03 (9.06 ± 5.31)E-03 3452 ± 2239
(0.97, 0.95) (2.91 ± 1.62)E-06 (1.28 ± 0.32)E-03 (7.94 ± 3.21)E-03 2576 ± 883

0.005
(0.9, 0.999) (2.29 ± 1.68)E-06 (1.09 ± 0.44)E-03 (7.43 ± 2.79)E-03 7266 ± 1114
(0.95, 0.97) (3.14 ± 2.61)E-05 (4.49 ± 1.89)E-03 (1.43 ± 0.35)E-02 3254 ± 1314
(0.97, 0.95) (4.05 ± 1.33)E-05 (5.70 ± 1.17)E-03 (1.55 ± 0.53)E-02 3061 ± 1707

0.01
(0.9, 0.999) (1.82 ± 5.70)E-04 (4.38 ± 11.00)E-03 (1.29 ± 2.08)E-02 7723 ± 1590
(0.95, 0.97) (9.16 ± 4.19)E-05 (8.03 ± 2.07)E-03 (2.05 ± 0.35)E-02 3608 ± 1457
(0.97, 0.95) (1.17 ± 0.46)E-04 (9.42 ± 2.27)E-03 (2.26 ± 0.35)E-02 2772 ± 1414

32



Under review as submission to TMLR

Table 19: GBS Equation with Vanilla Leaky Relu

Nhidden LR Betas MSE ± SD MAE ± SD Max Error ± SD Epochs ± SD

7

0.001
(0.9, 0.999) (6.43 ± 0.59)E-02 (1.73 ± 0.09)E-01 (9.22 ± 2.16)E-01 10000 ± 0
(0.95, 0.97) (6.59 ± 0.52)E-02 (1.73 ± 0.10)E-01 (1.10 ± 0.24)E+00 10000 ± 0
(0.97, 0.95) (6.71 ± 0.96)E-02 (1.80 ± 0.10)E-01 (1.02 ± 0.28)E+00 10000 ± 0

0.005
(0.9, 0.999) (6.51 ± 0.57)E-02 (1.72 ± 0.06)E-01 (9.82 ± 2.46)E-01 10000 ± 0
(0.95, 0.97) (6.23 ± 0.82)E-02 (1.70 ± 0.11)E-01 (9.88 ± 2.59)E-01 10000 ± 0
(0.97, 0.95) (6.31 ± 0.81)E-02 (1.73 ± 0.10)E-01 (8.94 ± 2.06)E-01 10000 ± 0

0.01
(0.9, 0.999) (6.15 ± 0.81)E-02 (1.74 ± 0.08)E-01 (8.26 ± 1.16)E-01 10000 ± 0
(0.95, 0.97) (6.16 ± 0.54)E-02 (1.76 ± 0.12)E-01 (8.43 ± 0.98)E-01 10000 ± 0
(0.97, 0.95) (6.51 ± 0.69)E-02 (1.72 ± 0.11)E-01 (1.03 ± 0.31)E+00 10000 ± 0

11

0.001
(0.9, 0.999) (6.47 ± 1.11)E-02 (1.67 ± 0.11)E-01 (1.03 ± 0.26)E+00 10000 ± 0
(0.95, 0.97) (6.18 ± 0.60)E-02 (1.61 ± 0.06)E-01 (1.13 ± 0.26)E+00 10000 ± 0
(0.97, 0.95) (7.06 ± 1.05)E-02 (1.73 ± 0.11)E-01 (1.23 ± 0.14)E+00 10000 ± 0

0.005
(0.9, 0.999) (6.64 ± 0.70)E-02 (1.74 ± 0.12)E-01 (1.01 ± 0.23)E+00 10000 ± 0
(0.95, 0.97) (6.65 ± 0.84)E-02 (1.72 ± 0.12)E-01 (1.05 ± 0.29)E+00 10000 ± 0
(0.97, 0.95) (6.69 ± 0.88)E-02 (1.70 ± 0.14)E-01 (1.12 ± 0.29)E+00 10000 ± 0

0.01
(0.9, 0.999) (6.56 ± 0.78)E-02 (1.78 ± 0.14)E-01 (9.39 ± 1.69)E-01 10000 ± 0
(0.95, 0.97) (6.87 ± 1.48)E-02 (1.78 ± 0.18)E-01 (1.03 ± 0.31)E+00 10000 ± 0
(0.97, 0.95) (6.45 ± 1.02)E-02 (1.73 ± 0.12)E-01 (2.07 ± 3.33)E+00 10000 ± 0

Table 20: GBS Equation with Vanilla Tan

Nhidden LR Betas MSE ± SD MAE ± SD Max Error ± SD Epochs ± SD

7

0.001
(0.9, 0.999) (3.76 ± 2.32)E-06 (1.44 ± 0.57)E-03 (2.30 ± 2.17)E-02 7482 ± 446
(0.95, 0.97) (4.24 ± 2.81)E-06 (1.50 ± 0.58)E-03 (2.14 ± 1.97)E-02 1402 ± 136
(0.97, 0.95) (7.57 ± 3.89)E-06 (2.13 ± 0.58)E-03 (1.14 ± 0.67)E-02 1184 ± 67

0.005
(0.9, 0.999) (1.10 ± 1.63)E-05 (2.42 ± 2.04)E-03 (2.37 ± 1.97)E-02 3324 ± 419
(0.95, 0.97) (1.46 ± 1.08)E-05 (3.11 ± 1.27)E-03 (1.54 ± 0.97)E-02 618 ± 98
(0.97, 0.95) (1.20 ± 0.56)E-05 (2.85 ± 0.89)E-03 (1.30 ± 0.54)E-02 626 ± 61

0.01
(0.9, 0.999) (3.42 ± 2.03)E-06 (1.38 ± 0.40)E-03 (1.92 ± 1.88)E-02 2252 ± 463
(0.95, 0.97) (3.68 ± 2.43)E-05 (4.96 ± 2.24)E-03 (1.77 ± 0.66)E-02 540 ± 126
(0.97, 0.95) (3.79 ± 1.34)E-05 (5.33 ± 1.30)E-03 (1.50 ± 0.34)E-02 536 ± 36

11

0.001
(0.9, 0.999) (2.85 ± 1.87)E-06 (1.26 ± 0.42)E-03 (1.80 ± 1.05)E-02 5829 ± 656
(0.95, 0.97) (5.37 ± 1.69)E-06 (1.81 ± 0.32)E-03 (1.37 ± 1.02)E-02 934 ± 45
(0.97, 0.95) (1.03 ± 0.47)E-05 (2.56 ± 0.61)E-03 (8.88 ± 1.61)E-03 926 ± 46

0.005
(0.9, 0.999) (3.15 ± 1.73)E-06 (1.35 ± 0.37)E-03 (1.56 ± 0.96)E-02 1926 ± 393
(0.95, 0.97) (1.73 ± 1.35)E-05 (3.41 ± 1.45)E-03 (1.11 ± 0.22)E-02 436 ± 45
(0.97, 0.95) (2.31 ± 1.19)E-05 (4.05 ± 1.25)E-03 (1.21 ± 0.25)E-02 551 ± 34

0.01
(0.9, 0.999) (4.80 ± 3.32)E-06 (1.67 ± 0.62)E-03 (1.30 ± 0.72)E-02 1163 ± 352
(0.95, 0.97) (4.08 ± 2.35)E-05 (5.49 ± 2.08)E-03 (1.81 ± 0.44)E-02 396 ± 51
(0.97, 0.95) (6.58 ± 4.83)E-05 (6.86 ± 3.20)E-03 (1.80 ± 0.38)E-02 513 ± 58

Table 21: Burgers’ Equation with FLM

N LR Betas MSE ± SD MAE ± SD Max Error ± SD Epochs ± SD

25

0.0005
(0.9, 0.999) (8.62 ± 0.45)E-03 (5.33 ± 0.25)E-02 (3.54 ± 0.13)E-01 10000 ± 0
(0.95, 0.97) (8.58 ± 0.36)E-03 (5.33 ± 0.23)E-02 (3.49 ± 0.10)E-01 10000 ± 0
(0.97, 0.95) (8.51 ± 0.30)E-03 (5.25 ± 0.16)E-02 (3.54 ± 0.10)E-01 10000 ± 0

0.001
(0.9, 0.999) (8.60 ± 0.39)E-03 (5.26 ± 0.17)E-02 (3.59 ± 0.15)E-01 10000 ± 0
(0.95, 0.97) (8.43 ± 0.33)E-03 (5.10 ± 0.23)E-02 (3.58 ± 0.10)E-01 10000 ± 0
(0.97, 0.95) (8.56 ± 0.36)E-03 (5.17 ± 0.23)E-02 (3.61 ± 0.12)E-01 10000 ± 0

0.005
(0.9, 0.999) (8.65 ± 0.44)E-03 (5.30 ± 0.31)E-02 (3.55 ± 0.15)E-01 10000 ± 0
(0.95, 0.97) (8.39 ± 0.24)E-03 (5.11 ± 0.21)E-02 (3.57 ± 0.10)E-01 10000 ± 0
(0.97, 0.95) (8.52 ± 0.38)E-03 (5.19 ± 0.23)E-02 (3.62 ± 0.12)E-01 10000 ± 0

64

0.0005
(0.9, 0.999) (6.85 ± 0.35)E-03 (4.38 ± 0.23)E-02 (3.70 ± 0.29)E-01 10000 ± 0
(0.95, 0.97) (6.85 ± 0.35)E-03 (4.38 ± 0.25)E-02 (3.80 ± 0.37)E-01 10000 ± 0
(0.97, 0.95) (6.89 ± 0.33)E-03 (4.48 ± 0.30)E-02 (3.70 ± 0.23)E-01 10000 ± 0

0.001
(0.9, 0.999) (6.66 ± 0.31)E-03 (4.25 ± 0.18)E-02 (3.68 ± 0.21)E-01 10000 ± 0
(0.95, 0.97) (6.58 ± 0.27)E-03 (4.19 ± 0.16)E-02 (3.67 ± 0.21)E-01 10000 ± 0
(0.97, 0.95) (6.63 ± 0.28)E-03 (4.23 ± 0.26)E-02 (3.70 ± 0.27)E-01 10000 ± 0

0.005
(0.9, 0.999) (6.93 ± 0.23)E-03 (4.46 ± 0.16)E-02 (3.73 ± 0.23)E-01 10000 ± 0
(0.95, 0.97) (6.59 ± 0.23)E-03 (4.18 ± 0.11)E-02 (3.74 ± 0.27)E-01 10000 ± 0
(0.97, 0.95) (6.52 ± 0.24)E-03 (4.10 ± 0.13)E-02 (3.73 ± 0.25)E-01 10000 ± 0
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Table 22: Burgers’ Equation with SIREN–1

Nhidden LR Betas MSE ± SD MAE ± SD Max Error ± SD Epochs ± SD

37

0.0005
(0.9, 0.999) (3.26 ± 1.51)E-02 (1.51 ± 0.37)E-01 (4.23 ± 0.32)E-01 10000 ± 0
(0.95, 0.97) (2.21 ± 0.07)E-02 (1.24 ± 0.03)E-01 (3.86 ± 0.13)E-01 10000 ± 0
(0.97, 0.95) (2.22 ± 0.07)E-02 (1.24 ± 0.04)E-01 (3.87 ± 0.14)E-01 10000 ± 0

0.001
(0.9, 0.999) (2.03 ± 0.10)E-02 (1.16 ± 0.05)E-01 (3.57 ± 0.08)E-01 10000 ± 0
(0.95, 0.97) (2.12 ± 0.09)E-02 (1.20 ± 0.04)E-01 (3.74 ± 0.16)E-01 10000 ± 0
(0.97, 0.95) (2.11 ± 0.07)E-02 (1.20 ± 0.04)E-01 (3.77 ± 0.15)E-01 10000 ± 0

0.005
(0.9, 0.999) (2.07 ± 0.08)E-02 (1.14 ± 0.03)E-01 (3.79 ± 0.20)E-01 10000 ± 0
(0.95, 0.97) (2.10 ± 0.07)E-02 (1.14 ± 0.03)E-01 (3.88 ± 0.19)E-01 10000 ± 0
(0.97, 0.95) (2.10 ± 0.06)E-02 (1.14 ± 0.02)E-01 (3.89 ± 0.18)E-01 10000 ± 0

93

0.0005
(0.9, 0.999) (2.33 ± 0.63)E-02 (1.27 ± 0.18)E-01 (3.80 ± 0.34)E-01 10000 ± 0
(0.95, 0.97) (2.21 ± 0.09)E-02 (1.24 ± 0.03)E-01 (3.80 ± 0.11)E-01 10000 ± 0
(0.97, 0.95) (2.23 ± 0.08)E-02 (1.25 ± 0.03)E-01 (3.83 ± 0.10)E-01 10000 ± 0

0.001
(0.9, 0.999) (2.03 ± 0.08)E-02 (1.15 ± 0.04)E-01 (3.67 ± 0.14)E-01 10000 ± 0
(0.95, 0.97) (2.10 ± 0.08)E-02 (1.19 ± 0.04)E-01 (3.60 ± 0.12)E-01 10000 ± 0
(0.97, 0.95) (2.11 ± 0.08)E-02 (1.20 ± 0.03)E-01 (3.64 ± 0.13)E-01 10000 ± 0

0.005
(0.9, 0.999) (2.06 ± 0.09)E-02 (1.14 ± 0.04)E-01 (3.83 ± 0.22)E-01 10000 ± 0
(0.95, 0.97) (2.14 ± 0.04)E-02 (1.15 ± 0.02)E-01 (3.96 ± 0.13)E-01 10000 ± 0
(0.97, 0.95) (2.13 ± 0.02)E-02 (1.14 ± 0.02)E-01 (3.95 ± 0.12)E-01 10000 ± 0

Table 23: Burgers’ Equation with SIREN–2

Nhidden LR Betas MSE ± SD MAE ± SD Max Error ± SD Epochs ± SD

10

0.0005
(0.9, 0.999) (2.03 ± 0.11)E-02 (1.10 ± 0.45)E-01 (3.71 ± 0.15)E-01 10000 ± 0
(0.95, 0.97) (1.42 ± 0.18)E-02 (7.99 ± 0.86)E-02 (3.63 ± 0.14)E-01 10000 ± 0
(0.97, 0.95) (1.28 ± 0.09)E-02 (7.27 ± 0.50)E-02 (3.63 ± 0.07)E-01 10000 ± 0

0.001
(0.9, 0.999) (1.52 ± 0.25)E-02 (8.71 ± 1.07)E-02 (3.57 ± 0.08)E-01 10000 ± 0
(0.95, 0.97) (1.24 ± 0.19)E-02 (7.19 ± 0.94)E-02 (3.59 ± 0.13)E-01 10000 ± 0
(0.97, 0.95) (1.17 ± 0.15)E-02 (6.82 ± 0.71)E-02 (3.57 ± 0.16)E-01 10000 ± 0

0.005
(0.9, 0.999) (1.31 ± 0.19)E-02 (7.67 ± 0.88)E-02 (3.57 ± 0.09)E-01 10000 ± 0
(0.95, 0.97) (1.12 ± 0.17)E-02 (6.60 ± 0.79)E-02 (3.56 ± 0.09)E-01 10000 ± 0
(0.97, 0.95) (9.57 ± 0.08)E-03 (5.77 ± 0.39)E-02 (3.56 ± 0.13)E-01 10000 ± 0

17

0.0005
(0.9, 0.999) (1.84 ± 0.34)E-02 (9.76 ± 1.29)E-02 (3.75 ± 0.24)E-01 10000 ± 0
(0.95, 0.97) (1.30 ± 0.09)E-02 (7.29 ± 0.30)E-02 (3.68 ± 0.24)E-01 10000 ± 0
(0.97, 0.95) (1.25 ± 0.08)E-02 (6.99 ± 0.31)E-02 (3.66 ± 0.22)E-01 10000 ± 0

0.001
(0.9, 0.999) (1.51 ± 0.27)E-02 (8.36 ± 1.04)E-02 (3.70 ± 0.23)E-01 10000 ± 0
(0.95, 0.97) (1.21 ± 0.12)E-02 (6.85 ± 0.45)E-02 (3.67 ± 0.21)E-01 10000 ± 0
(0.97, 0.95) (1.14 ± 0.12)E-02 (6.54 ± 0.45)E-02 (3.67 ± 0.24)E-01 10000 ± 0

0.005
(0.9, 0.999) (1.23 ± 0.20)E-02 (7.13 ± 0.98)E-02 (3.67 ± 0.24)E-01 10000 ± 0
(0.95, 0.97) (1.01 ± 0.09)E-02 (5.95 ± 0.48)E-02 (3.69 ± 0.24)E-01 10000 ± 0
(0.97, 0.95) (9.70 ± 0.10)E-03 (5.74 ± 0.46)E-02 (3.67 ± 0.22)E-01 10000 ± 0

Table 24: Burgers’ Equation with SIREN–3

Nhidden LR Betas MSE ± SD MAE ± SD Max Error ± SD Epochs ± SD

7

0.0005
(0.9, 0.999) (1.67 ± 0.39)E-02 (9.10 ± 1.74)E-02 (3.65 ± 0.18)E-01 10000 ± 0
(0.95, 0.97) (9.86 ± 1.04)E-03 (5.94 ± 0.58)E-02 (3.61 ± 0.15)E-01 10000 ± 0
(0.97, 0.95) (9.19 ± 0.60)E-03 (5.54 ± 0.29)E-02 (3.60 ± 0.15)E-01 10000 ± 0

0.001
(0.9, 0.999) (1.50 ± 0.37)E-02 (8.33 ± 1.68)E-02 (3.62 ± 0.13)E-01 10000 ± 0
(0.95, 0.97) (9.51 ± 0.67)E-03 (5.73 ± 0.30)E-02 (3.60 ± 0.12)E-01 10000 ± 0
(0.97, 0.95) (8.83 ± 0.66)E-03 (5.35 ± 0.35)E-02 (3.62 ± 0.10)E-01 10000 ± 0

0.005
(0.9, 0.999) (1.05 ± 0.09)E-02 (6.26 ± 0.48)E-02 (3.60 ± 0.16)E-01 10000 ± 0
(0.95, 0.97) (8.86 ± 0.56)E-03 (5.35 ± 0.24)E-02 (3.63 ± 0.18)E-01 10000 ± 0
(0.97, 0.95) (7.91 ± 0.92)E-03 (4.87 ± 0.49)E-02 (3.67 ± 0.19)E-01 10000 ± 0

12

0.0005
(0.9, 0.999) (1.24 ± 0.15)E-02 (7.09 ± 0.69)E-02 (3.69 ± 0.16)E-01 10000 ± 0
(0.95, 0.97) (8.83 ± 0.58)E-03 (5.30 ± 0.26)E-02 (3.65 ± 0.18)E-01 10000 ± 0
(0.97, 0.95) (8.26 ± 0.61)E-03 (5.01 ± 0.30)E-02 (3.66 ± 0.16)E-01 10000 ± 0

0.001
(0.9, 0.999) (1.07 ± 0.17)E-02 (6.24 ± 0.68)E-02 (3.68 ± 0.16)E-01 10000 ± 0
(0.95, 0.97) (8.77 ± 1.18)E-03 (5.22 ± 0.56)E-02 (3.67 ± 0.16)E-01 10000 ± 0
(0.97, 0.95) (8.01 ± 1.10)E-03 (4.83 ± 0.49)E-02 (3.68 ± 0.19)E-01 10000 ± 0

0.005
(0.9, 0.999) (9.09 ± 1.82)E-03 (5.42 ± 0.80)E-02 (3.70 ± 0.18)E-01 10000 ± 0
(0.95, 0.97) (7.84 ± 1.31)E-03 (4.79 ± 0.61)E-02 (3.67 ± 0.20)E-01 10000 ± 0
(0.97, 0.95) (7.40 ± 1.08)E-03 (4.53 ± 0.53)E-02 (3.72 ± 0.31)E-01 10000 ± 0

34
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Table 25: Burgers’ Equation with Vanilla Relu

Nhidden LR Betas MSE ± SD MAE ± SD Max Error ± SD Epochs ± SD

7

0.0005
(0.9, 0.999) (3.22 ± 1.06)E-02 (1.49 ± 0.28)E-01 (3.72 ± 0.24)E-01 10000 ± 0
(0.95, 0.97) (3.31 ± 1.17)E-02 (1.51 ± 0.31)E-01 (3.66 ± 0.13)E-01 10000 ± 0
(0.97, 0.95) (3.48 ± 1.28)E-02 (1.55 ± 0.33)E-01 (3.76 ± 0.25)E-01 10000 ± 0

0.001
(0.9, 0.999) (3.69 ± 1.36)E-02 (1.60 ± 0.35)E-01 (3.80 ± 0.32)E-01 10000 ± 0
(0.95, 0.97) (3.30 ± 1.18)E-02 (1.51 ± 0.31)E-01 (3.64 ± 0.14)E-01 10000 ± 0
(0.97, 0.95) (3.93 ± 1.75)E-02 (1.64 ± 0.39)E-01 (3.93 ± 0.67)E-01 10000 ± 0

0.005
(0.9, 0.999) (3.29 ± 1.17)E-02 (1.50 ± 0.31)E-01 (3.67 ± 0.17)E-01 10000 ± 0
(0.95, 0.97) (3.24 ± 1.20)E-02 (1.48 ± 0.32)E-01 (3.70 ± 0.17)E-01 10000 ± 0
(0.97, 0.95) (4.17 ± 1.76)E-02 (1.70 ± 0.39)E-01 (3.95 ± 0.66)E-01 10000 ± 0

12

0.0005
(0.9, 0.999) (2.82 ± 0.80)E-02 (1.38 ± 0.20)E-01 (3.63 ± 0.28)E-01 10000 ± 0
(0.95, 0.97) (2.59 ± 0.09)E-02 (1.32 ± 0.04)E-01 (3.58 ± 0.10)E-01 10000 ± 0
(0.97, 0.95) (3.04 ± 1.40)E-02 (1.42 ± 0.29)E-01 (3.72 ± 0.58)E-01 10000 ± 0

0.001
(0.9, 0.999) (2.83 ± 0.73)E-02 (1.39 ± 0.19)E-01 (3.65 ± 0.21)E-01 10000 ± 0
(0.95, 0.97) (2.60 ± 0.13)E-02 (1.32 ± 0.05)E-01 (3.59 ± 0.07)E-01 10000 ± 0
(0.97, 0.95) (2.90 ± 0.69)E-02 (1.41 ± 0.18)E-01 (3.66 ± 0.20)E-01 10000 ± 0

0.005
(0.9, 0.999) (2.64 ± 0.08)E-02 (1.34 ± 0.03)E-01 (3.58 ± 0.09)E-01 10000 ± 0
(0.95, 0.97) (2.84 ± 0.70)E-02 (1.39 ± 0.19)E-01 (3.63 ± 0.19)E-01 10000 ± 0
(0.97, 0.95) (3.16 ± 1.01)E-02 (1.47 ± 0.25)E-01 (3.74 ± 0.35)E-01 10000 ± 0

Table 26: Burgers’ Equation with Vanilla Tan

Nhidden LR Betas MSE ± SD MAE ± SD Max Error ± SD Epochs ± SD

7

0.0005
(0.9, 0.999) (1.16 ± 0.16)E-02 (6.84 ± 0.76)E-02 (3.63 ± 0.18)E-01 10000 ± 0
(0.95, 0.97) (6.82 ± 0.42)E-03 (4.38 ± 0.26)E-02 (3.60 ± 0.19)E-01 10000 ± 0
(0.97, 0.95) (6.02 ± 0.50)E-03 (3.87 ± 0.29)E-02 (3.88 ± 0.60)E-01 10000 ± 0

0.001
(0.9, 0.999) (8.23 ± 1.07)E-03 (5.08 ± 0.58)E-02 (3.63 ± 0.11)E-01 10000 ± 0
(0.95, 0.97) (6.37 ± 0.72)E-03 (4.12 ± 0.34)E-02 (3.68 ± 0.29)E-01 10000 ± 0
(0.97, 0.95) (5.81 ± 0.57)E-03 (3.73 ± 0.35)E-02 (3.85 ± 0.59)E-01 10000 ± 0

0.005
(0.9, 0.999) (7.24 ± 0.89)E-03 (4.55 ± 0.53)E-02 (3.71 ± 0.29)E-01 10000 ± 0
(0.95, 0.97) (6.16 ± 0.53)E-03 (3.94 ± 0.30)E-02 (3.73 ± 0.36)E-01 10000 ± 0
(0.97, 0.95) (5.53 ± 0.51)E-03 (3.68 ± 0.35)E-02 (3.86 ± 0.52)E-01 10000 ± 0

12

0.0005
(0.9, 0.999) (8.95 ± 2.13)E-03 (5.40 ± 1.14)E-02 (3.61 ± 0.18)E-01 10000 ± 0
(0.95, 0.97) (5.17 ± 0.61)E-03 (3.26 ± 0.36)E-02 (4.14 ± 0.80)E-01 10000 ± 0
(0.97, 0.95) (4.82 ± 0.42)E-03 (3.05 ± 0.17)E-02 (4.15 ± 0.93)E-01 10000 ± 0

0.001
(0.9, 0.999) (7.78 ± 0.93)E-03 (4.89 ± 0.56)E-02 (3.64 ± 0.19)E-01 10000 ± 0
(0.95, 0.97) (5.00 ± 0.51)E-03 (3.18 ± 0.33)E-02 (4.19 ± 0.69)E-01 10000 ± 0
(0.97, 0.95) (4.75 ± 0.57)E-03 (2.99 ± 0.32)E-02 (4.57 ± 0.95)E-01 10000 ± 0

0.005
(0.9, 0.999) (5.93 ± 0.72)E-03 (3.84 ± 0.45)E-02 (3.81 ± 0.45)E-01 10000 ± 0
(0.95, 0.97) (5.00 ± 0.44)E-03 (3.22 ± 0.28)E-02 (4.23 ± 0.88)E-01 10000 ± 0
(0.97, 0.95) (4.42 ± 0.45)E-03 (2.82 ± 0.31)E-02 (4.75 ± 0.92)E-01 10000 ± 0
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