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ABSTRACT
Panorama images are popularly used for comprehensive scene un-
derstanding due to their integrated field of view. To overcome the
spherical image distortions observed in commonly used Equirectan-
gular Projection (ERP) 360-format images, the existing 360 monoc-
ular deep learning-based depth estimation networks propose using
distortion-free tangent patch images projected from ERP to predict
perspective depths which are merged to get the final ERP depth
map. These methods show improved performance over previous
methods; however, they produce depth maps that are inconsis-
tent, and uneven, have merging artifacts, and miss fine structure
details due to the missing holistic contextual information in the
learned local tangent patch image features. To address this problem,
we propose a novel multi-scale 360 monocular depth estimation
framework, MS360, which focuses on guiding the local tangent
perspective image features with coarse integrated image features.
Specifically, our method first extracts coarse comprehensive fea-
tures with perspective tangent patches from downsampled ERP as
input to the coarse UNet structure. Secondly, we use a fine branch
network to capture local geometric information using perspective
tangent images from high-resolution ERP. Furthermore, we present
a Multi-Scale Feature Fusion (MSFF) bottleneck module to fuse and
guide the fine local features with coarse holistic features via an at-
tention mechanism. Lastly, we predict a low-resolution depth map
using coarse features and a final high-resolution depth map using
coarse-guided fine image features as input to the coarse and fine
decoder networks. Our method greatly reduces the discrepancies,
and local patch merging artifacts in the depth maps. Performed
experiments on multiple real-world depth estimation benchmark
datasets show that our network outperforms the existing models
both quantitatively and qualitatively while producing smooth and
high-quality depth maps.
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1 INTRODUCTION
Over the years much research has been carried out on perceiv-
ing and analyzing scenes using computer vision tasks like depth
estimation, semantic segmentation, object detection, etc. In the
last few decades due to the boost in autonomous driving, scene
reconstruction, virtual reality, and augmented reality applications
identifying depth for 3D scene understanding has been the funda-
mental andmost dominant research topic. Early on researchers used
a stereo-matching-based approach [17, 22, 41] to predict depths
from multiple perspective images. Eventually, more feasible single-
perspective image-based depth estimationmethods [3, 16, 24, 26, 40]
became popular with the development of deep learning technology.
However, the perspective images used in these methods provide a
limited field-of-view scene content. Therefore, with the advance-
ment of spherical cameras, 360 images started being increasingly
utilized as they provide a wide field of view scene representation.
Unfortunately, the widely used 360 image format Equirectangular
Projection (ERP) contains distortions due to the spherical singular-
ity at the top and bottom latitude regions. Hence, depth estimation
task using a single 350-image input requires distinctive remodeling
of the conventional deep learning networks.

Many deep learning models have been proposed over time to
mitigate the ERP distortion problem for depth estimation tasks.
For example, methods in [5, 8–11, 14, 15, 20, 32, 33, 36, 43–45] ei-
ther use spherical domain filters or distortion aware convolution
neural networks (CNN) to explicitly learn the distortion. While
methods like BiFuse [38], UniFuse [21] and BiFuse ++ [39] propose
using a combination of distortion-less cube map and ERP for better
performance. HoHoNet [35] method used panorama image latent
horizontal features to estimate depths. Recently, some neural net-
works in [7, 13, 25, 30, 31, 34] showed that using distortion-less
tangent images to estimate perspective depth maps which when
merged to ERP show better results. Although this approach pro-
duces better results than the previous works, they still disregard
learning the ERP input integrated contextual information result-
ing in inconsistent, uneven, local patch merging artifacts and poor
structure detailed depth maps.

This paper proposes a novel multi-scale 360 monocular depth
estimation network, MS360, as shown in Figure 1 to mitigate the
observed discrepancies in the SOTA method-produced depth maps.
Our framework introduces a coarse and fine dual-branch network
to learn integrated and local image features respectively which are
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Figure 1: (Top) An overview of our model, MS360. We use a
coarse-fine depth estimation approach that fuses coarse and
fine perspective tangent patch (projected from ERP input)
image features using a Multi-Scale Feature Fusion (MSFF)
attention-based module to guide local patches with inte-
grated coarse features for improved perspective depth map
aggregation to ERP format. (Bottom) Our model produces
smooth, consistent, and detailed structure depth maps com-
pared to State-Of-The-Art (SOTA) OmniFusion [25].

then merged using a Multi-Scale Feature Fusion (MSFF) attention-
based network to produce a more refined and consistent ERP depth
map at the output. First, our model takes low and high-resolution
ERP images and projects them to coarse and fine-level perspective
tangent patches respectively using gnomonic projection (See Fig-
ure 3). These multi-scale tangent patches and their 3D geometric
information are given to the coarse and fine encoders to extract
comprehensive and fine-level image features. Secondly, to guide
the local features with the holistic feature information we fuse the
obtained bottleneck coarse and fine-level image features using the
attention mechanism. Finally, these coarse and updated fine image
features are given to the coarse and fine-level decoder network
to produce coarse and fine tangent patch depth maps which are
merged to get low and final high-resolution ERP depth maps re-
spectively at the output. We evaluate our method using multiple
real-world depth estimation benchmark datasets. We also perform
an ablation study to analyze the proposed design choices. The con-
ducted experiments show that our model outperforms the existing
methods both quantitatively and qualitatively.

The following summarizes the main contributions of the paper:

• We present a 360 monocular depth prediction pipeline that
addresses the existing depth map discrepancy issue via a
novel coarse-fine feature fusion framework.

• We introduce a Multi-Scale Feature Fusion (MSFF) network
to provide integrated contextual guidance to the local tan-
gent patch features at the UNet-type network bottleneck,
producing structure detailed, smooth, and consistent ERP
depth maps.

• Our framework outperforms the existing methods on multi-
ple real-world benchmark datasets both quantitatively and
qualitatively.

2 RELATEDWORK
2.1 Monocular perspective depth estimation
Initially, researchers solved scene understanding problems using
a sequence of images from video or stereo image pair matching
approach [17, 22, 41]. These approaches, however, are not feasible
due to the dataset requirement and suffer degraded performance in
textureless and repetitive regions. Therefore, with the advancement
of deep learning technology, the research community started work-
ing on monocular perspective image depth estimation methods
[3, 16, 24, 26, 40] that use variations of deep CNN architectures. For
example, Laina et al. [24] uses a deep CNN with a residual learning
framework. While methods in [3, 26, 40] use aggregation of CNN
and fully connected conditional random field to combine multi-
scale feature information for better scene understanding. However,
the perspective images in these methods lack integrated scene rep-
resentation due to their limited field of view generating inconsistent
depth estimations.

2.2 Monocular 360 depth estimation
ERP images: With the increasing popularity of 360 photography,

many researchers are motivated to use 360 images directly for depth
estimation networks as they provide comprehensive scene repre-
sentation with a wide field of view. However, commonly used ERP
360 images suffer from significant distortions in the top and bottom
latitude regions. Therefore, using conventional neural networks
developed for perspective images shows degraded performance
for 360 images. To tackle this problem explicitly methods in [5, 8–
11, 14, 15, 20, 32, 33, 36, 43–45] proposed using distortion aware
or spherical kernel CNNs. For example, the methods in [5, 36]
introduced distortion-aware deformable convolution to improve
generalizability. ACDNet [44] showed that adaptive dilated con-
volution with channel-wise feature fusion produce better results
than the deformable convolution approach. While methods in [8–
10, 14, 15, 20, 32, 33, 43] proposed spherical CNNs to mitigate ERP
distortion problem for depth estimation. These specifically designed
spherical kernels and distortion-aware convolutional neural net-
works suffer from the performance limitations due to the utilization
of fixed sampling positions.

Cube map and ERP images: Recently some methods instead of
directly designing networks to handle ERP spherical distortion,
use distortion-less 360 image representation input for performance
improvement. For example, SliceNet [28] divides 360 images into
vertical slices of the sphere and uses an encoder-decoder neural
network. HoHoNet [35] learns compact latent horizontal 360 image
features, however, it does not preserve boundaries and smoothness
in the depth map. Hsien-Tzu Cheng et al. [6] uses distortion-less
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Figure 2: Overall pipeline of our method, MS360.

360 image projection called cube map as input to CNN, but these
cube map patches input hinders the performance by the restricted
field of view and face discontinuity. The methods in [21, 38, 39,
42] use a combination of ERP and cube map representation input,
where method BiFuse [38] fuse ERP and cube map feature at the
encoder-decoder network, UniFuse [21] and BiFuse++ [39] fuse
these features only at the decoder stage and Zhiqiang Yan et al.
[42] use multi-model mask approach with ERP, cube map, and
sparse depth as input for depth prediction. These ERP and cube
map combination methods utilize complex and computationally
heavy cross-projection fusion process and have been shown to
suffer from cube map discontinuities and geometric irregularities
in the final depth estimation.

Perspective tangent patch images: Lately, models in [7, 13, 25, 30,
31, 34] propose using multiple distortion-less perspective tangent
patches projected from ERP images, allowing direct use of CNNs to
estimate perspective depths that are merged to produce final ERP
depth maps. For example, State-Of-The-Art (SOTA) OmniFusion
[25] uses this strategy to predict perspective depth maps from mul-
tiple projected tangent patch images and merges them to produce
a final ERP depth map using a geometric aware CNN and vision
transformer. Although these models show better performance than
the previously discussed approaches, their ERP depths show local
patch merging artifacts. Also, since these tangent patch image fea-
tures miss learning holistic ERP image information they produce
inconsistent, uneven, and less accurate depth maps.

2.3 Attention based networks
Transformer attention-based network by Ashish Vaswani et al. [37]
have shown prominent success in natural language processing tasks
and currently are being increasingly used to solve computer vision
problems. These networks with global receptive fields can cap-
ture long-range relationships using sequential multi-head attention
blocks. René Ranft et al. [29] uses a vision transformer network to
estimate depth using a single RGB image. Also, the latest method
CMT [18] uses a combination of CNN and a transformer to capture
local and global information to further improve the feature aggrega-
tion capability of the network. In our method, we use a multi-head
self-attention (MSA) network by Ashish Vaswani et al. [37] at the
bottleneck of the coarse and fine encoder-decoder Unet-type net-
work to learn long-range context information amongst the multiple
perspective distortion-free tangent patches.

3 METHODOLOGY
In this section, we discuss the details of our approach. The com-
plete pipeline of our method is shown in Figure 2. Our framework
focuses on addressing the discrepancies in the existing methods’
depth maps due to the considered local tangent patch image feature
missing the integrated image information. For this, we present a
combination of coarse and fine branch networks that produce low
and high-resolution ERP depth maps. The coarse branch takes a
down-sampled ERP image input. This low-resolution ERP image is
projected to multiple coarse tangent patch images, which are then
provided to the encoder-decoder UNet network to produce coarse-
level perspective depth maps. Our fine branch on the other hand uti-
lizes the fine tangent patch images projected from high-resolution
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Figure 3: (Top) Diagram showing gnomonic projection [12] of
point Ps(𝜆𝑠 , 𝜙𝑠 ) on a spherical surface onto point Pt(𝑢t, 𝑣t) on
a tangent plane, where Pc is the center of the tangent plane
whose spherical coordinates are denoted as (𝜆𝑐 , 𝜙𝑐 ) and 𝜌𝑠 is
the radius of the sphere (depth value in our case). (Bottom)
Projection of tangent patches (with field of view = 80°) from
ERP image.

ERP images. These patch images are again given to the UNet net-
work to produce fine-level perspective depth maps. These predicted
perspective depth maps from both branches are merged and pro-
jected back to get coarse and fine-level ERP depth maps. To improve
the aggregation of local tangent patch image features we explicitly
incorporate 3D geometric embedding information to the encoder
network using an MLP network that takes tangent pixel spherical
coordinates- (𝜆𝑠 , 𝜙𝑠 , 𝜌𝑠 ) and patch center coordinates- (𝜆𝑐 , 𝜙𝑐 ) as in-
put. Furthermore, to capture long-range global relationships among
the local tangent patch image features Multi-head Self-Attention
(MSA) [37] network is used at the bottleneck. Finally, to provide the
fine-level image features with the guidance of coarse-level image
features carrying comprehensive information we present a Multi-
Scale Feature Fusion (MSFF) attention-based module. This module
fuses coarse and fine-level bottleneck image features producing
hybrid features, which are then provided to the fine branch decoder
network to produce globally consistent, smooth, and more accurate
depth maps.

3.1 Coarse and fine feature extraction
Our coarse branch extracts coarse-level image features. For this,
we first down-sample the ERP image by factor 2. From the ERP
image, we sample multiple (e.g. 18) tangent perspective images at
different spherical latitudes (e.g: at 𝜙𝑐 = -67.5°, -22.5°, 22.5°, 67.5◦
latitudes with 3 (at 𝜆𝑐 = -120°, 0°, 120◦ longitude), 6 (at 𝜆𝑐 = -150°,
-90°, -30°, 30°, 90°, 150◦ longitude), 6, 3 number of patches on each
latitude respectively) using gnomonic projection [12] as shown in
Figure 3. Equation 1 is used to convert the ERP image pixels (𝑢e, 𝑣e)
to the spherical coordinates Ps(𝜆𝑠 , 𝜙𝑠 ) first. Then using Equation 2
we obtain the projected tangent point Pt(𝑢t, 𝑣 t) from spherical point
Ps(𝜆𝑠 , 𝜙𝑠 ). We use Equation 3 to obtain tangent plane to spherical

surface inverse gnomonic projection.

𝜆𝑠 = 2𝜋𝑢e/𝑤 , 𝜙𝑠 =𝜋𝑣e/ℎ (1)

where ℎ and𝑤 are the height and width of the ERP image respec-
tively.

𝑢𝑡 =
𝑐𝑜𝑠 (𝜙𝑠 )𝑠𝑖𝑛(𝜆𝑠 − 𝜆𝑐 )

𝑐𝑜𝑠 (𝜂)

𝑣𝑡 =
𝑐𝑜𝑠 (𝜙𝑐 )𝑠𝑖𝑛(𝜙𝑠 ) − 𝑠𝑖𝑛(𝜙𝑐 )𝑐𝑜𝑠 (𝜙𝑠 )𝑐𝑜𝑠 (𝜆𝑠 − 𝜆𝑐 )

𝑐𝑜𝑠 (𝜂)
𝑐𝑜𝑠 (𝜂) = 𝑠𝑖𝑛(𝜙𝑐 )𝑠𝑖𝑛(𝜙𝑠 ) + 𝑐𝑜𝑠 (𝜙𝑐 )𝑐𝑜𝑠 (𝜙𝑠 )𝑐𝑜𝑠 (𝜆𝑠 − 𝜆𝑐 )

(2)

𝜆𝑠 = 𝜆𝑐 + 𝑡𝑎𝑛−1 (
𝑢𝑡𝑠𝑖𝑛(𝜂)

𝛾𝑐𝑜𝑠 (𝜙𝑐 )𝑐𝑜𝑠 (𝜂) − 𝑣𝑡𝑠𝑖𝑛(𝜙𝑐 )𝑠𝑖𝑛(𝜂)
)

𝜙𝑠 = 𝑠𝑖𝑛
−1 (𝑐𝑜𝑠 (𝜂)𝑠𝑖𝑛(𝜙𝑐 ) +

1
𝛾
𝑣𝑡𝑠𝑖𝑛(𝜂)𝑐𝑜𝑠 (𝜙𝑐 ))

(3)

where, 𝛾 =
√︁
𝑢t2 + 𝑣 t2 and 𝜂 = 𝑡𝑎𝑛−1 (𝛾). This way we obtain a one-

on-one mapping between pixels of the tangent patch and the ERP
image. The projected distortion-free multiple perspective tangent
patches are then simultaneously given to the encoder network for
feature extraction. The encoder network is initialized with ResNet
[19] weights and consists of four stages of upsampling, 3x3 kernel-
size convolution layers along with batch normalization, and a ReLU
activation layer. Along with the tangent patches, their geometric
information like in OmniFusion [25] is also provided to the encoder
for better-aggregated feature extraction. For this, we use an MLP
network that takes the spherical geometric position (𝜆𝑠 , 𝜙𝑠 , 𝜌𝑠) of a
tangent pixel on the unit sphere and tangent patch center position
(𝜆𝑐 , 𝜙𝑐 ) to generate geometric embedding of size 𝑓 h × 𝑓 w × 64 × 𝑁
(where, 𝑓 h is feature map height, 𝑓 w is feature map width and
𝑁 = number of tangent patches). The MLP network consists of
two layers of convolution followed by batch-normalization and a
ReLU activation layer. These geometric embedded feature maps are
then concatenated with the first layer image features of the encoder
for feature extraction. Additionally, we use an MSA network by
Ashish Vaswani et al. [37] at the bottleneck to capture the global
relationship amongst the local tangent patch image features. The
input to the MSA module is the flattened encoded feature maps.
These features are then used as tokens following the standard MSA
transformer block architecture where the MSA output is computed
using Equation 4 given below:

𝑀𝑆𝐴(𝑋 ) = 𝑐𝑜𝑛𝑐𝑎𝑡𝐻
ℎ=1 [𝐴𝑡𝑡𝑛ℎ (𝑋 )] ∗𝑊,

𝐴𝑡𝑡𝑛ℎ (𝑋 ) = 𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥 (𝑄𝐾𝑇 /
√︁
𝑑ℎ) ∗𝑉 ,

𝑄 = 𝑋 ∗𝑊𝑄 , 𝐾 = 𝑋 ∗𝑊𝐾 ,𝑉 = 𝑋 ∗𝑊𝑉

(4)

where 𝑄 , 𝐾 , and 𝑉 denote query, key, and value matrix, and𝑊𝑄 ,
𝑊𝐾 ,𝑊𝑉 represent their attention weights respectively, while ℎ cor-
responds to the number of heads. We also reshape the dimensions
of the MSA output to match the encoded feature map and integrate
both for the decoder module input.

In contrast to the coarse, the fine branch uses high-resolution
ERP images to produce fine-level tangent patches. Again the en-
coder and MSA network by Ashish Vaswani et al. [37] is utilized to
produce the fine-level bottleneck image features.
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Figure 4: Overview of Multi-Scale Feature Fusion (MSFF) module, where Conv and BN stand for Convolution and Batch
Normalization layer respectively.

3.2 Multi-scale feature fusion
The tangent patch image features only consider the local contex-
tual information that leads to inconsistent ERP depth prediction
resulting from merging local tangent depth predictions. To tackle
this, we guide the fine-level image features with coarse-level inte-
grated information by fusing coarse and fine-level features using
an attention network. Inspired by the global to local feature fusion
in GLPanoDepth [2], we combine the obtained multi-scale tangent
image feature maps at the bottleneck using the Multi-Scale Feature
Fusion (MSFF) module shown in Figure 4 which experimentally
achieves the best performance. This module takes coarse and fine
branch bottleneck encoded image features of size 𝑓 th× 𝑓 tw×512×𝑁
(where, 𝑓 th = tangent patch feature map height and 𝑓 tw = tangent
patch feature map width) as input, which are then channel-wise
concatenated and given to the three stages of convolution layer
along with batch-normalization and ReLU activation layer followed
by sigmoid activate layer to learn attention maps for coarse and
fine image features. The coarse attention map focuses on capturing
high-level comprehensive features while the fine attention map
learns local information. These attention maps are multiplied to
their respective feature maps and then aggregated to produce up-
dated hybrid image features (𝑓 th× 𝑓 tw×512×𝑁 ) carrying necessary
global and local geometric information.

3.3 Coarse and fine depth estimation
The coarse bottleneck encoded features are given to the coarse
branch decoder network to produce perspective depth maps which
are merged back to low-resolution ERP format. To produce a high-
resolution consistent ERP depth map the fine branch takes updated
hybrid features from the MSFF module and gives them to the fine
branch decoder network. Both the coarse and fine-level decoder
networks consist of four stages of up-sampling, 3 x 3 kernel size
convolution layers with batch-normalization, ReLU-activation layer,
and skip connections from the corresponding four-stage encoder
layers. To further refine the estimated ERP depth maps we use
an iterative approach similar to OmniFusion [25] that uses the
predicted depth values of an iteration to update the 3D geometric
information 𝜌𝑠 given to the MLP network for the next iteration.

3.4 Loss function
We supervise our network in an end-to-end manner using coarse
and fine depth estimation loss denoted as 𝐿𝑐𝑜𝑎𝑟𝑠𝑒 and 𝐿𝑓 𝑖𝑛𝑒 respec-
tively as shown in Equation 5. We use BerHu loss [24] to optimize
coarse and fine depth estimation. The Equation of the BerHu depth
loss function is given below:

L𝑐𝑜𝑎𝑟𝑠𝑒/𝑓 𝑖𝑛𝑒 =
{
|Δ𝐷 |, |Δ𝐷 | ≤ 𝑐
Δ𝐷2+𝑐2

2𝑐 , |Δ𝐷 | > 𝑐
(5)

where, |Δ𝐷 | = |𝐷𝑔𝑡 −𝐷𝑒𝑠𝑡 | ∗𝑀 is the L1 norm between the ground
truth 𝐷𝑔𝑡 and the estimated 𝐷𝑒𝑠𝑡 depth map.𝑀 is the valid depth
pixel mask. And 𝑐 = 0.2𝑚𝑎𝑥 (Δ𝐷) is the 20% of the maximum per
batch residual.

The total loss is defined as the addition of coarse and fine depth
loss summed over all the iterations as shown in Equation 6:

L𝑡𝑜𝑡𝑎𝑙 =
∑︁

𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠

𝐿𝑐𝑜𝑎𝑟𝑠𝑒 +
∑︁

𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠

𝐿𝑓 𝑖𝑛𝑒 (6)

4 EXPERIMENTS
4.1 Dataset and metrics
We perform the experiments on the widely known benchmark
datasets called Stanford2D3D [1] andMatterport3D [4]. Stanford2D3D
consists of large-scale real-world indoor scenes. In total, the dataset
consists of 1413 panorama images out of which we use 1040 for
training and 373 for testing according to the official train-test split.
The Matterport3D consists of 10800 RGBD images. We again follow
the official split that uses 8786 images for training and the rest for
testing.

To evaluate the depth estimation performance of the network
we utilize the widely used depth estimation metrics, mentioned in
previous literature work [21, 24, 38], called Absolute Relative Error
(Abs Rel), Squared Relative Error (Sq Rel), Root Mean Squared Error
(RMSE), Root Mean Squared Error in logarithmic space (RMSE (log))
and threshold-based accuracy 𝛿𝑡 , where 𝑡 ∈ 1.25, 1.252,1.253.
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Table 1: Quantitative depth estimation comparisons on Stanford2D3D [1] benchmark dataset. Our method outperforms the
listed existing works for all the metrics, achieving state-of-the-art performance.∗ denotes we re-trained the method following
the officially released code.

Methods Abs Rel↓ Sq Rel↓ RMSE↓ RMSE (log)↓ 𝛿1 ↑ 𝛿2 ↑ 𝛿3 ↑
FCRN [24] 0.1837 - 0.5774 - 0.7230 0.9207 0.9731
RectNet [45] 0.1996 - 0.6152 - 0.6877 0.8891 0.9578
BiFuse [38] 0.1209 - 0.4142 - 0.8660 0.9580 0.9860
UniFuse [21] 0.1114 - 0.3691 - 0.8711 0.9664 0.9882
HoHoNet [35] 0.1014 - 0.3834 - 0.9054 0.9693 0.988
Panoformer[31] 0.1131 - 0.3557 - 0.8808 0.9623 0.9855
BiFuse++ [39] 0.1117 - 0.3720 - 0.8783 0.9649 0.9884
OmniFusion[25]∗ 0.0943 0.0547 0.3582 0.1656 0.8999 0.9742 0.9914
Ours 0.0899 0.0511 0.3317 0.1543 0.9152 0.9806 0.9925

Table 2: Quantitative depth estimation comparisons on Matterport3D [4] benchmark dataset. Our model again outperforms the
existing models for almost all the metrics. ∗ denotes we re-trained the method following the officially released code. Note:
Panoformer uses 1296 testing samples vs 2014 samples used by all the other methods.

Methods Abs Rel↓ Sq Rel↓ RMSE↓ RMSE (log)↓ 𝛿1 ↑ 𝛿2 ↑ 𝛿3 ↑
FCRN [24] 0.2409 - 0.6704 - 0.7703 0.9174 0.9617
RectNet [45] 0.2901 - 0.7643 - 0.6830 0.8794 0.9429
BiFuse [38] 0.2048 - 0.6259 - 0.8452 0.9319 0.9632
UniFuse [21] 0.1063 - 0.4941 - 0.8897 0.9623 0.9831
HoHoNet [35] 0.1488 - 0.5138 - 0.8786 0.9519 0.9771
Panoformer [31] 0.0904 - 0.4470 - 0.8816 0.9661 0.9878
BiFuse++ [39] 0.1424 - 0.5190 - 0.8790 0.9517 0.9772
OmniFusion [25]∗ 0.0853 0.0616 0.5035 0.1472 0.9224 0.9791 0.9925
Ours 0.0732 0.0612 0.4982 0.1430 0.9392 0.9808 0.9932

4.2 Implementation details
Implementation of our network is done using Pytorch. A single
Nvidia RTX 24 GB GPU is used for training the network. We ini-
tialize our encoder with the pre-trained ResNet [19] on ImageNet
and use Adam optimizer [23] and the cosine annealing learning
rate policy [27] with initial learning rate = 10−4. We set the batch
size = 2, patch size = 256 × 256, number of patches = 18, and patch
field of view = 80°, and MSA network number of depth layers = 6
and number of heads = 4 for both coarse and fine branches. For
our network input, we use an ERP image of 512 × 1024 resolution.
Our network is trained in an end-to-end manner using BerHu loss
[24] for coarse and fine predicted depth optimization. We train our
network using the Stanford2D3D [1] and Matterport3D [4] datasets
for 80 and 60 epochs respectively.

4.3 Performance comparison with SOTAs
Quantitative performance: Table 1. shows the quantitative perfor-

mance comparison of our model with the related existing methods
on the Stanford2D3D [1] dataset. As observed from the Table 1 our
method outperforms all the existing methods for all the evaluating
metrics. Compared to UniFuse [21] our model improves Abs Rel by
19.3% and RMSE by 10.1%.When comparing with HoHoNet [35] our
model improves Abs Rel by 11.3% and RMSE by 13.5%. Compared
with Panoformer [31] our model improves Abs Rel by 20.51% and
RMSE by 6.7%. Our method outperforms the SOTA OmniFusion
[25] by 4.7% Abs Rel and 7.4% RMSE. We also analyze the network
performance on the larger Matterport3D [4] dataset as shown in
Table 2. Here also our method outperforms all the listed existing
methods for almost all the metrics.

Qualitative performance: In Figure 5. we qualitatively compare
our model performance with one of the SOTA methods called Om-
niFusion [25] on the Stanford2D3D [1] dataset. We can observe
that OmniFusion [25] predicted depth maps show local tangent
patch merging artifacts highlighted by the red box. For example,
the cross effect near the wall region in the third column image, and
the horizontal blocky effect in the left region in the first column
image. As discussed previously, in contrast to our method OmniFu-
sion [25] learns the local tangent patch depth maps ignoring the
comprehensive context information. Due to this, when the globally
inconsistent overlapping tangent patch depth maps are merged, we
see merging artifacts like a cross, horizontal lines, blocky effects,
etc. However, our model output does not show these artifacts as our
local tangent patch features are guided with coarse-scale context
information using attention-based feature fusion which in turn
helps to produce globally consistent and smooth depth predictions.

We also present the comparative qualitative results of our model
with HoHoNet [35], UniFuse [21] and OmniFusion [25] on Stan-
ford2D3D [1] and Matterport3D [4] datasets as shown in Figure 6
and 7 respectively. We observe that our model can recover more
detailed structures, for example, bookshelves in the second and
third column images of Figure 6. It can create sharper object bound-
aries/edges in the depth maps, for example, door and table bound-
aries in the first and second column images of Figure 6. Also, our
model can preserve the global geometric structure continuity of
the indoor scenery due to the proposed attention-based multi-scale
feature fusion.
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Figure 5: Qualitative comparisons of our method with one of the SOTA methods called OmniFusion [25] on Stanford2D3D
[1] benchmark dataset. Our model-predicted depth maps do not show patch merging artifacts as seen in OmniFusion [25]
(highlighted by red box). Our predicted depth maps are also consistent and have sharper object boundaries.

Table 3: Ablation study of the effect of MSFF module location, tangent patch Field Of View (FOV), tangent patch number, and
coarse branch ERP image input resolution.

Parameter Value Abs Rel↓ Sq Rel↓ RMSE↓ RMSE (log)↓ 𝛿1 ↑ 𝛿2 ↑ 𝛿3 ↑
Multi-Scale Feature Fusion Before MSA 0.0921 0.0548 0.3521 0.1653 0.9012 0.9746 0.9905

After MSA 0.0895 0.0520 0.3423 0.1577 0.9112 0.9759 0.9921
FOV 120° 0.0925 0.0580 0.3550 0.1649 0.9098 0.9754 0.9909

80° 0.0895 0.0520 0.3423 0.1577 0.9112 0.9759 0.9921
40° 0.1286 0.0851 0.4443 0.2088 0.8336 0.9483 0.9824

No. of Patches 10 0.0965 0.0594 0.3541 0.1656 0.9061 0.9756 0.9901
18 0.0895 0.0520 0.3423 0.1577 0.9112 0.9759 0.9921

Coarse ERP Input Resolution 128 × 256 0.0943 0.0553 0.3511 0.1655 0.9068 0.9742 0.9911
256 × 512 0.0895 0.0520 0.3423 0.1577 0.9112 0.9759 0.9921

4.4 Ablation study
Study of MSFF module location: As observed from the quantita-

tive comparisons, our proposed method achieves a performance
boost by providing the missing comprehensive information to the
local tangent patch features using coarse-fine feature fusion. In

Table 3. we further analyze the effect of this MSFF module location
in the framework. Adding an MSFF module before the MSA bot-
tleneck module improves the performance over OmniFusion [25]
while adding it after the MSA better helps to learn the necessary
attention to guide the local bottleneck image feature with the coarse
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Figure 6: Comparative qualitative results on Stanford2D3D [1] benchmark dataset. We show the performance of UniFuse [21]
(second row), HoHoNet [35] (third row), OmniFusion [25] (fourth row) and our model (fifth row) with RGB ERP input and
Ground Truth (GT) depth map shown in first and last column respectively.
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Figure 7: Comparative qualitative results on Matterport3D [4] benchmark dataset. We show the performance of UniFuse [21]
(second row), HoHoNet [35] (third row), OmniFusion [25] (fourth row) and our model (fifth row). The RGB ERP input and
Ground Truth (GT) depth map are shown in the first and last column respectively.

one giving the best performance. This is because after MSA the
perspective tangent patch image features have better global rela-
tionship information which is further improved by our coarse-fine
bottleneck image feature attention fusion.

Study of FOV, number of patches: Table 3. also shows the study of
the effect of tangent patch Field Of View (FOV) and their number
on the model performance. For the analysis of FOV, we fixed the
number of patches to 18 and the patch size to 256×256 for coarse and
fine branches. We observe that patch FOV= 80◦ achieves the best
performance. When we decrease the patch FOV to 40◦ it degrades
the performance as each tangent patch does not carry the required
local information necessary to predict a consistent perspective
depth map. Also, increasing the tangent patch FOV to 120◦ leads to
performance degradation as wide FOV increases the overlapping

region between the multiple tangent patches, leading to increased
discrepancies among the predicted perspective depth maps.

Next, we study the effect of decreasing the number of tangent
patches on themodel performance. For this study, we fixed the patch
FOV to 80◦ and the patch size to 256× 256 again for both the coarse
and fine branches. Ideally, we want less number of patches to make
the model computationally efficient. We observe that decreasing
the number of patches to 10 degrades the model performance as
fewer patches do not cover enough regional information to predict
the structure details in the depth maps.

Study of coarse branch ERP image input resolution: We also stud-
ied the effect of reducing the input ERP image resolution for the
coarse branch as shown in Table 3. We observe that the model
performance degrades when we reduce the image resolution to
128 × 256 from 256 × 512. This shows that very low-resolution
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input-extracted image features lack the necessary pattern details
required for learning globally consistent depth estimation.

5 CONCLUSION
In this paper, we address the problem of discrepancy, discontinu-
ity, and local patch merging artifacts present in the existing SOTA
models’ depth maps due to the missing integrated ERP input im-
age feature learning. We present a novel two-branch coarse and
fine network, that uses an UNet type encoder-decoder network
with coarse and fine perspective tangent patches projected from
ERP images as an input to estimate low and high-resolution ERP
depth values. To guide the local tangent patch perspective image
features with the coarse comprehensive contextual information
we fuse coarse and fine image features at the network bottleneck
using the attention-based Multi-Scale Feature Fusion (MSFF) mod-
ule. Ablation studies were executed to analyze the proposed design
choices to provide the best performance. Performed experiments
show that our model produces geometric continuous, structurally
detailed, accurate, and consistent depth maps outperforming the ex-
isting models on multiple monocular depth estimation benchmark
datasets both quantitatively and qualitatively. In the future, we
would like to extend our work by analyzing our model performance
on the outdoor application datasets.
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