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Abstract

Density operators, quantum generalizations of probability distributions, are gain-
ing prominence in machine learning due to their foundational role in quantum
computing. Generative modeling based on density operator models (DOMs) is an
emerging field, but existing training algorithms — such as those for the Quantum
Boltzmann Machine — do not scale to real-world data, such as the MNIST dataset.
The Expectation-Maximization algorithm has played a fundamental role in enabling
scalable training of probabilistic latent variable models on real-world datasets. In
this paper, we develop an Expectation-Maximization framework to learn latent
variable models defined through DOMs on classical hardware, with resources
comparable to those used for probabilistic models, while scaling to real-world
data. However, designing such an algorithm is nontrivial due to the absence of
a well-defined quantum analogue to conditional probability, which complicates
the Expectation step. To overcome this, we reformulate the Expectation step as a
quantum information projection (QIP) problem and show that the Petz Recovery
Map provides a solution under sufficient conditions. Using this formulation, we
introduce the Density Operator Expectation Maximization (DO-EM) algorithm
— an iterative Minorant-Maximization procedure that optimizes a quantum evi-
dence lower bound. We show that the DO-EM algorithm ensures non-decreasing
log-likelihood across iterations for a broad class of models. Finally, we present
Quantum Interleaved Deep Boltzmann Machines (QiDBMs), a DOM that can
be trained with the same resources as a DBM. When trained with DO-EM under
Contrastive Divergence, a QiDBM outperforms larger classical DBMs in image
generation on the MNIST dataset, achieving a 40—60% reduction in the Fréchet
Inception Distance.

1 Introduction

Recent advances in quantum hardware and hybrid quantum-classical algorithms have fueled a surge of
interest in developing learning models that can operate effectively in quantum regimes [[1]. Classical
models rely on probability distributions; quantum systems generalize these to density operators -
positive semi-definite, unit-trace operators on Hilbert spaces—that encode both classical uncertainty
and quantum coherence [2]. While there is considerable progress made in quantum supervised
learning, there is relatively less progress in unsuperviced learning [3l].

Latent variable models (LVMs) are a cornerstone of unsupervised learning, offering a principled
approach to modeling complex data distributions through the introduction of unobserved or hidden
variables [4]]. These models facilitate the discovery of underlying structure in data and serve as the
foundation for a wide range of tasks, including generative modeling, clustering, and dimensionality
reduction. Classical examples such as Gaussian Mixture Models, Factor Analysis, and Hidden
Markov Models [5} 6] exemplify the power of latent variable frameworks in capturing dependencies
and variability in observed data. In recent years, LVMs have formed the conceptual backbone of
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deep generative models including Variational Autoencoders [7]], Generative Adversarial Networks
[8]], and Diffusion-based models [9]. The EM algorithm [[10} [11] has been instrumental in deriving
procedures for learning latent variables models. These algorithms are often preferred over algorithms
which directly maximizes likelihood.

The study of Density Operator-based Latent Variable Models (DO-LVM) remains in its early stages,
with foundational questions around expressivity, inference, and learning still largely unexplored
[12H14]. Leveraging the modeling power of DO-LVMs on real-world data remains a significant
challenge. Existing approaches rarely scale beyond 12 visible units—limited by restricted access to
quantum hardware, the exponential cost of simulating quantum systems, and the memory bottlenecks
associated with representing and optimizing DO-LVMs on classical devices. As a result, it is
currently infeasible to empirically assess whether DO-LVMs offer any practical advantage on real-
world datasets in terms of modeling power. EM based algorithms can provide a simpler alternative
to existing learning algorithms for DO-LVMs which directly maximizes the likelihood. However
deriving such algorithms in Density operator theoretic setup is extremely challenging for a variety of
reasons, Most notably there are operator theoretic inequalities, such as Jensen Inequality, which can
be directly applied to derive an Evidence lower bound(ELBO) style bound for DO-LVMs. Precise
characterization of models which are compatible with such bounds and their computational behaviour
remains an important area of investigation. In this paper we bridge these research gaps by making the
following contributions.

* A Density Operator Expectation-Maximization (DO-EM) algorithm is specified using
Quantum Information Projection in Algorithm[I] DO-EM guarantees log-likelihood ascent
in Theorem [4.4under mild assumptions that retain a rich class of models.

* A Quantum Evidence Lower Bound (QELBO) for the log-likelihood is derived in Lemma
from a minorant-maximization perspective leveraging the Monotonicity of Relative Entropy.

* DO-LVMs are specialized to train on classical data in Section[5|using the DO-EM algorithm.
This specialization we call CQ-LVMs, a class of models with quantum latent variables, can
train real world data due to a decomposition proved in Theorem[5.1]

* Quantum-interleaved deep Boltzmann machines (QiDBM), a quantum analog of the DBM
is defined in Section [5.I] The well known Contrastive Divergence (CD) algorithm for
Boltzmann machines is adapted to the QiDBM, which when used with DO-EM algorithm in
Section[5.1] allows QiDBMs to be trained on MNIST-scale data.

* First empirical evidence of a modeling advantage when training DO-LVMs on standard
computers with real-world data is provided in Section [} QiDBMs trained using CD on the
MNIST dataset achieve a 40-60% lower Fréchet Inception Distance compared to state-of-
the-art deep Boltzmann machines.

2 Preliminaries

Notation The /?-norm of a column vector v in a Hilbert space # is given by ||v||2 = V'vIv where
vt denotes the conjugate transpose of v. The set of Hermitian (self-adjoint) operators @ = O on
H is denoted by £(#). The positive-definite subset of £(#) is denoted by £, (H). The Kronecker
product between two operators is denoted A ® B and their direct sum is denoted A @ B [15]]. The
identity operator on  is denoted I3;. The null space of an operator A € H is denoted by ker(A).

Latent variable models and EM algorithm Latent Variable Models (LVMs) [4] specify the
probability distribution of random variables V'=[V1, ..., V., ] through a joint probability model

P(V=v|0) =) P(V=v,H=h|0)
h

where H = [Hy, ..., Hg, | are unobserved random variables. Learning an LVM from data, a problem
of great interest in Unsupervised Learning [5]], refers to estimating the model parameters 6 from a
dataset D = {v(1) ... v(M)} consisting of i.i.d instances drawn from the LVM. Maximum likelihood-

based methods aim to maximize £(6) = % Zi\; £;(0) where £;(0) = log P(V=v® | §). The
maximization problem is not only intractable in most cases but even gradient-based algorithms, which
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can only discover local optima, are difficult to implement because of unwieldy computations in ¢;(6).
The EM algorithm [[10} [11]] is an alternative iterative algorithm with the scheme

N
1
glt1) — argmax > Qi(06™), where £;(60) > Qi(016™) and £;(6™*)) = Q;(6™ [6™).
4 i=1

Boltzmann machines Boltzmann Machines (BM) are stochastic neural networks that define a
probability distribution over binary vectors based on the Ising model in statistical physics [16]. Due
to the intractability of learning in fully connected BMs, the Restricted Boltzmann Machine (RBM)
was introduced with no intra-layer connections, enabling efficient Gibbs sampling [17H19]. Deep
Boltzmann Machines (DBM) [20] stacks RBMs uisng undirected connections and allow for joint
training of all layers. The joint probability of a DBM with L layers, P(v,h', ... hl) is defined as

1
P(v,hy,... hg )= Ee*EthlwhdL) (DBM)

where E(v,h!, ... hl) is called the Energy Function, and Z = Y vh e~ B b)) g the Par-
tition Function which is typically intractable to compute. Learning in DBMs is difficult due to
intractable posterior dependencies. DBMs are usually trained using variants of the Contrastive
Divergence algorithm [18} 21, 22]]. A detailed discussion on Boltzmann machines and the Contrastive
Divergence algorithm is provided in the Appendix A.

2.1 Density operators

A density operator on a Hilbert space H is a Hermitian, positive semi-definite operator with unit trace
[2123]]. The set of Density operators will be denoted by P (), and can be regarded as generalizations
of probability distributions. A joint density operator p € P(H4 ® Hp) can be marginalized to

A € A the partial trace operation pg = Irp = (LA ®x; A ® X;) where
pa € P(Ha) by the partial peration pa = Trp(p e Da(I h
{xi}?fl is an orthonormal basis of H 5. Such a p is separable if it is a convex combination of product
states pa @ pp with ps € P(H,) and pp € P(Hp).

Definition 2.1 (Umegaki [24] Relative Entropy). Let w and p be density operators in P(H s ® Hp)
with ker(p) C ker(w). Their relative entropy is given by Dy (w, p) = Tr(wlogw) — Tr(w log p).
Lindblad [25] showed that the relative entropy does not increase under the action of the parital trace.
Theorem 2.2 (Monotonicity of Relative Entropy). For density operators w and pin P(Ha @ Hp)
such that ker(w) C ker(p), Dy(w, p) > Dy(Trpw, Trgp).

Petz [26] 27] showed that Theorem [2.2]is saturated if and only if the Petz Recovery Map reverses the
partial trace operation.

Definition 2.3 (Petz Recovery Map). For a density operator p in P(H 4 ® Hp), the Petz Recovery
Map for the partial trace R, : Ha — Ha ® Hp is the map

Rplw) = p'/? ((p21/2wp21/2) ® IB) P!, (PRM)

Theorem 2.4 (Ruskai’s condition). For density operators w and p in P(Ha ® Hp) such that
ker(w) C ker(p), Dy(Trpw, Trpp) = Dy(w, p) if and only iflogw —log p = (Trpw —Trpp) @1p.

Ruskai’s condition can be interpreted as w and p having the same Conditional Amplitude Operator.

Definition 2.5 (Conditional Amplitude Operator[28]]). The conditional amplitude operator of a
density operator p in P(H 4 ® Hp) with respect to H 4 is pp|a = exp(log p —log pa @ 1p).

A detailed discussion on density operators and quantum channels is provided in Appendix B.

3 Density operator latent variable models

In this section, we introduce Density Operator Latent Variable Models (DO-LVM) and recover
existing models such as the Quantum Boltzmann Machine (QBM) as special cases. We discuss the
computational challenges of learning such models from observations.
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Definition 3.1 (DO-LVM and the Learning Problem). A Density Operator Latent Variable Model
(DO-LVM) specifies the density operator py € P(Hy) on observables in Hy through a joint density
operator py;, € P(Hy ® Hy) as py = Trr, (pvi.(0)) where the space Hy, is not observed. Learning
a DO-LVM is the estimation of model parameters 6 when a target density operator 7, € P(Hy ) is
specified. This can be achieved by maximizing the log-likelihood

L(0) = Tr (ny log pv(0)) . (LP)
Remark 3.2. Maximizing the log-likelihood of a DO-LVM is equivalent to minimzing Dy (1, pv (9)).

We specialize DO-LVMs to classical datasets in Section [3}

Hamiltonian-based models The Hamiltonian is a Hermitian operator H € £(#) representing
the total energy and generalizes the notion of an energy function in classical energy-based models.
The model is defined using Gibbs state density matrix analogous to the Boltzmann distribution:

p(0) = % with Z(0)=Trexp(H(#)) and H(#)=>", 6, H,, where H,. € £(?) are Hermitian
operators and 0, € R are model parameters. The Quantum Boltzmann Machine is a Hamiltonian-
based model inspired by the transverse field Ising model [12]. In this paper, QBM, , denotes a model

with m visible and n hidden units with

m+n m-+n
H(O) = — > biof — Y _wijoio; — Y Tiof (QBM)
i=1 >3] 1=1

where o7 and o are 27" x 2" Pauli matrices defined by of = ®@/_jI®o* @74, T where k €

{z,2},0°=(§ °,), and 0"=(9 }). A QBM is hence a DO-LVM with p (6) = ﬁTrL exp(H(0)).

Setting I'; = 0 recovers the Boltzmann Machine (BM) [12]]. However, the density operator repre-
sentation of these classical models are plagued by their 2*T™ x 2™+" dimensionality. The memory
requirements for storing and updating models represented by density operators have been prohibitive
for @BMs to scale beyond about 12 visible units.

Need for an EM algorithm. As probabilistic LVMs are a special case of DO-LVMs, the training
challenges they face persist in DO-LVMs, which also introduce new operator-theoretic difficulties.
Maximizing the log-likelihood of a DO-LVM involves operators that do not commute [13]]. The
direct computation of gradient in Equation is significantly complicated by the partial trace [29].
Due to the difficulty of working with hidden units, recent work on QBMs have focused on models
without hidden units [30, 14} 31}|32]]. Demidik et al. [33] studied a Restricted QBM with 12 visible
units and 90 hidden units, the largest model studied in literature so far. Refer Appendix B for a
detailed survey on QBM literature. Hence, training a QBM, the most popular DO-LVM in literature, on
real-world data remains an open challenge.

Intractability of the gradient of the log-likelihood in probabilistic LVMs is addressed by the EM
algorithm. Classical derivations of the EM algorithm fail with density operators since there is no
well-defined way to construct conditional density operators [23]. An EM algorithm for density
operators using Conditional Amplitude Operators (CAQ) was conjectured in Warmuth and Kuzmin
[34]. This is insufficient since the CAQ does not provide a density operator [28]. In the next section,
we appeal to well-known results in quantum information theory to derive an ELBO and EM algorithm
for density operators.

4 The DO-EM framework

In this section, we develop an algorithmic framework applicable for learning DO-LVMs using a
density operator expectation maximization framework.

The classical ELBO is derived for each datapoint using conditional probability and Jensen’s inequality.
This approach fails for density operators due to the absence well-defined quantum conditional
probability [23]. In order to derive an ELBO for DO-LVMs, we resort to an approach inspired by the
chain rule of KL-divergence [335]].

Lemma 4.1 (Quantum ELBO). Ler J(ny) = {n | n € P(Hv ® Hr) & TrLn = 0y} be the set of
feasible extensions for a target 1, € P(Hv ). Then for a DO-LVM p(0) and n € T (ny),

£(9) > QELBO(1,9) = Tr(nlog p(6)) + S(n) — S(ny). (QELBO)



171

172
173
174
175

176

177
178
179
180

181
182
183
184

185
186

187
188

189
190

191

192
193
194
195

196
197
198
199

200
201
202
203
204
205

207
208

210

211
212

Proof sketch: We provide a proof due to Theorem [2.2]in Appendix C.

The classical EM algorithm is a consequence of the ELBO being a minorant of the log-likelihood
[36,37]]. However, it is well known that Theorem [2.2]is often not saturated [38-42]). Inspired by an
information geometric interpretation of the EM algorithm [43]], we study an instance of a quantum
information projection problem to saturate|QELBO

4.1 A quantum information projection problem

In this subsection we study the I-projection [35]] problem for density operators and show conditions
when can solve this problem. The problem of Quantum Information Projection (QIP) is stated
as follows. Consider a density operator w in P(H 4 ) and a density operator p in P(H 4 ® Hp), find
& in P(Ha ® Hp) such that

& = argmin Dy(&, p). (QIP)

Trp(§)=w

To the best of our knowledge, this problem has not been studied in literature. We know from
Theorem [2.2] that the theoretical minimum attained by the objective function in is Dy (w, Trep)
though it is not always saturated. Inspired by this connection, we explore sufficiency conditions for
when solves[QIP)
Definition 4.2 (Condition S). Two density operators w in P(H 4) and p in P(H 4 @ Hp) satisfy the
sufficiency condition if p is full rank, separable, and [w, Trp(p)] = 0.

Theorem 4.3. Suppose two density operators w in P(H a) and p in P(H s @H ) such that|Condition|
B]is satisfied, the solution to the information projection problem|QIP|is[PRM

Proof sketch: The statement holds due to the fact that [p, R,,(w)] = 0 under the conditions in the
theorem. Thus, p and R ,(w) obey Ruskai’s condition. A detailed proof is provided Appendix C.

4.2 DO-EM through the lens of Minorant Maximization

In this section, we present the Density Operator Expectation Maximization (DO-EM) algorithm
from a Minorant-Maximization perspective and discuss its advantages over direct maximization of
the log-likelihood. We prove that the DO-EM algorithm can achieve log-likelihood ascent at every
iteration under

For a fixed 6°'Y), the is maximized Algorithm 1 DO-EM
when 7 is the of p(6) onto the set of fea- : 0
sible extensions. This allows us to define a  1: Input: Target density operator 7, and 6

potential minorant Q for the log-likelihood. 2: while not converged do
3. EStep: n® = argmin Dy(n, p(6®))
n(0©DY = argmin Dy (n, p(6©°'V)) n:TrLn=nv
TrLn=nv 4: MStep: 01D = argmax Tr(n® log p(0))
0

Q(g7 60(01(1)) = QELBO(??(Q(OM))> p(e))

We use Q to define the DO-EM algorithm in Algorithm [I] Models and QIPs that obey Ruskai’s
condition provably achieve log-likelihood ascent under the DO-EM procedure.

Theorem 4.4 (Q is a minorant). Let 1), be a target density matrix and p(0) be a DO-LVM trained
by the DO-EM algorithm. If p(0)) and its onto the set of feasible extensions, n*), obey
Ruskai’s condition, then Q is a minorant of the log-likelihood. Then, E(G(“‘l)) > E(G(t)), where
6+ = argmax, Q(6;6W).

Proof sketch: Proof using the saturation of Theorem [2.2]is in Appendix C.

Corollary 4.5. For a target density operator 1, and model p(0) satisfying the E step is
the Petz recovery map R, (1) ). Moreover, such a model trained using the DO-EM algorithm achieves

provable likelihood ascent at every iteration.

Proof sketch: The proof due to Theorem [4.3]and Theorem [d.4]is given in Appendix C.

The DO-EM algorithm can be considered a density operator analog of the classical EM algorithm.
We recover the classical EM algorithm from DO-EM for discrete models if 7, and p(#) are diagonal.
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The E Step in DO-EM finds a feasible extension 77 whose Conditional Amplitude Operator (CAO)
is equal to that of the model p(6). The PRM under Condition S is the CAO reweighted by 7, to give
a valid density operator. This reduces to classical E step when the CAO reduces to the conditional
probability and PRM reduces to Bayes rule. If the model p is of the form py ® pr,, we recover the
conjecture in [34].

A log-likelihood involving a partial trace is often intractable. The M Step in DO-EM algorithm
maximizes an expression without the partial trace. The log-likelihood of such expressions may have
closed-form expressions for the gradients, for example, using the Lee-Trotter-Suzuki formula [14].
In the classical case, this is equivalent to the EM algorithm maximizing a sum of logarithms instead
of a logarithm of sums.

Corollary 4.6. For a Hamiltonian-based model with E step solution n"), the M step reduces to

0+ = argmax, Tr(nH(0)) — log Z(6)

Proof sketch: The proof due to properties of the matrix logarithm is given in Appendix C.

However, the memory footprint of DO-LVM s remain, preventing the application of these models
on real-world data. We specialize DO-LVM s and DO-EM to train on classical data and achieve
practical scale.

5 DO-EM for classical data

In this section, we specialize DO-LVMs and the DO-EM algorithm to classical datasets. We
assume, for ease of presentation, that the data D = {v("), ... v(M} is sampled from the set B =
{+1, —1}9v.We consider a 2¢V-dimensional Hilbert space Hy with standard basis B = {vl}fi‘{
There is a one-to-one mapping between elements of 3 and 8. For any dataset D, there is an
equivalent dataset on Hy given by ® = {v(l), v )}. The target density operator is then
= zj‘; L Vivl. ADO-LVM on dy-dimensional binary data is therefore a 2%vtdr x 2dv+dr

matrix while the target 7, is a 2%V x 29V matrix.
Specializing [Condition S]to diagonal target density operators, allows the decomposition of a DO-
LVM into direct sums of smaller subspaces, making the DO-EM algorithm computationally easier.

Theorem 5.1. If pv is diagonal, p is separable if and only if p = ®;p.. (i) and P(v;) = Tr(p. (7))
with v; € B. The density operator for Hy, for a particular v; is then given by Py Pr (7).

Proof sketch: See Appendix C.

We call models that obey Theorem[5.1]as CQ-LVMs since it implies a classical visible probability
distribution with a quantum hidden space. [JELB0]can be specialized to each data point for CQ-LVMs.

Lemma 5.2. For diagonal 7 in P(Hv ), a DO-LVM p(0) satisfies if and only if it
is of the form in Theorem The log-likelihood of these models can then expressed as L(0) =
~ Zfil £;(0) where £;(6) = log P(v(® | 9).

Proof sketch: The proof is an application of Theorem[5.1]and is given in Appendix C.

The decomposition of the log-likelihood into terms for each datapoint, allows the training of models
on real-world data since the target densit operator 7, does not have to be initialized. We now show
that CQ-LVMs are a broad class of models that include several Hamiltonian-based models.
Corollary 5.3. A Hamiltonian-based model p(0) = ™9 /Z(0) with H(0) = Y, 0,H, is a CQ-
LVMs if and only if H = @®;H; where H; are Hermitian operators in £(Hy,) and i € [2%V].

Proof sketch: The proof, due to the properties block diagonal matrices, is given in Appendix C. We
now specialize and Algorithm[T|to CQ-LVMs.

Lemma 5.4. For diagonal 1, in P(Hvy) and a CQ-LVM p(0), the log-likelihood of a data point
v €D, £;(0) is lower bounded by

0:(60) = Tr (i Jog(P(v(?[6)p" (9)) ) = Tr(er log o)
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for any density operator 1, in P(Hy,) with equality if and only if n, = py)(Q). Hence, the is
given by R,(nv) = &:Pp(V =v;)p.(i | 9).

Proof sketch: Application of Lemma([5.4]to Lemma4.1] Proof is given in Appendix C.

This allows us to specialize Algorithm || to Algorithm 2 DO-EM for CQ-LVM
Algorithm [2] enabling the implementation of

DO-EM without being restricted by the dimen- ~ 1: Input: Target density operator 7, and ¢ ©
sion of 7,,. However, models such as the QBM 2: while not converged do

remain intractable for real-world data due to 3. Q,(6; g(k)) = Tr (pg) (g(k))eH(”(@) —
the normalization term, a problem that exists
. . . log Z(9)
in classical Boltzmann machines as well. 1 N
4: 9UFD = argmax, ¥ 2ieg Qa6 6(k)

5.1 Quantum Boltzmann Machine

In this section, we discuss the [§BM and define variants which are amenable to implementation on
high-dimensional classical data. We first describe QBMs that are CQ-LVMs.

Corollary 5.5. A QBMy p, is a CQ-LVM if and only if quantum terms on the visible units are zero.

Proof sketch: The statement is true because of the structure of Pauli matrices which have entries
outside the direct sum structure if and only if ¢ < m. A detailed proof can be found in Appendix C.

The class of semi-quantum models studied in Demidik et al. [33] are CQ-LVMs. Training such a
QBM is intractable for real-world data since the free energy term, — log Z(0) is intractable even for
classical Boltzmann machines. To achieve tractable training of QBMs, we introduce the Quantum
Interleaved Deep Boltzmann Machine (QiDBM) that can be trained using Contrastive Divergence with
a quantum Gibbs sampling step derived here.

A Quantum Interleaved Deep Boltzmann Machine (QiDBM) is a with quantum bias terms on
non-contiguous hidden layers. We describe the Hamiltonian of a three-layered QiDBM; , , With £
visible units and m and n hidden units respectively in the two hidden layers. For ease of presentation,
the quantum bias terms are present in the middle layer.

l+m-+n L m m n m
_ z 1) =z = (2) = z x .
H=- E bio; — E E w;; 0700, — E g W5 0010 mgj— E Doy, (QiDBM)
i=1 i=1j=1 i=1j=1 i=1

The quantum interleaving in a QiDBM is necessary to make the Gibbs sampling step tractable. We
illustrate the case of the middle layer of QiDBMg . If the non-quantum visible and hidden layers

are fixed to v and h(?, the hidden units of the quantum layer are conditionally independent. The

Hamiltonian of the i*" unit of the quantum layer L(1) is given by 5L (i|v,h® ) = —bf o> —T;0.
This allows for the tractable sampling from the quantum layer using the expected values
2 bt z L
<O'1' >V,h(2) = E tanh D’L and <O'1 >V,h(2) = E tanh Dz

where D; = /(b¢")2 + T2 and b = b; + Zﬁzl wl(;)vj +23; wg)hf). The Gibbs step for the
non-quantum layers is done as per the classical CD algorithm using the quantum sample from the Z
Pauli operator. This closed-form expression for Gibbs sampling without matrices allows CD to run
on a QiDBM with the same memory footprint as a DBM. See Appendix C for more details.

6 Empirical evaluation

In this work, we propose a quantum model CQ-LVM, and a general EM framework, DO-EM, to
learn them. In this section, we empirically evaluate our methods through experiments to answer
the following questions. Details of the compute used to run all our experiments and baselines are
provided in Appendix D and E.

(Q1) Effectiveness of DO-EM. Is Algorithm 2] a feasible algorithm for CQ-LVMs compared to
state of the art algorithms for QBMs ?
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Figure 1: (a) Relative entropy during training with exact computation of a QBM on a mixture of
Bernoulli distribution. Showing that DO-EM does lead to decrease in relative entropy. (b) DBM with
6272 hidden units. QiDBM with 6273 hidden units. DBM(L) with 6273 hidden units. (c) FID scores
on Binarized MNIST as a function of model parameters of QiDBM and DBM.

(Q2) DO-EM on Real World Data. Does Algorithm [2]scale with the to real world data?

(Q3) Performance of DO-EM. Does Algorithm [2| provide reasonable improvement in performance
over classical LVMs?

To answer we conduct experiments running exact computation to show that the proposed
algorithm is feasible and is practical to implement.

Baselines We compare our method with our implementation of Amin et al. [12] which explores an
alternate algorithm for training QBMs.

Dataset and Metrics We use a mixture of Bernoulli dataset introduced in Amin et al. [[12] described
in Appendix D. We measure the efficacy of our proposed method by measuring the average relative
entropy during training.

Results of experiment In Figure we first observe that the relative entropy of our proposed
algorithm does decrease during training, validating our theoretical results and showing, to the best
our knowledge, the first instance of an expectation maximization algorithm with quantum bias. We
also observe that the performance is competitive with Amin et al. [12]]. We also note that CQ-LVM
training with DO-EM is faster than Amin et al. [12] and consumes lesser memory. We provide more
experiments using exact computation in Appendix D.

To answer [(Q2)| and |(Q3), we conduct experiments on DBMs of varying sizes with and without
the quantum bias term described in Section[5] We present qualitative results of our experiments in
Appendix D.

Baselines. We compare our proposed method with Taniguchi et al. [22], the state of the art for training
DBMs. We are unable to reproduce the results in their work and we report the results obtained from
their official implementatiorﬂ using the hyper parameters described in their work.

Datasets and Metrics Following prior work [22], we perform our experiments on MNIST and
Binarized MNIST dataset [44] which contains 60,000 training images and 10,000 testing images of
size 28x28. We measure the FID [45] between 10,000 generated images and the MNIST test set
to assess the quality of generation. The Fréchet Inception Distance (FID) is a quantitative metric
used to evaluate the quality of images generated by generative models by comparing the statistical
distribution of their feature representations to those of real images.

Experiment: Performance of DO-EM To show the superior performance of the proposed method,
we compare the FID of our proposed algorithm on Binarized MNIST. We train a QiDBM and DBM
with 498, 588, 686, and 784 hidden units with a learning rate of 0.001 for 1000 epochs with 2 hidden
layers with SGD optimizer with a batch size of 600.

Results of Experiments In Figure|Ic, we observe that the proposed algorithm outperforms the DBM
in all cases, achieving a minimum FID of 14.77 to the DBM’s 42.61. This experiment shows that
simply adding quantum bias terms to a DBM can improve the quality of generations by around 65%.

1https ://github. com/iShohei220/unbiased_dbm
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Experiment: DO-EM on High Dimensional Data We run CD on 2 DBMs without quantum
bias terms according to Taniguchi et al. [22] and CD with quantum bias for a QiDBM on MNIST.
Each image corresponds to 6272 visible binary units. The QiDBM has 78.70M parameters with 2
hidden layers with quantum bias added to the second layer with a hidden size of 6272. Both DBMs
have 2 hidden layers and have 78.69M and 78.71M parameters and hidden sizes of 6272 and 6273
respectively. We use a learning rate of 0.001 for all experiments and train with a batch size of 600
with SGD optimizer for 1000 epochs. The purpose of this experiment is to show that it is feasible to
train large models with quantum bias terms.

Results of Experiments In Figure we observe that the proposed method outperforms both
classical models of similar size with a 45% reduction in FID. We observe that the FID of the model
converges to this value in around 400 epochs whereas both DBM models still exhibit instability after
500 epochs. The QiDBM achieves an FID of 62.77 whereas the classical DBMs achieve an FID of
111.73 and 99.17 for the smaller and larger model respectively. This experiment indicates that scaling
QiDBMs is feasible and provides a significant improvement in performance. In Appendix D, we
show the qualitative differences between generated samples of the DBM and QiDBM. We observe
that the generated samples from the QiDBM appear to be better than that of the DBM after only 250
epochs.

Discussion We design CQ-LVMs and implement Algorithm|I]to learn different target distributions.
We first show that Algorithm [I]is effective in learning CQ-LVMs and is competitive with the state
of the art in terms of reduction of relative entropy at lower running times for 10 qubits and can be
extended to even 20 qubits where others cannot. Next, we see that the addition of quantum bias terms
to a DBM when trained using Algorithm 2] shows superior generation quality compared to classical
DBMs with a 60% reduction of FID on Binarized MNIST. Next, we show that QiDBMSs can learn
high dimensional datasets like MNIST using Algorithm [2]by scaling models upto 6272 hidden units.
We observe that QiDBMs also achieve better performance, with 40% lower FID compared to DBMs
of similar sizes. We also observe that QiDBMs converge in about half the amount of time compared
to DBMs.

7 Discussion

The paper makes important progress by proposing DO-EM, an EM Algorithm for Latent Variable
models defined by Density Operators, which provably achieves likelihood ascent. We propose CQ-
LVM, a large collection of density operator based models, where DO-EM applies. We show that
QiDBM, an instance of CQ-LVM, can easily scale to MNIST dataset which requires working with
6200+ units and outperform DBMs, thus showing that Density Operator models may yield better
performance. The specification of DO-EM is amenable to implementation on quantum devices.

DO-EM on quantum devices The E Step of the DO-EM algorithm can be implemented on a quantum
computer using the method developed by Gilyén et al. [46]], where the quantum channel is performing
the partial trace operation. The goal is to prepare the Petz recovery map for the partial trace channel
n® = Ry(nv) using The requirements for this are (1) Quantum access to the input state 7y (2)
efficient state preparation of the model’s density matrix p(6) [47, 48] and (3) Block-encodings for the
model’s density matrix and its marginal py (0) = Trp,p(60) [49]. Given these input assumptions, the

quantum algorithm implementing consists of three steps [46]: (1) applying p;l/ % on the state
nv, (2) applying the adjoint channel which is straight-forward for the partial trace channel and can
be operationally achieved by preparing subsystem L in the maximally mixed state, and (3) applying
p*/? on the combined system. Both p{,l/ % and p'/2 are implemented using Quantum Singular Value
Transformation (QSVT) techniques, leveraging block-encodings of the relevant states [49].

The M Step proceeds via gradient descent by the computation of the gradient given by
(Tr[H,n(0®)] — Tr[H,p(0)]) for the different terms in the Hamiltonian H = " 60, H, [14,[32].

The M Step stops when the gradients are small and an updated parameter §(**1) is obtained. This two-
step iterative DO-EM procedure continues until convergence. While the gradients can be estimated
on existing near-term quantum devices, the E step requires careful design.

Limitations We discuss the limitations of this work in Appendix F.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]
Justification: All contributions tally with the abstract and introduction.
Guidelines:
* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

. Limitations

Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: Limitations discussed in Appendix F.

Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]
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Justification: Assumptions are stated clearly. Proofs provided in Appendix C.

Guidelines:

The answer NA means that the paper does not include theoretical results.

All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

All assumptions should be clearly stated or referenced in the statement of any theorems.
The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: Experiments are clearly laid out in Section [6]and Appendix D. Experimental
details for reproducibility are provided in Appendix E. Anonymous code is linked.

Guidelines:

The answer NA means that the paper does not include experiments.
If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]
Justification: Link to anonymous code provided. Details are provided in Appendix E.
Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.
 The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they

should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: Details provided in Appendix E.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

¢ The full details can be provided either with the code, in appendix, or as supplemental
material.

. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]
Justification: See Appendix D.
Guidelines:

» The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

* It should be clear whether the error bar is the standard deviation or the standard error
of the mean.
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8.

10.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CIL, if the hypothesis
of Normality of errors is not verified.

» For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: Details provided in Appendix E.
Guidelines:

» The answer NA means that the paper does not include experiments.

 The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: Code of ethics followed, no interventions with living beings requiring special
processing. Only standard datasets were used. No conflicts of interest.

Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).
Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: The paper concerns an algorithm to learn density operator latent variable
models and does not directly have societal impact.

Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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» The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: Paper poses no such risks.
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
Justification: Sources provided in Appendix E.
Guidelines:

* The answer NA means that the paper does not use existing assets.
* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

 For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]
Justification: Anonymous code contains a ReadMe file.
Guidelines:

* The answer NA means that the paper does not release new assets.

» Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: No crowdsourcing or research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: No crowdsourcing or research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

Declaration of LLM usage
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Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]
Justification: Core method development in this research does not involve LLM:s.
Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

* Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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