
DO-EM: Density Operator Expectation Maximization

Anonymous Author(s)

Affiliation
Address
email

Abstract

1 Density operators, quantum generalizations of probability distributions, are gaining
2 prominence in machine learning due to their foundational role in quantum
3 computing. Generative modeling based on density operator models (**DOMs**) is an
4 emerging field, but existing training algorithms – such as those for the Quantum
5 Boltzmann Machine – do not scale to real-world data, such as the MNIST dataset.
6 The Expectation-Maximization algorithm has played a fundamental role in enabling
7 scalable training of probabilistic latent variable models on real-world datasets. *In*
8 *this paper, we develop an Expectation-Maximization framework to learn latent*
9 *variable models defined through **DOMs** on classical hardware, with resources*
10 *comparable to those used for probabilistic models, while scaling to real-world*
11 *data.* However, designing such an algorithm is nontrivial due to the absence of
12 a well-defined quantum analogue to conditional probability, which complicates
13 the Expectation step. To overcome this, we reformulate the Expectation step as a
14 quantum information projection (QIP) problem and show that the Petz Recovery
15 Map provides a solution under sufficient conditions. Using this formulation, we
16 introduce the Density Operator Expectation Maximization (DO-EM) algorithm
17 – an iterative Minorant-Maximization procedure that optimizes a quantum evi-
18 dence lower bound. We show that the **DO-EM** algorithm ensures non-decreasing
19 log-likelihood across iterations for a broad class of models. Finally, we present
20 Quantum Interleaved Deep Boltzmann Machines (**QiDBMs**), a **DOM** that can
21 be trained with the same resources as a DBM. When trained with **DO-EM** under
22 Contrastive Divergence, a **QiDBM** outperforms larger classical DBMs in image
23 generation on the MNIST dataset, achieving a 40–60% reduction in the Fréchet
24 Inception Distance.

25

1 Introduction

26 Recent advances in quantum hardware and hybrid quantum-classical algorithms have fueled a surge of
27 interest in developing learning models that can operate effectively in quantum regimes [1]. Classical
28 models rely on probability distributions; quantum systems generalize these to density operators –
29 positive semi-definite, unit-trace operators on Hilbert spaces—that encode both classical uncertainty
30 and quantum coherence [2]. While there is considerable progress made in quantum supervised
31 learning, there is relatively less progress in unsupervised learning [3].

32 Latent variable models (LVMs) are a cornerstone of unsupervised learning, offering a principled
33 approach to modeling complex data distributions through the introduction of unobserved or hidden
34 variables [4]. These models facilitate the discovery of underlying structure in data and serve as the
35 foundation for a wide range of tasks, including generative modeling, clustering, and dimensionality
36 reduction. Classical examples such as Gaussian Mixture Models, Factor Analysis, and Hidden
37 Markov Models [5, 6] exemplify the power of latent variable frameworks in capturing dependencies
38 and variability in observed data. In recent years, LVMs have formed the conceptual backbone of

39 deep generative models including Variational Autoencoders [7], Generative Adversarial Networks
 40 [8], and Diffusion-based models [9]. The EM algorithm [10, 11] has been instrumental in deriving
 41 procedures for learning latent variables models. These algorithms are often preferred over algorithms
 42 which directly maximizes likelihood.

43 The study of Density Operator-based Latent Variable Models (**DO-LVM**) remains in its early stages,
 44 with foundational questions around expressivity, inference, and learning still largely unexplored
 45 [12–14]. Leveraging the modeling power of **DO-LVMs** on real-world data remains a significant
 46 challenge. Existing approaches rarely scale beyond 12 visible units—limited by restricted access to
 47 quantum hardware, the exponential cost of simulating quantum systems, and the memory bottlenecks
 48 associated with representing and optimizing **DO-LVMs** on classical devices. As a result, it is
 49 currently infeasible to empirically assess whether **DO-LVMs** offer any practical advantage on real-
 50 world datasets in terms of modeling power. EM based algorithms can provide a simpler alternative
 51 to existing learning algorithms for **DO-LVMs** which directly maximizes the likelihood. However
 52 deriving such algorithms in Density operator theoretic setup is extremely challenging for a variety of
 53 reasons. Most notably there are operator theoretic inequalities, such as Jensen Inequality, which can
 54 be directly applied to derive an Evidence lower bound(ELBO) style bound for **DO-LVMs**. Precise
 55 characterization of models which are compatible with such bounds and their computational behaviour
 56 remains an important area of investigation. In this paper we bridge these research gaps by making the
 57 following contributions.

- 58 • A Density Operator Expectation-Maximization (**DO-EM**) algorithm is specified using
 59 Quantum Information Projection in Algorithm 1. **DO-EM** guarantees log-likelihood ascent
 60 in Theorem 4.4 under mild assumptions that retain a rich class of models.
- 61 • A Quantum Evidence Lower Bound (QELBO) for the log-likelihood is derived in Lemma 4.1
 62 from a minorant-maximization perspective leveraging the Monotonicity of Relative Entropy.
- 63 • **DO-LVMs** are specialized to train on classical data in Section 5 using the **DO-EM** algorithm.
 64 This specialization we call **CQ-LVMs**, a class of models with quantum latent variables, can
 65 train real world data due to a decomposition proved in Theorem 5.1.
- 66 • Quantum-interleaved deep Boltzmann machines (QiDBM), a quantum analog of the DBM
 67 is defined in Section 5.1. The well known Contrastive Divergence (CD) algorithm for
 68 Boltzmann machines is adapted to the QiDBM, which when used with **DO-EM** algorithm in
 69 Section 5.1, allows QiDBMs to be trained on MNIST-scale data.
- 70 • First empirical evidence of a modeling advantage when training **DO-LVMs** on standard
 71 computers with real-world data is provided in Section 6. QiDBMs trained using CD on the
 72 MNIST dataset achieve a 40–60% lower Fréchet Inception Distance compared to state-of-
 73 the-art deep Boltzmann machines.

74 2 Preliminaries

75 **Notation** The ℓ^2 -norm of a column vector \mathbf{v} in a Hilbert space \mathcal{H} is given by $\|\mathbf{v}\|_2 = \sqrt{\mathbf{v}^\dagger \mathbf{v}}$ where
 76 \mathbf{v}^\dagger denotes the conjugate transpose of \mathbf{v} . The set of Hermitian (self-adjoint) operators $\mathcal{O} = \mathcal{O}^\dagger$ on
 77 \mathcal{H} is denoted by $\mathcal{L}(\mathcal{H})$. The positive-definite subset of $\mathcal{L}(\mathcal{H})$ is denoted by $\mathcal{L}_+(\mathcal{H})$. The Kronecker
 78 product between two operators is denoted $A \otimes B$ and their direct sum is denoted $A \oplus B$ [15]. The
 79 identity operator on \mathcal{H} is denoted $I_{\mathcal{H}}$. The null space of an operator $A \in \mathcal{H}$ is denoted by $\ker(A)$.

80 **Latent variable models and EM algorithm** Latent Variable Models (LVMs) [4] specify the
 81 probability distribution of random variables $V = [V_1, \dots, V_{d_V}]$ through a joint probability model

$$P(V = \mathbf{v} \mid \theta) = \sum_h P(V = \mathbf{v}, H = \mathbf{h} \mid \theta)$$

82 where $H = [H_1, \dots, H_{d_H}]$ are unobserved random variables. Learning an LVM from data, a problem
 83 of great interest in Unsupervised Learning [5], refers to estimating the model parameters θ from a
 84 dataset $\mathcal{D} = \{\mathbf{v}^{(1)}, \dots, \mathbf{v}^{(N)}\}$ consisting of i.i.d instances drawn from the LVM. Maximum likelihood-
 85 based methods aim to maximize $\mathcal{L}(\theta) = \frac{1}{N} \sum_{i=1}^N \ell_i(\theta)$ where $\ell_i(\theta) = \log P(V = \mathbf{v}^{(i)} \mid \theta)$. The
 86 maximization problem is not only intractable in most cases but even gradient-based algorithms, which

87 can only discover local optima, are difficult to implement because of unwieldy computations in $\ell_i(\theta)$.
88 The EM algorithm [10, 11] is an alternative iterative algorithm with the scheme

$$\theta^{(k+1)} = \operatorname{argmax}_{\theta} \frac{1}{N} \sum_{i=1}^N Q_i(\theta | \theta^{(k)}), \text{ where } \ell_i(\theta) \geq Q_i(\theta | \theta^{(k)}) \text{ and } \ell_i(\theta^{(k)}) = Q_i(\theta^{(k)} | \theta^{(k)}).$$

89 **Boltzmann machines** Boltzmann Machines (BM) are stochastic neural networks that define a
90 probability distribution over binary vectors based on the Ising model in statistical physics [16]. Due
91 to the intractability of learning in fully connected BMs, the Restricted Boltzmann Machine (RBM)
92 was introduced with no intra-layer connections, enabling efficient Gibbs sampling [17–19]. Deep
93 Boltzmann Machines (DBM) [20] stacks RBMs using undirected connections and allow for joint
94 training of all layers. The joint probability of a DBM with L layers, $P(\mathbf{v}, \mathbf{h}^1, \dots, \mathbf{h}^L)$ is defined as

$$P(\mathbf{v}, \mathbf{h}_1, \dots, \mathbf{h}_{d_L}) = \frac{1}{Z} e^{-E(\mathbf{v}, \mathbf{h}_1, \dots, \mathbf{h}_{d_L})} \quad (\text{DBM})$$

95 where $E(\mathbf{v}, \mathbf{h}^1, \dots, \mathbf{h}^L)$ is called the *Energy Function*, and $Z = \sum_{\mathbf{v}, \mathbf{h}} e^{-E(\mathbf{v}, \mathbf{h}^1, \dots, \mathbf{h}^L)}$ is the *Partition Function* which is typically intractable to compute. Learning in DBMs is difficult due to
96 intractable posterior dependencies. DBMs are usually trained using variants of the Contrastive
97 Divergence algorithm [18, 21, 22]. A detailed discussion on Boltzmann machines and the Contrastive
98 Divergence algorithm is provided in the Appendix A.

100 2.1 Density operators

101 A density operator on a Hilbert space \mathcal{H} is a Hermitian, positive semi-definite operator with unit trace
102 [2, 23]. The set of Density operators will be denoted by $\mathcal{P}(\mathcal{H})$, and can be regarded as generalizations
103 of probability distributions. A joint density operator $\rho \in \mathcal{P}(\mathcal{H}_A \otimes \mathcal{H}_B)$ can be *marginalized* to
104 $\rho_A \in \mathcal{P}(\mathcal{H}_A)$ by the partial trace operation $\rho_A = \operatorname{Tr}_B(\rho) = \sum_{i=1}^{d_B} (I_A \otimes \mathbf{x}_i^\dagger) \rho (I_A \otimes \mathbf{x}_i)$ where
105 $\{\mathbf{x}_i\}_{i=1}^{d_B}$ is an orthonormal basis of \mathcal{H}_B . Such a ρ is *separable* if it is a convex combination of *product states* $\rho_A \otimes \rho_B$ with $\rho_A \in \mathcal{P}(\mathcal{H}_A)$ and $\rho_B \in \mathcal{P}(\mathcal{H}_B)$.

107 **Definition 2.1** (Umegaki [24] Relative Entropy). Let ω and ρ be density operators in $\mathcal{P}(\mathcal{H}_A \otimes \mathcal{H}_B)$
108 with $\ker(\rho) \subseteq \ker(\omega)$. Their relative entropy is given by $D_U(\omega, \rho) = \operatorname{Tr}(\omega \log \omega) - \operatorname{Tr}(\omega \log \rho)$.

109 Lindblad [25] showed that the relative entropy does not increase under the action of the partial trace.

110 **Theorem 2.2** (Monotonicity of Relative Entropy). For density operators ω and ρ in $\mathcal{P}(\mathcal{H}_A \otimes \mathcal{H}_B)$
111 such that $\ker(\omega) \subset \ker(\rho)$, $D_U(\omega, \rho) \geq D_U(\operatorname{Tr}_B \omega, \operatorname{Tr}_B \rho)$.

112 Petz [26, 27] showed that Theorem 2.2 is saturated if and only if the Petz Recovery Map reverses the
113 partial trace operation.

114 **Definition 2.3** (Petz Recovery Map). For a density operator ρ in $\mathcal{P}(\mathcal{H}_A \otimes \mathcal{H}_B)$, the Petz Recovery
115 Map for the partial trace $\mathcal{R}_\rho : \mathcal{H}_A \rightarrow \mathcal{H}_A \otimes \mathcal{H}_B$ is the map

$$\mathcal{R}_\rho(\omega) = \rho^{1/2} \left(\left(\rho_A^{-1/2} \omega \rho_A^{-1/2} \right) \otimes I_B \right) \rho^{1/2}. \quad (\text{PRM})$$

116 **Theorem 2.4** (Ruskai's condition). For density operators ω and ρ in $\mathcal{P}(\mathcal{H}_A \otimes \mathcal{H}_B)$ such that
117 $\ker(\omega) \subset \ker(\rho)$, $D_U(\operatorname{Tr}_B \omega, \operatorname{Tr}_B \rho) = D_U(\omega, \rho)$ if and only if $\log \omega - \log \rho = (\operatorname{Tr}_B \omega - \operatorname{Tr}_B \rho) \otimes I_B$.

118 Ruskai's condition can be interpreted as ω and ρ having the same Conditional Amplitude Operator.

119 **Definition 2.5** (Conditional Amplitude Operator[28]). The conditional amplitude operator of a
120 density operator ρ in $\mathcal{P}(\mathcal{H}_A \otimes \mathcal{H}_B)$ with respect to \mathcal{H}_A is $\rho_{B|A} = \exp(\log \rho - \log \rho_A \otimes I_B)$.

121 A detailed discussion on density operators and quantum channels is provided in Appendix B.

122 3 Density operator latent variable models

123 In this section, we introduce Density Operator Latent Variable Models (**DO-LVM**) and recover
124 existing models such as the Quantum Boltzmann Machine (QBM) as special cases. We discuss the
125 computational challenges of learning such models from observations.

126 **Definition 3.1 (DO-LVM and the Learning Problem).** A Density Operator Latent Variable Model
 127 **(DO-LVM)** specifies the density operator $\rho_v \in \mathcal{P}(\mathcal{H}_v)$ on observables in \mathcal{H}_v through a joint density
 128 operator $\rho_{vL} \in \mathcal{P}(\mathcal{H}_v \otimes \mathcal{H}_L)$ as $\rho_v = \text{Tr}_L(\rho_{vL}(\theta))$ where the space \mathcal{H}_L is not observed. Learning
 129 a **DO-LVM** is the estimation of model parameters θ when a target density operator $\eta_v \in \mathcal{P}(\mathcal{H}_v)$ is
 130 specified. This can be achieved by maximizing the log-likelihood

$$\mathcal{L}(\theta) = \text{Tr}(\eta_v \log \rho_v(\theta)). \quad (\text{LP})$$

131 *Remark 3.2.* Maximizing the log-likelihood of a **DO-LVM** is equivalent to minimizing $D_U(\eta_v, \rho_v(\theta))$.

132 We specialize **DO-LVMs** to classical datasets in Section 5.

133 **Hamiltonian-based models** The Hamiltonian is a Hermitian operator $H \in \mathcal{L}(\mathcal{H})$ representing
 134 the total energy and generalizes the notion of an energy function in classical energy-based models.
 135 The model is defined using Gibbs state density matrix analogous to the Boltzmann distribution:
 136 $\rho(\theta) = \frac{\exp(H(\theta))}{Z(\theta)}$ with $Z(\theta) = \text{Tr} \exp(H(\theta))$ and $H(\theta) = \sum_r \theta_r H_r$, where $H_r \in \mathcal{L}(\mathcal{H})$ are Hermitian
 137 operators and $\theta_r \in \mathbb{R}$ are model parameters. The Quantum Boltzmann Machine is a Hamiltonian-
 138 based model inspired by the transverse field Ising model [12]. In this paper, $\text{QBM}_{m,n}$ denotes a model
 139 with m visible and n hidden units with

$$H(\theta) = - \sum_{i=1}^{m+n} b_i \sigma_i^z - \sum_{i>j} w_{ij} \sigma_i^z \sigma_j^z - \sum_{i=1}^{m+n} \Gamma_i \sigma_i^x \quad (\text{QBM})$$

140 where σ_i^z and σ_i^x are $2^{m+n} \times 2^{m+n}$ Pauli matrices defined by $\sigma_i^k = \otimes_{j=1}^{i-1} I \otimes \sigma^k \otimes_{j=i+1}^{m+n} I$ where $k \in$
 141 $\{x, z\}$, $\sigma^z = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$, and $\sigma^x = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$. A QBM is hence a **DO-LVM** with $\rho_v(\theta) = \frac{1}{Z(\theta)} \text{Tr}_L \exp(H(\theta))$.

142 Setting $\Gamma_i = 0$ recovers the Boltzmann Machine (BM) [12]. However, the density operator repre-
 143 sentation of these classical models are plagued by their $2^{m+n} \times 2^{m+n}$ dimensionality. The memory
 144 requirements for storing and updating models represented by density operators have been prohibitive
 145 for QBMs to scale beyond about 12 visible units.

146 **Need for an EM algorithm.** As probabilistic LVMs are a special case of **DO-LVMs**, the training
 147 challenges they face persist in **DO-LVMs**, which also introduce new operator-theoretic difficulties.
 148 Maximizing the log-likelihood of a **DO-LVM** involves operators that do not commute [13]. The
 149 direct computation of gradient in Equation (LP) is significantly complicated by the partial trace [29].
 150 Due to the difficulty of working with hidden units, recent work on QBMs have focused on models
 151 without hidden units [30, 14, 31, 32]. Demidik et al. [33] studied a Restricted QBM with 12 visible
 152 units and 90 hidden units, the largest model studied in literature so far. Refer Appendix B for a
 153 detailed survey on QBM literature. Hence, training a QBM, the most popular **DO-LVM** in literature, on
 154 real-world data *remains an open challenge*.

155 Intractability of the gradient of the log-likelihood in probabilistic LVMs is addressed by the EM
 156 algorithm. Classical derivations of the EM algorithm fail with density operators since there is no
 157 well-defined way to construct conditional density operators [23]. An EM algorithm for density
 158 operators using Conditional Amplitude Operators (CAO) was conjectured in Warmuth and Kuzmin
 159 [34]. This is insufficient since the CAO does not provide a density operator [28]. In the next section,
 160 we appeal to well-known results in quantum information theory to derive an ELBO and EM algorithm
 161 for density operators.

162 4 The DO-EM framework

163 In this section, we develop an algorithmic framework applicable for learning **DO-LVMs** using a
 164 density operator expectation maximization framework.

165 The classical ELBO is derived for each datapoint using conditional probability and Jensen's inequality.
 166 This approach fails for density operators due to the absence well-defined quantum conditional
 167 probability [23]. In order to derive an ELBO for **DO-LVMs**, we resort to an approach inspired by the
 168 chain rule of KL-divergence [35].

169 **Lemma 4.1** (Quantum ELBO). *Let $\mathcal{J}(\eta_v) = \{\eta \mid \eta \in \mathcal{P}(\mathcal{H}_v \otimes \mathcal{H}_L) \& \text{Tr}_L \eta = \eta_v\}$ be the set of
 170 feasible extensions for a target $\eta_v \in \mathcal{P}(\mathcal{H}_v)$. Then for a **DO-LVM** $\rho(\theta)$ and $\eta \in \mathcal{J}(\eta_v)$,*

$$\mathcal{L}(\theta) \geq \text{QELBO}(\eta, \theta) = \text{Tr}(\eta \log \rho(\theta)) + S(\eta) - S(\eta_v). \quad (\text{QELBO})$$

171 *Proof sketch:* We provide a proof due to Theorem 2.2 in Appendix C.

172 The classical EM algorithm is a consequence of the ELBO being a minorant of the log-likelihood
 173 [36, 37]. However, it is well known that Theorem 2.2 is often not saturated [38–42]. Inspired by an
 174 information geometric interpretation of the EM algorithm [43], we study an instance of a quantum
 175 information projection problem to saturate QELBO.

176 4.1 A quantum information projection problem

177 In this subsection we study the I -projection [35] problem for density operators and show conditions
 178 when (PRM) can solve this problem. The problem of Quantum Information Projection (QIP) is stated
 179 as follows. Consider a density operator ω in $\mathcal{P}(\mathcal{H}_A)$ and a density operator ρ in $\mathcal{P}(\mathcal{H}_A \otimes \mathcal{H}_B)$, find
 180 ξ^* in $\mathcal{P}(\mathcal{H}_A \otimes \mathcal{H}_B)$ such that

$$\xi^* = \underset{\text{Tr}_B(\xi)=\omega}{\operatorname{argmin}} D_U(\xi, \rho). \quad (\text{QIP})$$

181 To the best of our knowledge, this problem has not been studied in literature. We know from
 182 Theorem 2.2 that the theoretical minimum attained by the objective function in QIP is $D_U(\omega, \text{Tr}_B \rho)$
 183 though it is not always saturated. Inspired by this connection, we explore sufficiency conditions for
 184 when PRM solves QIP.

185 **Definition 4.2 (Condition S).** Two density operators ω in $\mathcal{P}(\mathcal{H}_A)$ and ρ in $\mathcal{P}(\mathcal{H}_A \otimes \mathcal{H}_B)$ satisfy the
 186 sufficiency condition if ρ is full rank, separable, and $[\omega, \text{Tr}_B(\rho)] = 0$.

187 **Theorem 4.3.** Suppose two density operators ω in $\mathcal{P}(\mathcal{H}_A)$ and ρ in $\mathcal{P}(\mathcal{H}_A \otimes \mathcal{H}_B)$ such that **Condition S** is satisfied, the solution to the information projection problem QIP is PRM.

189 *Proof sketch:* The statement holds due to the fact that $[\rho, \mathcal{R}_\rho(\omega)] = 0$ under the conditions in the
 190 theorem. Thus, ρ and $\mathcal{R}_\rho(\omega)$ obey Ruskai’s condition. A detailed proof is provided Appendix C.

191 4.2 DO-EM through the lens of Minorant Maximization

192 In this section, we present the **Density Operator Expectation Maximization (DO-EM)** algorithm
 193 from a Minorant-Maximization perspective and discuss its advantages over direct maximization of
 194 the log-likelihood. We prove that the **DO-EM** algorithm can achieve log-likelihood ascent at every
 195 iteration under **Condition S**.

196 For a fixed $\theta^{(\text{old})}$, the QELBO is maximized
 197 when η is the QIP of $\rho(\theta)$ onto the set of fea-
 198 sible extensions. This allows us to define a
 199 potential minorant \mathcal{Q} for the log-likelihood.

$$\begin{aligned} \eta(\theta^{(\text{old})}) &= \underset{\text{Tr}_L \eta = \eta_V}{\operatorname{argmin}} D_U(\eta, \rho(\theta^{(\text{old})})) \\ \mathcal{Q}(\theta; \theta^{(\text{old})}) &= \text{QELBO}(\eta(\theta^{(\text{old})}), \rho(\theta)) \end{aligned}$$

Algorithm 1 DO-EM

- 1: **Input:** Target density operator η_V and $\theta^{(0)}$
 - 2: **while** not converged **do**
 - 3: **E Step:** $\eta^{(t)} = \underset{\eta: \text{Tr}_L \eta = \eta_V}{\operatorname{argmin}} D_U(\eta, \rho(\theta^{(t)}))$
 - 4: **M Step:** $\theta^{(t+1)} = \underset{\theta}{\operatorname{argmax}} \text{Tr}(\eta^{(t)} \log \rho(\theta))$
-

200 We use \mathcal{Q} to define the **DO-EM** algorithm in Algorithm 1. Models and QIPs that obey Ruskai’s
 201 condition provably achieve log-likelihood ascent under the **DO-EM** procedure.

202 **Theorem 4.4** (\mathcal{Q} is a minorant). *Let η_V be a target density matrix and $\rho(\theta)$ be a **DO-LVM** trained
 203 by the **DO-EM** algorithm. If $\rho(\theta^{(t)})$ and its QIP onto the set of feasible extensions, $\eta^{(t)}$, obey
 204 Ruskai’s condition, then \mathcal{Q} is a minorant of the log-likelihood. Then, $\mathcal{L}(\theta^{(t+1)}) \geq \mathcal{L}(\theta^{(t)})$, where
 205 $\theta^{(t+1)} = \operatorname{argmax}_\theta \mathcal{Q}(\theta; \theta^{(t)})$.*

206 *Proof sketch:* Proof using the saturation of Theorem 2.2 is in Appendix C.

207 **Corollary 4.5.** *For a target density operator η_V and model $\rho(\theta)$ satisfying **Condition S**, the E step is
 208 the Petz recovery map $\mathcal{R}_\rho(\eta_V)$. Moreover, such a model trained using the **DO-EM** algorithm achieves
 209 provable likelihood ascent at every iteration.*

210 *Proof sketch:* The proof due to Theorem 4.3 and Theorem 4.4 is given in Appendix C.

211 The **DO-EM** algorithm can be considered a density operator analog of the classical EM algorithm.
 212 We recover the classical EM algorithm from **DO-EM** for discrete models if η_V and $\rho(\theta)$ are diagonal.

213 The **E Step** in **DO-EM** finds a feasible extension η whose Conditional Amplitude Operator (CAO)
 214 is equal to that of the model $\rho(\theta)$. The PRM under **Condition S** is the CAO reweighted by η_V to give
 215 a valid density operator. This reduces to classical E step when the CAO reduces to the conditional
 216 probability and PRM reduces to Bayes rule. If the model ρ is of the form $\rho_V \otimes \rho_L$, we recover the
 217 conjecture in [34].

218 A log-likelihood involving a partial trace is often intractable. The **M Step** in **DO-EM** algorithm
 219 maximizes an expression without the partial trace. The log-likelihood of such expressions may have
 220 closed-form expressions for the gradients, for example, using the Lee-Trotter-Suzuki formula [14].
 221 In the classical case, this is equivalent to the EM algorithm maximizing a sum of logarithms instead
 222 of a logarithm of sums.

223 **Corollary 4.6.** *For a Hamiltonian-based model with E step solution $\eta^{(t)}$, the M step reduces to*

$$\theta^{(t+1)} = \operatorname{argmax}_\theta \operatorname{Tr}(\eta^{(t)} H(\theta)) - \log Z(\theta)$$

224 *Proof sketch:* The proof due to properties of the matrix logarithm is given in Appendix C.

225 However, the memory footprint of **DO-LVMs** remain, preventing the application of these models
 226 on real-world data. We specialize **DO-LVMs** and **DO-EM** to train on classical data and achieve
 227 practical scale.

228 5 DO-EM for classical data

229 In this section, we specialize **DO-LVMs** and the **DO-EM** algorithm to classical datasets. We
 230 assume, for ease of presentation, that the data $\mathcal{D} = \{\mathbf{v}^{(1)}, \dots, \mathbf{v}^{(N)}\}$ is sampled from the set $\mathcal{B} =$
 231 $\{+1, -1\}^{d_V}$. We consider a 2^{d_V} -dimensional Hilbert space \mathcal{H}_V with standard basis $\mathcal{B} = \{\mathbf{v}_i\}_{i=1}^{2^{d_V}}$.
 232 There is a one-to-one mapping between elements of \mathcal{B} and \mathcal{B} . For any dataset \mathcal{D} , there is an
 233 equivalent dataset on \mathcal{H}_V given by $\mathcal{D} = \{\mathbf{v}^{(1)}, \dots, \mathbf{v}^{(N)}\}$. The target density operator is then
 234 $\eta_V = \frac{1}{N} \sum_{i=1}^N \mathbf{v}_i \mathbf{v}_i^\dagger$. A **DO-LVM** on d_V -dimensional binary data is therefore a $2^{d_V+d_L} \times 2^{d_V+d_L}$
 235 matrix while the target η_V is a $2^{d_V} \times 2^{d_V}$ matrix.

236 Specializing **Condition S** to diagonal target density operators, allows the decomposition of a **DO-**
 237 **LVM** into direct sums of smaller subspaces, making the **DO-EM** algorithm computationally easier.

238 **Theorem 5.1.** *If ρ_V is diagonal, ρ is separable if and only if $\rho = \bigoplus_i \rho_L(i)$ and $P(\mathbf{v}_i) = \operatorname{Tr}(\rho_L(i))$
 239 with $\mathbf{v}_i \in \mathcal{B}$. The density operator for \mathcal{H}_L for a particular \mathbf{v}_i is then given by $\frac{1}{P(\mathbf{v}_i)} \rho_L(i)$.*

240 *Proof sketch:* See Appendix C.

241 We call models that obey Theorem 5.1 as **CQ-LVMs** since it implies a classical visible probability
 242 distribution with a quantum hidden space. QELBO can be specialized to each data point for **CQ-LVMs**.

243 **Lemma 5.2.** *For diagonal η_V in $\mathcal{P}(\mathcal{H}_V)$, a **DO-LVM** $\rho(\theta)$ satisfies **Condition S** if and only if it
 244 is of the form in Theorem 5.1. The log-likelihood of these models can then be expressed as $\mathcal{L}(\theta) =$
 245 $\frac{1}{N} \sum_{i=1}^N \ell_i(\theta)$ where $\ell_i(\theta) = \log P(\mathbf{v}^{(i)} | \theta)$.*

246 *Proof sketch:* The proof is an application of Theorem 5.1 and is given in Appendix C.

247 The decomposition of the log-likelihood into terms for each datapoint, allows the training of models
 248 on real-world data since the target density operator η_V does not have to be initialized. We now show
 249 that **CQ-LVMs** are a broad class of models that include several Hamiltonian-based models.

250 **Corollary 5.3.** *A Hamiltonian-based model $\rho(\theta) = e^{H(\theta)}/Z(\theta)$ with $H(\theta) = \sum_r \theta_r H_r$ is a **CQ-**
 251 **LVMs** if and only if $H = \bigoplus_i H_i$ where H_i are Hermitian operators in $\mathcal{L}(\mathcal{H}_L)$ and $i \in [2^{d_V}]$.*

252 *Proof sketch:* The proof, due to the properties of block diagonal matrices, is given in Appendix C. We
 253 now specialize QELBO and Algorithm 1 to **CQ-LVMs**.

254 **Lemma 5.4.** *For diagonal η_V in $\mathcal{P}(\mathcal{H}_V)$ and a **CQ-LVM** $\rho(\theta)$, the log-likelihood of a data point
 255 $\mathbf{v}^{(i)} \in \mathcal{D}$, $\ell_i(\theta)$ is lower bounded by*

$$\ell_i(\theta) \geq \operatorname{Tr} \left(\eta_L \log(P(\mathbf{v}^{(i)} | \theta) \rho_L^{(i)}(\theta)) \right) - \operatorname{Tr}(\sigma_L \log \sigma_L)$$

256 for any density operator η_L in $\mathcal{P}(\mathcal{H}_L)$ with equality if and only if $\eta_L = \rho_L^{(i)}(\theta)$. Hence, the PRM is
 257 given by $\mathcal{R}_\rho(\eta_V) = \bigoplus_i P_{\mathcal{D}}(V = \mathbf{v}_i) \rho_L(i \mid \theta)$.

258 *Proof sketch:* Application of Lemma 5.4 to Lemma 4.1. Proof is given in Appendix C.

259 This allows us to specialize Algorithm 1 to
 260 Algorithm 2, enabling the implementation of
 261 **DO-EM** without being restricted by the dimen-
 262 sion of η_V . However, models such as the QBM
 263 remain intractable for real-world data due to
 264 the normalization term, a problem that exists
 265 in classical Boltzmann machines as well.

266 **5.1 Quantum Boltzmann Machine**

267 In this section, we discuss the QBM and define variants which are amenable to implementation on
 268 high-dimensional classical data. We first describe QBMs that are **CQ-LVMs**.

269 **Corollary 5.5.** A $\text{QBM}_{m,n}$ is a **CQ-LVM** if and only if quantum terms on the visible units are zero.

270 *Proof sketch:* The statement is true because of the structure of Pauli matrices which have entries
 271 outside the direct sum structure if and only if $i \leq m$. A detailed proof can be found in Appendix C.

272 The class of semi-quantum models studied in Demidik et al. [33] are **CQ-LVMs**. Training such a
 273 QBM is intractable for real-world data since the free energy term, $-\log Z(\theta)$ is intractable even for
 274 classical Boltzmann machines. To achieve tractable training of QBMs, we introduce the **Quantum**
 275 **Interleaved Deep Boltzmann Machine** (QiDBM) that can be trained using Contrastive Divergence with
 276 a quantum Gibbs sampling step derived here.

277 A **Quantum Interleaved Deep Boltzmann Machine** (QiDBM) is a DBM with quantum bias terms on
 278 **non-contiguous hidden layers**. We describe the Hamiltonian of a three-layered $\text{QiDBM}_{\ell,m,n}$ with ℓ
 279 visible units and m and n hidden units respectively in the two hidden layers. For ease of presentation,
 280 the quantum bias terms are present in the middle layer.

$$H = - \sum_{i=1}^{\ell+m+n} b_i \sigma_i^z - \sum_{i=1}^{\ell} \sum_{j=1}^m w_{ij}^{(1)} \sigma_i^z \sigma_{\ell+j}^z - \sum_{i=1}^m \sum_{j=1}^n w_{ij}^{(2)} \sigma_{\ell+i}^z \sigma_{\ell+m+j}^z - \sum_{i=1}^m \Gamma_i \sigma_{\ell+i}^x \quad (\text{QiDBM})$$

281 The quantum interleaving in a QiDBM is necessary to make the Gibbs sampling step tractable. We
 282 illustrate the case of the middle layer of $\text{QiDBM}_{\ell,m,n}$. If the non-quantum visible and hidden layers
 283 are fixed to \mathbf{v} and $\mathbf{h}^{(2)}$, the hidden units of the quantum layer are conditionally independent. The
 284 Hamiltonian of the i^{th} unit of the quantum layer $L^{(1)}$ is given by $H^{L^{(1)}}(i|\mathbf{v}, \mathbf{h}^{(2)}, \theta) = -b_i^{\text{eff}} \sigma^z - \Gamma_i \sigma^x$.
 285 This allows for the tractable sampling from the quantum layer using the expected values

$$\langle \sigma_i^z \rangle_{\mathbf{v}, \mathbf{h}^{(2)}} = \frac{b_i^{\text{eff}}}{D_i} \tanh D_i \text{ and } \langle \sigma_i^x \rangle_{\mathbf{v}, \mathbf{h}^{(2)}} = \frac{\Gamma_i}{D_i} \tanh D_i$$

286 where $D_i = \sqrt{(b_i^{\text{eff}})^2 + \Gamma_i^2}$ and $b_i^{\text{eff}} = b_i + \sum_{j=1}^{\ell} w_{ij}^{(1)} \mathbf{v}_j + \sum_j w_{ij}^{(2)} \mathbf{h}_j^{(2)}$. The Gibbs step for the
 287 non-quantum layers is done as per the classical CD algorithm using the quantum sample from the Z
 288 Pauli operator. This closed-form expression for Gibbs sampling without matrices allows CD to run
 289 on a QiDBM with the same memory footprint as a DBM. See Appendix C for more details.

290 **6 Empirical evaluation**

291 In this work, we propose a quantum model **CQ-LVM**, and a general EM framework, **DO-EM**, to
 292 learn them. In this section, we empirically evaluate our methods through experiments to answer
 293 the following questions. Details of the compute used to run all our experiments and baselines are
 294 provided in Appendix D and E.

295 (Q1) **Effectiveness of DO-EM.** Is Algorithm 2, a feasible algorithm for **CQ-LVMs** compared to
 296 state of the art algorithms for QBMs ?

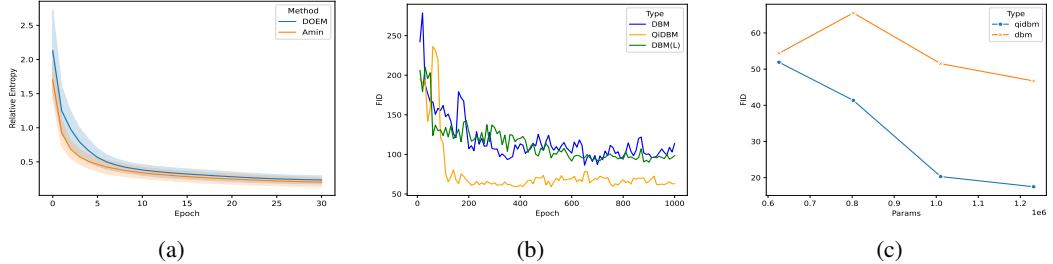


Figure 1: (a) Relative entropy during training with exact computation of a QBM on a mixture of Bernoulli distribution. Showing that DO-EM does lead to decrease in relative entropy. (b) DBM with 6272 hidden units. QiDBM with 6273 hidden units. DBM(L) with 6273 hidden units. (c) FID scores on Binarized MNIST as a function of model parameters of QiDBM and DBM.

297 (Q2) **DO-EM on Real World Data.** Does Algorithm 2 scale with the to real world data?

298 (Q3) **Performance of DO-EM.** Does Algorithm 2 provide reasonable improvement in performance
299 over classical LVMs?

300 To answer (Q1), we conduct experiments running exact computation to show that the proposed
301 algorithm is feasible and is practical to implement.

302 **Baselines** We compare our method with our implementation of Amin et al. [12] which explores an
303 alternate algorithm for training QBMs.

304 **Dataset and Metrics** We use a mixture of Bernoulli dataset introduced in Amin et al. [12] described
305 in Appendix D. We measure the efficacy of our proposed method by measuring the average relative
306 entropy during training.

307 **Results of experiment** In Figure 1a, we first observe that the relative entropy of our proposed
308 algorithm does decrease during training, validating our theoretical results and showing, to the best
309 our knowledge, the first instance of an expectation maximization algorithm with quantum bias. We
310 also observe that the performance is competitive with Amin et al. [12]. We also note that **CQ-LVM**
311 training with DO-EM is faster than Amin et al. [12] and consumes lesser memory. We provide more
312 experiments using exact computation in Appendix D.

313 To answer (Q2) and (Q3), we conduct experiments on DBMs of varying sizes with and without
314 the quantum bias term described in Section 5. We present qualitative results of our experiments in
315 Appendix D.

316 **Baselines.** We compare our proposed method with Taniguchi et al. [22], the state of the art for training
317 DBMs. We are unable to reproduce the results in their work and we report the results obtained from
318 their official implementation¹ using the hyper parameters described in their work.

319 **Datasets and Metrics** Following prior work [22], we perform our experiments on MNIST and
320 Binarized MNIST dataset [44] which contains 60,000 training images and 10,000 testing images of
321 size 28x28. We measure the FID [45] between 10,000 generated images and the MNIST test set
322 to assess the quality of generation. The Fréchet Inception Distance (FID) is a quantitative metric
323 used to evaluate the quality of images generated by generative models by comparing the statistical
324 distribution of their feature representations to those of real images.

325 **Experiment: Performance of DO-EM** To show the superior performance of the proposed method,
326 we compare the FID of our proposed algorithm on Binarized MNIST. We train a QiDBM and DBM
327 with 498, 588, 686, and 784 hidden units with a learning rate of 0.001 for 1000 epochs with 2 hidden
328 layers with SGD optimizer with a batch size of 600.

329 **Results of Experiments** In Figure 1c, we observe that the proposed algorithm outperforms the DBM
330 in all cases, achieving a minimum FID of 14.77 to the DBM's 42.61. This experiment shows that
331 simply adding quantum bias terms to a DBM can *improve the quality* of generations by around 65%.

¹https://github.com/iShohei220/unbiased_dbm

332 **Experiment: DO-EM on High Dimensional Data** We run CD on 2 DBMs without quantum
333 bias terms according to Taniguchi et al. [22] and CD with quantum bias for a QiDBM on MNIST.
334 Each image corresponds to 6272 visible binary units. The QiDBM has 78.70M parameters with 2
335 hidden layers with quantum bias added to the second layer with a hidden size of 6272. Both DBMs
336 have 2 hidden layers and have 78.69M and 78.71M parameters and hidden sizes of 6272 and 6273
337 respectively. We use a learning rate of 0.001 for all experiments and train with a batch size of 600
338 with SGD optimizer for 1000 epochs. The purpose of this experiment is to show that it is feasible to
339 train large models with quantum bias terms.

340 **Results of Experiments** In Figure 1b, we observe that the proposed method outperforms both
341 classical models of similar size with a 45% reduction in FID. We observe that the FID of the model
342 converges to this value in around 400 epochs whereas both DBM models still exhibit instability after
343 500 epochs. The QiDBM achieves an FID of 62.77 whereas the classical DBMs achieve an FID of
344 111.73 and 99.17 for the smaller and larger model respectively. This experiment indicates that scaling
345 QiDBMs is feasible and provides a significant improvement in performance. In Appendix D, we
346 show the qualitative differences between generated samples of the DBM and QiDBM. We observe
347 that the generated samples from the QiDBM appear to be better than that of the DBM after only 250
348 epochs.

349 **Discussion** We design **CQ-LVMs** and implement Algorithm 1 to learn different target distributions.
350 We first show that Algorithm 1 is effective in learning **CQ-LVMs** and is competitive with the state
351 of the art in terms of reduction of relative entropy at lower running times for 10 qubits and can be
352 extended to even 20 qubits where others cannot. Next, we see that the addition of quantum bias terms
353 to a DBM when trained using Algorithm 2 shows superior generation quality compared to classical
354 DBMs with a 60% reduction of FID on Binarized MNIST. Next, we show that **QiDBMs** can learn
355 high dimensional datasets like MNIST using Algorithm 2 by scaling models upto 6272 hidden units.
356 We observe that QiDBMs also achieve better performance, with 40% lower FID compared to DBMs
357 of similar sizes. We also observe that QiDBMs converge in about half the amount of time compared
358 to DBMs.

359 7 Discussion

360 The paper makes important progress by proposing **DO-EM**, an EM Algorithm for Latent Variable
361 models defined by Density Operators, which provably achieves likelihood ascent. We propose **CQ-**
362 **LVM**, a large collection of density operator based models, where **DO-EM** applies. We show that
363 QiDBM, an instance of **CQ-LVM**, can easily scale to MNIST dataset which requires working with
364 6200+ units and outperform DBMs, thus showing that Density Operator models may yield better
365 performance. The specification of **DO-EM** is amenable to implementation on quantum devices.

366 **DO-EM on quantum devices** The E Step of the DO-EM algorithm can be implemented on a quantum
367 computer using the method developed by Gilyén et al. [46], where the quantum channel is performing
368 the partial trace operation. The goal is to prepare the Petz recovery map for the partial trace channel
369 $\eta^{(t)} = \mathcal{R}_\rho(\eta_V)$ using PRM. The requirements for this are (1) Quantum access to the input state η_V (2)
370 efficient state preparation of the model’s density matrix $\rho(\theta)$ [47, 48] and (3) Block-encodings for the
371 model’s density matrix and its marginal $\rho_V(\theta) = \text{Tr}_L \rho(\theta)$ [49]. Given these input assumptions, the
372 quantum algorithm implementing PRM consists of three steps [46]: (1) applying $\rho_V^{-1/2}$ on the state
373 η_V , (2) applying the adjoint channel which is straight-forward for the partial trace channel and can
374 be operationally achieved by preparing subsystem L in the maximally mixed state, and (3) applying
375 $\rho^{1/2}$ on the combined system. Both $\rho_V^{-1/2}$ and $\rho^{1/2}$ are implemented using *Quantum Singular Value
376 Transformation (QSVT)* techniques, leveraging block-encodings of the relevant states [49].

377 The M Step proceeds via gradient descent by the computation of the gradient given by
378 $(\text{Tr}[H_r \eta(\theta^{(t)})] - \text{Tr}[H_r \rho(\theta)])$ for the different terms in the Hamiltonian $H = \sum_r \theta_r H_r$ [14, 32].
379 The M Step stops when the gradients are small and an updated parameter $\theta^{(t+1)}$ is obtained. This two-
380 step iterative DO-EM procedure continues until convergence. While the gradients can be estimated
381 on existing near-term quantum devices, the E step requires careful design.

382 **Limitations** We discuss the limitations of this work in Appendix F.

383 **References**

- 384 [1] J. Preskill. Quantum computing in the nisq era and beyond. *Quantum*, 2:79, 2018.
- 385 [2] Michael A. Nielsen and Isaac L. Chuang. *Quantum Computation and Quantum Information: 10th Anniversary Edition*. Cambridge University Press, 2010. doi: 10.1017/CBO9780511976667.
- 388 [3] Yaswitha Guju, Atsushi Matsuo, and Rudy Raymond. Quantum machine learning on near-term quantum devices: Current state of supervised and unsupervised techniques for real-world 389 applications. *Phys. Rev. Appl.*, 21:067001, Jun 2024.
- 390
- 391 [4] Christopher M. Bishop. *Pattern Recognition and Machine Learning*. Springer, New York, 2006.
- 392 ISBN 978-0-387-31073-2.
- 393 [5] Michael I. Jordan, Zoubin Ghahramani, Tommi S. Jaakkola, and Lawrence K. Saul. An 394 introduction to variational methods for graphical models. *Machine Learning*, 37(2):183–233, 395 1999. doi: 10.1023/A:1007665907178.
- 396 [6] Zoubin Ghahramani. An introduction to hidden markov models and bayesian networks. *International 397 Journal of Pattern Recognition and Artificial Intelligence*, 15(01):9–42, 2001.
- 398 [7] Diederik P Kingma and Max Welling. Auto-encoding variational bayes. *arXiv preprint 399 arXiv:1312.6114*, 2014.
- 400 [8] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil 401 Ozair, Aaron Courville, and Yoshua Bengio. Generative adversarial nets. In *Advances in neural 402 information processing systems*, volume 27, 2014.
- 403 [9] Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. In 404 *Advances in Neural Information Processing Systems*, volume 33, pages 6840–6851, 2020.
- 405 [10] Leonard E. Baum and Ted Petrie. Statistical Inference for Probabilistic Functions of Finite State 406 Markov Chains. *The Annals of Mathematical Statistics*, 37(6):1554 – 1563, 1966.
- 407 [11] A. P. Dempster, N. M. Laird, and D. B. Rubin. Maximum likelihood from incomplete data via 408 the em algorithm. *Journal of the Royal Statistical Society: Series B (Methodological)*, 39(1): 409 1–22, 1977.
- 410 [12] Mohammad H. Amin, Evgeny Andriyash, Jason Rolfe, Bohdan Kulchytskyy, and Roger Melko. 411 Quantum boltzmann machine. *Phys. Rev. X*, 8:021050, May 2018.
- 412 [13] Mária Kieferová and Nathan Wiebe. Tomography and generative training with quantum 413 boltzmann machines. *Phys. Rev. A*, 96:062327, 12 2017.
- 414 [14] H J Kappen. Learning quantum models from quantum or classical data. *Journal of Physics A: 415 Mathematical and Theoretical*, 53(21):214001, 5 2020.
- 416 [15] Rajendra Bhatia. *Matrix Analysis*, volume 169. Springer, 1997. ISBN 0387948465.
- 417 [16] David H. Ackley, Geoffrey E. Hinton, and Terrence J. Sejnowski. A learning algorithm for 418 boltzmann machines. *Cognitive Science*, 9(1):147–169, 1985. ISSN 0364-0213.
- 419 [17] P. Smolensky. Information processing in dynamical systems: Foundations of harmony theory. 420 In *Parallel Distributed Processing, Volume 1: Explorations in the Microstructure of Cognition: 421 Foundations*, chapter 6, pages 194–281. The MIT Press, 07 1986.
- 422 [18] Geoffrey E Hinton. Training products of experts by minimizing contrastive divergence. *Neural 423 Comput.*, 14(8):1771–1800, Aug 2002.
- 424 [19] Miguel Á. Carreira-Perpiñán and Geoffrey Hinton. On contrastive divergence learning. In 425 Robert G. Cowell and Zoubin Ghahramani, editors, *Proceedings of the Tenth International 426 Workshop on Artificial Intelligence and Statistics*, volume R5 of *Proceedings of Machine 427 Learning Research*, pages 33–40. PMLR, 06–08 Jan 2005.

- 428 [20] Ruslan Salakhutdinov and Geoffrey Hinton. Deep boltzmann machines. In *Proceedings of the*
 429 *12th International Conference on Artificial Intelligence and Statistics (AISTATS)*, volume 5 of
 430 *JMLR: W&CP*, pages 448–455, Clearwater Beach, Florida, USA, 2009. JMLR.
- 431 [21] Ruslan Salakhutdinov and Geoffrey E. Hinton. An efficient learning procedure for deep
 432 boltzmann machines. *Neural Computation*, 24(8):1967–2006, 2012. doi: 10.1162/NECO_a_
 433 00302.
- 434 [22] Shohei Taniguchi, Masahiro Suzuki, Yusuke Iwasawa, and Yutaka Matsuo. End-to-end training
 435 of deep boltzmann machines by unbiased contrastive divergence with local mode initialization.
 436 In Andreas Krause, Emma Brunskill, Kyunghyun Cho, Barbara Engelhardt, Sivan Sabato,
 437 and Jonathan Scarlett, editors, *Proceedings of the 40th International Conference on Machine*
 438 *Learning*, volume 202 of *Proceedings of Machine Learning Research*, pages 33804–33815.
 439 PMLR, 23–29 Jul 2023.
- 440 [23] Mark M. Wilde. *Quantum Information Theory*. Cambridge University Press, nov 2016.
- 441 [24] H. Umegaki. Conditional expectation in an operator algebra. IV (entropy and information).
 442 *Kōdai Mathematical Seminar Reports*, 14:59–85, 1962.
- 443 [25] Göran Lindblad. Completely positive maps and entropy inequalities. *Communications in*
 444 *Mathematical Physics*, 40(2):147–151, Jun 1975.
- 445 [26] Dénes Petz. Sufficient subalgebras and the relative entropy of states of a von neumann algebra.
 446 *Communications in Mathematical Physics*, 105(1):123–131, Mar 1986.
- 447 [27] Dénes Petz. Sufficiency Of Channels Over von Neumann Algebras. *The Quarterly Journal of*
 448 *Mathematics*, 39(1):97–108, 03 1988.
- 449 [28] N. J. Cerf and C. Adami. Negative entropy and information in quantum mechanics. *Phys. Rev.*
 450 *Lett.*, 79:5194–5197, Dec 1997.
- 451 [29] Nathan Wiebe and Leonard Wossnig. Generative training of quantum boltzmann machines with
 452 hidden units. *arXiv preprint arXiv:1905.09902*, 2019.
- 453 [30] Onno Huijgen, Luuk Coopmans, Peyman Najafi, Marcello Benedetti, and Hilbert J. Kappen.
 454 Training quantum boltzmann machines with the β -variational quantum eigensolver. *arXiv*
 455 *preprint arXiv:2304.08631*, 2024.
- 456 [31] Dhrumil Patel and Mark M. Wilde. Natural gradient and parameter estimation for quantum
 457 boltzmann machines. *arXiv preprint arXiv:2410.24058*, 2024.
- 458 [32] Luuk Coopmans and Marcello Benedetti. On the sample complexity of quantum boltzmann
 459 machine learning. *Communications Physics*, 7(1):274, 2024.
- 460 [33] Maria Demidik, Cenk Tüysüz, Nico Piatkowski, Michele Grossi, and Karl Jansen. Expressive
 461 equivalence of classical and quantum restricted boltzmann machines. *arXiv preprint*
 462 *arXiv:2502.17562*, 2025.
- 463 [34] Manfred K. Warmuth and Dima Kuzmin. Bayesian generalized probability calculus for density
 464 matrices. *Mach. Learn.*, 78(1–2):63–101, January 2010.
- 465 [35] Thomas M. Cover and Joy A. Thomas. *Elements of Information Theory*. Wiley-Interscience,
 466 USA, 2006.
- 467 [36] David R. Hunter Kenneth Lange and Ilsoon Yang. Optimization transfer using surrogate
 468 objective functions. *Journal of Computational and Graphical Statistics*, 9(1):1–20, 2000. doi:
 469 10.1080/10618600.2000.10474858.
- 470 [37] Jan de Leeuw. Block-relaxation algorithms in statistics. In Hans-Hermann Bock, Wolfgang
 471 Lenski, and Michael M. Richter, editors, *Information Systems and Data Analysis*, pages 308–
 472 324, Berlin, Heidelberg, 1994. Springer Berlin Heidelberg. ISBN 978-3-642-46808-7.

- 473 [38] Andrew Lesniewski and Mary Beth Ruskai. Monotone riemannian metrics and relative entropy
 474 on noncommutative probability spaces. *Journal of Mathematical Physics*, 40(11):5702–5724,
 475 11 1999.
- 476 [39] Mario Berta, Marius Lemm, and Mark M. Wilde. Monotonicity of quantum relative entropy
 477 and recoverability. *Quantum Info. Comput.*, 15(15–16):1333–1354, November 2015.
- 478 [40] Mark M. Wilde. Recoverability in quantum information theory. *Proceedings of the Royal
 479 Society A: Mathematical, Physical and Engineering Sciences*, 471(2182):20150338, oct 2015.
- 480 [41] Eric A Carlen and Anna Vershynina. Recovery map stability for the data processing inequality.
 481 *Journal of Physics A: Mathematical and Theoretical*, 53(3):035204, jan 2020.
- 482 [42] Samuel S. Cree and Jonathan Sorce. Geometric conditions for saturating the data processing
 483 inequality. *Journal of Physics A: Mathematical and Theoretical*, 55(13):135301, 2022. doi:
 484 10.1088/1751-8121/ac5648.
- 485 [43] Hideitsu Hino, Shotaro Akaho, and Noboru Murata. Geometry of em and related iterative
 486 algorithms. *Information Geometry*, 7(1):39–77, 2024.
- 487 [44] Li Deng. The mnist database of handwritten digit images for machine learning research [best of
 488 the web]. *IEEE Signal Processing Magazine*, 29(6):141–142, 2012.
- 489 [45] Maximilian Seitzer. pytorch-fid: FID Score for PyTorch. <https://github.com/mseitzer/pytorch-fid>, August 2020. Version 0.3.0.
- 490 [46] András Gilyén, Seth Lloyd, Iman Marvian, Yihui Quek, and Mark M. Wilde. Quantum algorithm
 491 for petz recovery channels and pretty good measurements. *Phys. Rev. Lett.*, 128:220502, Jun
 492 2022.
- 493 [47] Ersen Bilgin and Sergio Boixo. Preparing thermal states of quantum systems by dimension
 494 reduction. *Phys. Rev. Lett.*, 105:170405, Oct 2010. doi: 10.1103/PhysRevLett.105.170405.
- 495 [48] Chi-Fang Chen, Michael J. Kastoryano, Fernando G. S. L. Brandão, and András Gilyén.
 496 Quantum thermal state preparation, 2023.
- 497 [49] András Gilyén, Yuan Su, Guang Hao Low, and Nathan Wiebe. Quantum singular value
 498 transformation and beyond: exponential improvements for quantum matrix arithmetics. In
 499 *Proceedings of the 51st Annual ACM SIGACT Symposium on Theory of Computing*, STOC
 500 2019, page 193–204, New York, NY, USA, 2019. Association for Computing Machinery. ISBN
 501 9781450367059. doi: 10.1145/3313276.3316366.

503 **NeurIPS Paper Checklist**

504 **1. Claims**

505 Question: Do the main claims made in the abstract and introduction accurately reflect the
506 paper's contributions and scope?

507 Answer: [\[Yes\]](#)

508 Justification: All contributions tally with the abstract and introduction.

509 Guidelines:

- 510 • The answer NA means that the abstract and introduction do not include the claims
511 made in the paper.
- 512 • The abstract and/or introduction should clearly state the claims made, including the
513 contributions made in the paper and important assumptions and limitations. A No or
514 NA answer to this question will not be perceived well by the reviewers.
- 515 • The claims made should match theoretical and experimental results, and reflect how
516 much the results can be expected to generalize to other settings.
- 517 • It is fine to include aspirational goals as motivation as long as it is clear that these goals
518 are not attained by the paper.

519 **2. Limitations**

520 Question: Does the paper discuss the limitations of the work performed by the authors?

521 Answer: [\[Yes\]](#)

522 Justification: Limitations discussed in Appendix F.

523 Guidelines:

- 524 • The answer NA means that the paper has no limitation while the answer No means that
525 the paper has limitations, but those are not discussed in the paper.
- 526 • The authors are encouraged to create a separate "Limitations" section in their paper.
- 527 • The paper should point out any strong assumptions and how robust the results are to
528 violations of these assumptions (e.g., independence assumptions, noiseless settings,
529 model well-specification, asymptotic approximations only holding locally). The authors
530 should reflect on how these assumptions might be violated in practice and what the
531 implications would be.
- 532 • The authors should reflect on the scope of the claims made, e.g., if the approach was
533 only tested on a few datasets or with a few runs. In general, empirical results often
534 depend on implicit assumptions, which should be articulated.
- 535 • The authors should reflect on the factors that influence the performance of the approach.
536 For example, a facial recognition algorithm may perform poorly when image resolution
537 is low or images are taken in low lighting. Or a speech-to-text system might not be
538 used reliably to provide closed captions for online lectures because it fails to handle
539 technical jargon.
- 540 • The authors should discuss the computational efficiency of the proposed algorithms
541 and how they scale with dataset size.
- 542 • If applicable, the authors should discuss possible limitations of their approach to
543 address problems of privacy and fairness.
- 544 • While the authors might fear that complete honesty about limitations might be used by
545 reviewers as grounds for rejection, a worse outcome might be that reviewers discover
546 limitations that aren't acknowledged in the paper. The authors should use their best
547 judgment and recognize that individual actions in favor of transparency play an impor-
548 tant role in developing norms that preserve the integrity of the community. Reviewers
549 will be specifically instructed to not penalize honesty concerning limitations.

550 **3. Theory assumptions and proofs**

551 Question: For each theoretical result, does the paper provide the full set of assumptions and
552 a complete (and correct) proof?

553 Answer: [\[Yes\]](#)

554 Justification: Assumptions are stated clearly. Proofs provided in Appendix C.

555 Guidelines:

- 556 • The answer NA means that the paper does not include theoretical results.
- 557 • All the theorems, formulas, and proofs in the paper should be numbered and cross-
558 referenced.
- 559 • All assumptions should be clearly stated or referenced in the statement of any theorems.
- 560 • The proofs can either appear in the main paper or the supplemental material, but if
561 they appear in the supplemental material, the authors are encouraged to provide a short
562 proof sketch to provide intuition.
- 563 • Inversely, any informal proof provided in the core of the paper should be complemented
564 by formal proofs provided in appendix or supplemental material.
- 565 • Theorems and Lemmas that the proof relies upon should be properly referenced.

566 4. Experimental result reproducibility

567 Question: Does the paper fully disclose all the information needed to reproduce the main ex-
568 perimental results of the paper to the extent that it affects the main claims and/or conclusions
569 of the paper (regardless of whether the code and data are provided or not)?

570 Answer: [Yes]

571 Justification: Experiments are clearly laid out in Section 6 and Appendix D. Experimental
572 details for reproducibility are provided in Appendix E. Anonymous code is linked.

573 Guidelines:

- 574 • The answer NA means that the paper does not include experiments.
- 575 • If the paper includes experiments, a No answer to this question will not be perceived
576 well by the reviewers: Making the paper reproducible is important, regardless of
577 whether the code and data are provided or not.
- 578 • If the contribution is a dataset and/or model, the authors should describe the steps taken
579 to make their results reproducible or verifiable.
- 580 • Depending on the contribution, reproducibility can be accomplished in various ways.
581 For example, if the contribution is a novel architecture, describing the architecture fully
582 might suffice, or if the contribution is a specific model and empirical evaluation, it may
583 be necessary to either make it possible for others to replicate the model with the same
584 dataset, or provide access to the model. In general, releasing code and data is often
585 one good way to accomplish this, but reproducibility can also be provided via detailed
586 instructions for how to replicate the results, access to a hosted model (e.g., in the case
587 of a large language model), releasing of a model checkpoint, or other means that are
588 appropriate to the research performed.
- 589 • While NeurIPS does not require releasing code, the conference does require all submis-
590 sions to provide some reasonable avenue for reproducibility, which may depend on the
591 nature of the contribution. For example
 - 592 (a) If the contribution is primarily a new algorithm, the paper should make it clear how
593 to reproduce that algorithm.
 - 594 (b) If the contribution is primarily a new model architecture, the paper should describe
595 the architecture clearly and fully.
 - 596 (c) If the contribution is a new model (e.g., a large language model), then there should
597 either be a way to access this model for reproducing the results or a way to reproduce
598 the model (e.g., with an open-source dataset or instructions for how to construct
599 the dataset).
 - 600 (d) We recognize that reproducibility may be tricky in some cases, in which case
601 authors are welcome to describe the particular way they provide for reproducibility.
602 In the case of closed-source models, it may be that access to the model is limited in
603 some way (e.g., to registered users), but it should be possible for other researchers
604 to have some path to reproducing or verifying the results.

605 5. Open access to data and code

606 Question: Does the paper provide open access to the data and code, with sufficient instruc-
607 tions to faithfully reproduce the main experimental results, as described in supplemental
608 material?

609 Answer: [Yes]

610 Justification: Link to anonymous code provided. Details are provided in Appendix E.

611 Guidelines:

- 612 • The answer NA means that paper does not include experiments requiring code.
- 613 • Please see the NeurIPS code and data submission guidelines (<https://nips.cc/public/guides/CodeSubmissionPolicy>) for more details.
- 614 • While we encourage the release of code and data, we understand that this might not be
- 615 possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
- 616 including code, unless this is central to the contribution (e.g., for a new open-source
- 617 benchmark).
- 618 • The instructions should contain the exact command and environment needed to run to
- 619 reproduce the results. See the NeurIPS code and data submission guidelines (<https://nips.cc/public/guides/CodeSubmissionPolicy>) for more details.
- 620 • The authors should provide instructions on data access and preparation, including how
- 621 to access the raw data, preprocessed data, intermediate data, and generated data, etc.
- 622 • The authors should provide scripts to reproduce all experimental results for the new
- 623 proposed method and baselines. If only a subset of experiments are reproducible, they
- 624 should state which ones are omitted from the script and why.
- 625 • At submission time, to preserve anonymity, the authors should release anonymized
- 626 versions (if applicable).
- 627 • Providing as much information as possible in supplemental material (appended to the
- 628 paper) is recommended, but including URLs to data and code is permitted.

631 **6. Experimental setting/details**

632 Question: Does the paper specify all the training and test details (e.g., data splits, hyper-

633 parameters, how they were chosen, type of optimizer, etc.) necessary to understand the

634 results?

635 Answer: [Yes]

636 Justification: Details provided in Appendix E.

637 Guidelines:

- 638 • The answer NA means that the paper does not include experiments.
- 639 • The experimental setting should be presented in the core of the paper to a level of detail
- 640 that is necessary to appreciate the results and make sense of them.
- 641 • The full details can be provided either with the code, in appendix, or as supplemental
- 642 material.

643 **7. Experiment statistical significance**

644 Question: Does the paper report error bars suitably and correctly defined or other appropriate

645 information about the statistical significance of the experiments?

646 Answer: [Yes]

647 Justification: See Appendix D.

648 Guidelines:

- 649 • The answer NA means that the paper does not include experiments.
- 650 • The authors should answer “Yes” if the results are accompanied by error bars, confi-
- 651 dence intervals, or statistical significance tests, at least for the experiments that support
- 652 the main claims of the paper.
- 653 • The factors of variability that the error bars are capturing should be clearly stated (for
- 654 example, train/test split, initialization, random drawing of some parameter, or overall
- 655 run with given experimental conditions).
- 656 • The method for calculating the error bars should be explained (closed form formula,
- 657 call to a library function, bootstrap, etc.)
- 658 • The assumptions made should be given (e.g., Normally distributed errors).
- 659 • It should be clear whether the error bar is the standard deviation or the standard error
- 660 of the mean.

- 661 • It is OK to report 1-sigma error bars, but one should state it. The authors should
662 preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
663 of Normality of errors is not verified.
664 • For asymmetric distributions, the authors should be careful not to show in tables or
665 figures symmetric error bars that would yield results that are out of range (e.g. negative
666 error rates).
667 • If error bars are reported in tables or plots, The authors should explain in the text how
668 they were calculated and reference the corresponding figures or tables in the text.

669 **8. Experiments compute resources**

670 Question: For each experiment, does the paper provide sufficient information on the com-
671 puter resources (type of compute workers, memory, time of execution) needed to reproduce
672 the experiments?

673 Answer: **[Yes]**

674 Justification: Details provided in Appendix E.

675 Guidelines:

- 676 • The answer NA means that the paper does not include experiments.
677 • The paper should indicate the type of compute workers CPU or GPU, internal cluster,
678 or cloud provider, including relevant memory and storage.
679 • The paper should provide the amount of compute required for each of the individual
680 experimental runs as well as estimate the total compute.
681 • The paper should disclose whether the full research project required more compute
682 than the experiments reported in the paper (e.g., preliminary or failed experiments that
683 didn't make it into the paper).

684 **9. Code of ethics**

685 Question: Does the research conducted in the paper conform, in every respect, with the
686 NeurIPS Code of Ethics <https://neurips.cc/public/EthicsGuidelines>?

687 Answer: **[Yes]**

688 Justification: Code of ethics followed, no interventions with living beings requiring special
689 processing. Only standard datasets were used. No conflicts of interest.

690 Guidelines:

- 691 • The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
692 • If the authors answer No, they should explain the special circumstances that require a
693 deviation from the Code of Ethics.
694 • The authors should make sure to preserve anonymity (e.g., if there is a special consid-
695 eration due to laws or regulations in their jurisdiction).

696 **10. Broader impacts**

697 Question: Does the paper discuss both potential positive societal impacts and negative
698 societal impacts of the work performed?

699 Answer: **[NA]**

700 Justification: The paper concerns an algorithm to learn density operator latent variable
701 models and does not directly have societal impact.

702 Guidelines:

- 703 • The answer NA means that there is no societal impact of the work performed.
704 • If the authors answer NA or No, they should explain why their work has no societal
705 impact or why the paper does not address societal impact.
706 • Examples of negative societal impacts include potential malicious or unintended uses
707 (e.g., disinformation, generating fake profiles, surveillance), fairness considerations
708 (e.g., deployment of technologies that could make decisions that unfairly impact specific
709 groups), privacy considerations, and security considerations.

- 710 • The conference expects that many papers will be foundational research and not tied
 711 to particular applications, let alone deployments. However, if there is a direct path to
 712 any negative applications, the authors should point it out. For example, it is legitimate
 713 to point out that an improvement in the quality of generative models could be used to
 714 generate deepfakes for disinformation. On the other hand, it is not needed to point out
 715 that a generic algorithm for optimizing neural networks could enable people to train
 716 models that generate Deepfakes faster.
- 717 • The authors should consider possible harms that could arise when the technology is
 718 being used as intended and functioning correctly, harms that could arise when the
 719 technology is being used as intended but gives incorrect results, and harms following
 720 from (intentional or unintentional) misuse of the technology.
- 721 • If there are negative societal impacts, the authors could also discuss possible mitigation
 722 strategies (e.g., gated release of models, providing defenses in addition to attacks,
 723 mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
 724 feedback over time, improving the efficiency and accessibility of ML).

725 **11. Safeguards**

726 Question: Does the paper describe safeguards that have been put in place for responsible
 727 release of data or models that have a high risk for misuse (e.g., pretrained language models,
 728 image generators, or scraped datasets)?

729 Answer: [NA]

730 Justification: Paper poses no such risks.

731 Guidelines:

- 732 • The answer NA means that the paper poses no such risks.
- 733 • Released models that have a high risk for misuse or dual-use should be released with
 734 necessary safeguards to allow for controlled use of the model, for example by requiring
 735 that users adhere to usage guidelines or restrictions to access the model or implementing
 736 safety filters.
- 737 • Datasets that have been scraped from the Internet could pose safety risks. The authors
 738 should describe how they avoided releasing unsafe images.
- 739 • We recognize that providing effective safeguards is challenging, and many papers do
 740 not require this, but we encourage authors to take this into account and make a best
 741 faith effort.

742 **12. Licenses for existing assets**

743 Question: Are the creators or original owners of assets (e.g., code, data, models), used in
 744 the paper, properly credited and are the license and terms of use explicitly mentioned and
 745 properly respected?

746 Answer: [Yes]

747 Justification: Sources provided in Appendix E.

748 Guidelines:

- 749 • The answer NA means that the paper does not use existing assets.
- 750 • The authors should cite the original paper that produced the code package or dataset.
- 751 • The authors should state which version of the asset is used and, if possible, include a
 752 URL.
- 753 • The name of the license (e.g., CC-BY 4.0) should be included for each asset.
- 754 • For scraped data from a particular source (e.g., website), the copyright and terms of
 755 service of that source should be provided.
- 756 • If assets are released, the license, copyright information, and terms of use in the
 757 package should be provided. For popular datasets, paperswithcode.com/datasets
 758 has curated licenses for some datasets. Their licensing guide can help determine the
 759 license of a dataset.
- 760 • For existing datasets that are re-packaged, both the original license and the license of
 761 the derived asset (if it has changed) should be provided.

- 762 • If this information is not available online, the authors are encouraged to reach out to
763 the asset's creators.

764 **13. New assets**

765 Question: Are new assets introduced in the paper well documented and is the documentation
766 provided alongside the assets?

767 Answer: **[Yes]**

768 Justification: Anonymous code contains a ReadMe file.

769 Guidelines:

- 770 • The answer NA means that the paper does not release new assets.
771 • Researchers should communicate the details of the dataset/code/model as part of their
772 submissions via structured templates. This includes details about training, license,
773 limitations, etc.
774 • The paper should discuss whether and how consent was obtained from people whose
775 asset is used.
776 • At submission time, remember to anonymize your assets (if applicable). You can either
777 create an anonymized URL or include an anonymized zip file.

778 **14. Crowdsourcing and research with human subjects**

779 Question: For crowdsourcing experiments and research with human subjects, does the paper
780 include the full text of instructions given to participants and screenshots, if applicable, as
781 well as details about compensation (if any)?

782 Answer: **[NA]**

783 Justification: No crowdsourcing or research with human subjects.

784 Guidelines:

- 785 • The answer NA means that the paper does not involve crowdsourcing nor research with
786 human subjects.
787 • Including this information in the supplemental material is fine, but if the main contribu-
788 tion of the paper involves human subjects, then as much detail as possible should be
789 included in the main paper.
790 • According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
791 or other labor should be paid at least the minimum wage in the country of the data
792 collector.

793 **15. Institutional review board (IRB) approvals or equivalent for research with human
794 subjects**

795 Question: Does the paper describe potential risks incurred by study participants, whether
796 such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
797 approvals (or an equivalent approval/review based on the requirements of your country or
798 institution) were obtained?

799 Answer: **[NA]**

800 Justification: No crowdsourcing or research with human subjects.

801 Guidelines:

- 802 • The answer NA means that the paper does not involve crowdsourcing nor research with
803 human subjects.
804 • Depending on the country in which research is conducted, IRB approval (or equivalent)
805 may be required for any human subjects research. If you obtained IRB approval, you
806 should clearly state this in the paper.
807 • We recognize that the procedures for this may vary significantly between institutions
808 and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
809 guidelines for their institution.
810 • For initial submissions, do not include any information that would break anonymity (if
811 applicable), such as the institution conducting the review.

812 **16. Declaration of LLM usage**

813 Question: Does the paper describe the usage of LLMs if it is an important, original, or
814 non-standard component of the core methods in this research? Note that if the LLM is used
815 only for writing, editing, or formatting purposes and does not impact the core methodology,
816 scientific rigorosity, or originality of the research, declaration is not required.

817 Answer: [NA]

818 Justification: Core method development in this research does not involve LLMs.

819 Guidelines:

- 820 • The answer NA means that the core method development in this research does not
821 involve LLMs as any important, original, or non-standard components.
- 822 • Please refer to our LLM policy (<https://neurips.cc/Conferences/2025/LLM>)
823 for what should or should not be described.