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Abstract

Density operators, quantum generalizations of probability distributions, are gain-1

ing prominence in machine learning due to their foundational role in quantum2

computing. Generative modeling based on density operator models (DOMs) is an3

emerging field, but existing training algorithms – such as those for the Quantum4

Boltzmann Machine – do not scale to real-world data, such as the MNIST dataset.5

The Expectation-Maximization algorithm has played a fundamental role in enabling6

scalable training of probabilistic latent variable models on real-world datasets. In7

this paper, we develop an Expectation-Maximization framework to learn latent8

variable models defined through DOMs on classical hardware, with resources9

comparable to those used for probabilistic models, while scaling to real-world10

data. However, designing such an algorithm is nontrivial due to the absence of11

a well-defined quantum analogue to conditional probability, which complicates12

the Expectation step. To overcome this, we reformulate the Expectation step as a13

quantum information projection (QIP) problem and show that the Petz Recovery14

Map provides a solution under sufficient conditions. Using this formulation, we15

introduce the Density Operator Expectation Maximization (DO-EM) algorithm16

– an iterative Minorant-Maximization procedure that optimizes a quantum evi-17

dence lower bound. We show that the DO-EM algorithm ensures non-decreasing18

log-likelihood across iterations for a broad class of models. Finally, we present19

Quantum Interleaved Deep Boltzmann Machines (QiDBMs), a DOM that can20

be trained with the same resources as a DBM. When trained with DO-EM under21

Contrastive Divergence, a QiDBM outperforms larger classical DBMs in image22

generation on the MNIST dataset, achieving a 40–60% reduction in the Fréchet23

Inception Distance.24

1 Introduction25

Recent advances in quantum hardware and hybrid quantum-classical algorithms have fueled a surge of26

interest in developing learning models that can operate effectively in quantum regimes [1]. Classical27

models rely on probability distributions; quantum systems generalize these to density operators -28

positive semi-definite, unit-trace operators on Hilbert spaces—that encode both classical uncertainty29

and quantum coherence [2]. While there is considerable progress made in quantum supervised30

learning, there is relatively less progress in unsuperviced learning [3].31

Latent variable models (LVMs) are a cornerstone of unsupervised learning, offering a principled32

approach to modeling complex data distributions through the introduction of unobserved or hidden33

variables [4]. These models facilitate the discovery of underlying structure in data and serve as the34

foundation for a wide range of tasks, including generative modeling, clustering, and dimensionality35

reduction. Classical examples such as Gaussian Mixture Models, Factor Analysis, and Hidden36

Markov Models [5, 6] exemplify the power of latent variable frameworks in capturing dependencies37

and variability in observed data. In recent years, LVMs have formed the conceptual backbone of38
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deep generative models including Variational Autoencoders [7], Generative Adversarial Networks39

[8], and Diffusion-based models [9]. The EM algorithm [10, 11] has been instrumental in deriving40

procedures for learning latent variables models. These algorithms are often preferred over algorithms41

which directly maximizes likelihood.42

The study of Density Operator-based Latent Variable Models (DO-LVM) remains in its early stages,43

with foundational questions around expressivity, inference, and learning still largely unexplored44

[12–14]. Leveraging the modeling power of DO-LVMs on real-world data remains a significant45

challenge. Existing approaches rarely scale beyond 12 visible units—limited by restricted access to46

quantum hardware, the exponential cost of simulating quantum systems, and the memory bottlenecks47

associated with representing and optimizing DO-LVMs on classical devices. As a result, it is48

currently infeasible to empirically assess whether DO-LVMs offer any practical advantage on real-49

world datasets in terms of modeling power. EM based algorithms can provide a simpler alternative50

to existing learning algorithms for DO-LVMs which directly maximizes the likelihood. However51

deriving such algorithms in Density operator theoretic setup is extremely challenging for a variety of52

reasons, Most notably there are operator theoretic inequalities, such as Jensen Inequality, which can53

be directly applied to derive an Evidence lower bound(ELBO) style bound for DO-LVMs. Precise54

characterization of models which are compatible with such bounds and their computational behaviour55

remains an important area of investigation. In this paper we bridge these research gaps by making the56

following contributions.57

• A Density Operator Expectation-Maximization (DO-EM) algorithm is specified using58

Quantum Information Projection in Algorithm 1. DO-EM guarantees log-likelihood ascent59

in Theorem 4.4 under mild assumptions that retain a rich class of models.60

• A Quantum Evidence Lower Bound (QELBO) for the log-likelihood is derived in Lemma 4.161

from a minorant-maximization perspective leveraging the Monotonicity of Relative Entropy.62

• DO-LVMs are specialized to train on classical data in Section 5 using the DO-EM algorithm.63

This specialization we call CQ-LVMs, a class of models with quantum latent variables, can64

train real world data due to a decomposition proved in Theorem 5.1.65

• Quantum-interleaved deep Boltzmann machines (QiDBM), a quantum analog of the DBM66

is defined in Section 5.1. The well known Contrastive Divergence (CD) algorithm for67

Boltzmann machines is adapted to the QiDBM, which when used with DO-EM algorithm in68

Section 5.1, allows QiDBMs to be trained on MNIST-scale data.69

• First empirical evidence of a modeling advantage when training DO-LVMs on standard70

computers with real-world data is provided in Section 6. QiDBMs trained using CD on the71

MNIST dataset achieve a 40–60% lower Fréchet Inception Distance compared to state-of-72

the-art deep Boltzmann machines.73

2 Preliminaries74

Notation The ℓ2-norm of a column vector v in a Hilbert space H is given by ||v||2 =
√
v†v where75

v† denotes the conjugate transpose of v. The set of Hermitian (self-adjoint) operators O = O† on76

H is denoted by L(H). The positive-definite subset of L(H) is denoted by L+(H). The Kronecker77

product between two operators is denoted A⊗B and their direct sum is denoted A⊕B [15]. The78

identity operator on H is denoted IH. The null space of an operator A ∈ H is denoted by ker(A).79

Latent variable models and EM algorithm Latent Variable Models (LVMs) [4] specify the80

probability distribution of random variables V=[V1, . . . , VdV ] through a joint probability model81

P (V=v | θ) =
∑
h

P (V=v, H=h | θ)

where H = [H1, . . . ,HdL ] are unobserved random variables. Learning an LVM from data, a problem82

of great interest in Unsupervised Learning [5], refers to estimating the model parameters θ from a83

dataset D = {v(1), . . . , v(N)} consisting of i.i.d instances drawn from the LVM. Maximum likelihood-84

based methods aim to maximize L(θ) = 1
N

∑N
i=1 ℓi(θ) where ℓi(θ) = logP (V=v(i) | θ). The85

maximization problem is not only intractable in most cases but even gradient-based algorithms, which86
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can only discover local optima, are difficult to implement because of unwieldy computations in ℓi(θ).87

The EM algorithm [10, 11] is an alternative iterative algorithm with the scheme88

θ(k+1) = argmax
θ

1

N

N∑
i=1

Qi(θ | θ(k)), where ℓi(θ) ≥ Qi(θ|θ(k)) and ℓi(θ
(k)) = Qi(θ

(k)|θ(k)).

Boltzmann machines Boltzmann Machines (BM) are stochastic neural networks that define a89

probability distribution over binary vectors based on the Ising model in statistical physics [16]. Due90

to the intractability of learning in fully connected BMs, the Restricted Boltzmann Machine (RBM)91

was introduced with no intra-layer connections, enabling efficient Gibbs sampling [17–19]. Deep92

Boltzmann Machines (DBM) [20] stacks RBMs uisng undirected connections and allow for joint93

training of all layers. The joint probability of a DBM with L layers, P (v,h1, . . . ,hL) is defined as94

P (v,h1, . . . ,hdL
) =

1

Z
e−E(v,h1,...,hdL

) (DBM)

where E(v,h1, . . . ,hL) is called the Energy Function, and Z =
∑

v,h e−E(v,h1,...,hL) is the Par-95

tition Function which is typically intractable to compute. Learning in DBMs is difficult due to96

intractable posterior dependencies. DBMs are usually trained using variants of the Contrastive97

Divergence algorithm [18, 21, 22]. A detailed discussion on Boltzmann machines and the Contrastive98

Divergence algorithm is provided in the Appendix A.99

2.1 Density operators100

A density operator on a Hilbert space H is a Hermitian, positive semi-definite operator with unit trace101

[2, 23]. The set of Density operators will be denoted by P(H), and can be regarded as generalizations102

of probability distributions. A joint density operator ρ ∈ P(HA ⊗ HB) can be marginalized to103

ρA ∈ P(HA) by the partial trace operation ρA = TrB(ρ) =
∑dB

i=1(IA ⊗ x†
i )ρ(IA ⊗ xi) where104

{xi}dB
i=1 is an orthonormal basis of HB . Such a ρ is separable if it is a convex combination of product105

states ρA ⊗ ρB with ρA ∈ P(HA) and ρB ∈ P(HB).106

Definition 2.1 (Umegaki [24] Relative Entropy). Let ω and ρ be density operators in P(HA ⊗HB)107

with ker(ρ) ⊆ ker(ω). Their relative entropy is given by DU(ω, ρ) = Tr(ω logω)− Tr(ω log ρ).108

Lindblad [25] showed that the relative entropy does not increase under the action of the parital trace.109

Theorem 2.2 (Monotonicity of Relative Entropy). For density operators ω and ρ in P(HA ⊗HB)110

such that ker(ω) ⊂ ker(ρ), DU(ω, ρ) ≥ DU(TrBω,TrBρ).111

Petz [26, 27] showed that Theorem 2.2 is saturated if and only if the Petz Recovery Map reverses the112

partial trace operation.113

Definition 2.3 (Petz Recovery Map). For a density operator ρ in P(HA ⊗HB), the Petz Recovery114

Map for the partial trace Rρ : HA → HA ⊗HB is the map115

Rρ(ω) = ρ1/2
((

ρ
−1/2
A ωρ

−1/2
A

)
⊗ IB

)
ρ1/2. (PRM)

Theorem 2.4 (Ruskai’s condition). For density operators ω and ρ in P(HA ⊗ HB) such that116

ker(ω) ⊂ ker(ρ), DU(TrBω,TrBρ) = DU(ω, ρ) if and only if logω− log ρ = (TrBω−TrBρ)⊗IB .117

Ruskai’s condition can be interpreted as ω and ρ having the same Conditional Amplitude Operator.118

Definition 2.5 (Conditional Amplitude Operator[28]). The conditional amplitude operator of a119

density operator ρ in P(HA ⊗HB) with respect to HA is ρB|A = exp(log ρ− log ρA ⊗ IB).120

A detailed discussion on density operators and quantum channels is provided in Appendix B.121

3 Density operator latent variable models122

In this section, we introduce Density Operator Latent Variable Models (DO-LVM) and recover123

existing models such as the Quantum Boltzmann Machine (QBM) as special cases. We discuss the124

computational challenges of learning such models from observations.125
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Definition 3.1 (DO-LVM and the Learning Problem). A Density Operator Latent Variable Model126

(DO-LVM) specifies the density operator ρV ∈ P(HV) on observables in HV through a joint density127

operator ρVL ∈ P(HV ⊗HL) as ρV = TrL (ρVL(θ)) where the space HL is not observed. Learning128

a DO-LVM is the estimation of model parameters θ when a target density operator ηV ∈ P(HV) is129

specified. This can be achieved by maximizing the log-likelihood130

L(θ) = Tr (ηV log ρV(θ)) . (LP)
Remark 3.2. Maximizing the log-likelihood of a DO-LVM is equivalent to minimzing DU(ηV, ρV(θ)).131

We specialize DO-LVMs to classical datasets in Section 5.132

Hamiltonian-based models The Hamiltonian is a Hermitian operator H ∈ L(H) representing133

the total energy and generalizes the notion of an energy function in classical energy-based models.134

The model is defined using Gibbs state density matrix analogous to the Boltzmann distribution:135

ρ(θ) = exp(H(θ))
Z(θ) with Z(θ)=Tr exp(H(θ)) and H(θ)=

∑
r θrHr, where Hr ∈ L(H) are Hermitian136

operators and θr ∈ R are model parameters. The Quantum Boltzmann Machine is a Hamiltonian-137

based model inspired by the transverse field Ising model [12]. In this paper, QBMm,n denotes a model138

with m visible and n hidden units with139

H(θ) = −
m+n∑
i=1

biσ
z
i −

∑
i>j

wijσ
z
i σ

z
j −

m+n∑
i=1

Γiσ
x
i (QBM)

where σz
i and σx

i are 2m+n×2m+n Pauli matrices defined by σk
i = ⊗i−1

j=1I⊗σk ⊗m+n
j=i+1 I where k ∈140

{x, z}, σz=
(
1 0
0 −1

)
, and σx=( 0 1

1 0 ). A QBM is hence a DO-LVM with ρV(θ) =
1

Z(θ)TrL exp(H(θ)).141

Setting Γi = 0 recovers the Boltzmann Machine (BM) [12]. However, the density operator repre-142

sentation of these classical models are plagued by their 2m+n × 2m+n dimensionality. The memory143

requirements for storing and updating models represented by density operators have been prohibitive144

for QBMs to scale beyond about 12 visible units.145

Need for an EM algorithm. As probabilistic LVMs are a special case of DO-LVMs, the training146

challenges they face persist in DO-LVMs, which also introduce new operator-theoretic difficulties.147

Maximizing the log-likelihood of a DO-LVM involves operators that do not commute [13]. The148

direct computation of gradient in Equation (LP) is significantly complicated by the partial trace [29].149

Due to the difficulty of working with hidden units, recent work on QBMs have focused on models150

without hidden units [30, 14, 31, 32]. Demidik et al. [33] studied a Restricted QBM with 12 visible151

units and 90 hidden units, the largest model studied in literature so far. Refer Appendix B for a152

detailed survey on QBM literature. Hence, training a QBM, the most popular DO-LVM in literature, on153

real-world data remains an open challenge.154

Intractability of the gradient of the log-likelihood in probabilistic LVMs is addressed by the EM155

algorithm. Classical derivations of the EM algorithm fail with density operators since there is no156

well-defined way to construct conditional density operators [23]. An EM algorithm for density157

operators using Conditional Amplitude Operators (CAO) was conjectured in Warmuth and Kuzmin158

[34]. This is insufficient since the CAO does not provide a density operator [28]. In the next section,159

we appeal to well-known results in quantum information theory to derive an ELBO and EM algorithm160

for density operators.161

4 The DO-EM framework162

In this section, we develop an algorithmic framework applicable for learning DO-LVMs using a163

density operator expectation maximization framework.164

The classical ELBO is derived for each datapoint using conditional probability and Jensen’s inequality.165

This approach fails for density operators due to the absence well-defined quantum conditional166

probability [23]. In order to derive an ELBO for DO-LVMs, we resort to an approach inspired by the167

chain rule of KL-divergence [35].168

Lemma 4.1 (Quantum ELBO). Let J (ηV) = {η | η ∈ P(HV ⊗HL) & TrLη = ηV} be the set of169

feasible extensions for a target ηV ∈ P(HV). Then for a DO-LVM ρ(θ) and η ∈ J (ηV),170

L(θ) ≥ QELBO(η, θ) = Tr(η log ρ(θ)) + S(η)− S(ηV). (QELBO)
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Proof sketch: We provide a proof due to Theorem 2.2 in Appendix C.171

The classical EM algorithm is a consequence of the ELBO being a minorant of the log-likelihood172

[36, 37]. However, it is well known that Theorem 2.2 is often not saturated [38–42]. Inspired by an173

information geometric interpretation of the EM algorithm [43], we study an instance of a quantum174

information projection problem to saturate QELBO.175

4.1 A quantum information projection problem176

In this subsection we study the I-projection [35] problem for density operators and show conditions177

when (PRM) can solve this problem. The problem of Quantum Information Projection (QIP) is stated178

as follows. Consider a density operator ω in P(HA) and a density operator ρ in P(HA ⊗HB), find179

ξ∗ in P(HA ⊗HB) such that180

ξ∗ = argmin
TrB(ξ)=ω

DU(ξ, ρ). (QIP)

To the best of our knowledge, this problem has not been studied in literature. We know from181

Theorem 2.2 that the theoretical minimum attained by the objective function in QIP is DU(ω,TrBρ)182

though it is not always saturated. Inspired by this connection, we explore sufficiency conditions for183

when PRM solves QIP.184

Definition 4.2 (Condition S). Two density operators ω in P(HA) and ρ in P(HA ⊗HB) satisfy the185

sufficiency condition if ρ is full rank, separable, and [ω,TrB(ρ)] = 0.186

Theorem 4.3. Suppose two density operators ω in P(HA) and ρ in P(HA⊗HB) such that Condition187

S is satisfied, the solution to the information projection problem QIP is PRM.188

Proof sketch: The statement holds due to the fact that [ρ,Rρ(ω)] = 0 under the conditions in the189

theorem. Thus, ρ and Rρ(ω) obey Ruskai’s condition. A detailed proof is provided Appendix C.190

4.2 DO-EM through the lens of Minorant Maximization191

In this section, we present the Density Operator Expectation Maximization (DO-EM) algorithm192

from a Minorant-Maximization perspective and discuss its advantages over direct maximization of193

the log-likelihood. We prove that the DO-EM algorithm can achieve log-likelihood ascent at every194

iteration under Condition S.195

Algorithm 1 DO-EM

1: Input: Target density operator ηV and θ(0)

2: while not converged do
3: E Step: η(t) = argmin

η:TrLη=ηV

DU(η, ρ(θ
(t)))

4: M Step: θ(t+1) = argmax
θ

Tr(η(t) log ρ(θ))

For a fixed θ(old), the QELBO is maximized196

when η is the QIP of ρ(θ) onto the set of fea-197

sible extensions. This allows us to define a198

potential minorant Q for the log-likelihood.199

η(θ(old)) = argmin
TrLη=ηV

DU(η, ρ(θ
(old)))

Q(θ; θ(old)) = QELBO(η(θ(old)), ρ(θ))

We use Q to define the DO-EM algorithm in Algorithm 1. Models and QIPs that obey Ruskai’s200

condition provably achieve log-likelihood ascent under the DO-EM procedure.201

Theorem 4.4 (Q is a minorant). Let ηV be a target density matrix and ρ(θ) be a DO-LVM trained202

by the DO-EM algorithm. If ρ(θ(t)) and its QIP onto the set of feasible extensions, η(t), obey203

Ruskai’s condition, then Q is a minorant of the log-likelihood. Then, L(θ(t+1)) ≥ L(θ(t)), where204

θ(t+1) = argmaxθ Q(θ; θ(t)).205

Proof sketch: Proof using the saturation of Theorem 2.2 is in Appendix C.206

Corollary 4.5. For a target density operator ηV and model ρ(θ) satisfying Condition S, the E step is207

the Petz recovery map Rρ(ηV). Moreover, such a model trained using the DO-EM algorithm achieves208

provable likelihood ascent at every iteration.209

Proof sketch: The proof due to Theorem 4.3 and Theorem 4.4 is given in Appendix C.210

The DO-EM algorithm can be considered a density operator analog of the classical EM algorithm.211

We recover the classical EM algorithm from DO-EM for discrete models if ηV and ρ(θ) are diagonal.212
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The E Step in DO-EM finds a feasible extension η whose Conditional Amplitude Operator (CAO)213

is equal to that of the model ρ(θ). The PRM under Condition S is the CAO reweighted by ηV to give214

a valid density operator. This reduces to classical E step when the CAO reduces to the conditional215

probability and PRM reduces to Bayes rule. If the model ρ is of the form ρV ⊗ ρL, we recover the216

conjecture in [34].217

A log-likelihood involving a partial trace is often intractable. The M Step in DO-EM algorithm218

maximizes an expression without the partial trace. The log-likelihood of such expressions may have219

closed-form expressions for the gradients, for example, using the Lee-Trotter-Suzuki formula [14].220

In the classical case, this is equivalent to the EM algorithm maximizing a sum of logarithms instead221

of a logarithm of sums.222

Corollary 4.6. For a Hamiltonian-based model with E step solution η(t), the M step reduces to223

θ(t+1) = argmaxθ Tr(η
(t)H(θ))− logZ(θ)

Proof sketch: The proof due to properties of the matrix logarithm is given in Appendix C.224

However, the memory footprint of DO-LVMs remain, preventing the application of these models225

on real-world data. We specialize DO-LVMs and DO-EM to train on classical data and achieve226

practical scale.227

5 DO-EM for classical data228

In this section, we specialize DO-LVMs and the DO-EM algorithm to classical datasets. We229

assume, for ease of presentation, that the data D = {v(1), . . . , v(N)} is sampled from the set B =230

{+1,−1}dV .We consider a 2dV -dimensional Hilbert space HV with standard basis B = {vi}2
dV

i=1 .231

There is a one-to-one mapping between elements of B and B. For any dataset D, there is an232

equivalent dataset on HV given by D = {v(1), . . . ,v(N)}. The target density operator is then233

ηV = 1
N

∑N
i=1 viv

†
i . A DO-LVM on dV-dimensional binary data is therefore a 2dV+dL × 2dV+dL234

matrix while the target ηV is a 2dV × 2dV matrix.235

Specializing Condition S to diagonal target density operators, allows the decomposition of a DO-236

LVM into direct sums of smaller subspaces, making the DO-EM algorithm computationally easier.237

Theorem 5.1. If ρV is diagonal, ρ is separable if and only if ρ = ⊕iρL(i) and P (vi) = Tr(ρL(i))238

with vi ∈ B. The density operator for HL for a particular vi is then given by 1
P (vi)

ρL(i).239

Proof sketch: See Appendix C.240

We call models that obey Theorem 5.1 as CQ-LVMs since it implies a classical visible probability241

distribution with a quantum hidden space. QELBO can be specialized to each data point for CQ-LVMs.242

Lemma 5.2. For diagonal ηV in P(HV), a DO-LVM ρ(θ) satisfies Condition S if and only if it243

is of the form in Theorem 5.1. The log-likelihood of these models can then expressed as L(θ) =244

1
N

∑N
i=1 ℓi(θ) where ℓi(θ) = logP (v(i) | θ).245

Proof sketch: The proof is an application of Theorem 5.1 and is given in Appendix C.246

The decomposition of the log-likelihood into terms for each datapoint, allows the training of models247

on real-world data since the target densit operator ηV does not have to be initialized. We now show248

that CQ-LVMs are a broad class of models that include several Hamiltonian-based models.249

Corollary 5.3. A Hamiltonian-based model ρ(θ) = eH(θ)/Z(θ) with H(θ) =
∑

r θrHr is a CQ-250

LVMs if and only if H = ⊕iHi where Hi are Hermitian operators in L(HL) and i ∈ [2dV ].251

Proof sketch: The proof, due to the properties block diagonal matrices, is given in Appendix C. We252

now specialize QELBO and Algorithm 1 to CQ-LVMs.253

Lemma 5.4. For diagonal ηV in P(HV) and a CQ-LVM ρ(θ), the log-likelihood of a data point254

v(i) ∈ D, ℓi(θ) is lower bounded by255

ℓi(θ) ≥ Tr
(
ηL log(P (v(i)|θ)ρ(i)L (θ))

)
− Tr(σL log σL)
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for any density operator ηL in P(HL) with equality if and only if ηL = ρ
(i)
L (θ). Hence, the PRM is256

given by Rρ(ηV) = ⊕iPD(V = vi)ρL(i | θ).257

Proof sketch: Application of Lemma 5.4 to Lemma 4.1. Proof is given in Appendix C.258

Algorithm 2 DO-EM for CQ-LVM

1: Input: Target density operator ηV and θ(0)

2: while not converged do
3: Qi(θ; θ

(k)) = Tr
(
ρ
(i)
L (θ(k))eH

(i)(θ)
)

−
logZ(θ)

4: θ(t+1) = argmaxθ
1
N

∑N
i=1 Qi(θ; θ

(k))

This allows us to specialize Algorithm 1 to259

Algorithm 2, enabling the implementation of260

DO-EM without being restricted by the dimen-261

sion of ηV. However, models such as the QBM262

remain intractable for real-world data due to263

the normalization term, a problem that exists264

in classical Boltzmann machines as well.265

5.1 Quantum Boltzmann Machine266

In this section, we discuss the QBM and define variants which are amenable to implementation on267

high-dimensional classical data. We first describe QBMs that are CQ-LVMs.268

Corollary 5.5. A QBMm,n is a CQ-LVM if and only if quantum terms on the visible units are zero.269

Proof sketch: The statement is true because of the structure of Pauli matrices which have entries270

outside the direct sum structure if and only if i ≤ m. A detailed proof can be found in Appendix C.271

The class of semi-quantum models studied in Demidik et al. [33] are CQ-LVMs. Training such a272

QBM is intractable for real-world data since the free energy term, − logZ(θ) is intractable even for273

classical Boltzmann machines. To achieve tractable training of QBMs, we introduce the Quantum274

Interleaved Deep Boltzmann Machine (QiDBM) that can be trained using Contrastive Divergence with275

a quantum Gibbs sampling step derived here.276

A Quantum Interleaved Deep Boltzmann Machine (QiDBM) is a DBM with quantum bias terms on277

non-contiguous hidden layers. We describe the Hamiltonian of a three-layered QiDBMℓ,m,n with ℓ278

visible units and m and n hidden units respectively in the two hidden layers. For ease of presentation,279

the quantum bias terms are present in the middle layer.280

H =−
ℓ+m+n∑

i=1

biσ
z
i −

ℓ∑
i=1

m∑
j=1

w
(1)
ij σz

i σ
z
ℓ+j −

m∑
i=1

n∑
j=1

w
(2)
ij σz

ℓ+iσ
z
ℓ+m+j−

m∑
i=1

Γiσ
x
ℓ+i (QiDBM)

The quantum interleaving in a QiDBM is necessary to make the Gibbs sampling step tractable. We281

illustrate the case of the middle layer of QiDBMℓ,m,n. If the non-quantum visible and hidden layers282

are fixed to v and h(2), the hidden units of the quantum layer are conditionally independent. The283

Hamiltonian of the ith unit of the quantum layer L(1) is given by HL(1)

(i|v,h(2), θ) = −beffi σz−Γiσ
x.284

This allows for the tractable sampling from the quantum layer using the expected values285

⟨σz
i ⟩v,h(2) =

beffi
Di

tanhDi and ⟨σx
i ⟩v,h(2) =

Γi

Di
tanhDi

where Di =
√

(beffi )2 + Γ2
i and beffi = bi +

∑ℓ
j=1 w

(1)
ij vj +

∑
j w

(2)
ij h

(2)
j . The Gibbs step for the286

non-quantum layers is done as per the classical CD algorithm using the quantum sample from the Z287

Pauli operator. This closed-form expression for Gibbs sampling without matrices allows CD to run288

on a QiDBM with the same memory footprint as a DBM. See Appendix C for more details.289

6 Empirical evaluation290

In this work, we propose a quantum model CQ-LVM, and a general EM framework, DO-EM, to291

learn them. In this section, we empirically evaluate our methods through experiments to answer292

the following questions. Details of the compute used to run all our experiments and baselines are293

provided in Appendix D and E.294

(Q1) Effectiveness of DO-EM. Is Algorithm 2, a feasible algorithm for CQ-LVMs compared to295

state of the art algorithms for QBMs ?296

7



0 5 10 15 20 25 30
Epoch

0.5

1.0

1.5

2.0

2.5

Re
lat

ive
 En

tro
py

Method
DOEM
Amin

(a)

0 200 400 600 800 1000
Epoch

50

100

150

200

250

FID

Type
DBM
QiDBM
DBM(L)

(b)

0.6 0.7 0.8 0.9 1.0 1.1 1.2
Params 1e6

20

30

40

50

60

FID

Type
qidbm
dbm

(c)

Figure 1: (a) Relative entropy during training with exact computation of a QBM on a mixture of
Bernoulli distribution. Showing that DO-EM does lead to decrease in relative entropy. (b) DBM with
6272 hidden units. QiDBM with 6273 hidden units. DBM(L) with 6273 hidden units. (c) FID scores
on Binarized MNIST as a function of model parameters of QiDBM and DBM.

(Q2) DO-EM on Real World Data. Does Algorithm 2 scale with the to real world data?297

(Q3) Performance of DO-EM. Does Algorithm 2 provide reasonable improvement in performance298

over classical LVMs?299

To answer (Q1), we conduct experiments running exact computation to show that the proposed300

algorithm is feasible and is practical to implement.301

Baselines We compare our method with our implementation of Amin et al. [12] which explores an302

alternate algorithm for training QBMs.303

Dataset and Metrics We use a mixture of Bernoulli dataset introduced in Amin et al. [12] described304

in Appendix D. We measure the efficacy of our proposed method by measuring the average relative305

entropy during training.306

Results of experiment In Figure 1a, we first observe that the relative entropy of our proposed307

algorithm does decrease during training, validating our theoretical results and showing, to the best308

our knowledge, the first instance of an expectation maximization algorithm with quantum bias. We309

also observe that the performance is competitive with Amin et al. [12]. We also note that CQ-LVM310

training with DO-EM is faster than Amin et al. [12] and consumes lesser memory. We provide more311

experiments using exact computation in Appendix D.312

To answer (Q2) and (Q3), we conduct experiments on DBMs of varying sizes with and without313

the quantum bias term described in Section 5. We present qualitative results of our experiments in314

Appendix D.315

Baselines. We compare our proposed method with Taniguchi et al. [22], the state of the art for training316

DBMs. We are unable to reproduce the results in their work and we report the results obtained from317

their official implementation1 using the hyper parameters described in their work.318

Datasets and Metrics Following prior work [22], we perform our experiments on MNIST and319

Binarized MNIST dataset [44] which contains 60,000 training images and 10,000 testing images of320

size 28x28. We measure the FID [45] between 10,000 generated images and the MNIST test set321

to assess the quality of generation. The Fréchet Inception Distance (FID) is a quantitative metric322

used to evaluate the quality of images generated by generative models by comparing the statistical323

distribution of their feature representations to those of real images.324

Experiment: Performance of DO-EM To show the superior performance of the proposed method,325

we compare the FID of our proposed algorithm on Binarized MNIST. We train a QiDBM and DBM326

with 498, 588, 686, and 784 hidden units with a learning rate of 0.001 for 1000 epochs with 2 hidden327

layers with SGD optimizer with a batch size of 600.328

Results of Experiments In Figure 1c, we observe that the proposed algorithm outperforms the DBM329

in all cases, achieving a minimum FID of 14.77 to the DBM’s 42.61. This experiment shows that330

simply adding quantum bias terms to a DBM can improve the quality of generations by around 65%.331

1https://github.com/iShohei220/unbiased_dbm

8

https://github.com/iShohei220/unbiased_dbm


Experiment: DO-EM on High Dimensional Data We run CD on 2 DBMs without quantum332

bias terms according to Taniguchi et al. [22] and CD with quantum bias for a QiDBM on MNIST.333

Each image corresponds to 6272 visible binary units. The QiDBM has 78.70M parameters with 2334

hidden layers with quantum bias added to the second layer with a hidden size of 6272. Both DBMs335

have 2 hidden layers and have 78.69M and 78.71M parameters and hidden sizes of 6272 and 6273336

respectively. We use a learning rate of 0.001 for all experiments and train with a batch size of 600337

with SGD optimizer for 1000 epochs. The purpose of this experiment is to show that it is feasible to338

train large models with quantum bias terms.339

Results of Experiments In Figure 1b, we observe that the proposed method outperforms both340

classical models of similar size with a 45% reduction in FID. We observe that the FID of the model341

converges to this value in around 400 epochs whereas both DBM models still exhibit instability after342

500 epochs. The QiDBM achieves an FID of 62.77 whereas the classical DBMs achieve an FID of343

111.73 and 99.17 for the smaller and larger model respectively. This experiment indicates that scaling344

QiDBMs is feasible and provides a significant improvement in performance. In Appendix D, we345

show the qualitative differences between generated samples of the DBM and QiDBM. We observe346

that the generated samples from the QiDBM appear to be better than that of the DBM after only 250347

epochs.348

Discussion We design CQ-LVMs and implement Algorithm 1 to learn different target distributions.349

We first show that Algorithm 1 is effective in learning CQ-LVMs and is competitive with the state350

of the art in terms of reduction of relative entropy at lower running times for 10 qubits and can be351

extended to even 20 qubits where others cannot. Next, we see that the addition of quantum bias terms352

to a DBM when trained using Algorithm 2 shows superior generation quality compared to classical353

DBMs with a 60% reduction of FID on Binarized MNIST. Next, we show that QiDBMs can learn354

high dimensional datasets like MNIST using Algorithm 2 by scaling models upto 6272 hidden units.355

We observe that QiDBMs also achieve better performance, with 40% lower FID compared to DBMs356

of similar sizes. We also observe that QiDBMs converge in about half the amount of time compared357

to DBMs.358

7 Discussion359

The paper makes important progress by proposing DO-EM, an EM Algorithm for Latent Variable360

models defined by Density Operators, which provably achieves likelihood ascent. We propose CQ-361

LVM, a large collection of density operator based models, where DO-EM applies. We show that362

QiDBM, an instance of CQ-LVM, can easily scale to MNIST dataset which requires working with363

6200+ units and outperform DBMs, thus showing that Density Operator models may yield better364

performance. The specification of DO-EM is amenable to implementation on quantum devices.365

DO-EM on quantum devices The E Step of the DO-EM algorithm can be implemented on a quantum366

computer using the method developed by Gilyén et al. [46], where the quantum channel is performing367

the partial trace operation. The goal is to prepare the Petz recovery map for the partial trace channel368

η(t) = Rρ(ηV) using PRM. The requirements for this are (1) Quantum access to the input state ηV (2)369

efficient state preparation of the model’s density matrix ρ(θ) [47, 48] and (3) Block-encodings for the370

model’s density matrix and its marginal ρV(θ) = TrLρ(θ) [49]. Given these input assumptions, the371

quantum algorithm implementing PRM consists of three steps [46]: (1) applying ρ
−1/2
V on the state372

ηV, (2) applying the adjoint channel which is straight-forward for the partial trace channel and can373

be operationally achieved by preparing subsystem L in the maximally mixed state, and (3) applying374

ρ1/2 on the combined system. Both ρ
−1/2
V and ρ1/2 are implemented using Quantum Singular Value375

Transformation (QSVT) techniques, leveraging block-encodings of the relevant states [49].376

The M Step proceeds via gradient descent by the computation of the gradient given by377 (
Tr[Hrη(θ

(t))]− Tr[Hrρ(θ)]
)

for the different terms in the Hamiltonian H =
∑

r θrHr [14, 32].378

The M Step stops when the gradients are small and an updated parameter θ(t+1) is obtained. This two-379

step iterative DO-EM procedure continues until convergence. While the gradients can be estimated380

on existing near-term quantum devices, the E step requires careful design.381

Limitations We discuss the limitations of this work in Appendix F.382
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NeurIPS Paper Checklist503

1. Claims504

Question: Do the main claims made in the abstract and introduction accurately reflect the505

paper’s contributions and scope?506

Answer: [Yes]507

Justification: All contributions tally with the abstract and introduction.508

Guidelines:509

• The answer NA means that the abstract and introduction do not include the claims510

made in the paper.511

• The abstract and/or introduction should clearly state the claims made, including the512

contributions made in the paper and important assumptions and limitations. A No or513

NA answer to this question will not be perceived well by the reviewers.514

• The claims made should match theoretical and experimental results, and reflect how515

much the results can be expected to generalize to other settings.516

• It is fine to include aspirational goals as motivation as long as it is clear that these goals517

are not attained by the paper.518

2. Limitations519

Question: Does the paper discuss the limitations of the work performed by the authors?520

Answer: [Yes]521

Justification: Limitations discussed in Appendix F.522

Guidelines:523

• The answer NA means that the paper has no limitation while the answer No means that524

the paper has limitations, but those are not discussed in the paper.525

• The authors are encouraged to create a separate "Limitations" section in their paper.526

• The paper should point out any strong assumptions and how robust the results are to527

violations of these assumptions (e.g., independence assumptions, noiseless settings,528

model well-specification, asymptotic approximations only holding locally). The authors529

should reflect on how these assumptions might be violated in practice and what the530

implications would be.531

• The authors should reflect on the scope of the claims made, e.g., if the approach was532

only tested on a few datasets or with a few runs. In general, empirical results often533

depend on implicit assumptions, which should be articulated.534

• The authors should reflect on the factors that influence the performance of the approach.535

For example, a facial recognition algorithm may perform poorly when image resolution536

is low or images are taken in low lighting. Or a speech-to-text system might not be537

used reliably to provide closed captions for online lectures because it fails to handle538

technical jargon.539

• The authors should discuss the computational efficiency of the proposed algorithms540

and how they scale with dataset size.541

• If applicable, the authors should discuss possible limitations of their approach to542

address problems of privacy and fairness.543

• While the authors might fear that complete honesty about limitations might be used by544

reviewers as grounds for rejection, a worse outcome might be that reviewers discover545

limitations that aren’t acknowledged in the paper. The authors should use their best546

judgment and recognize that individual actions in favor of transparency play an impor-547

tant role in developing norms that preserve the integrity of the community. Reviewers548

will be specifically instructed to not penalize honesty concerning limitations.549

3. Theory assumptions and proofs550

Question: For each theoretical result, does the paper provide the full set of assumptions and551

a complete (and correct) proof?552

Answer: [Yes]553
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Justification: Assumptions are stated clearly. Proofs provided in Appendix C.554

Guidelines:555

• The answer NA means that the paper does not include theoretical results.556

• All the theorems, formulas, and proofs in the paper should be numbered and cross-557

referenced.558

• All assumptions should be clearly stated or referenced in the statement of any theorems.559

• The proofs can either appear in the main paper or the supplemental material, but if560

they appear in the supplemental material, the authors are encouraged to provide a short561

proof sketch to provide intuition.562

• Inversely, any informal proof provided in the core of the paper should be complemented563

by formal proofs provided in appendix or supplemental material.564

• Theorems and Lemmas that the proof relies upon should be properly referenced.565

4. Experimental result reproducibility566

Question: Does the paper fully disclose all the information needed to reproduce the main ex-567

perimental results of the paper to the extent that it affects the main claims and/or conclusions568

of the paper (regardless of whether the code and data are provided or not)?569

Answer: [Yes]570

Justification: Experiments are clearly laid out in Section 6 and Appendix D. Experimental571

details for reproducibility are provided in Appendix E. Anonymous code is linked.572

Guidelines:573

• The answer NA means that the paper does not include experiments.574

• If the paper includes experiments, a No answer to this question will not be perceived575

well by the reviewers: Making the paper reproducible is important, regardless of576

whether the code and data are provided or not.577

• If the contribution is a dataset and/or model, the authors should describe the steps taken578

to make their results reproducible or verifiable.579

• Depending on the contribution, reproducibility can be accomplished in various ways.580

For example, if the contribution is a novel architecture, describing the architecture fully581

might suffice, or if the contribution is a specific model and empirical evaluation, it may582

be necessary to either make it possible for others to replicate the model with the same583

dataset, or provide access to the model. In general. releasing code and data is often584

one good way to accomplish this, but reproducibility can also be provided via detailed585

instructions for how to replicate the results, access to a hosted model (e.g., in the case586

of a large language model), releasing of a model checkpoint, or other means that are587

appropriate to the research performed.588

• While NeurIPS does not require releasing code, the conference does require all submis-589

sions to provide some reasonable avenue for reproducibility, which may depend on the590

nature of the contribution. For example591

(a) If the contribution is primarily a new algorithm, the paper should make it clear how592

to reproduce that algorithm.593

(b) If the contribution is primarily a new model architecture, the paper should describe594

the architecture clearly and fully.595

(c) If the contribution is a new model (e.g., a large language model), then there should596

either be a way to access this model for reproducing the results or a way to reproduce597

the model (e.g., with an open-source dataset or instructions for how to construct598

the dataset).599

(d) We recognize that reproducibility may be tricky in some cases, in which case600

authors are welcome to describe the particular way they provide for reproducibility.601

In the case of closed-source models, it may be that access to the model is limited in602

some way (e.g., to registered users), but it should be possible for other researchers603

to have some path to reproducing or verifying the results.604

5. Open access to data and code605

Question: Does the paper provide open access to the data and code, with sufficient instruc-606

tions to faithfully reproduce the main experimental results, as described in supplemental607

material?608
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Answer: [Yes]609

Justification: Link to anonymous code provided. Details are provided in Appendix E.610

Guidelines:611

• The answer NA means that paper does not include experiments requiring code.612

• Please see the NeurIPS code and data submission guidelines (https://nips.cc/613

public/guides/CodeSubmissionPolicy) for more details.614

• While we encourage the release of code and data, we understand that this might not be615

possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not616

including code, unless this is central to the contribution (e.g., for a new open-source617

benchmark).618

• The instructions should contain the exact command and environment needed to run to619

reproduce the results. See the NeurIPS code and data submission guidelines (https:620

//nips.cc/public/guides/CodeSubmissionPolicy) for more details.621

• The authors should provide instructions on data access and preparation, including how622

to access the raw data, preprocessed data, intermediate data, and generated data, etc.623

• The authors should provide scripts to reproduce all experimental results for the new624

proposed method and baselines. If only a subset of experiments are reproducible, they625

should state which ones are omitted from the script and why.626

• At submission time, to preserve anonymity, the authors should release anonymized627

versions (if applicable).628

• Providing as much information as possible in supplemental material (appended to the629

paper) is recommended, but including URLs to data and code is permitted.630

6. Experimental setting/details631

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-632

parameters, how they were chosen, type of optimizer, etc.) necessary to understand the633

results?634

Answer: [Yes]635

Justification: Details provided in Appendix E.636

Guidelines:637

• The answer NA means that the paper does not include experiments.638

• The experimental setting should be presented in the core of the paper to a level of detail639

that is necessary to appreciate the results and make sense of them.640

• The full details can be provided either with the code, in appendix, or as supplemental641

material.642

7. Experiment statistical significance643

Question: Does the paper report error bars suitably and correctly defined or other appropriate644

information about the statistical significance of the experiments?645

Answer: [Yes]646

Justification: See Appendix D.647

Guidelines:648

• The answer NA means that the paper does not include experiments.649

• The authors should answer "Yes" if the results are accompanied by error bars, confi-650

dence intervals, or statistical significance tests, at least for the experiments that support651

the main claims of the paper.652

• The factors of variability that the error bars are capturing should be clearly stated (for653

example, train/test split, initialization, random drawing of some parameter, or overall654

run with given experimental conditions).655

• The method for calculating the error bars should be explained (closed form formula,656

call to a library function, bootstrap, etc.)657

• The assumptions made should be given (e.g., Normally distributed errors).658

• It should be clear whether the error bar is the standard deviation or the standard error659

of the mean.660
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• It is OK to report 1-sigma error bars, but one should state it. The authors should661

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis662

of Normality of errors is not verified.663

• For asymmetric distributions, the authors should be careful not to show in tables or664

figures symmetric error bars that would yield results that are out of range (e.g. negative665

error rates).666

• If error bars are reported in tables or plots, The authors should explain in the text how667

they were calculated and reference the corresponding figures or tables in the text.668

8. Experiments compute resources669

Question: For each experiment, does the paper provide sufficient information on the com-670

puter resources (type of compute workers, memory, time of execution) needed to reproduce671

the experiments?672

Answer: [Yes]673

Justification: Details provided in Appendix E.674

Guidelines:675

• The answer NA means that the paper does not include experiments.676

• The paper should indicate the type of compute workers CPU or GPU, internal cluster,677

or cloud provider, including relevant memory and storage.678

• The paper should provide the amount of compute required for each of the individual679

experimental runs as well as estimate the total compute.680

• The paper should disclose whether the full research project required more compute681

than the experiments reported in the paper (e.g., preliminary or failed experiments that682

didn’t make it into the paper).683

9. Code of ethics684

Question: Does the research conducted in the paper conform, in every respect, with the685

NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?686

Answer: [Yes]687

Justification: Code of ethics followed, no interventions with living beings requiring special688

processing. Only standard datasets were used. No conflicts of interest.689

Guidelines:690

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.691

• If the authors answer No, they should explain the special circumstances that require a692

deviation from the Code of Ethics.693

• The authors should make sure to preserve anonymity (e.g., if there is a special consid-694

eration due to laws or regulations in their jurisdiction).695

10. Broader impacts696

Question: Does the paper discuss both potential positive societal impacts and negative697

societal impacts of the work performed?698

Answer: [NA]699

Justification: The paper concerns an algorithm to learn density operator latent variable700

models and does not directly have societal impact.701

Guidelines:702

• The answer NA means that there is no societal impact of the work performed.703

• If the authors answer NA or No, they should explain why their work has no societal704

impact or why the paper does not address societal impact.705

• Examples of negative societal impacts include potential malicious or unintended uses706

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations707

(e.g., deployment of technologies that could make decisions that unfairly impact specific708

groups), privacy considerations, and security considerations.709
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• The conference expects that many papers will be foundational research and not tied710

to particular applications, let alone deployments. However, if there is a direct path to711

any negative applications, the authors should point it out. For example, it is legitimate712

to point out that an improvement in the quality of generative models could be used to713

generate deepfakes for disinformation. On the other hand, it is not needed to point out714

that a generic algorithm for optimizing neural networks could enable people to train715

models that generate Deepfakes faster.716

• The authors should consider possible harms that could arise when the technology is717

being used as intended and functioning correctly, harms that could arise when the718

technology is being used as intended but gives incorrect results, and harms following719

from (intentional or unintentional) misuse of the technology.720

• If there are negative societal impacts, the authors could also discuss possible mitigation721

strategies (e.g., gated release of models, providing defenses in addition to attacks,722

mechanisms for monitoring misuse, mechanisms to monitor how a system learns from723

feedback over time, improving the efficiency and accessibility of ML).724

11. Safeguards725

Question: Does the paper describe safeguards that have been put in place for responsible726

release of data or models that have a high risk for misuse (e.g., pretrained language models,727

image generators, or scraped datasets)?728

Answer: [NA]729

Justification: Paper poses no such risks.730

Guidelines:731

• The answer NA means that the paper poses no such risks.732

• Released models that have a high risk for misuse or dual-use should be released with733

necessary safeguards to allow for controlled use of the model, for example by requiring734

that users adhere to usage guidelines or restrictions to access the model or implementing735

safety filters.736

• Datasets that have been scraped from the Internet could pose safety risks. The authors737

should describe how they avoided releasing unsafe images.738

• We recognize that providing effective safeguards is challenging, and many papers do739

not require this, but we encourage authors to take this into account and make a best740

faith effort.741

12. Licenses for existing assets742

Question: Are the creators or original owners of assets (e.g., code, data, models), used in743

the paper, properly credited and are the license and terms of use explicitly mentioned and744

properly respected?745

Answer: [Yes]746

Justification: Sources provided in Appendix E.747

Guidelines:748

• The answer NA means that the paper does not use existing assets.749

• The authors should cite the original paper that produced the code package or dataset.750

• The authors should state which version of the asset is used and, if possible, include a751

URL.752

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.753

• For scraped data from a particular source (e.g., website), the copyright and terms of754

service of that source should be provided.755

• If assets are released, the license, copyright information, and terms of use in the756

package should be provided. For popular datasets, paperswithcode.com/datasets757

has curated licenses for some datasets. Their licensing guide can help determine the758

license of a dataset.759

• For existing datasets that are re-packaged, both the original license and the license of760

the derived asset (if it has changed) should be provided.761
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• If this information is not available online, the authors are encouraged to reach out to762

the asset’s creators.763

13. New assets764

Question: Are new assets introduced in the paper well documented and is the documentation765

provided alongside the assets?766

Answer: [Yes]767

Justification: Anonymous code contains a ReadMe file.768

Guidelines:769

• The answer NA means that the paper does not release new assets.770

• Researchers should communicate the details of the dataset/code/model as part of their771

submissions via structured templates. This includes details about training, license,772

limitations, etc.773

• The paper should discuss whether and how consent was obtained from people whose774

asset is used.775

• At submission time, remember to anonymize your assets (if applicable). You can either776

create an anonymized URL or include an anonymized zip file.777

14. Crowdsourcing and research with human subjects778

Question: For crowdsourcing experiments and research with human subjects, does the paper779

include the full text of instructions given to participants and screenshots, if applicable, as780

well as details about compensation (if any)?781

Answer: [NA]782

Justification: No crowdsourcing or research with human subjects.783

Guidelines:784

• The answer NA means that the paper does not involve crowdsourcing nor research with785

human subjects.786

• Including this information in the supplemental material is fine, but if the main contribu-787

tion of the paper involves human subjects, then as much detail as possible should be788

included in the main paper.789

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,790

or other labor should be paid at least the minimum wage in the country of the data791

collector.792

15. Institutional review board (IRB) approvals or equivalent for research with human793

subjects794

Question: Does the paper describe potential risks incurred by study participants, whether795

such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)796

approvals (or an equivalent approval/review based on the requirements of your country or797

institution) were obtained?798

Answer: [NA]799

Justification: No crowdsourcing or research with human subjects.800

Guidelines:801

• The answer NA means that the paper does not involve crowdsourcing nor research with802

human subjects.803

• Depending on the country in which research is conducted, IRB approval (or equivalent)804

may be required for any human subjects research. If you obtained IRB approval, you805

should clearly state this in the paper.806

• We recognize that the procedures for this may vary significantly between institutions807

and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the808

guidelines for their institution.809

• For initial submissions, do not include any information that would break anonymity (if810

applicable), such as the institution conducting the review.811

16. Declaration of LLM usage812
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Question: Does the paper describe the usage of LLMs if it is an important, original, or813

non-standard component of the core methods in this research? Note that if the LLM is used814

only for writing, editing, or formatting purposes and does not impact the core methodology,815

scientific rigorousness, or originality of the research, declaration is not required.816

Answer: [NA]817

Justification: Core method development in this research does not involve LLMs.818

Guidelines:819

• The answer NA means that the core method development in this research does not820

involve LLMs as any important, original, or non-standard components.821

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)822

for what should or should not be described.823
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