
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

BlockFound: CUSTOMIZED BLOCKCHAIN FOUNDA-
TION MODEL FOR ANOMALY DETECTION

Anonymous authors
Paper under double-blind review

ABSTRACT

We propose BlockFound, a customized foundation model for anomaly
blockchain transaction detection. Unlike existing methods that rely on rule-based
systems or directly apply off-the-shelf large language models, BlockFound in-
troduces a series of customized designs to model the unique data structure of
blockchain transactions. First, a blockchain transaction is multi-modal, contain-
ing blockchain-specific tokens, texts, and numbers. We design a modularized
tokenizer to handle these multi-modal inputs, balancing the information across
different modalities. Second, we design a customized mask language learning
mechanism for pretraining with RoPE embedding and FlashAttention for han-
dling longer sequences. After training the foundation model, we further de-
sign a novel detection method for anomaly detection. Extensive evaluations on
Ethereum and Solana transactions demonstrate BlockFound’s exceptional ca-
pability in anomaly detection while maintaining a low false positive rate. Re-
markably, BlockFound is the only method that successfully detects anomalous
transactions on Solana with high accuracy, whereas all other approaches achieved
very low or zero detection recall scores. This work not only provides new founda-
tion models for blockchain but also sets a new benchmark for applying LLMs in
blockchain data.

1 INTRODUCTION

With the rapid development of blockchain technology, cryptocurrencies have gained significant at-
tention and are increasingly being used in real-world applications. A lot of Decentralized Finance
(DeFi) protocols have emerged, offering a wide range of financial services, such as lending, bor-
rowing, and trading, to users. However, the decentralized nature of these protocols also makes them
vulnerable to various security threats, including the presence of malicious attacks such as double-
spending attack (Karame et al., 2012), partition attacks (Saad et al., 2019), and front-running at-
tacks (Eskandari et al., 2020). These attacks seriously threaten the asset security of billions of
blockchain users. For example, at least 3.24 billion USD were lost to DeFi attacks from April 2018
to April 2022 (Werner et al., 2022).

Having a runtime anomalous transaction detection is critical for protecting user assets. Such systems
aim to detect suspicious transactions that deviate from typical patterns and provide early warnings
of potential security threats, enabling quick interventions to minimize the impact of malicious ac-
tivities (Ravazzi, 2024). Moreover, as the complexity and volume of transactions in DeFi continue
to grow, robust anomaly detection mechanisms will become increasingly essential to ensure the
long-term stability and security of blockchain-based financial services.

Prior works in detecting anomalous transactions primarily rely on heuristic-based approaches, which
examine features like transaction time, input addresses, and output addresses. However, these heuris-
tic methods have limited generalizability in that they cannot detect attacks that do not follow pre-
defined patterns. Given that attacks often change rapidly and summarizing rules requires extensive
expertise and effort, these rule-based methods cannot fulfill the requirements of detecting modern
blockchain attacks. To enable better generalizability and less human effort, some recent works
seek data-driven methods that leverage machine learning models such as Gaussian Mixture Models
(GMM) (Yang et al., 2019) and Long Short-Term Memory (LSTM) networks (Aldaham & HAMDI,
2024) to learn normal transaction patterns and conduct anomaly detection based on the learning

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

models. However, such traditional and small models have limited capacity to digest large-scale
datasets and thus are again limited in generalizability. Besides, these models cannot capture the
long-range dependencies and complex temporal dynamics inherent in transaction data (Parisotto
et al., 2020; Zeyer et al., 2019; Wen et al., 2022), resulting in sub-optimal modeling performance.
Motivated by the success of Transformer-based foundation models (Devlin et al., 2019; Liu et al.,
2019; Achiam et al., 2023) in many other domains. recent research (Gai et al., 2023) also uses the
off-the-shelf transformer-based model, GPT to train blockchain transactions and conduct anomaly
detection. As we will show in §5, without modeling the unique data structure of blockchain transac-
tions, this GPT-based approach (BlockGPT) achieves only limited anomaly detection performance.

In this work, we propose BlockFound, a customized foundation model for detecting anomalous
transactions in DeFi. Technically speaking, we still follow BlockGPT and use a transformer as our
foundation model. However, rather than using GPT-style models, we select BERT and use mask
language modeling (MLM) to train the foundation model due to their suitability for the task. Our
primary objective is to learn meaningful representations of transaction patterns to identify anoma-
lies effectively, rather than to generate new sequences. While GPT-style models are powerful for
generative tasks, MLMs offer an effective framework for encoding input data without the necessity
of learning autoregressive sequence generation. This makes MLMs particularly well-suited for our
anomaly detection task. Given that a transaction is multi-modal, containing blockchain-specific
tokens, texts, and numbers, we design a novel tokenizer that integrates different tokenization strate-
gies for different types of inputs. Further, we leverage RoPE and FlashAttention to modify the base
BERT model such that our foundation model can handle long inputs. We train our foundation model
on a large dataset of benign transactions to learn the patterns of normal transactions, then feed the
trained model with masked transactions and calculate how well the model can reconstruct the trans-
action. We use the reconstruction errors as the metric for anomaly detection. Given the model learns
and reconstructs transactions based on normal transaction patterns, a transaction that is difficult to
predict, is more likely to be abnormal.

We evaluate the performance of BlockFound on real-world transactions collected from the
Ethereum and Solana networks. We compare BlockFound with four baselines: a rule-based ap-
proach, a traditional ML-based approach, BlockGPT, and a method that we directly query GPT-4o if
an input transaction is anomalous. We show that BlockFound can detect anomalous transactions
with high accuracy and a low false positive rate, significantly outperforming existing methods. We
further conduct detailed ablation studies to verify our key design choices, including the tokenizer
and our methods for handling long inputs. Finally, we evaluate the sensitivity of our method to key
hyper-parameters, such as the token mask percentage and model structure. We open-source the code,
model, and datasets used in the anonymous link 1. To the best of our knowledge, BlockFound is
the first work to provide a low FP detection method and an open-source implementation for LLM-
based anomalous transaction detection in DeFi. We hope that our approach can serve as a useful
tool for protecting user assets in DeFi, and that our dataset and implementation can train future
researchers in this critical area.

2 BACKGROUND

Blockchain Blockchain is a decentralized, distributed ledger technology designed to enable se-
cure, transparent, and tamper-resistant record-keeping. Originally developed as the backbone of
cryptocurrencies like Bitcoin Nakamoto (2008), blockchain consists of a chain of blocks, each con-
taining a list of transactions. The core innovation of blockchain is its ability to achieve consensus
across a network of nodes without relying on a central authority. This is accomplished through con-
sensus mechanisms such as Proof of Work (PoW) Back et al. (2002) or Proof of Stake (PoS) Saleh
(2021), which ensure that all participating nodes agree on the state of the ledger. Blockchain’s im-
mutability and transparency are crucial features that make it suitable for a variety of applications
beyond cryptocurrencies, including supply chain management, healthcare, and finance. There are
some well-known blockchain platforms, such as Bitcoin, Ethereum, and Solana.

Smart Contracts and Transactions Smart contracts are self-executing agreements where the
terms are directly written into code, enabling automated and secure transactions. These contracts

1https://shorturl.at/9dFL1

2

https://shorturl.at/9dFL1

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

are a fundamental component of decentralized applications (DApps), which run on peer-to-peer net-
works using blockchain technology to create systems that are secure, transparent, and resistant to
censorship. Deployed on platforms like Ethereum, DApps facilitate more complex, programmable
transactions beyond simple value transfers. Each blockchain transaction can trigger the execution of
a smart contract, which autonomously processes conditions, manages assets, and updates the ledger.
A typical transaction includes details such as the sender and recipient addresses, the amount of
cryptocurrency or tokens transferred, and any data required to execute smart contracts. This automa-
tion enhances transparency, security, and trust within decentralized applications, making blockchain
an ideal infrastructure for DeFi, gaming platforms, and supply chain management systems. How-
ever, smart contracts are immutable once deployed, meaning that any errors or vulnerabilities in the
contract code can lead to significant risks, including financial loss. As a result, detecting anoma-
lous transactions within smart contracts is crucial for maintaining the security and reliability of
blockchain-based systems. In this work, we focus on detecting anomalous transactions, which devi-
ate from typical patterns observed in benign transactions that can be associated with smart contract
vulnerabilities at both the logic and implementation levels. Examples include transactions with ab-
normal method calls or sequences that differ significantly from expected patterns. Detecting such
anomalous transactions within smart contracts is crucial for maintaining the security and reliabil-
ity of blockchain-based systems, as it enables stopping potentially risky contracts to prevent losses
when malicious behavior is detected (Hasan et al., 2024; Hassan et al., 2022).

3 EXISTING TECHNIQUES AND LIMITATIONS

LLM-based detection. Recently, a study (Gai et al., 2023) has utilized a large language model to de-
tect anomalous transactions. Specifically, it adopts a GPT-like causal language modeling approach,
training the LLM by predicting the next token in the transaction trace. Anomalous transactions are
detected by ranking scores based on the log-likelihood of the predicted trace. However, this ap-
proach faces several fundamental limitations. Firstly, unlike natural language, transactions do not
naturally form sequential data, making the prediction of the next token less meaningful for transac-
tion traces. Moreover, the tokenization method used in the study is suboptimal, e.g., numerical val-
ues such as transaction fees are rounded to avoid vocabulary explosion, potentially obscuring critical
transaction details. Effective tokenization is crucial for the successful application of LLMs in this
context, as it directly impacts both the representation of smart contracts and the sequence length
of processed transactions. In addition to developing specialized language models for blockchain
data, some approaches (Chen et al., 2023a) directly adopt existing language models (e.g., ChatGPT)
without further fine-tuning. These methods involve feeding ChatGPT with raw input transactions
(e.g., corresponding JSON files) and are limited by the maximum input length of the model and
knowledge of the model.

Rule-based and traditional ML-based approaches. In contrast to LLM-based approaches, non-
LLM methods for anomalous transaction detection can be grouped into two main categories: tradi-
tional machine learning-based and heuristic-based approaches. The first category applies conven-
tional machine learning models, such as Gaussian mixture models, to estimate the density of input
transactions (Yang et al., 2019). Transactions with lower density scores are flagged as potentially
anomalous. However, these methods are highly dependent on the quality and expressiveness of the
transaction features used to generate hidden representations, limiting their generalizability. The sec-
ond category consists of heuristic-based techniques. For instance, one method suggests detecting
anomalous transactions by analyzing sequence length (Gai et al., 2023), under the assumption that
shorter transactions are more likely to be benign. However, this assumption is overly simplistic and
flawed, as will be demonstrated in §5.2. Heuristic-based methods often suffer from being too rigid
and can be easily bypassed by adversaries who do not conform to such patterns.

4 KEY TECHNIQUES

In this section, we first provide the overview of key techniques and then introduce them in detail.
The pseudo algorithm can be found in Appendix A.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

4.1 TECHNIQUE OVERVIEW

Tokenizer. As demonstrated in Figure 1, a blockchain transaction mainly consists of three types
of inputs: function and address signature in hash values, function logs in natural languages, and
function arguments in numbers. This hybrid data type makes a transaction naturally to be multi-
modal. As such, directly applying existing tokenizers designed for language models to blockchain
transactions will be problematic. First, existing tokenizers will treat hash values as numbers and
divide them into sub-tokens. However, these numbers themselves are meaningless, instead, they are
just used to represent different entities. Second, the numbers in blockchain transactions have a very
large value range and large values frequently show up. Directly applying the existing tokenizers will
divide a large number into many sub-tokens and thus result in ultra-long sequences for individual
transactions. To solve the first issue, we use one-hot tokenization for hash values. We only con-
sider the top 7,000 frequent hash values in our training dataset and treat the rest as “OOV” (Out of
Vocabulary). This method can constrain the vocabulary size, which helps reduce model parameters
and improve training efficiency. We further train our own number tokenization model to handle
numbers. Different from existing tokenizers, our model can better tailor to the large numbers in
blockchain transactions and give shorter token sequences for large numbers. Finally, we still apply
the text tokenizer to function logs to capture their semantic meanings. As demonstrated in §5, our
customized tokenizer is critical for learning foundation models and final anomaly detection.

Model design. We make a different design choice from BlockGPT (Gai et al., 2023) and use a BERT
structure together with MLM for our foundation model. The key rationale is to reduce training
complexity and improve overall training efficiency. Specifically, we do not need to generate new
transactions, and training GPT models are in general more difficult than BERT as predicting the
future without any context is harder than filling missing parts with certain context. Besides, our
main focus is to learn patterns of normal transactions. As such, we select BERT with MLM, which
provides enough pattern-learning capabilities and is more efficient than GPT models. We choose
to apply RoPE embedding and FlashAttention in our model to handle long input sequences. The
reason we choose this technique combination rather than other popular ones like LongLoRA (Chen
et al., 2023b) is to consider computational cost and algorithmic simplicity. These techniques still
keep a one-stage pretraining is simpler and more efficient than two-stage training, which is required
by LoRA-based approaches.

Post-training detection. With a trained foundation model, we feed a masked transaction into the
model and use the reconstruction error as the metric for identifying abnormal transactions. The
reason we use the reconstruction error is that the foundation model is trained to learn the patterns
of normal transactions. Anomalous transactions tend to have higher reconstruction errors due to
their irregularity. Thus, the reconstruction error can be used as an indicator of capturing deviations
from learned benign patterns. We also try to build another detection model using the transaction
embeddings of the foundation model. As specified in §C.1, we leverage one-class contrastive learn-
ing (Sohn et al., 2020) to learn a detection model using either only the <CLS> token embeddings
or the embeddings of all tokens. We try to fine-tune the entire model or only train the detection
model However, none of these trials can outperform simply masking testing transactions and calcu-
lating the reconstruction errors. As such, we stick to the simplest approach, which enables the best
detection performance and the least computational cost.

4.2 TOKENIZATION

To address these challenges in tokenization we discussed above, BlockFound introduces a custom
tokenizer specifically designed for the unique multi-model characteristics of blockchain transaction
data. We first flatten the raw JSON data into a sequence of function calls and apply a depth-first
search to track function callings. We use “[START]” and “[END]” tokens to help the model identify
the beginning and end of each function call within the sequence. Additionally, “[Ins]” and “[OUTs]”
tokens are used to mark the input and output arguments of functions, which can vary in number. To
further distinguish between data types, we use tokens like “data” and “address” to indicate whether
the argument is a data value or an address. These special tokens enable the model to clearly recognize
the type and boundaries of variable-length information, improving accuracy in transaction tracing.

After pre-processing the transaction trace, we then treat unique hash addresses as individual tokens,
which can significantly reduce the overall token count. Given the large number of unique addresses,

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

[START] [CALL]

 [INs]

 [OUTs]

 [logs] [END]

[START] [DELEGATECALL] [OOV]

 [NONE] [INs] [OUTs]

 [END] [START] [STATICCALL] [END]

start indicator
of the calling

end indicator
of the calling

1.
call indicator

10.
subsequent call’s infomation

out of
vocabulary

data does not
exist

from address
3.

to address
4.

function id

5.gas 1962908
converted to hex

6.value 0
converted to hex

7.input
indicator

output
indicator

9.log
indicator

9.
log messages

7.
input type and data

output type and data

 "type": "CALL",
 "from": "0xc1f351...5d0",
 "gas": 1962908,
 "to": "0x4deca5...bac",
 "func": "0x9fa0bc94",
 "args": [...],
 "output": [{"type": "data",
 "data": "0x000000...009"}],
 "calls": [{
 "type": "DELEGATECALL",
 "from": "0x4deca5...bac",
 "gas": 1930278,
 "to": "0x35dd16...5e8",
 "func": "0x9fa0bc94",
 "args": [...],
 "output": [...],
 "calls": [...],
 "logs": [...]
 "logMessages": [
 "Program PhoeNi... invoke [2]",
 "Program PhoeNi... consumed
 none compute units"],
 "value": 0

1.

5.
3.
4.
7.

9.

6.

10.

Figure 1: Tokenizer of BlockFound. The figure illustrates how BlockFound tokenizes a trans-
action by first flattening the nested JSON structure using a depth-first search based on function calls.
BlockFound assigns unique tokens to frequently occurring addresses and replaces infrequent ad-
dresses with a generic “OOV” token. Special indicator tokens such as “[START]”, “[END]”, and
“[Ins]” are inserted to mark the boundaries of function calls and input/output arguments.

we rank them by frequency and retain the top 7,000 most frequent addresses. Addresses that fall
outside the top 7,000 are treated as a single “OOV” token, as shown in Figure 1. In real-world
scenarios, frequent addresses are often associated with public smart contracts or exchanges, and
preserving them as single tokens improves the system’s ability to understand transaction behavior.

For values, as illustrated in Figure 1, there are both decimal numbers (e.g., gas) and hexadecimal
numbers (e.g., output data). we first convert all decimal numbers into 40-character hexadecimal
format. This approach provides a more compact representation of large numbers as the hexadecimal
number is more concise than the decimal number. Small numbers typically begin with “0x000...”,
which can be learned as a single token. Therefore, this conversion does not lead to a significant
increase in token count for small numbers. The consistent formatting of values across all transactions
simplifies processing and comprehension for the model.

Unlike hash addresses, log messages often convey information about the same object, such as pro-
gram status, across different function calls. For example, in Figure 1, log messages like “Program
PhoeNi invoke [2]” and “Program PhoeNi consumed none compute units” vary in details but relate to
the same event. Treating each log message as a unique token would obscure relationships between
messages, which often share common topics. Subword tokenization preserves these connections,
ensuring that the model can recognize similarities across different log messages.

The token dictionary size is set at 30,000 to balance the trade-off between token count and infor-
mation granularity. After allocating space for special tokens and preserved hash address tokens, we
apply WordPiece tokenization to learn on the remaining tokens for numbers and log messages.

4.3 MODEL DESIGN

BlockFound adapts the RoBERTa model (Liu et al., 2019) to train an auto-encoder specifically for
transaction tracing. BlockFound employs a MLM strategy, where m% of tokens in each transac-
tion are randomly masked. The model is then trained to reconstruct the original transaction from the
masked tokens, learning robust representations in the process. However, tokenized transaction data
can be significantly longer than typical natural language sequences, posing additional challenges
during training. To address these challenges, we incorporate two key techniques: (1) We replace
the absolute position embeddings in RoBERTa with Rotary Position Embeddings (RoPE) (Su et al.,
2024), which provide more efficient handling of long-range dependencies. (2) We leverage FlashAt-
tention (Dao et al., 2022) to accelerate the attention mechanism, improving memory efficiency and
reducing computational overhead, making it feasible to train on long transaction sequences.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Rotary Position Embeddings. Attention-based models require explicit positional information due
to the permutation-invariant nature of the attention mechanism. Traditional approaches such as Si-
nusoidal(Vaswani, 2017) often struggle with input length constraints. RoPE provides a more flexible
solution by rotating the query and key vectors in multi-head attention with a position-dependent ro-
tation matrix. Specifically, given a query qi and key ki at position i in a sequence of length L, RoPE
applies a rotation to each vector as q′i = R(i)qi and k′i = R(i)ki, where R(i) is a sinusoidal func-
tion encoding positional information. Unlike absolute embeddings, RoPE introduces relative posi-
tion dependence, making it more suitable for long-range dependencies and extrapolating to longer
sequences. This enables models using RoPE to effectively train on long transaction sequences.

FlashAttention is a memory-efficient algorithm designed to compute exact attention while optimiz-
ing both time and memory usage. The key innovation lies in addressing a bottleneck in standard
attention mechanisms, where frequent data transfer between fast on-chip GPU memory (SRAM)
and slower high-bandwidth memory (HBM) leads to inefficiencies. FlashAttention mitigates this
by splitting the Query/Key/Value matrices into smaller blocks and processing them incrementally,
reducing the need for frequent data movement to and from HBM. Additionally, in the backward
pass, it recomputes large intermediate results such as attention scores, trading extra computation for
fewer memory operations. This approach significantly reduces memory overhead and speeds up at-
tention computation without compromising model accuracy, making it well-suited for handling long
sequences in resource-constrained environments.

4.4 POST-TRAINING DETECTION

After training, we can deploy BlockFound for detecting anomalous transaction sequences. The
motivation behind applying BlockFound for transaction anomaly detection is that since the model
is trained on benign transaction sequences, it can accurately predict masked tokens if the sequence
is also benign. Hence, the anomalous score of a transaction can be derived based on the prediction
results on the masked tokens. Specifically, for a given transaction, we randomly mask a ratio of the
tokens, similar to the training process, and input the masked sequence into the trained model. The
probability distribution over the possible tokens for each MASK position represents the likelihood
of each token in that position. We construct a candidate set of the top-s most likely tokens for each
masked position. If the true token appears within the top-s candidate set, we consider the token as
benign. Conversely, if the true token is not in the top-s candidate set, it is treated as anomalous. The
reason why we do not directly predict based on the most likely token is that the addresses and values
are more challenging than nature language texts to predict, and having a candidate set tolerant to the
prediction error is more reasonable. After ranking the transactions by the anomalous score, we can
select the top k transactions with the highest anomalous score as anomalous. k can be dynamically
adjusted based on how the smart contract developers trade off between false positives and security
of the transactions.

5 EXPERIMENTS

In this section, we present the experimental evaluation of BlockFound in anomalous transaction
detection. We begin by introducing the experimental setup, including the dataset and evaluation met-
rics. Then, we compare BlockFound to other detection methods to showcase the effectiveness of
BlockFound. Additionally, we conduct ablation studies to analyze the impact of hyper-parameters
of BlockFound.

5.1 EXPERIMENTAL SETUP

Dataset. We primarily focus on Ethereum and Solana transactions in our experiments. We sample
transactions from interactions with 5 DeFi applications for Ethereum and 10 applications for Solana
to ensure diverse transaction patterns. For each DeFi application, transactions are ordered by their
block timestamps and split into 80% for training and 20% for evaluation as benign transactions.
This per-application sequential split is crucial to prevent time travel data leakage, ensuring that the
model is trained exclusively on past data without access to future information. Such a methodology
can maintain the integrity of performance metrics by avoiding artificially inflated results that could
arise if the model inadvertently learned from future transactions.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Specifically, our Ethereum dataset consists of 3,383 benign transactions for training, 709 benign
transactions for testing, and 10 malicious transactions. The data was collected from October 2020 to
April 2023. For Solana, our training dataset comprises 35,115 transactions, while the testing dataset
includes 1,500 benign transactions and 18 malicious transactions. The Solana data is sampled in
September 2023 and December 2023, spanning a two-month period due to the availability of trans-
action data. The benign transactions for both Ethereum and Solana were sampled and manually
cleaned to remove transactions unrelated to the target applications or failed transactions. The mali-
cious transactions were sourced from verified transaction vendors, including Zengo, TRM Labs, and
CertiK, and manually verified to ensure their malicious nature. Note that the malicious transactions
are also sampled from these selected DeFi applications. To mitigate the risk of data leakage, we
ensured that the malicious transactions occurred after the sampling periods of benign transactions.
This approach guarantees that the model is trained solely on known benign transactions up to the
cutoff dates, preventing any inadvertent exposure to future anomalous patterns during training.

Evaluation Metrics. We adopt the evaluation methodology from BlockGPT (Gai et al., 2023),
where transactions are ranked based on their detection scores produced by the models. Specifically,
the top-k transactions with the highest scores are labeled as anomalous, while the remaining transac-
tions are classified as benign. The binary classification performance is evaluated using the following
metrics: False Positive Rate (FPR), Recall, and Precision. In our experiments, we select k values
from the set 5, 10, 15 for Ethereum and 10, 15, 20 for Solana considering the number of collected
to evaluate the model’s performance at different detection thresholds. A larger k value indicates a
higher detection threshold, potentially leading to more false positives but could detect more anoma-
lous transactions, which can be varied based on how the DeFi owner wants to trade off between false
positives and security.

Model architecture and hyper-parameters. We use the BERT-base architecture, which includes
100 million parameters, for training the Ethereum task, and the BERT-large architecture, with 300
million parameters, for training the Solana task. We set the learning rate to 5e-5 and use a batch
size of 32 for the Ethereum task and 4 for the Solana task, respectively. For the Ethereum task,
the maximum sequence length is set to 1,024 tokens, while for the Solana task, we increase the
maximum sequence length to 8,192 tokens to accommodate the longer transactions. Please refer to
§C.1 for a detailed setup of the training hyper-parameters for both datasets. In the inference phase,
we set the mask ratio g to 15% and the number of candidate tokens s is set to 3 on both datasets.

Baselines. To evaluate the effectiveness of BlockFound, we compare it against several anoma-
lous transaction detection methods: 1 BlockGPT (Gai et al., 2023): It pretrains a causal trans-
former model on the transaction corpus to learn typical benign transaction patterns. The underlying
intuition is that anomalous transactions deviate from these learned patterns and are therefore diffi-
cult to predict. BlockGPT calculates the sum of the conditional log-likelihoods for each token in a
transaction sequence, with lower likelihoods indicating potential anomaly. The top-k transactions
with the lowest scores are flagged as anomalous. 2 Doc2Vec (Le & Mikolov, 2014): It represents
the transaction as a bag of words and leverages the distributed representation of words to repre-
sent the transaction. These vectorized transactions are then analyzed using a GMM to estimate the
probability of each transaction being anomalous. This probabilistic approach allows for the iden-
tification of anomalous transactions based on their likelihood within the learned distribution. 3

GPT-4o: This method utilizes a state-of-the-art commercial language model to assign an anomaly
score ranging from 0 to 100 to each transaction. This approach relies on the extensive pre-training
of the language model, which could potentially encompass a wide variety of anomalous transaction
patterns, enabling it to detect suspicious activities based on learned knowledge. 4 Heuristic-based
methods: Previous study (Risse & Böhme, 2024) has highlighted that machine learning models can
sometimes achieve decent detection rates by leveraging trivial features like input length in detection
tasks. To explore this, our heuristic-based approach uses the length of a transaction as the sole fea-
ture, operating under the assumption that anomalous transactions are typically longer than benign
ones.

By comparing BlockFound with these diverse baselines, we aim to demonstrate its superior per-
formance in accurately identifying anomalous transactions while mitigating the impact of potential
confounding factors present in other detection methods.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Method k=10 k=15 k=20

FPR Recall Precision FPR Recall Precision FPR Recall Precision
BlockGPT 0.47% 16.67% 30% 0.73% 22.22% 26.67% 1% 27.78% 25%
Doc2Vec 0.67% 0% 0% 1% 0% 0% 1.13% 0% 0%
GPT-4o 0.67% 0% 0% 1% 0% 0% 1.13% 0% 0%
Heuristic 0.67% 0% 0% 1% 0% 0% 1.13% 0% 0%

BlockFound 0.13% 44.44% 80% 0.2% 66.67% 80% 0.47% 72.22% 65%

Table 1: Performance comparison with different k values for Solana.

Method k=5 k=10 k=15

FPR Recall Precision FPR Recall Precision FPR Recall Precision
BlockGPT 0.14% 40% 80% 0.42% 70% 70% 0.99% 80% 53.33%
Doc2Vec 0.56% 10% 16.67% 1.12% 20% 18.18% 1.83% 20% 12.5%
GPT-4o 0.28% 30% 37.5% 0.98% 30% 23% 1.55% 40% 21%
Heuristic 0.14% 40% 80% 0.42% 70% 70% 1.13% 70% 46.67%

BlockFound 0% 50% 100% 0.28% 80% 80% 0.97% 80% 53.33%

Table 2: Performance comparison with different k values for Ethereum.

5.2 EXPERIMENTAL RESULTS

Comparison with Baselines. We show the FPR, Recall, and Precision of BlockFound and other
baselines in Table 1 and Table 2. As the results show, BlockFound outperforms all baseline
methods across various k values for both the Ethereum and Solana datasets. Notably, on the Solana
dataset, most baseline methods (Doc2Vec, GPT-4o, and Heuristic) consistently fail to detect any
anomalous transactions, achieving a recall and precision of 0% for all k values. This indicates that
all transactions flagged as anomalous by these methods are, in fact, benign. While BlockGPT is able
to detect some anomalous transactions, its recall and precision are significantly lower than those of
BlockFound. For instance, at k = 20, BlockGPT achieves only a 27.78% recall with a FPR of
1%. In contrast, BlockFound detects the majority of anomalous transactions (i.e., 13 out of 18)
with a lower FPR of 0.47%.

We have the following potential reasons for the failure of these baseline methods: 1) Doc2Vec’s
approach of representing transactions as a bag of words likely fails due to its inability to capture
the sequential dependencies and contextual nuances crucial for distinguishing between benign and
anomalous transactions. 2) Despite its extensive pre-training, GPT-4o may underperform because
it is not specifically fine-tuned for blockchain-specific anomalous transaction detection, making it
less effective in identifying such domain-specific anomalies. 3) The heuristic method fails when
the heuristics are not accurate for those anomalous transactions that have similar length as benign
transactions. 4) BlockGPT, which shares the most similar idea with BlockFound, fails to de-
tect anomalous transactions because the casual language model structure may not be suitable for
detection task. For each token in the transaction, it only considers preceding information while
BlockFound can analyze both previous and subsequent information for tokens to predict.

In contrast to baseline methods’s failure, BlockFound demonstrates strong performance with sig-
nificantly lower FPRs and much higher recall and precision scores, especially as the k threshold
increases. For example, at k = 10 on the Ethereum dataset, BlockFound achieves an FPR of
0.28%, a recall of 80%, and a precision of 80%, which means BlockFound can successfully de-
tect 8 out of 10 anomalous transactions while only predicting 2 false positives.

These results highlight the effectiveness of BlockFound in accurately identifying anomalous
transactions while minimizing false positives, thereby demonstrating its superiority over existing
detection methods in both Ethereum and Solana environments. The baselines’ failure to detect
anomalous transactions also underscores the challenge of this task and the importance of leveraging
advanced methods like BlockFound for robust blockchain transaction security.

Effect of Core Components. We conduct an ablation study on BlockFound by removing each
core component individually to analyze its impact on detection performance with the Solana dataset.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

The first component we ablate is the tokenizer, which is specifically designed to handle transaction
data in BlockFound. To evaluate its significance, we replace the custom tokenizer with the de-
fault WordPiece tokenizer from BERT, allowing us to observe how much this tailored tokenization
contributes to the model’s success. Next, we examine the effect of log message, which is the printed
information when executing these transactions. As mentioned in §4.2, we use subword tokenization
to encode the log messages in order to preserve their context information. Here, we substitute this
approach by treating each log message as a unique token, similar to how we treat the hash addresses,
and measure the resulting change in performance. Lastly, we study the effect of the RoPE embed-
ding, which we employ to capture the relative position information between tokens. In this ablation,
we replace it with the default absolute positional embedding.

The results are presented in the upper half of Table 3. From these experiments, we draw the fol-
lowing conclusions. First, substituting our customized tokenizer with the default BERT tokenizer,
while keeping all other components unchanged, caused the model to fail to detect any anomalous
transactions (i.e., the recall was 0 across different k values). This underscores the importance of
our customized tokenizer, as the default BERT tokenizer, trained on general text data, is unable to
capture the complex structure of specific transaction traces. Second, we observed that the model
also struggled to differentiate between benign and anomalous transactions when we altered the log
message encoding strategy. This suggests that the log messages may contain key information about
the transaction status in the Solona task, and an appropriate encoding method, such as a subword to-
kenizer, can extract this information effectively. Lastly, replacing our relative positional embeddings
with absolute positional embeddings led to a significant drop in model performance, with a decrease
in recall of nearly 20% to 30% across various k values. This emphasizes the importance of relative
positional embeddings for effectively handling long sequences (e.g., a sequence length of 8192).

We also conduct an ablation study on the impact of FlashAttention on the training time and memory
usage of BlockFound in Table 9. The results show that the integration of FlashAttention reduces
the training time and memory usage while maintaining the detection performance. Furthermore,
we investigate the selection of the base model in Table 10 by replacing the RoBERTa model with
other state-of-the-art BERT-like models like DeBERTa (He et al., 2020). The results demonstrate
that BlockFound achieves consistent performance and is agnostic to the choice of base model.

Hyper-parameters sensitivity analysis. We further investigate the impact of key hyper-parameters
and model architecture on the final model performance in the Solana task. Specifically, we introduce
two additional hyper-parameters during detection phrase: the detection mask percentage g and the
number of candidate tokens k used when calculating the mask prediction accuracy. By varying g
and s within {5, 10, 15} and {1, 3, 5}, respectively, we assess the model’s robustness to these
parameters. Additionally, While BERT-large is the default model on Solana dataset, we replace it
with BERT-base to evaluate the influence of different model architectures on the final performance.

As shown in the lower half of Table 3, our model demonstrates a degree of robustness to variations
in g and s. Recall that the default values for g and s in BlockFound are 15% and 3, respectively.
Notably, BlockFound-s=1 even outperforms BlockFound when k = 20, suggesting that a sim-
pler set of hyperparameters can still achieve relatively good performance. However, when the model
architecture is switched from BERT-large to BERT-base, a noticeable performance drop occurs on
the Solona dataset. This is likely due to the dataset’s large number of training samples (i.e., almost
30,000) and longer sequence length (i.e., 8,192 tokens), which smaller models like BERT-base strug-
gle to handle effectively.

6 DISCUSSION

Dataset Size and Quality. In our evaluation, we use a dataset of 28 malicious transactions, which
represent real-world exploits of smart contract vulnerabilities in the selected DeFi applications. Col-
lecting a larger set of verified malicious transactions is non-trivial due to the manual effort required
for verification and the need to use only publicly available data to maintain privacy standards and
enable open-sourcing. Prior work Gai et al. (2023) identified a total of 116 malicious transactions;
however, they were unable to share these transactions or their sources with us due to privacy con-
cerns. We have open-sourced our datasets and models to foster further research and expansion of
the malicious transaction dataset in the future.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Models k=10 k=15 k=20
FPR Recall Precision FPR Recall Precision FPR Recall Precision

BlockFound 0.13% 44.44% 80% 0.2% 66.67% 80% 0.47% 72.22% 65%
- Tokenizer 0.67% 0% 0% 1% 0% 0% 1.33% 0% 0%
- Log message 0.67% 0% 0% 1% 0% 0% 1.33% 0% 0%
- RoPE 0.4% 22.22% 40% 0.53% 38.89% 46.67% 0.80% 44.44% 40%

BlockFound-100m 0.6% 5.56% 10% 0.93% 5.56% 6.67% 1.27% 5.56% 5%
BlockFound-g=10 0.27% 33.33% 60% 0.4% 50% 60% 0.53% 66.67% 60%
BlockFound-g=15 0.27% 33.33% 60% 0.4% 50% 60% 0.53% 66.67% 60%
BlockFound-s=1 0.13% 44.44% 80% 0.27% 61.11% 73.33% 0.4% 77.78% 70%
BlockFound-s=5 0.13% 44.44% 80% 0.27% 61.11% 73.33% 0.47% 72.22% 65%

Table 3: Ablation study on BlockFound for Solana.

Tokenizer and Model Adaptability. In our approach, we initially build the tokenizer using a large
transaction corpus. To maintain optimal detection performance, we recommend periodically re-
building the tokenizer to keep it aligned with current transaction patterns. Additionally, our model’s
training on benign data allows it to learn typical transaction patterns and detect anomalies based on
deviations from these patterns, providing a level of adaptability to new or previously unseen mali-
cious strategies. However, if new attack strategies closely mimic benign patterns, detection may be
challenging. To address this, we recommend periodically retraining the model on updated data to
ensure optimal detection accuracy as the blockchain ecosystem evolves.

Fine-Tuning GPT-4o. As shown in §5.2, directly using GPT-4o as a detector results in poor perfor-
mance. We further fine-tune GPT-4o via OpenAI API on Ethereum dataset but still observe limited
performance. We hypothesize that this is because the fine-tuning API is coarse-grained and does not
allow next token prediction nor customization of tokenization, which is crucial for our task. Detailed
results are shown in Table 7.

Robustness to Noise. In blockchain transactions, the ratio of benign to malicious transactions is
typically highly imbalanced. Give this high imbalance, even if some potential malicious samples are
inadvertently included in the training set, their impact is minimal, as the model predominantly learns
the representation of the majority class (benign transactions). To assess the model’s robustness to
noise, we conduct an experiment simulating an extreme case where half of the malicious transactions
were intentionally included in the training set for the Ethereum dataset. While this scenario caused
a slight drop in detection performance, the model remained effective. These results demonstrate that
our approach maintains robustness to a reasonable level of noise in the data.

Future Work. Our work opens up several avenues for future research. First, explainable AI is
critical for deploying any AI system in production, particularly within the financial sector of DeFi.
Integrating explanation tools for LLM can enhance the transparency of BlockFound and will be
essential to better understand the patterns it learns and to identify and mitigate potential biases in
its predictions. Second, although our experiments show that directly using GPT-4o or fine-tuned
GPT-4o as a detector results in poor performance, we believe that more sophisticated approaches,
such as advanced prompt engineering and integrating on-chain tools (e.g., verifying addresses on
the blockchain), could significantly improve the performance of LLM-based detectors. Lastly, we
plan to extend our evaluation to additional blockchain platforms such as Binance Smart Chain and
Polkadot, which differ in consensus mechanisms and transaction patterns, to further validate the
adaptability of our approach. We leave these explorations for future work.

7 CONCLUSION

In this work, we presented BlockFound, a transformer-based model designed for detecting anoma-
lous transactions in DeFi ecosystems such as Ethereum and Solana. By leveraging masked lan-
guage modeling and carefully designed tokenization techniques, BlockFound efficiently handles
the complexity and diversity of transaction data. Additionally, we open-sourced the code, model,
and datasets used in this work, making BlockFound the first open-source solution for LLM-based
anomalous transaction detection in DeFi. We hope that this contribution will serve as a valuable re-
source for the research community, facilitating further advancements in the development of scalable
and robust anomalous transaction detection systems.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Ale-
man, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical
report. arXiv preprint arXiv:2303.08774, 2023.

Thanyah Aldaham and Hedi HAMDI. Enhancing digital financial security with lstm and blockchain
technology. International Journal of Advanced Computer Science & Applications, 2024.

Adam Back et al. Hashcash-a denial of service counter-measure. 2002.

Chong Chen, Jianzhong Su, Jiachi Chen, Yanlin Wang, Tingting Bi, Yanli Wang, Xingwei Lin, Ting
Chen, and Zibin Zheng. When chatgpt meets smart contract vulnerability detection: How far are
we? arXiv preprint arXiv:2309.05520, 2023a.

Yukang Chen, Shengju Qian, Haotian Tang, Xin Lai, Zhijian Liu, Song Han, and Jiaya Jia. Longlora:
Efficient fine-tuning of long-context large language models. arXiv preprint arXiv:2309.12307,
2023b.

Tri Dao, Dan Fu, Stefano Ermon, Atri Rudra, and Christopher Ré. Flashattention: Fast and memory-
efficient exact attention with io-awareness. In Proceedings of NeurIPS, 2022.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep
bidirectional transformers for language understanding. In Proceedings of NAACL, 2019.

Shayan Eskandari, Seyedehmahsa Moosavi, and Jeremy Clark. Sok: Transparent dishonesty: front-
running attacks on blockchain. In Financial Cryptography and Data Security: FC 2019 Interna-
tional Workshops. Springer, 2020.

Yu Gai, Liyi Zhou, Kaihua Qin, Dawn Song, and Arthur Gervais. Blockchain large language models.
arXiv preprint arXiv:2304.12749, 2023.

Mohammad Hasan, Mohammad Shahriar Rahman, Helge Janicke, and Iqbal H Sarker. Detecting
anomalies in blockchain transactions using machine learning classifiers and explainability analy-
sis. Blockchain: Research and Applications, pp. 100207, 2024.

Muneeb Ul Hassan, Mubashir Husain Rehmani, and Jinjun Chen. Anomaly detection in blockchain
networks: A comprehensive survey. IEEE Communications Surveys & Tutorials, 25(1):289–318,
2022.

Pengcheng He, Xiaodong Liu, Jianfeng Gao, and Weizhu Chen. Deberta: Decoding-enhanced bert
with disentangled attention. arXiv preprint arXiv:2006.03654, 2020.

Ghassan O Karame, Elli Androulaki, and Srdjan Capkun. Double-spending fast payments in bitcoin.
In Proceedings of the 2012 ACM conference on Computer and communications security, 2012.

Diederik P Kingma. Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980,
2014.

Quoc Le and Tomas Mikolov. Distributed representations of sentences and documents. In Proceed-
ings of ICML. PMLR, 2014.

Yinhan Liu, Myle Ott, Naman Goyal, Xuezhe Du, Mandar Joshi, Danqi Chen, Omer Levy, Mike
Lewis, Luke Zettlemoyer, and Veselin Stoyanov. Roberta: A robustly optimized bert pretraining
approach. arXiv preprint arXiv:1907.11692, 2019.

Satoshi Nakamoto. Bitcoin: A peer-to-peer electronic cash system. Satoshi Nakamoto, 2008.

Emilio Parisotto, Francis Song, Jack Rae, Razvan Pascanu, Caglar Gulcehre, Siddhant Jayakumar,
Max Jaderberg, Raphael Lopez Kaufman, Aidan Clark, Seb Noury, et al. Stabilizing transformers
for reinforcement learning. In International conference on machine learning, pp. 7487–7498.
PMLR, 2020.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Fabian Pedregosa, Gaël Varoquaux, Alexandre Gramfort, Vincent Michel, Bertrand Thirion, Olivier
Grisel, Mathieu Blondel, Peter Prettenhofer, Ron Weiss, Vincent Dubourg, et al. Scikit-learn:
Machine learning in python. Journal of machine learning research, 2011.

Francesco Ravazzi. Emergency stop - solidity patterns, 2024. URL https://fravoll.
github.io/solidity-patterns/emergency_stop.html. Accessed: 2024-11-16.

Niklas Risse and Marcel Böhme. Top score on the wrong exam: On benchmarking in machine
learning for vulnerability detection. arXiv preprint arXiv:2408.12986, 2024.

Muhammad Saad, Victor Cook, Lan Nguyen, My T Thai, and Aziz Mohaisen. Partitioning attacks
on bitcoin: Colliding space, time, and logic. In 2019 IEEE 39th international conference on
distributed computing systems (ICDCS). IEEE, 2019.

Fahad Saleh. Blockchain without waste: Proof-of-stake. The Review of financial studies, 2021.

Kihyuk Sohn, Chun-Liang Li, Jinsung Yoon, Minho Jin, and Tomas Pfister. Learning and evaluating
representations for deep one-class classification. arXiv preprint arXiv:2011.02578, 2020.

Jianlin Su, Murtadha Ahmed, Yu Lu, Shengfeng Pan, Wen Bo, and Yunfeng Liu. Roformer: En-
hanced transformer with rotary position embedding. Neurocomputing, 2024.

A Vaswani. Attention is all you need. In Proceedings of NeurIPS, 2017.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny
Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models. Advances in
neural information processing systems, 2022.

Qingsong Wen, Tian Zhou, Chaoli Zhang, Weiqi Chen, Ziqing Ma, Junchi Yan, and Liang Sun.
Transformers in time series: A survey. arXiv preprint arXiv:2202.07125, 2022.

Sam Werner, Daniel Perez, Lewis Gudgeon, Ariah Klages-Mundt, Dominik Harz, and William
Knottenbelt. Sok: Decentralized finance (defi). In Proceedings of the 4th ACM Conference
on Advances in Financial Technologies, 2022.

Lingxiao Yang, Xuewen Dong, Siyu Xing, Jiawei Zheng, Xinyu Gu, and Xiongfei Song. An ab-
normal transaction detection mechanim on bitcoin. In Proceedings of the 2019 International
Conference on Networking and Network Applications (NaNA). IEEE, 2019.

Albert Zeyer, Parnia Bahar, Kazuki Irie, Ralf Schlüter, and Hermann Ney. A comparison of trans-
former and lstm encoder decoder models for asr. In 2019 IEEE Automatic Speech Recognition
and Understanding Workshop (ASRU), pp. 8–15. IEEE, 2019.

12

https://fravoll.github.io/solidity-patterns/emergency_stop.html
https://fravoll.github.io/solidity-patterns/emergency_stop.html

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

A PSEUDO ALGORITHM OF BlockFound

We present the pseudo algorithm of BlockFound in Algorithm 1 to help readers understand the
workflow of BlockFound.

Algorithm 1: Workflow of BlockFound
Input: Benign transactions D = {D1, . . . , DN}, transactions to be predicted P = {T1, T2, . . . ,

TM}, mask percentage m, detection mask percentage g, top-s candidates, threshold k

1 Tokenization:
2 Initialize tokenizer T with preserved address tokens and special tokens
3 Train subword tokenization on remaining data to generate the final token dictionary
4 Save tokenizer T
5 Training Phase:
6 for each transaction Di ∈ D do
7 Tokenize Di using T
8 Randomly select m tokens from Di and mask them: D′

i = Mask(Di,m)

9 Train the model M to minimize the loss function: L =
∑N

i=1 EDi [logP (Di|D′
i,M)]

10 end
11 Save the trained model M∗

12 Detection Phase:
13 for each transaction Tj ∈ P do
14 Tokenize Tj using T
15 Randomly select g% of tokens and mask them: T ′

j = Mask(Tj , g)

16 Use the trained model M∗ to predict the top-s tokens for each masked token position:
T̂j = {t̂i,1, t̂i,2, . . . , t̂i,s for i = 1, . . . , n}

Calculate the failed prediction ratio (abnormality score) for Tj :

Score(Tj) =
1

n

n∑
i=1

I(ti /∈ {t̂i,1, . . . , t̂i,s})
17 end
18 return Top-k transactions P̂ ranked by anomaly score Score(Tj)

B ADDITIONAL DETAILS ON DATASET

Here we provide additional details on the dataset used in our experiments.

Address Frequency. To balance training efficiency and information retention, we rank all unique
addresses in the dataset by frequency and retain only the top 7,000 addresses for training. For
Ethereum, this covers the majority of unique addresses, as there are only 7,335 addresses in total,
with the remaining addresses appearing just once in the training set. For Solana, the dataset con-
tains 56,203 unique addresses, and retaining all of them would significantly increase the embedding
size, making training computationally infeasible due to the high resource demands. Notably, the
addresses excluded from the top 7,000 in Solana appear fewer than 10 times in the training set,
contributing minimally to the overall information.

High-frequency addresses typically correspond to smart contracts, token addresses, or other entities
that are frequently accessed and more significant for classification tasks. Conversely, low-frequency
addresses, such as individual user wallets, often carry less relevance for anomaly detection. In-
cluding these low-frequency addresses would increase model complexity and training time without
yielding significant performance gains. By focusing on the most frequent 7,000 addresses, we en-
sure a practical trade-off between training efficiency and the retention of critical information for
effective anomaly detection.

Potential Duplication in Transaction Data. Contract templates are wildly used in real-world
smart contract development, leading to different smart contracts may offering similar or even iden-
tical APIs to the users. This could cause potential duplication in the transaction data. To assess the

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

extent of this issue, we conduct a 5-gram BLEU similarity analysis on our dataset, choosing 5-gram
to avoid false positives caused by indicator tokens such as “[START]” and “[CALL].” Our analysis
reveal that only 0.05% of transaction pairs in the Ethereum dataset exhibit a BLEU similarity ex-
ceeding 0.7, with 0.023% surpassing 0.8. These highly similar transactions may indeed result from
the use of contract templates. Given the low similarity ratio in our data, we do not consider potential
duplication a significant issue.

C DETAILED EXPERIMENTAL RESULTS

C.1 IMPLEMENTATION DETAILS

Our method We detail the hyper-parameters and training process of our customized language
models, each trained from scratch for either the Solana or Ethereum tasks. Recall that for the Solana
dataset, the model is based on a BERT-large architecture, with a hidden dimension of 1024, 24
hidden layers, and 16 attention heads. For the Ethereum dataset, the model uses a BERT-base archi-
tecture, with a hidden dimension of 768, 12 hidden layers, and 12 attention heads. The complete set
of training hyper-parameters is detailed in Table 4 and Table 5. The Solana model was trained over
two days using eight A100 GPUs, while the Ethereum model required around 2 hours of training on
the same hardware.

config value
optimizer Adam (Kingma, 2014)
base learning rate 5e-5
weight decay 0.0
gradient accumulation step 10
optimizer momentum β1, β2 = 0.9, 0.999
batch size 3
learning rate schedule cosine decay
warmup epochs 1
total epochs 10
max sequence length 8192

Table 4: Configuration of training setup on Solana dataset.

config value
optimizer Adam
base learning rate 5e-5
weight decay 0.0
gradient accumulation step 10
optimizer momentum β1, β2 = 0.9, 0.999
batch size 20
learning rate schedule cosine decay
warmup epochs 10
total epochs 100
max sequence length 1024

Table 5: Configuration of training setup on Ethereum dataset.

Baselines We employ four baseline methods: BlockGPT, Doc2Vec, GPT-4o, and Heuristic. For
BlockGPT, as the source code was unavailable, we contact the author and implement BlockGPT
based on their guidance. For the Doc2Vec approach, as described by Gai et al. (2023), we first apply
Doc2Vec (Le & Mikolov, 2014) to extract features from the pre-processed and flattened traces of
training transactions, as is shown in Figure 1. After obtaining the feature representations, we build
a GMM to model the training transactions’ distribution using the Sklearn library (Pedregosa et al.,
2011) with default hyper-parameters. During evaluation, for each transaction, we extract its feature

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

using Doc2Vec and computed its anomaly score as the negative log-likelihood under the GMM.
For the heuristic method, the anomalous score of a given transaction is determined by the sequence
length of the corresponding flattened traces, with longer traces indicating a higher probability of
anomaly behavior. For GPT-4o, we use the above prompts to instruct the LLM to give a score
between 0 and 100. We use chain-of-thought (COT) (Wei et al., 2022) prompting to further improve
the performance of GPT-4o. Additionally, we integrate human prior knowledge into the LLM by
providing it with the list of known anomalous patterns to help it make more accurate predictions.

Prompt for GPT-4o method

You are a blockchain security expert tasked with determining whether a given blockchain
transaction is anomalous. Please evaluate the transaction step by step and consider the fol-
lowing aspects:
1. Analyze the sender and recipient addresses to check if they have been involved in known
anomalous activity.
2. Assess the transaction value and fee to identify any unusual patterns that might indicate
suspicious behavior.
3. Examine the transaction’s input data, including any smart contract interactions, to see if
they match known attack vectors.
4. Consider the timing and frequency of the transaction relative to previous transactions
from the same address.
Assign a score between 0 and 100, where 0 means completely benign and 100 means highly
anomalous. Provide a clear explanation of the reasoning behind your score. Finally, return
the result in the following JSON format:
#json
{ ”reason”: ”Detailed explanation of why the transaction is considered anomalous or be-
nign.”,
”score”: ”A number between 0 and 100 representing the likelihood of the transaction being
anomalous.”
}
Transaction details: [Insert transaction data here]

C.2 ADDITIONAL EXPERIMENTS

Post-Detection Methods. As mentioned in §4.1, we also explore post-detection methods using a
one-class contrastive learning approach. In this experiment, we apply the method to the Ethereum
dataset. Specifically, after pre-training our customized LLM on the Ethereum task, we extract feature
representations for each transaction by either using the <CLS> token embeddings or the average
embeddings of all tokens. We then perform one-class contrastive learning on the training set, treating
positive samples as those originating from the same DeFi application and negative samples as those
from different DeFi applications. Through this contrastive learning process, we aim to obtain more
robust feature representations of the transactions. Finally, we apply kernel density estimation (KDE)
to the features learned through one-class contrastive learning, where a lower density score for a
transaction indicates a higher probability of it being anomalous. Details of the hyper-parameter
settings can be found at https://shorturl.at/9dFL1.

As shown in Table 6, neither <CLS>-CL (i.e., one-class contrastive learning using input feature
from <CLS> token embeddings) nor Average-CL (i.e., using input feature from the average em-
beddings of all tokens) outperforms our method. Compared with post-detection using one-class
contrastive learning method, BlockFound achieves relatively good performance without requir-
ing additional computation resources. Therefore, we continue to use the simplest approach—our
current masked prediction method—as the post-detection method.

Fine-Tuning GPT-4o. We fine-tune GPT-4 (version 2024-08-06) using the Ethereum dataset to
evaluate its performance on domain-specific tasks following BlockGPT’s approach. However, our
method deviated from traditional token-by-token iteration approaches due to the limitations of Ope-
nAI’s fine-tuning API, which supports only instruction-response style fine-tuning. Instead, we divide
each benign transaction into two halves: the first half served as the input, and the second half as the

15

https://shorturl.at/9dFL1

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Method k=5 k=10 k=15

FPR Recall Precision FPR Recall Precision FPR Recall Precision
<CLS>-CL 0.28% 30% 60% 0.28% 80% 80% 0.85% 90% 60%
Average-CL 0.14% 40% 80% 0.28% 80% 80% 0.97% 80% 53.33%

BlockFound 0% 50% 100% 0.28% 80% 80% 0.97% 80% 53.33%

Table 6: Performance comparison of different post-detection methods for Ethereum.

target response. This method aimed to enable the model to predict transaction details. The error be-
tween the predicted and actual transaction is used as the anomaly score. We summarize the results
in Table 7.

The results indicate no significant improvement over the default GPT-4o model. Several factors may
contribute to this outcome:

• Training Budget Constraints: Our fine-tuning costs are approximately $950, limiting the
number of training iterations.

• Coarse-Grained Approach: The half-half prediction strategy may not have captured the
intricate details of transaction patterns.

• Tokenization Challenges: GPT-4o’s default tokenization struggles with specific data
types, such as blockchain addresses and numerical patterns, reducing its ability to learn
precise representations.

To overcome these limitations, future efforts could include:

• Developing more fine-grained fine-tuning strategies.

• Exploring additional tools to preprocess blockchain-specific inputs, such as addresses and
numbers.

• Leveraging models with customizable tokenization and greater control over training objec-
tives.

Model k=5 k=10 k=15

FPR Recall Precision FPR Recall Precision FPR Recall Precision
GPT-4o 0.28% 30% 37.5% 0.98% 30% 23% 1.55% 40% 21%
GPT-4o-FT 0.28% 30% 37.5% 0.98% 30% 23% 1.55% 40% 21%

Table 7: Performance comparison of fine-tuned GPT-4o and GPT-4 on Ethereum for various k
values.

Robustness to Noise. We intentionally modified the training data to include 50% of the malicious
transactions while keeping the rest of the data unchanged for the Ethereum dataset. As shown in
Table 8, the detection performance of BlockFound is still relatively good, achieving a recall of
60% for a detection threshold k = 10. These results demonstrate that our approach maintains
robustness to a reasonable level of noise and inaccurate information in the data.

Model k=5 k=10 k=15

FPR Recall Precision FPR Recall Precision FPR Recall Precision
No Noise 0% 50% 100% 0.28% 80% 80% 0.97% 80% 53.33%
With Noise 0.14% 40% 80% 0.56% 60% 60% 1.26% 60% 40%

Table 8: Performance comparison of models with and without noise for Ethereum for various
k values.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

C.3 ABLATION STUDY

Impact of FlashAttention. To evaluate the impact of FlashAttention on the training efficiency
and resource utilization of BlockFound, we conduct an ablation study on Ethereum and Solana
datasets. The results are shown in Table 9.

The integration of FlashAttention significantly improves training efficiency by optimizing attention
computation. For Ethereum, FlashAttention reduces the running time from 9,415 seconds to approx-
imately 7,000 seconds, as shown in the table. Additionally, it nearly halves the GPU memory usage,
enabling more efficient use of hardware resources.

For Solana, the impact of FlashAttention is even more pronounced. Without FlashAttention, the
model cannot handle even a batch size of 1 on an 80GB A100 GPU due to memory constraints. With
FlashAttention, the training process becomes feasible, allowing a batch size of 2 while maintaining
memory efficiency.

These results highlight the critical role of FlashAttention in handling long sequences and en-
abling scalable training for large datasets without sacrificing detection performance. Also, enabling
FlashAttention has no noticeable impact on the accuracy of the model for Ethereum, as it achieves
the same detection performance as the model without FlashAttention. This aligns with its design
goal of optimizing computational efficiency rather than altering model representations or outputs.
This study demonstrates that FlashAttention is essential for enabling efficient training on long se-
quences and large datasets while maintaining detection performance.

Dataset Training Time (s) GPU Memory Usage (GB)
With FlashAttention Without FlashAttention With FlashAttention Without FlashAttention

Ethereum 7,042 9,415 41.5 78.4
Solana 170,210 - 79.4 -

Table 9: Impact of FlashAttention on training time and GPU memory usage for Ethereum and
Solana datasets.

Impact of Base Model. To ensure that the choice of the base model does not significantly influence
the performance of our framework, we conducted additional experiments with alternative state-of-
the-art BERT-like models, such as DeBERTa (He et al., 2020), on the Ethereum dataset. These
models are selected for their outstanding ability in NLP tasks. As shown in Table 10, the results
achieved with DeBERTa are consistent with those of RoBERTa. This validation confirms that our
framework is agnostic to the specific choice of base model, offering flexibility in adapting to other
transformer-based architectures. Future work may explore additional models to further generalize
the framework’s applicability.

Model k=5 k=10 k=15

FPR Recall Precision FPR Recall Precision FPR Recall Precision
DeBERTa 0% 50% 100% 0.28% 80% 80% 0.97% 80% 53.33%
RoBERTa 0% 50% 100% 0.28% 80% 80% 0.97% 80% 53.33%

Table 10: Performance comparison of different base models on Ethereum for various k values.

17

	Introduction
	Background
	Existing Techniques and Limitations
	Key Techniques
	Technique Overview
	Tokenization
	Model Design
	Post-training Detection

	Experiments
	Experimental Setup
	Experimental Results

	Discussion
	Conclusion
	Pseudo Algorithm of BlockFound
	Additional Details on Dataset
	Detailed Experimental Results
	Implementation Details
	Additional Experiments
	Ablation Study

