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Abstract

Algorithms with predictions are gaining traction across various domains, as a way
to surpass traditional worst-case bounds through (machine-learned) advice. We
study the canonical problem of k-facility location mechanism design, where the n
agents are strategic and might misreport their locations. We receive a prediction
for each agent’s location, and these predictions are crucially allowed to be only
“mostly” and “approximately” correct (MAC for short): a δ-fraction of the predicted
locations are allowed to be arbitrarily incorrect, and the remainder of the predictions
are required to be correct up to an ε-error. Moreover, we make no assumption on
the independence of the errors. Can such “flawed” predictions allow us to beat the
current best bounds for strategyproof facility location?
We show how natural robustness of the 1-median (also known as the geometric
median) of a set of points leads to an algorithm for single-facility location with
MAC predictions. We extend our results to a natural “balanced” variant of the
k-facility case, and show that without balancedness, robustness completely breaks
down even for k = 2 facilities on a line. As our main result, for this “unbalanced”
setting we devise a truthful random mechanism, which outperforms the best known
mechanism (with no predictions) by Lu et al. [2010]. En route, we introduce the
problem of “second” facility location, in which the first facility location is already
fixed. Our robustness findings may be of independent interest, as quantitative
versions of classic breakdown-point results in robust statistics.

1 Introduction

Algorithms with predictions is a popular field of study in recent years within the paradigm of
beyond the worst case analysis of algorithms — see Mitzenmacher and Vassilvitskii (2022) for a
comprehensive survey. Motivated by developments in machine learning, this area assumes that
algorithms can access predictions regarding the input or solution, thus leveraging predictability in
typical computational problems. Recently, Agrawal et al. (2022) and Xu and Lu (2022) proposed to
study predictions in the context of mechanism design, where they have the potential to transform
existing designs by adding information about agents’ private knowledge (see Balkanski et al. (2023a)).

Our focus in this work is on the canonical problem of facility location. The (utilitarian) k-facility
location problem is as follows: Consider a multi-set of n points X ⊂ Rd and k facility locations; the
cost of point x ∈ X is the minimum distance between x and any of the k locations. The goal is to
compute k locations that minimize the utilitarian cost, which is the total cost of points in X . In the
context of mechanism design, the points X are the privately-known true locations of strategic agents,
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and the mechanism receives location reports (see Chan et al. (2021) for a recent survey). Facility
location mechanism design with predictions has been studied by Agrawal et al. (2022); Xu and Lu
(2022).1 We diverge from previous work by assuming a prediction for each point — that is, the advice
X ′ consists of a prediction x′

i for every xi ∈ X . Importantly, our measure of prediction error allows
for very large errors (outliers) for a δ-fraction of points (hence we call it the “mostly approximately
correct” model). Our work shows how to get improved bounds despite these large errors, and can
thus be of interest beyond facility location.

Standard worst-case prediction error. In the majority of the literature, the goal of (algorithm or
mechanism) design with predictions centers around two seemingly-conflicting properties: robustness
to erroneous predictions, and consistency with predictions that are non-erroneous. A fairly common
way of achieving both consistency and robustness is interpolating between the approaches of com-
pletely following the predictions, and applying the best worst-case algorithm while disregarding the
predictions. An ideal design is one that gracefully transitions — as the prediction error increases —
from optimal performance when the prediction is correct, to the best-known worst-case performance
(Lykouris and Vassilvitskii, 2021; Purohit et al., 2018; Agrawal et al., 2022). By definition, achieving
such graceful degradation hinges on how the prediction error is measured.

The most common measure of prediction error is arguably the distance between the predicted
and actual values. If X = {x1, . . . , xn} contains the actual values and X ′ = {x′

1, . . . , x
′
n} is

the prediction, the error is defined as η = ℓp(X − X ′), where ℓp represents either the ℓ1 norm
(ℓ1(t) =

∑
i |ti|) or the ℓ∞ norm (ℓ∞(t) = maxi |ti|). This is a “worst case” measure of prediction

error, since a single deviation in one of the n entries can significantly inflate the error. Prediction errors
measured in this way appear in the context of ski rental Purohit et al. (2018), online caching Lykouris
and Vassilvitskii (2021); Rohatgi (2020), the secretary problem Antoniadis et al. (2020), single-item
auctions Xu and Lu (2022), and many other problems. In what follows, we address this type of
prediction error as the “worst case” error model.

Motivation for an alternative measure. We demonstrate the need for an alternative measure of
prediction error combined with new algorithms through the following k-facility location instance, in
which a single error causes the optimal solution for prediction X ′ to perform badly for the actual
dataset X .2

Example 1 (Sensitivity of 2-facility location on a line). Let k = 2, and assume the n agents’ actual
locations X are divided evenly between 0 and 1 on the real line. Let X ′ be the prediction, with all
coordinates predicted accurately except for a single coordinate i, which is predicted erroneously to
be located at x′

i = M ≫ n. While the optimal solution for X is to place the k = 2 facilities at 0 and
1 for a total cost of zero, in the optimal solution for X ′ one of the facilities moves to M . This solution
performs badly for X — the approximation ratio compared to the optimal solution is unbounded.

Figure 1: Illustration of Example 1; the predictions X ′ are on the left side and the real points X
are on the right side. The triangles are the optimal facility locations for the points. A single bad
prediction translates into an unbounded “worst case” error and approximation ratio.

In many ML contexts, it is very possible that a small fraction of points have a large “worst case”
prediction error — even excellent predictors may err on a certain fraction of the dataset. This
motivates alternative measures of prediction accuracy. Concretely, we ask:
Question 1. For 2-facility location on a line (as in Example 1), can we design a mechanism that uses
agent reports to get a good solution despite a large “worst case” prediction error?

We answer this question positively, proving that, using agent reports, it is possible to design resilient
mechanisms against adversarial “worst case” errors. The main take-away is that predictions can still

1Predictions have also been studied for the online non-strategic version of facility location — see Appendix A.
2Similarly, bad performance persists for any algorithm that does not get location reports from the agents.
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be valuable despite high “worst case” prediction error, if the fraction of such grossly-erroneous points
is small. In other words, a high “worst case” prediction error may not always justify “throwing out”
the predictions and settling for the best worst-case guarantee (although it is currently standard in
design with predictions). Our new error model and results thus suggest a new pathway for effectively
utilizing predictive advice in strategic settings, despite significant uncertainties in the predictions.

2 Overview of Contributions

2.1 Our Model

We introduce MAC predictions where MAC stands for Mostly Approximately Correct. This formula-
tion captures the essential features of some closely related previous models, e.g., the model (Azar
et al., 2022) formulated for online metric problems, and the PMAC model of (Balcan and Harvey,
2018) formulated in the context of learning submodular functions. A vector of predictions X ′ is
MAC(ε, δ) with respect to dataset X if at least a (1− δ)-fraction (i.e., most) of the predictions are
approximately correct up to an additive ε-error. Intuitively, if we do not think it is likely that most
of our predictions will be close to being correct —we would typically refrain from relying on them
in decision-making processes. Throughout, δ ∈ [0, 0.5) is assumed to be small (but can still be a
constant). Crucially, when a prediction is not approximately correct (i.e., it belongs to the δ-fraction
of incorrect predictions), the error is allowed to be arbitrarily large. Also, the δ-fraction of wrong
predictions is allowed to be arbitrary among all possible subsets of that size (there is no assumption of
independence). We show that despite their adversarial nature, and the fact that the prediction error is
unbounded, such predictions can be used, in combination with strategic reports, to produce a solution
with better cost compared to the best no-prediction solution.

The MAC prediction model is suitable for capturing errors from a variety of sources including ML-
generated predictions, data that accommodates changes over time, data corrupted by a malicious
user, and expert advice (see Appendix B for more details). The accuracy parameters ε, δ of the MAC
model can also be viewed as confidence parameters. The use of confidence parameters is prevalent in
the algorithms with predictions literature (see, e.g., Agrawal et al. (2022)). Arguably, ε, δ are highly
explainable compared to most confidence measures in the literature, and it is also quite natural to
estimate them from data.

2.2 Our Results

We design both deterministic and randomized strategyproof anonymous mechanisms for facility
location problems, with MAC predictions of the n agent locations. A preliminary simplifying
observation is that in the context of facility location, it suffices to consider mostly-correct (i.e.,
MAC(0, δ)) predictions, since handling a nonzero approximation parameter ε follows directly (see
Appendix C).

Randomized mechanism design. As our main technical result, for 2-facility location on a line we
design a randomized mechanism that guarantees an expected approximation ratio of 3.6 +O(δ) (see
Algorithm 4 and Theorem 9). For sufficiently small (but still constant) δ, this improves upon the
best-known no-prediction expected guarantee of 4 by Lu et al. (2010). (The mechanism of Lu et al.
(2010) works for any metric space.) This result provides a positive answer to Question 1, justifying
the take-away that predictions with high “worst case” error are useful. We give a brief description of
the mechanism in Section 2.3. Note that 2-facility location on a line was also studied by Procaccia
and Tennenholtz (2013), and they provided a deterministic mechanism with an (n−2) approximation
ratio, which is tight (Lu et al., 2010; Fotakis and Tzamos, 2014).

Deterministic mechanism design. For single-facility location in Rd, we design a mechanism that
guarantees an approximation ratio of min{1 + 4δ

1−2δ ,
√
d} (see Algorithm 1 and Theorem 5). For

sufficiently small (but still constant) δ, this improves upon the no-prediction guarantee of
√
d by Meir

(2019), which is tight for d = 2. For β-balanced k-facility location with constant k (in any metric
space), which is a natural extension of facility location where at least a β-fraction of the n points
must be assigned to each of the k facilities (for cost-sharing or load-balancing reasons), we design a
simple strategyproof mechanism which guarantees an approximation ratio of c+O( δβ ), where c is a
constant (see Algorithm 7 and Theorem 13). For a sufficiently small (but still constant) δ, this greatly
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improves upon the best-known no-prediction guarantee of n/2− 1 by Aziz et al. (2020) (we remark
that Aziz et al. (2020) study a variant called capacitated, to which our result applies).3

While we have not optimized the constants, our conceptual contribution is in showing that even if the
worst case error of the predictions is unbounded, it can still provide useful information for improving
the performance of facility location mechanisms when coupled with strategic reports. In other
words, the MAC model allows achieving robustness to outliers while still beating the no-prediction
performance. Our single-facility result demonstrates how the accuracy parameter of the model, δ, can
serve as a trust parameter which has natural explainability. Another interesting feature of our results
is that utilizing MAC predictions seems to suggest a richer family of mechanisms than standard
interpolations of “no-predictions” and “complete trust” in the predictions.

Below we give a summary of the results in tables.

Deterministic Mechanism Design
Problem Best known "no predictions"

approximation ratio
Approximation ratio ob-
tained using MAC predic-
tions

Single facility location in Rd
√
d 1 +O(δ)

β-balanced k facilities in Rd Linear (O(n))* A constant depending on δ, β
Table 1: Deterministic Mechanism Design.
*The linear appoximation ratio is of Aziz et al. (2020) for the capacitated facility location variant
where there is an additional constraint of a maximum cluster size. The β-balanced variant of the
problem was not studied without predictions, but is comparable to the capacitated variant, since a
minimum cluster size (as in the balanced variant) implies a maximum cluster size (and for k = 2, a
maximum cluster size implies a minimum cluster size as well).

Random Mechanism Design
Problem Best known "no predictions"

approximation ratio
Approximation ratio ob-
tained using MAC predic-
tions

2 facility location on a line 4 3.6 +O(δ)
Table 2: Random Mechanism Design

2.3 Our Techniques and Roadmap

We break the problem into two natural conceptual steps. First, we establish what can be done by just
using the predictions – this requires us to show some stability properties of algorithms for k-medians.
For some problems, such as the single facility location, we show that using only the predictions is
enough to get a good approximation ratio. For other problems, such as 2-facility location, it is not
enough, and thus we need to include the input in the computation. For this purpose, we show how
to choose the first facility by just using the predictions, and a way to choose the second facility by
taking the first facility and the input into account. Then, we show how the interplay between these
parts allows us to get a better approximation. Let us now give a few more details for these steps.

Robust statistics and the robustness of the geometric median and k-medians. We first develop
quantitative versions of classic results in robust statistics on breakdown points, which may be of
possible independent interest. Consider a location estimator, a function that gets n points in a metric
space and returns k locations. Its breakdown point is the proportion δ of adversarially-modified points
it can handle before returning an arbitrarily far result from the original estimator. It is well-known that
the mean has a breakdown point of δ = 1/n (consider changing one point to an arbitrarily large value)
and that the median is robust with a breakdown point of δ = 1/2. However, the notion of breakdown
point is qualitative, and does not reveal the relation between the fraction δ of modified points, and how
much the estimator changes. In Section 5 we fill this gap by defining measures of robustness (distance
robustness (Definition 9) and approximation robustness (Definition 10)). Next, we show robustness
properties of the median and its generalizations, showing that the cost of the geometric median

3β-balanced means every cluster is of size at least βn, and hence at most n− (k − 1)βn.
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behaves smoothly as the fraction of modified points increases. These smooth robustness results prove
crucial to obtaining improved mechanisms for facility locations using predictions. Moreover, the
robustness guarantees have interesting interpretations in the context of robust statistics and robust
clustering in machine learning, and might also be of independent interest as explained in Appendix D.

Second facility location. In Section 6.2.1 we introduce the second facility location problem. It is
often the case that facilities are created incrementally and not all at once. Hence, it is natural to ask
how can we design a mechanism for choosing the location of a second facility (say a second hospital)
given an existing first one. We show that the random proportional choice (second step) used in the
proportional mechanism by Lu et al. (2010) achieves a (tight) approximation ratio of 3 for the line
metric, improving over the factor of 4 in the general case for the second facility location problem.

The Robust Half Technique: Beyond interpolation. We generate half of the solution (the first
facility location) from the predictions, and use the result together with the input (agent reports) to
generate the other half of the solution (the second facility location). To generate the first half of the
solution, we define and analyze a robust location estimator we name BIG-CLUSTER-CENTER (which
turns out to be a non-trivial task); Hence the name: "Robust Half". To generate the second half of the
solution from the input (given the first half) we define and analyze the second facility location on
the line problem. Finally, to combine the results we consider two cases: the input either induces a
balanced clustering or an unbalanced clustering. We utilize the robustness results (both for balanced
k-medians and for Big-Cluster-Center) to show that in both cases we get a good approximation ratio.
Our mechanism differs from many existing designs which interpolate between the two approaches of
trusting the predictions and using the no-predictions algorithm.

3 Related Work

Facility location mechanism design with predictions. In the “worst case” error model, Agrawal
et al. (2022) show a mechanism for single-facility location on the real plane R2. Their prediction
consists of a single value representing advice for where to locate the facility. Given a trust parameter
c ∈ [0, 1], their mechanism guarantees an approximation ratio of at most

√
2c2+2
1+c if the prediction is

perfect, and
√
2c2+2
1−c in the worst case. In theory, we could reduce the MAC model to the one studied

by Agrawal et al. (2022), by setting their single prediction to be the geometric median of the MAC
predictions. Then c can be determined according to δ. However, knowing δ and the δ-robustness of
1-Median, we can directly choose either the no-predictions mechanism or the predictions’ 1-Median,
rather than interpolating between these two solutions.

Mechanism design for the 2-facility location on the line with predictions is studied by Xu and Lu
(2022), where the predictions are for the locations of the agents. While they do not define an error
parameter, their deterministic mechanism is in line with the “worst case” prediction error model: it
achieves an approximation ratio of n

2 if the predictions are perfect, and 2n if they are arbitrarily bad.

Two-facility location on a line mechanism design without predictions. In the setting of no-
predictions, the best strategyproof deterministic anonymous mechanism achieves a tight approxima-
tion ratio of n− 2 Procaccia and Tennenholtz (2013); Fotakis and Tzamos (2014). In comparison, in
our MAC model under the additional assumption that the number of agents assigned to each facility
in the optimal solution is of minimum size Ω(δn), the deterministic mechanism in Algorithm 7
achieves a constant approximation ratio. Under no further assumption, our randomized mechanism in
Algorithm 4 achieves a constant expected approximation ratio for small δ.

Additional related work is deferred to Appendix A.

4 Formal Definitions

Let (V, d) be a metric space and k, n ∈ N. The input to the facility location problem is a multi-set X =
{x1, . . . , xn} ∈ V n. We are also given a prediction, which is another multi-set X ′ = {x′

1, . . . , x
′
n} ∈

V n. The distance between a point u and a multi-set W is d(u,W ) = minw∈W d(u,w). The
Hausdorff distance between multi-sets U,W ∈ V n is

dH(U,W ) := max{max
u∈U

d(u,W ),max
w∈W

d(w,U)},

that is, the maximum distance between a point in one multi-set and the other multi-set.
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Definition 1. Fix ε ≥ 0. For x, x′ ∈ V , we say x′ is an ε-correct prediction of x if d(x, x′) ≤ ε,
otherwise we say it is ε-incorrect.
Definition 2. The (ε, r)-neighborhood of multi-set X ∈ V n is defined to be all predictions X ′ ∈ V n

such that |{i ∈ [n] | x′
i is an ε-incorrect prediction of xi}| ≤ r.

The (0, r)-neighborhood of X is often just referred to as the r-neighborhood of X .
Definition 3 (Mostly Approximately Correct (MAC) Predictions). Fix ε ≥ 0, δ ∈ [0, 0.5). The point
set X ′ is an (ε, δ)-MAC prediction for X if X ′ belongs to the (ε, δ|X|)-neighborhood of X .
Definition 4 (Location Estimator). For n, k ∈ N, a function f(X) : V n → V k is called a location
estimator.

Some common examples of location estimators with k = 1 for points on the real line are the minimum,
maximum, mean, and median; for general metric spaces, k-means and k-medians are well-studied
examples (k-means is similar to k-medians with squared distances). For k = 1 and V = Rd, the
k-medians solution is also called the GEOMETRIC-MEDIAN which is a generalization of the median
to higher dimensions. A different such median generalization is the COORDINATE-WISE-MEDIAN:
Definition 5. For a multi-set of n points X ⊆ Rd: COORDINATE-WISE-MEDIAN(X) :=
(l1, . . . , ld) where where lj is the median of the multi-set of the j’th coordinates of X for all j ∈ [d].
Definition 6 (k-medians cost function). Given multi-sets X ∈ V n, F ∈ V k, the k-medians cost
function is

medk(X,F ) :=
∑
x∈X

d(x, F ). (1)

In the context of the facility location problem, this function is also known as the social cost function
or the utilitarian goal function.

The k-medians problem takes as input a multi-set X ∈ V n and outputs a multi-set F that minimizes
this cost function. The minimizer F ∗ ∈ V k the problem is called the k-Medians solution. k-Medians
can be viewed as a location estimator of X that optimizes the k-medians objective function:
Definition 7 (Center-Induced Partitions). A collection of centers F = {f1, . . . , fk} ⊆ V k induces
a partition C = {C1, . . . , Ck} of the dataset X if Ci ⊆ {x ∈ X | d(x, fi) ≤ d(x, fj)∀j}. This
partition is called the clustering of X induced by F . This partition (or clustering) is β-balanced if
|Ci| ≥ β|X| for all i ∈ [k].

Note that a collection C need not be unique, since points in X can “choose” between any of their
closest centers in F .
Definition 8 (β-balanced k-median). The β-balanced k-medians problem takes a dataset X ∈ V n

as input, and outputs centers F ∈ V k along with an induced β-balanced partition C of X; the goal
is to minimize the cost function medk(X,F ) =

∑
x∈X d(x, F ).

This problem is similar to the lower-bounded k-median problem where we want to output F =
{f1, . . . , fk} ∈ V k as well as a partition {C1, . . . , Ck} of X such that |Ci| ≥ β|X|, in order to
minimize

∑
x∈Ci

d(x, fi) (see Han et al. (2020), Wu et al. (2022)). A significant difference between
that definition and ours is that we require the partition to be induced by F (in the sense of Definition 7),
which is not required by lower-bounded k-median.

5 δ-Robustness of Location Estimators

In this section we define notions of robustness with respect to changing a δ-fraction of the points
(hence referred to as δ-robustness) and analyze the δ-robustness of 1-Median and k-Medians. These
results will be very useful for the mechanism design for facility location with predictions. We
consider two robustness notions for location estimators: The first notion measures the movement
in the solution (as measured by the Hausdorff distance), and the second measures the change in an
objective function applied to the solution.

Definition 9 (Distance Robustness). Let ρ ≥ 0, δ ∈ [0, 0.5). For location estimators f, f̂ : V n → V k,
we say that f̂ is (ρ, δ)-distance-robust with respect to f if for any X ∈ V n and any X ′ in the δ|X|-
neighborhood of X ,

dH

(
f(X), f̂(X ′)

)
≤ ρ.
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If f̂ = f , we say that f is (ρ, δ)-distance-robust.

In the next definition, cost function F is evaluated for the same dataset X ∈ V n with respect to two
different solutions f(X) and f̂(X ′).

Definition 10 (Approximation Robustness). Let γ ≥ 1, δ ∈ [0, 0.5) and let F : V n×V k → R≥0 be a
cost measure. For location estimators f, f̂ : V n → V k, we say that f̂ is a (γ, δ)-approximation-robust
solution for cost function F with respect to f if for any X ∈ V n and any X ′ in the δ|X|-neighborhood
of X ,

F (X, f̂(X ′)) ≤ γ · F (X, f(X)). (2)

If f̂ = f , we say that f is a (γ, δ)-approximation-robust solution for F . If Eq. (2) only holds for
datasets X ∈ Y for some Y ⊆ V n, we say that f is a (γ, δ)-approximation-robust solution for F
restricted to instances Y .

We give the the following δ-robustness results. For the 1-Median:

Theorem 2. For δ < 1/2, the 1-Median location estimator is
(

2
(1−2δ) ·

med1(X)
|X| , δ

)
-distance-

robust, where med1(X) is the optimal cost of the geometric median, that is: med1(X) =∑
xi∈X d(xi, GEOMETRIC-MEDIAN(X)).

Corollary 3. For δ < 1/2, the 1-Median estimator is (1 + 4δ
1−2δ , δ)-approximation-robust for med1.

Recall Example 1 from Section 1. In this example, no choice of k = 2 centers simultaneously
achieves a good (bounded) approximation for the 2-medians problem on both X and X ′. Given
this negative example, we turn to a balanced version of k-medians for which we are able to give a
robustness guarantee. The following theorem shows that computing the best “slightly less balanced”
solution on the predictions has a cost (on the original dataset X) that is close to the optimal one.

Theorem 4. Let b > 2k+ 2. Consider the algorithm B that computes the optimal (b− 1)δ-balanced
k-medians solution on its input. For any instance X ∈ V n of the bδ-balanced k-medians problem
with optimal solution G, let X ′ ∈ V n belong to the δ-neighborhood of X . The algorithm B, when
given X ′, returns a solution H such that

dH(G,H) ≤ 2k

δ|X| · (b− 2− 2k)
·
∑
x∈X

d(x,G).

Moreover, the k-medians cost medk(X,H) ≤ (1+ 4k
b−2−2k )medk(X,G), and H induces a (b−2)δ-

balanced partition CH of X .

For a fixed value of k, this theorem gives a solution H that is (b−2)δ-balanced and also (1+O(1/b), δ)-
approximation-robust with respect to the best bδ-balanced solution.

Missing proofs are provided in Appendix E. The intuition behind the proofs in this section is that since
most points (1− δ) are shared between the actual instances and the predictions, any cost-minimizing
solution for the predictions will be close (in terms of Hausdorff distance) to the cost-minimizing
solution for the real points, thus resulting in a similar cost as implied by Lemma 10 in Appendix E.

6 Mechanism Design for Facility Location with MAC Predictions

6.1 Warmup: Deterministic Mechanism Design for Facility Location

In this section we show how to design deterministic mechanisms for facility location problems
that utilize the MAC predictions to get better approximation guarantees. We do so by utilizing the
δ-robustness results from Section 5. In the mechanism design setting, there are n agents with (true)
locations X = {xi | i ∈ [n]} ∈ Rd, where d is the dimension of the facility location problem. The
mechanism has access to location reports by the strategic agents, and also to X ′ = {x′

1, . . . , x
′
n},

which are the MAC(ε, δ) predictions of the true locations X . The mechanism only has access to
the reported locations (X̃) and the predictions (X ′). For any strategyproof mechanism, the reported
locations will be the same as real ones (X = X̃) as illustrated in Fig. 2.
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Figure 2: There are three sets of points: The real locations X (black), the reported locations X̃
(yellow), and the predicted locations X ′(blue). The algorithm can only access X̃,X ′. For any
strategyproof mechanism, the yellow and black points overlap.

As explained in Appendix C, for the sake of the analysis we assume that ε = 0. All proofs can be
found at Appendix F.

For the single facility location problem (k = 1): In this setting we assume δ (or an upper bound
value) is known and thus we can simply check in advance if 1 + 4δ

1−2δ ≤
√
d or not, and use the

algorithm that guarantees us the best approximation ratio.

Algorithm 1: Best-Choice-Single-Facility-Loc(X,X ′, δ)

if (1 + 4δ
1−2δ ≤

√
d)

then return GEOMETRIC-MEDIAN(X ′)
else return COORDINATE-WISE-MEDIAN(X);

See Appendix F.2 for a clarification on the computation of the geometric median.

Theorem 5. Algorithm 1 is strategyproof and gets an approximation ratio of min
(
1 + 4δ

1−2δ ,
√
d
)

.

Supporting the weaker setting of high probability (only w.p. 1 - o(1/n)) MAC predictions: In
Appendix F.3 we show how to achieve the same approximation ratio as in Theorem 5.

For the k facility location problem: In a similar way to the single facility, we can also get a deter-
ministic mechanism for the k facility location problem with predictions, under some balancedness
condition (see Appendix G). The balancedness condition roughly translates to a minimum cluster
size in the optimal solution. The resulting approximation ratio is bounded by 1 + 4k

b−2−2k where b is
a constant that depends on the minimum cluster size and δ.

6.2 Randomized Mechanism Design for 2-Facility Location on a Line

We now consider the 2-facility-location problem, where the metric is given by the real line R.
Formally, our metric is over the point set V = R, with d(x, y) = |x− y|. There are n agents with
locations on the real line X = {x1, . . . , xn}, and the cost of a solution G ∈ V 2 is medk(X,G) =∑

xi∈X d(xi, G). In the mechanism-design setting, the agent locations X are unknown, but we
are given (a) MAC predictions X ′ for these locations, as well as (b) the agents’ reports for their
locations. Unlike in the β-balanced problem variation, we do not assume the balancedness of the
optimal solution, but handle the unconstrained case where the optimal solution might induce either
a balanced or an unbalanced clustering of X . In this section, we present a strategy-proof radnom
mechanism with a small (expected) approximation ratio.

Before doing so, we solve two other problems. After we solve those in Sections 6.2.1 and 6.2.2, we
use the solutions in our mechanism for the 2-facility-location on a line problem in Section 6.2.3.

6.2.1 The Second Facility Location Problem

First, we define another independent mechanism design problem (the second facility location) for
which we show a randomized mechanism. We later use to solve the 2-facility-location problem.
Definition 11 (Second Facility Location). Given a metric space (V, d), a dataset X ∈ V n, and
a single facility hS ∈ V , the goal is to find another facility hT to minimize the 2-medians cost
med2(X, {hS , hT }).
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We consider the following SECOND-PROPORTIONAL-MECHANISM, which is the second step of the
random mechanism for the 2 facility location on the line problem proposed by Lu et al. (2010).

Algorithm 2: SECOND-PROPORTIONAL-MECHANISM (X,hS)

ai ← d(xi, hS);
Pick h ∈ X such that Pr[h = xi] = ai/

∑
j∈[n] aj;

Lemma 6. SECOND-PROPORTIONAL-MECHANISM is strategyproof for any metric space.

Theorem 7 (Second Facility Results). Let V = R. Fix any dataset X and first facility {gS}. For
any second facility g∗T ∈ V ; let (S, T ) be a partition of the dataset induced by F ∗ = {gS , g∗T }. The
expected cost of SECOND-PROPORTIONAL-MECHANISM given X and gS is:

E[med2(X, {gS , gT })] ≤ 2med1(S, {gS}) + 3med1(T, {g∗T }), (3)

where gT is the second facility location chosen by SECOND-PROPORTIONAL-MECHANISM.

We defer the proofs of Lemma 6 and Theorem 7 to Appendix I. See Remark 29 for a tight example.

The algorithm prioritizes farther locations (belonging to agents who pay more if their location is not
chosen) over agents that are near the first facility. The intuition for the strategyproofness is that if the
agent deviates to a different location, it might be chosen with a higher probability, but the agent will
also pay more. The largest technical difference in the analysis from Lu et al. (2010) is our introducing
of a more delicate analysis for the line metric. We stress, however, that the better approximation
ratio of 3 (rather than the ratio of 4 of Lu et al. (2010)) is due to the different nature of the problem
(rather then the more delicate analysis) as both algorithms are tight for the line metric. One intuitive
explanation for why the similar approach works better for the second facility problem is that the first
facility is fixed and so we do not have to pay the cost of "guessing it" as done in Lu et al. (2010).

6.2.2 The δ-Robustness of the Big Cluster Center

Our randomized mechanism uses the predictions to estimate one facility, and randomly chooses the
second facility. For this purpose, we come up with an algorithm to “estimate” the first facility location.
We formally define what it means to “estimate” one of the two facilities, and then we quantify the
distance and approximation robustness of the estimator. This is the last piece of the puzzle that
we need for our randomized mechanism. The idea here is that even though Example 1 shows we
cannot simply compute the optimal solution, most of the predictions are correct and contain useful
information: We can still get a good estimation for one of the two centers of the optimal solution. In
this section, we show an algorithm (location estimator), BIG-CLUSTER-CENTER, that “estimates”
of the center of the bigger4 cluster center out of the two clusters induced by 2-Medians.
Definition 12 (BIG-CLUSTER-COST). For any X = {x1, . . . , xn} ∈ V n, let F be its optimal
2-median, and let C = C (X,F ) be the induced clustering. Let BIG-CLUSTER(X) be the cluster in
clustering C with at least |X|/2 points (if both clusters have the same size BIG-CLUSTER(X) can be
the one containing x1). For t ∈ V , define

BIG-CLUSTER-COST(X, t) := med1(BIG-CLUSTER(X), t).

Definition 13 (Big Cluster Location Problem). Given n points X ∈ V n, the objective is to find a
point t ∈ V to minimize the cost function BIG-CLUSTER-COST(X, t).

We specifically focus on the line metric, and only consider X ∈ Rn instances where the clustering
induced by 2-Medians(X) are bδ-unbalanced for some (some constants) b > 1, δ ∈ [0, 1/2).

Algorithm 3: BIG-CLUSTER-CENTER(X)

(hL, hR) = (b− 1)δ -BALANCED 2 -MEDIAN(X) ;
L′ = {xi ∈ X | d(xi, hL) ≤ d(xi, hR)};
R′ = X \ L′;
Return hL if |L′| ≥ |R′| and hR otherwise;

4For any clustering induced by any 2 points in space, there is always one bigger cluster (that is, the cluster
that contains at least half the points).
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Theorem 8. Let Y be the collection of all datasets in R for which the optimal 2-medians induces no
bδ-balanced clusterings. Then for a small enough (constant) δ, Algorithm BIG-CLUSTER-CENTER
is (1.8 + O(δ), δ)-approximation-robust for the cost function BIG-CLUSTER-COST restricted to
instances in Y .

The intuition for the proof of Theorem 8 is that one cluster has a big portion of the points, and
most of them also appear in the predictions. Thus, in the cost minimizing solution computed on the
predictions, there must be a big center “near” these points (since any solution far away from these
points would result in a higher cost). The analysis is close to tight (see Remark 25 in Appendix H).

6.2.3 The 2-Facility Location Algorithm

Our randomized algorithm below first uses the BIG-CLUSTER-CENTER procedure on the predictions
to approximate the “big” cluster center, and then uses the SECOND-PROPORTIONAL-MECHANISM
to approximate the second cluster center using only the agents’ reports. (We set b ∈ R>1 such that
the approximation robustness in Theorem 4 equals 1.2.) The proof is at Appendix J.

Algorithm 4: Robust-Half-Mechanism(X,X ′)

h1 = BIG-CLUSTER-CENTER(X ′, b, δ);
h2 = SECOND-PROPORTIONAL-MECHANISM(X,h1);
Return H = (h1, h2);

Theorem 9. For a small enough (but still constant) δ: Algorithm 4 is strategyproof and has an
expected approximation ratio of 3.6 +O(δ).

The proof uses most of the tools we came up with so far, and it considers two main scenarios: when
clustering is bδ-balanced and when it is unbalanced. In both cases, by leveraging the δ-robustness
of 1-median, 2-medians, big-cluster-center and the (randomized) strategic placement of the second
facility, the mechanism ensures that the solution approaches the optimal cost.

7 Conclusion and Future Directions

We explore strategyproof facility location within our introduced MAC predictions error model. Our
model integrates the trust level into the error model, handles outliers, and leads to new mechanism
designs (that do not seem to be an interpolation between completely trusting the predictions and
resorting to a "no-predictions" method). To analyze our designs, we utilize distance and approximation
robustness notions established in Section 5.

An immediate question arising from our results is whether there is a deterministic mechanism with
MAC predictions for 2-facility location on a line that yields a constant approximation. Another
avenue for future research is improving the approximation ratio by randomized mechanisms for
this problem. One promising strategy entails refining the selection process for the first facility in
Algorithm 4, which can lead to a superior approximation ratio. Our current mechanisms treat the
multi-sets of predictions and reported values as independent entities; an intriguing direction for
further investigation is to devise mechanisms that capitalize on the matching between predictions and
agent-reported values, potentially yielding a more accurate approximation ratio. Lastly, exploring the
application of the MAC model to problems beyond mechanism design for facility location may yield
insights into the efficacy of such predictions in diverse contexts.
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Organization of the Appendices

Appendix A contains more related work.

Appendix B contains more examples for sources of MAC predictions.

Appendix C contains the explanation for the effect of ε > 0.

Appendix D contains an interpretation of the established robust statistics δ-robustness results.

Appendix E contains the proofs for Section 5.

Appendix F and Appendix G contain proofs and supplementary material for Section 6.1.

Appendix H, Appendix I and Appendix J contain the missing proofs for section Section 6.2 (for the
analysis of Algorithm 4 - "Robust Half" mechanism). Namely:

• Appendix I contains the proof for Algorithm 2 properties: Lemma 6, Theorem 7.
• Appendix H contains the proof of Theorem 8.
• Appendix J contains the proof of Theorem 9.
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A Additional Related Work

Models of prediction accuracy. Azar et al. (2022) study online graph algorithms with a notion
of error they call metric error with outliers, applied to problems where the predictions are locations
in a metric space. The error parameters of this model are D and ∆—roughly, D is the minimum
cost matching between the predictions and the actual locations, where ∆ outliers may be excluded
from the matching. These parameters are similar to the (ε, δ) parameters of the MAC model. They
then give a general framework for solving online graph problems in their model. Interestingly, their
matching cost D captures a notion of average error, whereas we focus on individual error; while our
results can be extended to fit within their model, it would be interesting to investigate a version of
MAC where ε captures some notion of average error.

Gkatzelis et al. (2022) generalize the outlier model of Azar et al. (2022) and apply it to improve
the price of anarchy of cost-sharing mechanisms. Xu and Moseley (2022) study online Steiner
tree problems with predictions where the error parameter is the number of erroneous predictions.
Bernardini et al. (2022) introduce a model named the “cover error model” that generalizes the model
of Azar et al. (2022) to achieve more precision for online problems.

Gupta et al. (2022) study predictions that are incorrect independently with probability δ. Their work
focuses on online algorithms rather than mechanism design. Our model is related to their model since
independent errors imply MAC predictions w.h.p. by Chernoff. The MAC model is more general in
the sense that it does not assume independence of erroneous predictions. Emek et al. (2023) also
consider a similar model to the one of Gupta et al. (2022), assuming access to predictions that are
correct with some probability or contain random bits otherwise. Dütting et al. (2021) consider a
signaling scheme advice model for the secretary, which for binary ML-advice roughly translates into
measures of accuracy of the signals (named recall and specificity).

Jiang et al. (2021b) consider a prediction guaranteed to be inside a prediction interval. While their
error model is closer to the “worst case” error model, their motivation is confidence intervals from
statistics, where it is reasonable to assume that a confidence interval is achieved with probability 1− δ
for some δ ∈ [0, 1]. Sun et al. (2023) consider an approach for “uncertainty quantified” prediction.
One class of predictions they focus on, the “probabilistic interval prediction”, can also be seen as
a a confidence interval, as in the motivation of Jiang et al. (2021b). Like our MAC model, they
“model in” the amount of trust in the advice. Sun et al. (2023) focus on settings where the algorithm
receives a single prediction (such as the ski rental problem). They use online learning for tuning the
trust parameters, and introduce a regret minimization analysis for learning the trust parameter online
(over many instances of the same problem). The MAC model addresses problems that necessitate the
quantification of uncertainty for multiple predictions simultaneously within the same input instance,
such as in the k-facility location problem.

Mechanism design for facility location problems without predictions.

Mechanism design for the single facility location problem. In the single facility location in Rd

problem, the task is to return a single facility minimizing the social cost function. For the case of no-
predictions, Meir (2019) shows a deterministic strategyproof mechanism that gets an approximation
ratio of

√
d which is optimal for d = 2 (Goel and Hann-Caruthers (2023)). The optimal deterministic

strategyproof mechanism is computing the COORDINATE-WISE-MEDIAN of the points. In short,
the
√
d ratio follows from the fact that COORDINATE-WISE-MEDIAN is the optimal solution is the

optimal solution w.r.t the l1 norm, which is at most sqrt(d) times l2 norm. The goal of introducing
predictions is to get something better than

√
d in this context.

Mechanism design for the two facility location on the line. In this variant the goal is to return two
facilities to minimize the social cost, where all points lie on the real line R. We want to find a
strategyproof mechanism that given the agent reported locations returns the two locations for facilities
in R, s.t. the social cost is minimal. A deterministic n− 2 approximation ratio mechanism (called the
"Two Extremes" mechanism) was given by Procaccia and Tennenholtz (2013), and a lower bound of
n/2− 1 was given by Lu et al. (2010) which was later improved to (the tight) lower bound of n− 2 by
Fotakis and Tzamos (2014). A randomized strategyproof mechanism with an expected approximation
ratio of 4 was given by Lu et al. (2010) (which also works for any metric space), while the currently
best known lower bound for random mechanisms (Lu et al. (2009)) is 1.045.
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k-facility location. For k > 2, Fotakis and Tzamos (2014) show that there is no deterministic
anonymous strategyproof mechanism with a bounded approximation ratio for k-facility location on
the line for the general case (not just balanced) for any k ≥ 3, even for simple instances with k + 1
agents. Moreover, they show that there do not exist any deterministic strategyproof mechanisms with
a bounded approximation ratio for 2-Facility Location on more general metric spaces, which is true
even for simple instances with 3 agents located in a star.

Mechanism design for the capacitated facility location is a variant of the problem studied by Aziz
et al. (2020) where each facility has a maximum capacity, limiting the number of points that can be
assigned to it. For the utilitarian cost function, they have shown a n/2− 1 approximation ratio.

Robust k medians and facility location. The robustness of the (offline non-strategic) k medians and
k facility location has been studied under different variations. As Example 1 demonstrates, it is not
possible to get any bounded approximation ratio for the optimal solution. The approach of Charikar
et al. (2001) is to look at different variants of the problems with less restrictive objectives. In one
variant they consider, the problem is to place facilities so as to minimize the service cost to any subset
of facilities of size at least p for some parameter p. Another variant they consider allows denial of
service for some of the clients with the additional cost of some penalty for each such denied client.
For work in these kind of models see Krishnaswamy et al. (2018); Agrawal et al. (2023).

Other models of advice/predictions. In the recent literature of algorithms with predictions there are
existing other models for algorithms with predictions which are different from the models we already
discussed. We now mention some of them.

Some other ML advice is to focus on values that are learned via classical PAC learnability and focus
on the learnability and analysis of sample complexity bounds. The assumption is that there is some
distribution generating the input for the algorithm. Then the approach is to learn the distribution
in terms of classic supervised learning. This kind of modeling is detailed in Anand et al. (2020),
Lavastida et al. (2020), Anand et al. (2021).

Diakonikolas et al. (2021) assumes that the advice is not given deterministically, but that they can
access the distributions of the inputs and sample from these: they consider access to the instances of
interest, and the goal is to learn a competitive algorithm given access to i.i.d. samples. They provide
sample complexity bounds for the underlying learning tasks.

Online variants of the facility location problem with different notions of prediction were studied
e.g. by Almanza et al. (2021); Fotakis et al. (2021); Jiang et al. (2021a); Azar et al. (2022); Gupta et al.
(2022); Azar et al. (2023); Anand et al. (2022). The online setting of the problem differs significantly
from our mechanism design setting: the real points arrive in sequence where each time an irrevocable
decision must be made by the online algorithm (unlike the mechanism design setting where all the
input is given to the mechanism at once, but is reported by strategic agents).

Learning the trust parameter. In the context of online algorithms with prediction, Khodak et al.
(2022), show that the confidence parameter can be estimated under certain conditions via online
learning. Sun et al. (2023) also have online learning analysis to estimate their different type of
confidence parameter.

Other algorithmic game theory with prediction work Istrate and Bonchis (2022) study mechanism
design with predictions for obnoxious facility location where agents prefer to be as far as possible
from the facilities. Research in algorithmic game theory incorporating predictions, beyond the
previously discussed work, has been explored by Balkanski et al. (2023b,c); Berger et al. (2023);
Balcan et al. (2023).

Models outside of algorithms with predictions literature. One way to view the MAC model is
to view the predictions as data with with corruptions. Designing algorithms to try and handle the
corruptions was studied before. Multi-Arm-Bandit with corruptions is such a setting (Lykouris et al.
(2018); Krishnamurthy et al. (2020); Amir et al. (2020)).

Zampetakis and Zhang (2023) propose the use of robust statistical estimators for strategyproof
mechanism design in a Bayesian setting. They show how to use a location estimator which is robust
to corrupting δ fraction of the data drawn from some known distribution, to get a strategyproof
mechanism for the same location problem. This is conceptually very similar to our result for the
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single facility case. Since there is no robust estimator for the two-facility problem, their approach
cannot apply without making Bayesian assumptions; nonetheless, in our work we show how to use
predictions and agent reports to get improvements on the worst-case approximation guarantees.

B MAC Prediction Sources

The MAC prediction model is suitable for capturing errors from a variety of sources, mainly:

• Machine learning. In practice, useful ML models produce predictions which are mostly
accurate, and the accuracy parameters ϵ, δ can be estimated through testing. For example,
we often have a predictor with the guarantee that each prediction (independently) will
be ε-correct with probability at least 1 − δ. Thus, through concentration bounds such as
Chernoff, with high probability the number of predictions which are ε-incorrect is at most
≈ δn. This was the motivation in Balcan and Harvey (2018). Gupta et al. (2022) also
consider independent predictions, each correct w.p. δ. Note that unlike this example, the
MAC model does not require that the predictor’s errors are independent (and in that sense is
a generalization, having a weaker assumption).

• Data with corruptions. In a setting in which the algorithm’s input itself might contain
errors, we can treat the corrupted input as a prediction of the true input and apply the MAC
model. Corruptions can be a result of adversarial changes to the algorithm’s input, e.g., in
a malicious attempt to affect the output — in which case the adversary may change only
a δ-fraction of the input to avoid getting caught. Corruptions can also capture outliers in
the data, e.g., as a result of rare but arbitrary measurement errors. This was the motivation
in Azar et al. (2022). As another example, the input data may have been collected at a
certain point in time, while the ground truth continues to evolve — in the context of facility
location, a population census may form the prediction, with errors occurring since a small
fraction of the population has relocated since being surveyed.

• Experts advice. The data can also originate from expert advice, where experts are usually
correct, but can be significantly inaccurate when they are wrong.

C Supporting Small ε > 0 Values

Throughout the analysis we assume that ε = 0, meaning each prediction is either wrong, or exactly
correct. As we predict values in space (such as real values) it is hard to expect exact precision in the
predictions. Thus, we can weaken this assumption by allowing a prediction to be “correct” if it is
ε-accurate for some small ε > 0 value. Consider, for example, the scenario where we want to locate
a hospital close to where people live where the locations are the house addresses. An “approximately
correct” prediction that equals to the location of the house next door to the actual house of a person
would be a reasonable prediction but would result in a small ε > 0. The prediction (and the cost) is
almost the same, but it is not exactly right.

Consider, for example, the case of the single facility location problem. The effect of ε on the
approximation ratio is bounded by an additive term of at most εn, simply because each of the n
points “contributes” another additive ε term. If εn is small in comparison to OPT , or equivalently,
if ε is small compared to OPT/n then the effect on the approximation ratio will be small; also, it
simply means that every agent pays at most ε more on average. On the other hand, if ε is big in
comparison to OPT/n, then we have no chance to compute a good solution. Indeed, OPT/n is the
average deviation of the points from their true geometric median, which can be viewed as a notion of
the variance of the input; this is a measure of the “scale” of the cost of the problem, and a noise level
above this value swamps the signal in the data.

We drop the ε from the calculations to avoid “dragging” the additive ε-dependent term along each
result.

D Robust Statistics and Clustering Results Interpretation

In Section 2.3 we’ve mentioned how the δ-robustness notion generalizes the breakdown point notion
from robust statistics. The existing literature does have a quantitative approach, but mostly for specific
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distributions or for distributions under some constraints, and mostly for mean and covariance robust
estimation. For example, Lai et al. (2016) shows that the distance between the mean of a Gaussian
distribution in Rd from the geometric median is Ω(δ

√
d). In section Section 5 we give the definitions

of δ-robustness, to consider the robust estimation of general location estimators (such as the mean,
median and their generalizations) for data chosen adversarially (thus fitting any distribution, with no
further assumption). Then, we use these to study the robustness of the median and its generalizations
to adversarial corruptions.

In Appendix E.1, we show that 1-Median (also known as the geometric median) has a dis-
tance robustness of Oδ(1) · MAD(X) where Oδ(1) is a small δ-dependent constant, and MAD
stands for Mean Average Deviation, a known notion of variance defined as MAD(X) :=
1
n

∑
xi∈X d(xi, GEOMETRIC-MEDIAN(X)). An interpretation of our result is that given a small δ,

the robustness of the geometric median depends on the MAD of the points, and the quantification
of this relation is given by Theorem 2 and Corollary 3. When we calculate the (geometric) median
we often want a single point representing the dataset. The geometric median represents the dataset
in the sense that it is the point closest to the dataset points. Intuitively, for data with high MAD (or
variance), there is no single point that represents it in a good way. Consider the examples in Fig. 3:

Figure 3: Illustration of instances with different MAD; In the LHS example, MAD is very high
unlike RHS where MAD = 0.

On the left example (high MAD example) half the points at 0 and half the points at 1: no single point
can represent the data in a good way — any point returned would misrepresent half the data. In the
second example (low MAD example) all points are co-located at 0. In this case MAD = 0 and so
the geometric median (at 0) represents the dataset in the best possible way — it equals to every point
in the dataset. So the interpretation of the results here is that the geometric median is robust in the
sense that it still returns a good representation of the dataset: a point that gets a representation of the
dataset, which is almost as good as the real "best" representation of the dataset.

In Appendix E.2, we show that for k > 1 there is no hope for robustness of k-medians. We thus turn
to β-balanced k-medians, which are k medians that induce clusters of size at least βn, where n is
the total number of points (see Definition 7). Clustering with the additional constraint of minimum
cluster size has applications such as data privacy (Aggarwal et al. (2010)), or clustering with a
minimum/maximum cluster size (capacitated variation). The robustness of β-balanced k-medians
implies that balanced clustering algorithms can be robust to adversarial corruptions, outliers or
missing values.

In our context, we show the usefulness of these δ-robustness results for all of the mechanisms for the
MAC predictions settings.

E δ-Robustness of the Median and Its Generalizations: Proofs and More
Details

First, we show a lemma connecting the distance robustness to the approximation robustness notions,
in the context of k-Medians.
Lemma 10. Consider location estimators f, f̂ : V n → V k that satisfy the following two properties:

1. For any X ∈ V n and X ′ in the δ|X|-neighborhood of X ,

medk(X
′, f̂(X ′)) ≤ medk(X

′, f(X));

2. f̂ is (ρ, δ)-distance-robust with respect to f .

Then f̂ is a
(
1 + 2δ|X|ρ

medk(X,f(X)) , δ
)

-approximation-robust solution for F = medk with respect to f .
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Proof. Let n = |X|, let A := {i ∈ [n] | xi = x′
i} be the indices where X,X ′ are the same, and

B := [n] \A be the remaining indices. Define G := f(X) and H := f̂(X ′). Using this notation we
can write medk(X, f̂(X ′)) as∑

i

d(xi, H) =
∑
i

d(x′
i, H) +

∑
i∈B

(d(xi, H)− d(x′
i, H))

≤
∑
i

d(x′
i, G) +

∑
i∈B

(d(xi, H)− d(x′
i, H)) (4)

=
∑
i

d(xi, G) +
∑
i∈B

(d(x′
i, G)− d(xi, G)) +

∑
i∈B

(d(xi, H)− d(x′
i, H))

= medk(X, f(X)) +
∑
i∈B

(d(x′
i, G)− d(x′

i, H)) +
∑
i∈B

(d(xi, H)− d(xi, G)), (5)

where (4) uses the first assumption of the theorem.

We claim that each of the differences in Eq. (5) is at most dH(G,H). Indeed, for any x ∈ V , let
its closest points in G and H be g and h respectively. Then d(x, g) − d(x, h) ≤ d(g, h) by the
triangle inequality, and this is at most the Hausdorff distance; the case of d(x, h)−d(x, g) is identical.
Therefore,

medk(X, f̂(X ′)) ≤ medk(X, f(X)) + 2|B| · dH(G,H).

Finally, using the definition of (ρ, δ)-distance-robustness implies that dH(G,H) is at most ρ. The
fact that |B| ≤ δ|X| completes the proof.

Now, we move onto proving the robustness of 1-Median (which is GEOMETRIC-MEDIAN for a
Eucledian space).

E.1 The δ-Robustness of 1-Median

In this section, we quantify the distance robustness (and hence approximation robustness, by
Lemma 10) of the 1-median location estimator. We show that changing any δ-fraction of a dataset X
where δ < 1/2 can move the 1-Median by only 2

1−2δ times the average cost of a point in the optimal
solution of X . Hence, this changes the total 1-Median cost by only a 1 +O( δ

1−2δ ) factor.

This is captured by Theorem 2, Corollary 3.

E.1.1 Proof of Theorem 2

Proof. Let X = {x1, . . . , xn}, X ′ = {x′
1, . . . , x

′
n} ∈ V n where X ′ is in the δ|X|-neighborhood

of X . Let n = |X|, let A := {i ∈ [n] | xi = x′
i} be the indices where X,X ′ are the same,

and B := [n] \ A be the remaining indices. Let m := argminv∈V med1(X, {v}) and m′ :=
argminv∈V med1(X

′, {v}). It follows that
∑

i∈[n] d(x
′
i,m

′) ≤
∑

i∈[n] d(x
′
i,m). Using the triangle

inequality and the fact that x′
i = xi for all i ∈ A, we get that∑

i∈A

(d(m′,m)− d(m,xi)) +
∑
i∈B

(d(x′
i,m)− d(m′,m)) ≤

∑
i∈A

d(xi,m) +
∑
i∈B

d(x′
i,m)

=⇒ d(m′,m) · (|A| − |B|) ≤ 2
∑
i∈A

d(xi,m) ≤ 2
∑
i∈[n]

d(xi,m) = 2 med1(X).

Since |B| ≤ δn and |A|+ |B| = n, we get d(m′,m) ≤ 2
(1−2δ)n med1(X).

The quantity med1(X)
|X| is called the mean absolute deviation and can be viewed as a notion of variance.

Hence, Theorem 2 essentially says that since δ < 1/2, the 1-Median only changes by Oδ(1) (a
constant depending on δ) times the mean absolute deviation.

To get Corollary 3 we simply substituting the distance-robustness parameter of ρ = 2
1−2δ

med1(X)
|X|

into Lemma 10.
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Corollary 3 says that if X ′ is obtained by perturbing a δ-fraction of the points in X , then the geometric
median of X ′ is a (1 + 4δ

1−2δ )-approximately optimal solution for the original point set X (with
respect to the 1-Median cost objective). This result can be viewed as a quantitative version of a
classical result of Lopuhaa and Rousseeuw (1991), which shows that the breakdown point for the
geometric median is 1/2. This gives us an understanding not only of the fraction of perturbations
required to “break” the estimator (i.e., make it arbitrarily far from the real location), but also of
the deterioration in the estimation before breaking it. The quality of estimation as a function of
δ is captured by our result of ρ = 2

1−2δ
med1(X)

|X| , showing that a smaller δ corresponds to better
estimation.

We conclude the discussion of δ-robustness of the 1-Median with two remarks:

1. Results similar to Theorem 2 hold even for the case where X ′ is obtained by adding or
removing points; in fact, the approximation factors can be improved slightly (the proof is
almost the same).

2. The quantitative bounds are tight; consider the example where X comprises of (0.5−δ)n+1
points at 0, and (0.5 + δ)n− 1 points at 1 and X ′ is obtained from X by moving δn points
from 1 to 0. A calculation shows that in this case the approximation robustness of the
geometric median is (1 + 4δ

1−2δ −Θ( 1n ), δ).

E.2 The δ-Robustness of β-Balanced k-Medians

Proof of Theorem 4:

Proof. The claimed algorithm B is simple: compute the optimal (b − 1)δ-balanced k-medians
solution on X ′. Since X admits a bδ-balanced solution G = {g1, . . . , gk}, and X ′ differs from X
in only δ|X| points, this solution G is (b − 1)δ-balanced for X ′. Now let H = {h1, . . . , hk} be a
(b− 1)δ-balanced k-medians solution of least cost for X ′ computed by B: this means∑

x′∈X′

d(x′, H) ≤
∑

x′∈X′

d(x′, G).

Let C ′
H = {C ′

1, . . . , C
′
k} be the balanced partition of X ′ induced by H . Similarly, since X is in the

δ-neighborhood of X ′, the centers in H induce a (b− 2)δ-balanced partition of the original dataset
X; call this CH = {C1, . . . , Ck}. Finally, let CG = {C∗

1 , . . . , C
∗
k} be the bδ-balanced partition of

X induced by G. Recall that n = |X|; define

OPT := medk(X,G) =
∑
x∈X

d(x,G) =

k∑
i=1

∑
x∈C∗

i

d(x, gi) and

ALG := medk(X,H) =
∑
x∈X

d(x,H) =

k∑
j=1

∑
x∈Cj

d(x, hj).

We now want to prove that maxi d(gi, H) and maxj d(hj , G) are both small. To show the former, fix
any i and let C∗

i be the cluster corresponding to gi. Since the clustering is bδ-balanced, |C∗
i | ≥ bδn.

By averaging, there exists some cluster Cj ∈ CH such that |C∗
i ∩ Cj | ≥ bδn/k; choose this j, and

consider the corresponding center hj ∈ H . Now

d(gi, H) ≤ d(gi, hj)
(⋆)

≤ 1

|C∗
i ∩ Cj |

∑
x∈C∗

i ∩Cj

[
d(x, gi) + d(x, hj)

]
≤ ALG+OPT

bδn/k
,

where (⋆) uses the triangle inequality. A similar argument shows:

d(hj , G) ≤ ALG+OPT

(b− 2)δn/k
.

Hence the Hausdorff distance between the two solutions is dH(G,H) ≤ ALG+OPT
(b−2)δn/k . Using

Lemma 10 with this bound on the Hausdorff distance, we get

ALG ≤ OPT + 2δn · dH(G,H) ≤ OPT + 2k · ALG+OPT

(b− 2)
.
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Simplifying, we get ALG ≤ (1 + 4k
b−2−2k )OPT , and that dH(G,H) ≤ 2k

b−2−2k ·
OPT
δn , as claimed.

F Proofs and Additional Analysis for Section 6.1

F.1 Proof of Theorem 5

Proof. By Corollary 3, computing the 1-Median on X ′ results in a 1 + 4δ
1−2δ -approximation ratio:

this is because the metric space is Rd, and hence the 1-Median is in fact the geometric median
(which is also known as the spatial median, L1 median or Fermat point). Since the geometric median
computation depends solely on the predictions it is strategyproof. Thus, by the the strategyproofness
of COORDINATE-WISE-MEDIAN, and by the fact that the decision of which mechanism to use does
not depend on the reported locations, Algorithm 1 is strategyproof. Due to the

√
d approximation

ratio of COORDINATE-WISE-MEDIAN (Meir (2019)), we get a min
(
1 + 4δ

1−2δ ,
√
d
)

approximation
ratio for Algorithm 1.

F.2 Remark on Computing the Geometric Median

For general dimensions d and number of points n, there is no known formula or algorithm to find
the geometric median exactly. However, since the problem is a convex optimization problem, there
are optimization algorithms that find solutions with arbitrary precision efficiently. By using such an
optimization algorithm we get an additional factor of ε′ > 0 where ε′ is arbitrarily small. For more
information on efficiently computing the geometric median, see Eckhardt (1980), Beck and Sabach
(2015) Cohen et al. (2016).

F.3 Combined Strategy for High Probability MAC(ε, δ)

In this section we show how we can use both the predictions and the reports of the agents to gain
good performance even in the case of MAC(ε, δ) only in high probability.

The MAC(ε, δ) model requires that at most a δ fraction of the points have error more than ε; one
can extend this to the setting where this requirement holds only with high probability. For instance,
consider the setting where the number of prediction errors can be larger than a δ fraction with
probability at most o(1/n). In this case the computed geometric median might be arbitrarily far away
with this small probability, and hence the expected approximation ratio for our mechanism would
be unbounded. To avoid this problem, we can use the agent reports. Intuitively the agents have the
incentive to make sure that the returned facility location is not infinitely far away from them.

One way to do this is by using the MIN-BOUNDING-BOX mechanism, introduced by (Agrawal et al.,
2022, Mechanism 2) for the egalitarian cost function for d = 2; The mechanism naturally extends to
any d ≥ 1 (Algorithm 6). The mechanism calculates the minimum bounding box B containing all
the input points; then, given a single prediction o, it returns the point ô ∈ B closest to o. We show in
Appendix F.4 that the approximation ratio of the generalized MIN-BOUNDING-BOX mechanism for
the utilitarian cost function (med1) is O(n).

Therefore, by composing MIN-BOUNDING-BOX with Algorithm 1 we get a strategyproof mechanism
which has an approximation ratio of min

(
1 + 4δ

1−2δ ,
√
d
)

with high probability, and has an O(n)

approximation ratio with probability o(1/n); this gives an expected approximation ratio of at most
min

(
1 + 4δ

1−2δ ,
√
d
)
+ o(1). The form of the resulting mechanism is simple:

Algorithm 5: Bounded-Best-Choice-Single-Facility-Loc

Input: δ ∈ [0, 1
2 ) and X,X ′ ⊆ Rd where X is reported by strategic agents and X ′ contains the

MAC predictions for X
Output: The facility location in Rd

return MIN-BOUNDING-BOX(X,Best-Choice-Single-Facility-Loc(X,X ′, δ))
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F.4 Generalized Minimum Bounding Box Mechanism

In this section we properly define the generalized MIN-BOUNDING-BOX mechanism and prove that
for points in Rd (for any d ≥ 1) it has a tight approximation ratio of O(n) for the med1 cost function.

For any y ∈ Rd let [y]j denote the j’th coordinate of y.

Algorithm 6: MIN-BOUNDING-BOX

Input: X ⊂ Rd, o ∈ Rd

Output: A facility location in Rd which is inside the minimum bounding box of X
for j ∈ [d] do

o′j = MINMAXP(([x1]j , . . . , [xn]j), oj)
return o′

Algorithm 6 simply computes, for each coordinate j, the closest point to oj that is inside the minimum
closed interval that contains all of the j’th coordinates of the points of X (which is what MINMAXP
does, see Mechanism 1 of Agrawal et al. (2022)). Let us now prove an approximation ratio for the
med1 cost.
Theorem 11. Algorithm 6 is strategyproof and has a tight O(n) approximation ratio for the med1
cost function.

Proof. Let us assume, w.l.o.g, that the geometric median g is at g = 0. Let B be the minimum
bounding box of X . Formally:

B =
{
y ∈ Rd | ∀j ∈ [d] : yj ∈

[
mini∈[n] [xi]j ,maxi∈[n] [xi]j

]}
. Let h be the point returned by

Algorithm 6 for X ⊂ Rd, o ∈ Rd (thus h must be inside of B). Let aj be the side length of the box
B in each coordinate. As usual, we denote OPT to be the cost of the optimal solution and ALG the
cost of the algorithm.

OPT 2 =

∑
i∈[n]

∥xi∥

2

≥
∑
i∈[n]

∑
j∈d

([xi]j)
2 =

∑
j∈[d]

∑
i∈[n]

([xi]j)
2

 (⋆)

≥
∑
j∈[d]

a2j
4

=⇒

OPT ≥ 1

2

√∑
j

a2j
(⋆⋆)

≥ 1

2

√∑
j

h2
j =

1

2
∥h∥. (6)

(⋆) is due to the fact that for any j ∈ [d] there is some xi s.t. |[xi]j | ≥ aj

2 since otherwise we would
get that the j’th side length is smaller than aj .

(⋆⋆) explanation: It is a known property of the geometric median that it lies inside the convex hull of
the points. Thus, g lies inside B (since the convex hull of the points lies inside the bounding box of
the points). So by the fact that h ∈ B we get that |hj | = |hj − 0| = |hj − gj | ≤ |aj |.
Finally:

ALG =
∑
i∈[n]

∥xi − h∥
triangle inequality

≤
∑
i∈[n]

∥xi∥+ n∥h∥
Eq. (6)
≤ OPT + 2n OPT = O(n) OPT.

We deduce that Algorithm 6 has an approximation ratio of at most O(n).

To see that the result is tight, consider the instance where X is the multi-set of n points where n− 1
points are at a = (−1, . . . ,−1) ∈ Rd and one point is at b = (1, . . . , 1) ∈ Rd. Let o = b. The
optimal solution puts the facility at a and has a cost of OPT = d(a, b) = 2

√
d. Algorithm 6 returns

b and therefore the cost of the algorithm is ALG = (n− 1) · d(a, b) = (n− 1) · 2
√
d.

Overall we get: ALG
OPT = (n−1)·2

√
d

2
√
d

= n− 1 = Ω(n).

The strategyproofness of the mechanism is similar to the one proof given by Agrawal et al. (2022) for
the egalitarian cost function.
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One could wonder why use the minimum bounding box rather than the convex hull of the points.
After all, the convex hull is always contained in the minimum bounding box, and always contains the
geometric median. Unfortunately, such a mechanism is not strategyproof:
Remark 12. The mechanism obtained by replacing the minimum bounding box in Algorithm 6
with the convex hull is not a strategyproof. The example showing this is for d = 2: Given X =
{(−0.5, 0), (0.5, 0), (0, 1)}, a computation shows that the agent at (0, 1) can lower its cost by
reporting (1/2, 1).

We can further generalize the mechanism for k facilities by simply using Algorithm 6 for each facility
independently.

G A Deterministic Mechanism for Balanced k-Facility Location in General
Metric Spaces

For β ∈ [0, 1], the β-balanced k-facility location problem considers n agents with locations X =
{x1, . . . , xn} ⊆ V . Each agent reports a location to the mechanism, and the goal is to return a
multi-set H = (h1, . . . , hk) containing k points from V that minimizes medk(X,H), such that the
clustering induced by H is β-balanced (according to Definition 7).

For a small enough δ, by choosing b := β/δ the balancedness condition translates into a minimum
cluster size of bδ. Hence, we can utilize the δ-robustness results of (b− 1)δ -BALANCED k -MEDIAN
(Theorem 4) to immediately obtain the deterministic mechanism in Algorithm 7 with the following
guarantee:
Theorem 13. Algorithm 7 is a deterministic strategyproof mechanism with a constant (k-dependent)
approximation ratio of at most

1 +
4k

b− 2− 2k
.

Algorithm 7: Balanced-k-Facility-Loc(X,X ′, b, δ)
Input: X,X ′ ⊆ V , and b > 1, δ ∈ [0, 0.5) where X ′ are the MAC predictions for X
Output: The k facility locations in V
return (b− 1)δ -BALANCED k -MEDIAN(X ′)

We do not specify how (b− 1)δ -BALANCED k -MEDIAN is implemented. If all points lie on the
real line, then there exists an O(nk)-time algorithm for it (computing the minimum cost of all

(
n
k

)
options).

In Euclidean spaces of dimensions greater than one, the k-medians problem (and its balanced or lower
bounded variant) is classified as NP-hard Megiddo and Supowit (1984); Bhattacharya et al. (2020)
necessitating the use of approximation algorithms. Any approximation algorithm with approximation
ratio c can be applied, incurring an additional multiplicative cost factor of c. This approach allows
for practical solutions within the constraints of computational complexity, ensuring that we can still
achieve near-optimal placements of facilities even in high-dimensional contexts. The effect of ε
values and handling the case of high probability MAC predictions is similar to the single facility
location results.

H Full Proof of BIG-CLUSTER-CENTER δ-Approximation Robustness

In this section we show that Algorithm 3 indeed has "good" approximation-robustness for unbalanced
clusters by providing the full proof for Theorem 8.

Proof. Let G = (gL, gR) be the 2−median solution, where L = {i | d(xi, gL) ≤ d(xi, gR)} and
R = [n] \ L. W.l.o.g gL ≤ gR.

We have a slight abuse of notation throughout for the sake of not introducing more variables, referring
to L,R as multisets of points and sometimes as the sets of indices of the points in X .

We assume that the clusters are bδ-unbalanced. That is, at least one of the clusters L,R are of size
less than bδn. W.l.o.g |R| < bδn and so |L| ≥ (1− bδ)n.
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We also assume that δ is small enough s.t. bδ < 1
4 and so |L| > 3n

4 .

Let H = (hL, hR) = (b − 1)δ -Balanced-2-Medians(X ′) (as in the first line of Algorithm 3).
W.l.o.g hL ≤ hR.

Let L′, R′ be the multi-set of the elements closest to hL and hR the remaining. So L′ = {i |
d(x′

i, hL) ≤ d(x′
i, hR)} and R′ = [n] \ L′.

Let A := {i ∈ [n] | xi = x′
i} the shared points between X,X ′ (the "correct" predictions), and

B := [n] \A the remaining.

Let m = gL+gR
2 be the middle point between gL and gR. Let m′ = hL+hR

2 be the middle point
between hL and hR. By the definition of m: All points of L lie to the left of m and all points of R lie
to the right of m. Similarly, all points of L′ lie to the left of m′ and all points of R′ lie to the right of
m′.

We begin by proving the following simple lemma:

Lemma 14. Let S ⊆ Rl (for some l ∈ N) be a multi-set of n points. For any β ∈ [0, 1], S ⊆ V , let
M = (m1, . . . ,mk) := β − balanced − k −median(S), s.t. S1, . . . , Sk are the disjoint clusters
induced by m1, . . . ,mk of S. Then for all i ∈ [k]: mi is the 1−median of Si

Proof. Consider the implementation of β − balanced− k −median which is obtained by taking
the cost-minimizing balanced partition into k β − balanced clusters. That is, the implementation
considers all of the partitions of S into k β − balanced clusters and then computes the location that
minimizes the center of each cluster Si. For each such center Si, the minimizing location is (by
definition) 1−median(Si). Thus, the implementation always returns points that are the 1−median
of their clusters.

We divide the proof into 4 cases as follows (also illustrated in Fig. 4):

Case 1 : hL ≤ gL and hR ≥ gR.

Case 2 : hL ≥ gL and hR ≤ gR.

Case 3 : hL ≥ gL and hR ≥ gR.

Case 4 : hL ≤ gL and hR ≤ gR.

Cases 1 to 3 are similar and have short proofs. The hard case is Case (4).

Figure 4: Illustration of the 4 cases. On the top of each case drawing we have the "esti-
mated"/"predicted" locations H , computed on X ′. On the bottom we have the "real" locations,
G, computed on X .

Case 1: hL ≤ gL and hR ≥ gR. In this case we can image the two centers moving away from one
another. That is, gL "moves to the left" to hL, and gR "moves to the right" to hR.

If m′ ≥ m then L′ contains all of the points in L ∩ A. and |L ∩ A| ≥ |L| − δn ≥ n − (b + 1)δn.
Thus, for a small enough δ: n− (b+ 1)δn ≥ n

2 and thus the algorithm returns hL. From Corollary 3
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we get an approximation-robustness of 1+O(bδ) = 1+O(δ) (since L′ is obtained from L by change
or add of at most (b+ 1)δ elements).

Otherwise, m′ ≤ m. The number of elements to the right of gR in R is |R|
2 since it is the median of

R (by Lemma 14).

Since hR ≥ gR then the number of elements to the right of hR in R′ is at most |R|
2 + |B| ≤ |R|

2 + δn.

hR is the median of R′ (by Lemma 14) and thus |R′| ≤ 2( |R|
2 + δn) = |R|+2δn ≤ (b+2)δn. Thus

again by Corollary 3 we get an approximation-robustness of 1 +O(δ).

Case 2: hL ≥ gL and hR ≤ gR. In this case we can image the two centers moving towards one
another. That is, gL "moves to the right" to hL, and gR "moves to the left" to hR.

If m′ ≥ m then L′ contains all of L ∩A plus at most (b+ 1)δn points and thus just like the previous
case we get (from the 1-median approximation robustness) a approximation-robustness of 1 +O(δ).

Otherwise m′ < m. By Lemma 14 we know that hL is the median of L′ and that gL is the
median of L. Since hL ≥ gL, there are at least |L|

2 − δn points in L′ to the left of hL. Thus:
|L′| ≥ 2( |L|

2 − δn) ≥ |L| − 2δn ≥ (1− (b+ 2)δ)n, and we can utilize Corollary 3 again to get the
desired.

Case 3: hL ≥ gL and hR ≥ gR. In this case we can image both centers "moving to the right".

In this case, m′ = hL+hR

2 ≥ gL+gR
2 = m.

Just like in the previous case: L′ contains all of L ∩A plus at most (b+ 1)δn points and thus (from
1-median approximation robustness) a approximation-robustness of 1 +O(δ).

Case 4: hL ≤ gL and hR ≤ gR. In this case we can image both centers "moving to the left".

By the definition of m′: m′ = hL+hR

2 ≤ gL+gR
2 = m.

Until now we had an approximation-robustness result of 1 + O(δ). This case is the most difficult
case, as for this one we will get a 1.8+O(δ) approximation result. Since we also have a lower bound
of ≈ 1.667 + Ω(δ) we get that this is indeed "strictly" the hard case.

If hR ≥ m then the number of elements in X to its right is at most |R|, and thus the number of
elements to its right on X ′ is at most |R| + δn. Since hR median of R′ it must be the case that
|R′| ≤ 2(|R|+ δn) ≤ 2(b+ 1)δn = O(δ) n. Thus |L′| = n− |R′| ≥ (1− O(δ))n and therefore:
(a) The algorithm returns hL (since |L′| ≥ n

2 ) and (b) From the 1−median robustness (Corollary 3)
we get the required 1 +O(δ) approximation-robustness.

Thus, let us assume that hR < m.

We first handle the case where m′ ≥ gL, and then we will show a reduction from the case m′ > gL
to this one.

H.1 Sub-case: m′ ≥ gL

Since m′ is the middle point between hL and hR we get that: m′ − hL = hR −m′ but m′ − hL =
m′− gL+ gL−hL ≥ gL−hL and so: gL−hL ≤ hR−m′. But hR−m′ ≤ hR− gL and therefore:

gL − hL ≤ hR − gL. (7)

We introduce the following notations (also see Fig. 5): First, we denote the left and right parts of
L′, R′, L,R:

• Let L′
l = {i ∈ L′ | x′

i ≤ hL}, L′
r = L′ \ L′

l.

• Let R′
l = {i ∈ R′ | x′

i ≤ hR}, R′
r = R′ \R′

l.

• Let Ll = {i ∈ L | xi ≤ gL}, Lr = L \ Ll.

• Let Rl = {i ∈ R | xi ≤ gR}, Rr = R \Rl.
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Next, we denote the partition of L into 4 disjoint multi-sets S, T, U, V by the 3 points hL,m
′, hR.

So S = {i ∈ L | xi ≤ hL}, T = {i ∈ L | i /∈ S, xi ≤ m′}, U = {i ∈ L | i /∈ S ∪ T, xi ≤ hR},
V = {i ∈ L | i /∈ S ∪ T ∪ U}.

Let m′′ = gL+hR

2 be the middle point between gL and hR. W.l.o.g we assume that m′′ > m′

(otherwise the proof is similar). We define Ul, Ur to be the as follows: Ul = {i ∈ U | xi ≤ m′′},
Ur = U \ Ul.

Finally, we introduce the notion of α-approximately-equal: ≈α:

Definition 14. For any a, b, α ∈ R:

a ≈α b ⇐⇒ b− α ≤ a ≤ b+ α

Figure 5: Illustration of case (4) where m′ ≥ gL. On the top we have hL, hR, computed on the
"predicted" locations X ′. On the bottom we have the gL, gR, the 2-Medians of the "real" locations X .
L′ and R′ are the disjoint partitions of X ′ into two multi-sets of points: those closer to hL and those
closer to hR (respectively). Similarly L and R are the disjoint multi-sets of gL, gR. L′

l, L
′
r are the

disjoint partitions of L′ into two multi-sets: all points to the left of hL and all points to the right of hR.
In a similar manner R′, L,R are partitioned into their left and right parts (R′

l, R
′
r, Ll, Lr, Rl, Rr).

We can also see S, T, U, V which is the disjoint partition of L determined by the points hL,m
′, hR.

Finally, we have Ul and Ur which are the left and right parts of U .
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For every M ⊆ X we define OPTM to be the cost that the optimal solution (G) pays for the multi-set
of points M . That is: OPTM := med2(M,G) (we sometimes use this notation where M ⊆ [n] in
which case OPTM is a slight abuse of notation for OPT{xi|i∈M}).

Let β, γ ∈ [0, 1] be the ratio between |S|, |V | and |L|. That is: β := |S|/|L| and γ := |V |/|L|.

Claim 15.

med1(L, hL) = OPTS −OPTT∩Ll
+OPTLr

+ (gL − hL)(|L|(1− 2β)).

Proof.

med1(L, hL) =
∑
i∈L

|xi − hL| =
∑
i∈S

hL − xi +
∑

i∈T∪U∪V

xi − hL

(⋆)
=
∑
i∈S

gL − xi − |S|(gL − hL)−
∑

i∈T∩Ll

gL − xi + |T ∩ Ll|(gL − hL)

+
∑

i∈(T∩Lr)∪U∪V

xi − gL + (|T ∩ Lr|+ |U |+ |V |)(gL − hL)

(⋆⋆)
= OPTS −OPTT∩Ll

+OPTLr + (gL − hL)(|L| − 2|S|)
= OPTS −OPTT∩Ll

+OPTLr + (gL − hL)(|L|(1− 2β)).

(⋆) - triangle inequality

(⋆⋆) - due to the fact that Lr = T ∩ Lr ∪ U ∪ V and |L| = |S|+ |U |+ |V |+ |T |.

If the algorithm returns hL then we want to show that med1(L, hL) ≤ (1.8 +O(δ))med1(L, gL).

From Claim 15 we get the following equivalent condition:

med1(L, hL) ≤ (1.8 +O(δ))OPTL ⇐⇒
OPTS −OPTT∩Ll

+OPTLr
+ (gL − hL)(|L|(1− 2β)) ≤ (1.8 +O(δ))OPTL ⇐⇒

(gL − hL)(|L|(1− 2β)) ≤ 0.8OPTS + 2.8OPTT∩Ll
+ 0.8OPTLr

+O(δ)OPTL ⇐⇒

(gL − hL) ≤
0.8OPTS + 2.8OPTT∩Ll

+ 0.8OPTLr +O(δ)OPTL

|L|(1− 2β)
. (8)

Thus, all we have to do is find the above bound for gL − hL. Indeed we will show that this is the
case. We start by proving a few claims that will help us bound gL − hL.

Claim 16. (β + γ)|L| ≈O(δn) |L| − n
2

Proof. Since hL is the median of L′, and the points in S ∪ T differ from those in L′ by at most
O(δn), we get that |T | ≈O(δn) β|L|. Similarly, since hR is the median of R′ and since |R| = n−|L|:
|U | ≈O(δn) (γ − 1)|L|+ n. By using the fact that |L| = |S|+ |T |+ |U |+ |V | we get:

|L| ≈O(δn) β|L|+ β|L|+ (γ − 1)|L|+ n+ γ|L| =⇒
2(β + γ)|L| ≈O(δn) 2|L| − n =⇒

(β + γ)|L| ≈O(δn) |L| − n

2
.

Claim 17.
(gL − hL)|S| ≤ OPTS . (9)

Proof.

OPTS =
∑
i∈S

gL − xi

∀xi∈S: xi≤hL

≥
∑
i∈S

gL − hL = |S|(gL − hL).
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Claim 18.
(hR − gL)|Ur| ≤ 2OPTUr . (10)

Proof.

OPTUr =
∑
i∈Ur

xi − gL
∀xi∈Ur: xi≥m′′

≥
∑
i∈Ur

m′′ − gL = |Ur|(m′′ − gL) =
|Ur|
2

(hR − gL).

where the last equality is due to the fact that m′′ is the middle point between gL and hR.

Thus we get:

(hR − gL)|Ur| ≤ 2OPTUr

Claim 19.
(hR − gL)|V | ≤ OPTV . (11)

Proof.

OPTV =
∑
i∈V

xi − gL
∀xi∈V : xi≥hR

≥
∑
i∈S

hR − gL = |V |(hR − gL).

Consider the clustering induced by H ′ = (gL, hR). If this clustering is unbalanced then Algorithm 3
returns hL since Ll∩A is contained in the left cluster and since |Ll∩A| ≥ L

2−δn ≥
n
2−O(δn) it must

be that the right cluster is the smaller one. And so the left cluster has at least n−(b−1)δn = n−O(δn)
elements and thus it is obtained from L by modifying or dropping at mots O(δn) elements and thus
the algorithm returns hL and like before we get a (1 +O(δ), δ) approximation-robustness.

Otherwise, the clustering induced by H ′ is balanced, and we get the following claim:

Claim 20. (hR − gL)(|Ul| −O(δn)) ≤ 2(OPTT∩Ll
+OPTUl

).

Proof. For convenience, for any multi-set of the real points M ⊆ X we denote M̂ ⊆ X ′ to be the
multi-set of the estimated points X ′ that correspond to the same partition of the real line as M . So
we define the following multi-sets: L̂l = {x′

i ∈ X ′ | x′
i ≤ gL}, L̂r = {x′

i ∈ X ′ \ L̂l | x′
i ≤ m},

Ŝ = L′
l, T̂ = L′

r, Û = R′
l, V̂ = {i ∈ R′

r | x′
i ∈ [hR,m]}, Ûl = {x′

i ∈ R′
l | x′

i ≤ m′′},
Ûr = {x′

i ∈ R′
l | x′

i > m′′}. The reason we use this notation is that we have an inequality in terms
of the points in X ′ and we want to later move on to the inequality in terms of the points in X . This
notation will help us see the connection between the points in X ′ and the points in X . Each such
M,M̂ contain the same points up to at most δn points.

By definition of H we know that med2(X
′, H) ≤ med2(X

′, T ) for any T = (t1, t2) ∈ R2 that
induces a (b− 1)δ-balanced clustering of X ′. Therefore, med2(X

′, H) ≤ med2(X
′, (gL, hR)).

By the definition of med2:∑
x′
i∈L′

l

hL − x′
i +

∑
x′
i∈L′

r

x′
i − hL +

∑
x′
i∈R′

l

hR − x′
i +

∑
x′
i∈R′

r

x′
i − hR ≤

∑
x′
i∈Ŝ∪(T̂∩L̂l)

gL − x′
i +

∑
x′
i∈(T̂∩L̂r)∪Ûl

x′
i − gL +

∑
x′
i∈Ûr

hR − x′
i +

∑
x′
i∈R′

r

x′
i − hR.

Which implies: ∑
x′
i∈Lhl

hL − x′
i +

∑
x′
i∈L′

r

x′
i − hL +

∑
x′
i∈R′

l

hR − x′
i

≤
∑

x′
i∈Ŝ∪(T̂∩L̂l)

gL − x′
i +

∑
x′
i∈(T̂∩L̂r)∪Ûl

x′
i − gL +

∑
x′
i∈Ûr

hR − x′
i. (12)
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Let us observe LHS:∑
x′
i∈Lhl

hL − x′
i +

∑
x′
i∈L′

r

x′
i − hL +

∑
x′
i∈R′

l

hR − x′
i

= |L′
l|(hL − gL) +

∑
x′
i∈Lhl

gL − x′
i +

∑
x′
i∈L′

r

x′
i − gL + |L′

r|(gL − hL) + |R′
l|(hR − gL) +

∑
x′
i∈R′

l

gL − x′
i

|L′
l|=|L′

r|
=

∑
x′
i∈Lhl

gL − x′
i +

∑
x′
i∈L′

r

x′
i − gL + |R′

l|(hR − gL) +
∑

x′
i∈R′

l

gL − x′
i

=
∑
x′
i∈Ŝ

gL − x′
i +

∑
x′
i∈T̂

x′
i − gL + |Û |(hR − gL) +

∑
x′
i∈Û

gL − x′
i

=
∑
x′
i∈Ŝ

gL − x′
i +

∑
x′
i∈T̂∩L̂l

x′
i − gL +

∑
x′
i∈T̂∩L̂r

x′
i − gL + |Û |(hR − gL) +

∑
x′
i∈Û

gL − x′
i.

So by plugging this in (12) we get:∑
x′
i∈Ŝ

gL − x′
i +

∑
x′
i∈T̂∩L̂l

x′
i − gL +

∑
x′
i∈T̂∩L̂r

x′
i − gL + |Û |(hR − gL) +

∑
x′
i∈Û

gL − x′
i

≤
∑

x′
i∈Ŝ∪(T̂∩L̂l)

gL − x′
i +

∑
x′
i∈(T̂∩L̂r)∪Ûl

x′
i − gL +

∑
x′
i∈Ûr

hR − x′
i.

=⇒

|Û |(hR − gL) +
∑
x′
i∈Û

gL − x′
i ≤ 2

∑
x′
i∈T̂∩L̂l

gL − x′
i +

∑
x′
i∈Ûl

x′
i − gL +

∑
x′
i∈Ûr

hR − x′
i

= 2
∑

x′
i∈T̂∩L̂l

gL − x′
i +

∑
x′
i∈Ûl

x′
i − gL + |Ûr|(hR − gL) +

∑
x′
i∈Ûr

gL − x′
i =⇒

|Ûl|(hR − gL) ≤ 2
∑

x′
i∈T̂∩L̂l

gL − x′
i + 2

∑
x′
i∈Ûl

x′
i − gL. (13)

By the definition of T̂ , L̂l: T̂ ∩ L̂l and T ∩Ll differ by at most δn elements, and for any x′
i ∈ T̂ ∩ L̂l:

x′
i ≥ hL. Similarly Ûl and Ul differ by at most δn elements and for any x′

i ∈ Ûl: x′
i ≤ m′′.

By plugging this in the above (13) we get:

(|Ul| − δn)(hR − gL) ≤ |Ûl|(hR − gL)

≤ 2
∑

xi∈T∩Ll

gL − xi + 2δn(gL − hL) + 2
∑
xi∈Ul

xi − gL + 2δn(m′′ − gL).

Which implies:

(hR − gL)|Ul| ≤ 2(OPTT∩Ll
+OPTUl

) + δn(2(gL − hL) + 2(m′′ − gL) + (hR − gL)).

Since m′′ − gL = (hR−gL)/2 (by the definition of m′′) and from Eq. (7) we get:

(hR − gL)|Ul| ≤ 2(OPTT∩Ll
+OPTUl

) +O(δn)(hR − gL).

(hR − gL)(|Ul| −O(δn)) ≤ 2(OPTT∩Ll
+OPTUl

). (14)

Now we are ready to bound gL − hL.
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Lemma 21. If the algorithm returns hL then:

(gL − hL) ≤
0.8OPTS + 2.8OPTT∩Ll

+ 0.8OPTLr
+O(δ)OPTL

|L|(1− 2β)
.

Proof. By Claim 17, Claim 18, Claim 20, Claim 19 and the fact that gL − hL ≤ hR − gL we get the
following four inequalities:

(gL − hL)|Ur| ≤ 2OPTUr
,

(gL − hL)(|Ul| −O(δn)) ≤ 2(OPTT∩Ll
+OPTUl

),

(gL − hL)2|V | ≤ 2OPTV ,

(gL − hL)2|S| ≤ 2OPTS ,

By summing the above inequalities:

(gL − hL)(2|S|+ |U |+ 2|V | −O(δn)) ≤ 2(OPTS +OPTT∩Ll
+OPTU +OPTV ) =⇒

gL − hL ≤
(OPTS +OPTT∩Ll

+OPTU +OPTV )

(1− 2β)|L|
· 2(1− 2β)|L|
2|S|+ |U |+ 2|V | −O(δn)

. (15)

Since |L′
l| = |L′

r| we get that |T | ≈δn |S| = β|L| and so

2|S|+ |U |+ 2|V | −O(δn)

≥ |S|+ |T |+ |U |+ 2|V | −O(δn)

= (|S|+ |T |+ |U |+ |V |) + (|S|+ |V |)− |S| −O(δn)

(⋆)
= |L|+ (β + γ)|L| − β|L| −O(δn)

Claim 16
≥ |L|+ |L| − n

2
− β|L| −O(δn)

= 2|L| − β|L| − n

2
−O(δn).

Where (⋆) is due to: |L| = |S|+ |T |+ |U |+ |V |, |V | = γ|L|, |S| = β|L|.
By plugging this inequality into Eq. (15):

gL − hL ≤
(OPTS +OPTT∩Ll

+OPTU +OPTV )

(1− 2β)|L|
·
(

2(1− 2β)|L|
2|L| − β|L| − n

2 −O(δn)

)
. (16)

We will bound the second term in RHS. First, we know that |L| ≈O(δn) n and thus:

2(1− 2β)|L|
2|L| − β|L| − n

2 −O(δn)
≤ 2(1− 2β)(n−O(δn))

3n
2 − βn−O(δn)

≤ 2(1− 2β)
3
2 − β

(1 +O(δ))

We denote: f(β) := 2(1−2β)
3
2−β

.

Since the algorithm returns hL we deduce that |L′| ≥ n
2 . Thus, |L′

l|, |L′
r| ≥ n

4 . But S and L′
l differ

by at most δn elements, and so |S| ≥ n
4 − δn. Since |S| = β|L| and |L| ≤ n we get: βn ≥ n

4 − δn

which implies β ≥ 1
4 − δ.

Also obviously β ≤ 0.5 since hL ≤ gL by the definition of S.

So f : [ 14 − δ, 1
2 ]→ R is a well defined function. We find its maximum:

f ′(β) = 2
−2( 32 − β)− (1− 2β)(−1)

( 32 − β)2
= 2
−3 + 2β + 1− 2β

( 32 − β)2
=

−4
( 32 − β)2

< 0.

So f gets its maximum at the left boundary where β = 1
4 − δ:
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f(
1

4
− δ) = 2

1
2 + 2δ
5
4 + δ

=
4

5
(1 +O(δ)).

By plugging the above into Eq. (16) we get:

gL − hL ≤
4

5

(OPTS +OPTT∩Ll
+OPTU +OPTV +O(δ)OPTL)

(1− 2β)|L|
.

What we have shown is that if the algorithm returns hL we are done. If the algorithm returns hR we
can similarly show that in this case med1(L, hR) ≤ (1.8 + Θ(δ))med1(L, gL).

H.1.1 Handling the Case where the Algorithm Returns hR

In this case the cost med1(L, hR) will be:

Claim 22.

med1(L, hR) = OPTS +OPTT∩Ll
−OPTT∩Lr

−OPTU +OPTV + (|L|(1− 2γ))(hR − gL).

Proof.

med1(L, hR) =
∑

i∈S∪T∪U

hR − xi +
∑
i∈V

xi − hR

=
∑

i∈S∪T∪U

(hR − gL) + (gL − xi) +
∑
i∈V

(xi − gL)− (hR − gL)

= OPTS +OPTT∩Ll
−OPTT∩Lr

−OPTU +OPTV + (|S|+ |T |+ |U | − |V |)(hR − gL)

|S|+|T |+|U |+|V |=|L|
= OPTS +OPTT∩Ll

−OPTT∩Lr
−OPTU +OPTV + (|L| − 2|V |)(hR − gL)

= OPTS +OPTT∩Ll
−OPTT∩Lr −OPTU +OPTV + (|L|(1− 2γ))(hR − gL).

To get med1(L, hR) ≤ (1.8+O(δ))med1(L, gL) we need to show (by the above claim) the following
lemma:

Lemma 23. If the algorithm returns hR then:

(hR − gL) ≤
0.8(OPTS +OPTT∩Ll

+OPTV ) + 2.8(OPTT∩Lr
+OPTU ) +O(δ)OPTL

(1− 2γ)|L|
.

Proof. We begin by showing the following claim:

Claim 24.

(hR − gL)|S| ≤ (hR − gL)|S| ≤ OPTS +
|S|
|U |

OPTU .

Proof. hR − gL = m′ − hL = (m′ − gL) + (gL − hL) and so gL − hL = (hR − gL)− (m′ − gL).
Together with Claim 17 we get:

(hR − gL)|S| ≤ OPTS + |S|(m′ − gL). (17)

Also, OPTU =
∑

i∈U xi − gL ≥
∑

i∈U m′ − gL = |U |(m′ − gL) which implies

m′ − gL ≤
OPTU

|U |
. (18)

By Eq. (17) and Eq. (18) we get the desired inequality.
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From Claim 24, Claim 18, Claim 20, Claim 19:

we get the following four inequalities:

(hR − gL)2|S| ≤ 2OPTS + 2
|S|
|U |

OPTU ,

(hR − gL)|Ur| ≤ 2OPTUr
,

(hR − gL)(|Ul| −O(δn)) ≤ 2(OPTT∩Ll
+OPTUl

),

(hR − gL)2|V | ≤ 2OPTV ,

By summing these inequalities:

(hR − gL)(2|S|+ |U |+ 2|V | −O(δn)) ≤
OPTS +OPTU +OPTT∩Ll

+OPTV + 2|S|
|U | OPTU

(1− 2γ)|L|
· 2(1− 2γ)|L|.

(19)

Since the algorithm returns hR it must be the case that |R′| ≥ n
2 and so |R′

l| ≥ n
4 which means that

|U | ≥ n
4 − δn. This also means that |L′| ≤ n

2 and thus similarly |S| ≤ n
4 + δn. So together:

2
|S|
|U |
≤

n
2 + 2δn
n
4 − δn

= 2 +O(δ).

By plugging this back into Eq. (19) we get:

(hR − gL)(2|S|+ |U |+ 2|V | −O(δn)) ≤ OPTS + (3 +O(δ))OPTU +OPTT∩Ll
+OPTV

(1− 2γ)|L|
· 2(1− 2γ)|L|.

(20)

Since |L′
l| = |L′

r| we get that |T | ≈δn |S| and so
2|S|+ |U |+ 2|V | −O(δn)

≥ |S|+ |T |+ |U |+ 2|V | −O(δn)

= (|S|+ |T |+ |U |+ |V |) + |V | −O(δn)

(⋆)
= (1 + γ)|L| −O(δn)

Where (⋆) is due to: |L| = |S|+ |T |+ |U |+ |V |, |V | = γ|L|.
Let us use this fact in Eq. (20) and get:

hR − gL ≤
OPTS + (3 +O(δ))OPTU +OPTT∩Ll

+OPTV

(1− 2γ)|L|
·
(
2

(1− 2γ)|L|
(1 + γ)|L| −O(δn)

)
.

(21)

The second term on RHS is (up to 1 +O(δ) factor): h(γ) := 2 1−2γ
1+γ . Let us find a bound f or h.

Since |R′| ≥ n
2 :

|V |+ |R| ≈ =O(δn)|R′
r| ≥

n

4
.

and since |R| ≤ bδn: γ|L| = |V | ≥ n
4 − bδn. We deduce:

γ ≥ 1
4 − O(δ). The nominator is decreasing in γ and the denominator is increasing in γ and thus

the maximum is received on the left end point: γ = 1
4 − O(δ). The maximum value of h is thus:

2
1
2−O(δ)
5
4−O(δ)

= 4
5 +O(δ).

So we found a bound for the RHS of Eq. (21) and therefore:

hR − gL ≤
4
5OPTS + 12

5 OPTU + 4
5OPTT∩Ll

+ 4
5OPTV +O(δ)OPTL

(1− 2γ)|L|
.
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H.2 Sub-case: m′ < gL.

To handle this sub-case we use a reduction to the previous sub-case and show that we pay another
multiplicative factor of at most 1 +O(δ). We show a bound of med1(hL, L) in case the algorithm
returns hL. In the case the algorithm returns hR a bound for med1(hR, L) is achieved similarly.

Let g̃L = m′. For any multi-set of points M ⊆ L let ÕPTM =
∑

i∈M |xi − g̃L|.

Figure 6: Illustration of case (4) where m′ < gL. On the top we have the "estimated" locations
hL, hR, computed on X ′. On the bottom we have the "real" locations, gL, gR, computed on X .
L′, R′, L′

l, L
′
r, R

′
l, R

′
r, S, T, U, V, Ul, Ur are all the same as before. The difference is that m′ is

now to the left of gL.
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By the exact same analysis of the case where m′ ≥ gL, now we have that m′ ≥ g̃L and thus, just like

before, g̃L − hL ≤ 4
5
ÕPTS+ÕPTT+ÕPTLr

(1−2β)|L| .

But ÕPTS + ÕPTT = OPTS +OPTT − (gL −m′)(|S|+ |T |) and ÕPTLr
= OPTLr

+ (gL −
m′)|Lr|.
So together we have:

g̃L − hL ≤
4

5

OPTS +OPTT − (gL −m′)(|S|+ |T |) +OPTLr
+ (gL −m′)(|U |+ |V |)

(1− 2β)|L|
(22)

=
4

5

(OPTS +OPTT +OPTLr
+ (gL −m′)(−|S| − |T |+ |U |+ |V |))
(1− 2β)|L|

. (23)

Since |L′| ≥ n
2 it must be the case that |S|+ |T | ≥ n

2 − δn since otherwise there would be strictly
less than n

2 elements in |L′|. For this reason also |U |+ |V | ≤ n
2

So −|S| − |T |+ |U |+ |V | ≤ δn. By plugging this in Eq. (22) we get:

g̃L − hL ≤
4

5

(OPTS +OPTT +OPTLr
+ (gL −m′)(δn)

(1− 2β)|L|
.

Note that g̃L − hL = g̃L − gL + gL − hL = gL − hL − (gL − g̃L) = (gL − hL)− (gL −m′).

By plugging this in the above we get:

gL − hL ≤
4

5

(
OPTS +OPTT +OPTLr

+ 10
4 (gL −m′)δn

)
(1− 2β)|L|

.

Note that OPTT =
∑

i∈T gL − xi ≥
∑

i∈T gL −m′ so gL −m′ ≤ OPTT

|T | .

g̃L − hL ≤
4

5

(
OPTS +OPTT +OPTLr + 2.5OPTT

δn
|T |

)
(1− 2β)|L|

≤ 4

5

(
OPTS +OPTT +OPTLr + 2OPTT

δn
n/2−δn

)
(1− 2β)|L|

=
4

5

(OPTS + (1 + Θ(δ))OPTT +OPTLr
)

(1− 2β)|L|
. (24)

and so we get the desired bound (due to the equivalent condition stated in Eq. (8).

We conclude with a final remark:
Remark 25. Algorithm 3 does not have (c, δ) approximation robustness for any c < 5

3 ≈ 1.667.
This lower bound is obtained by observing the following instance: Let ε > 0 be a small enough value,
X ∈ Rn where n/2 points are at x = 0, n/4 points are at x = −0.5− ε, n/4 points at x = −1, and
one point at M ≫ n. Now let X ′ be obtained from X by moving the point at x = M to x = −1.
Calculation shows that the above instance leads to a 5

3 approximation ratio.

I Second Facility Location: SECOND-PROPORTIONAL-MECHANISM Proofs

In this section we show the strategyproofness and the expected approximation ratio of Algorithm 2.
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Proof of Lemma 6. We follow the proof of (Lu et al., 2010, Thm 4.1). In the proof they show that
given that the first facility is at xk for any k ∈ [n], then for any X ′ =< x′

i, X−i > that is gained
from X by agent i deviating from xi to x′

i, the expected cost of agent i only increases by deviating
to x′

i. The proof does not depend at all on the location of the first facility. Since the first facility is
entirely independent of the agent reported values, then the above implies that the choice of the second
facility is also strategy proof.

Proof of Theorem 7. The proof is similar in structure to the one given by Lu et al. (2010) for the
Proportional-Mechanism; the main difference is a careful (and tight) analysis of Lemma 27 for the
real line which leads to an approximation ratio of at most 3 rather than 4.

Let G := {gS , gT }, S = {i | xi ∈ X, d(xi, gS) ≤ d(xi, gT )} and T = [n] \ S.

For any M ⊆ X let OPTM = med2(M,G). So OPTS = med1(S, gS), OPTT = med1(T, gT )
and thus OPT = med2(X,G) = OPTS +OPTT .

Let H = (gS , h) be the algorithms solution for the problem, and ALG = med2(X,H). We denote
ALGS , ALGT to be med2(S,H),med2(T,H) respectively, so that ALG = ALGS +ALGT and
therefore E[ALG] = E[ALGS ] + E[ALGT ].

Since ALGS ≤ med1(S, gS) = OPTS , we get that E[ALGS ] ≤ OPTS , and we only need to find a
bound for E[ALGT ].

E[ALGT ] =
∑
i∈[n]

E[ALGT | h = xi]Pr(h = xi) (25)

=
∑
i∈T

E[ALGT | h = xi]Pr(h = xi) +
∑
i∈T

E[ALGT | h = xi]Pr(h = xi) (26)

In the summation above the first term is the expected cost due to choosing the second facility to be
a location in S and the second term is the expected cost due to choosing the second facility to be a
location in T . We will bound each one individually.

For all i ∈ [n] let ai = d(xi, gS), pi = ai∑
j∈[n]aj

and bi = d(xi, gT ). So
∑

i∈S ai = OPTS ,∑
i∈T bi = OPTT and

∑
i∈[n] pi = 1. For each i, j ∈ [n] let di,j = d(xi, xj).

Lemma 26.
∑

i∈S E[ALGT | h = xi]Pr(h = xi) ≤ OPTS

Proof. ∑
i∈S

E[ALGT | h = xi]Pr(h = xi) =
∑
i∈S

(∑
t∈T

min{at, di,t}

)
· pi

(⋆)

≤
∑
i∈S

(∑
t∈T

at

)
· pi =

∑
i∈S

( ∑
t∈T at∑

t∈T at +
∑

s∈S as

)
· ai ≤

∑
i∈S

ai = OPTS

Where inequality (⋆) is gained by ignoring the second facility.

Lemma 27.
∑

i∈T E[ALGT | h = xi]Pr(h = xi) ≤ 3OPTT

Proof. Let D = d(gA, gB).∑
i∈T

E[ALGT | h = xi]Pr(h = xi) =
∑
i∈T

[(∑
t∈T

min{at, d(xt, xi)}

)
· pi

]
triangle inequality

≤
∑
i∈T

[(∑
t∈T

min{at, bt + bi}

)
· pi

]
=
∑
i∈T

[(∑
t∈T

bt +
∑
t∈T

min{at − bt, bi}

)
· pi

]

=
∑
i∈T

[(∑
t∈T

bt

)
· pi

]
+
∑
i∈T

[(∑
t∈T

min{at − bt, bi}

)
· pi

]
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=
∑
i∈T

[(∑
t∈T

bt

)
· pi

]
+
∑
i∈T

[(∑
t∈T

min{at − bt, bi}

)
· bi∑

j∈[n] aj

]

+
∑
i∈T

[(∑
t∈T

min{at − bt, bi}

)
· ai − bi∑

j∈[n] aj

]

We bound each of these 3 terms individually by OPTT , and thus get the desired bound.

The first term bound: ∑
i∈T

[(∑
t∈T

bt

)
· pi

]
=

(∑
t∈T

bt

)∑
i∈T

pi ≤ OPTT (27)

The second term bound:∑
i∈T

[(∑
t∈T

min{at − bt, bi}

)
· bi∑

j∈[n] aj

]
≤
∑
i∈T

[(∑
t∈T

at − bt

)
· bi∑

j∈[n] aj

]

≤
∑
i∈T

[(∑
t∈T

at

)
· bi∑

j∈[n] aj

]
=
∑
i∈T

bi = OPTT

The third term bound:∑
i∈T

[(∑
t∈T

min{at − bt, bi}

)
· ai − bi∑

j∈[n] aj

]
≤
∑
i∈T

[(∑
t∈T

bi

)
· ai − bi∑

j∈[n] aj

]
=
∑
i∈T

[
|T |bi ·

ai − bi∑
j∈[n] aj

]
(28)

We finish the third term bound by showing the following claim

Claim 28. ∑
i∈T

[
|T |bi ·

ai − bi∑
j∈[n] aj

]
≤ OPTT

Proof. Let Ta be the part of T closer to gS and Tb be the other part of T .

So Ta = {i | i ∈ T, d(xi, gS) ≤ d(xi, gT )}, and Tb = T \ Ta. Since the points are all on the line
metric:

For all i ∈ Ta: ai = d(gS , xi) = d(gS , gT )− bi = D − bi.

For all i ∈ Tb: ai = d(gS , xi) = d(gS , gT ) + bi = D + bi.

Let us use these facts in Eq. (28) to get:

∑
i∈T

[
|T |bi ·

ai − bi∑
j∈[n] aj

]
=
∑
i∈Ta

[
|T |bi ·

D − bi − bi∑
j∈[n] aj

]
+
∑
i∈Tb

[
|T |bi ·

D + bi − bi∑
j∈[n] aj

]

=
|T |D∑
j∈[n] aj

(∑
i∈T

bi

)
−

2|T |
∑

i∈Ta
bi

2∑
j∈[n] aj

=
|T |D ·OPTT − 2|T |

∑
i∈Ta

bi
2∑

j∈[n] aj

(⋆)

≤ |T |D ·OPTT − 2(OPTTa
)2∑

j∈[n] aj

(⋆⋆)

≤
|T |D − 2

(OPTTa )
2

OPTT

|T |D +OPTTb
−OPTTa

·OPTT (29)

(⋆) is due to QM −AM inequality since

∑
i∈Ta

bi
2 ≥

(∑
i∈Ta

bi
)2

|Ta|
|Ta|≤|T |
≥ (OPTTa

)2
1

|T |
.
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(⋆⋆) explanation:∑
j∈[n]

aj =
∑
j∈S

aj +
∑
j∈Ta

aj +
∑
j∈Tb

aj = OPTS +
∑
j∈Ta

D − bj +
∑
j∈Tb

D + bj

= OPTS +D|T |+OPTTb
−OPTTa

≥ |T |D +OPTTb
−OPTTa

We now show that
|T |D − 2

(OPTTa )
2

OPTT

|T |D +OPTTb
−OPTTa

≤ 1.

Indeed, if OPTTb
≥ OPTTa

then |T |D +OPTTb
−OPTTa

≥ |T |D and thus:

|T |D − 2
(OPTTa )

2

OPTT

|T |D +OPTTb
−OPTTa

≤
|T |D − 2

(OPTTa )
2

OPTT

|T |D
≤ |T |D
|T |D

= 1.

Otherwise OPTTa
−OPTTb

> 0 and thus:

OPTTa
> OPTTb

=⇒
OPTT = OPTTa +OPTTb

< 2OPTTa =⇒
(OPTTa

−OPTTb
)OPTT ≤ 2(OPTTa

−OPTTb
)OPTTa

= 2(OPTTa
)2 − 2OPTTb

OPTTa
≤ 2(OPTTa

)2 =⇒

OPTTa
−OPTTb

≤ 2(OPTTa
)2

OPTT
=⇒

|T |D − 2
(OPTTa )

2

OPTT

|T |D +OPTTb
−OPTTa

≤ |T |D +OPTTb
−OPTTa

|T |D +OPTTb
−OPTTa

= 1

So from Eq. (29):
∑

i∈T

[
|T |bi · ai−bi∑

j∈[n] aj

]
≤ OPTT .

To summarize:
∑

i∈T E[ALGT | h = xi]Pr(h = xi) ≤ OPTT +OPTT +OPTT = 3OPTT .

From plugging Lemma 26, Lemma 27 into Eq. (26) we get:

E[ALG] ≤ 2OPTS + 3OPTT ≤ 3OPT.

Remark 29. The upper bound of 3 in the analysis of Theorem 7 is tight.

To show tightness, consider an instance with n points on the real line: n/2 points at x = 0, n/2 −
1 points at x = 1, and a single point at x = 2. Assume the given first facility is at 0. The
optimal solution puts the second facility at 1 and pays the cost of 1. On the other hand E[ALG] =

1
n
2 +1

(
n−2
2 + 2n−2

2

)
= 3

n/2−1
n/2+1 ≈ 3.

J Proof of Theorem 9

Proof. The strategyproofness is due to the fact that the first facility is chosen based only using the
predictions, and the second facility choice is strategyproof due to Lemma 6.

Let G = (gL, gR) be the optimal cluster centers for X , and let L,R be the respective corresponding
clusters. We consider two cases: when this optimal clustering is bδ-balanced, and when it is not; in
both cases we show that the algorithm achieves low expected cost. Let H = (h1, h2) be the solution
returned by Algorithm 4.

The first case is when (L,R) is a bδ-balanced clustering of X . In this case we claim that

E[med2(X,H)] ≤ (3.6 +O(δ))med2(X,G).
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Indeed, let T = (tL, tR) be the two centers of the (b − 1)δ-balanced 2-medians algorithm on X ′.
Since G induces a bδ-balanced clustering, Theorem 4 and our choice of b ensures that

med2(X,T ) ≤ 1.2med2(X,G).

Since Algorithm 3 returns one of the centers of the (b− 1)δ-balanced 2-medians algorithm on X ′

as h1, let us assume w.l.o.g. that BIG-CLUSTER-CENTER returns h1 = tL. Let (XL, XR) and
(X ′

L, X
′
R) be the clusterings of X and X ′ induced by T = {tL, tR}. From Theorem 7:

E[med2(X,H)] = E[med2(X, {tL, h2})] ≤ 2med1(XL, tL) + 3med1(XR,median(XR))(⋆)

≤2med1(XL, tL) + 3(1 +O(δ))med1(XR, tR)

≤ (3 +O(δ))med2(X,T ) ≤ (3.6 +O(δ))med2(X,G),

where the inequality (⋆) uses the fact that XR and X ′
R differ on at most δ|X| points, and hence we

can sue (1 +O(δ), δ) approximation-robustness of 1-Median from Corollary 3.

Now for the other case: suppose (L,R) is a bδ-unbalanced clustering. Theorem 8 implies that either
med1(L, h1) ≤ (1.8 +O(δ))med1(L, gL) or med1(R, h1) ≤ (1.8 +O(δ))med1(R, gR). W.l.o.g.,
consider the first option. Then from Theorem 7:

E[med2(X,H)] ≤ 2med1(L, h1) + 3med1(R, gR)

≤ 2((1.8 +O(δ))med1(L, gL)) + 3med1(R, gR) ≤ (3.6 +O(δ))OPT.

Combining the two cases completes the proof.
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