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ABSTRACT

Sequential observations from complex systems are usually collected irregularly
and asynchronously across variables. Besides, they are typically both serially
and cross-sectionally dependent. Recurrent networks are always used to model
such sequential data, trying to simultaneously capture marginal dynamics and
dependence dynamics with one shared memory. This leads to two problems. First,
some heterogeneous marginal information is difficult to be preserved in the shared
memory. Second, in an asynchronous setting, missing values across variables will
introduce bias in the shared memory. To solve these problems, this paper designs a
new architecture that seamlessly integrates continuous-time ODE solvers with a set
of memory-aware GRU blocks. It learns memory profiles separately and addresses
the issue of asynchronous observations. Numerical results confirm that this new
architecture outperforms a variety of state-of-the-art baseline models on datasets
from various fields.

1 INTRODUCTION

Multivariate asynchronous time series (MATS) widely exist in various domains. For example, in
astronomy, a periodic signal hidden in noise is usually detected unevenly (Scargle, 1982). In health
care, patients can only take some measurements but not all at each time point (Jensen et al., 2014).
In activity recognition, data are collected from wearable sensors on devices at different frequencies
(Kaluža et al., 2010). However, there are some challenges when modeling MATS.

First, a single variable in the MATS is sampled irregularly. In such sequences, observations appear
randomly, and the observed time intervals are not uniform. Recurrent Neural Networks (RNNs)
perform not ideally when they are applied to this kind of data since RNNs do not have any built-in
notions of time

Second, the randomness of observed time points in univariate time series will make the multivariate
time series asynchronous. Compared to the multivariate synchronous time series (see Figure 1(a)),
the multivariate asynchronous time series (see Figure 1(b)) is more common in real life. However,
it is more difficult to model since some variables have missing values at a particular observed time
point (e.g., variables X1

t and X3
t have no observations at time point t1 in Figure 1(b))).

(a) (b) (c)

Figure 1: (a), (b) are the examples for multivariate synchronous/asynchronous time series. The
multivariate time series contains three variables X1

t , X
2
t , X

3
t , which are observed at different time

points (e.g., t0, ..., t5). The corresponding color points suggest that variables have observations. (c) is
the hidden state/memory for asynchronous time series in (b).
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Third, each variable in MATS is serial dependent, and the critical quantity that we want to capture
is the dynamics of the marginal conditional distribution of each variable. The serial dependencies
are heterogeneous across variables (e.g., some variables have strong serial dependencies while some
have weak serial dependencies, or some variables have long-range dependencies while some have
short-range dependencies).

Fourth, each variable in MATS is not independent but depends on each other, and the target quantity
that we want to model is the dynamics of the joint conditional distribution. In general, the joint
conditional distribution contains additional information compared to the marginal distribution of
each variable. This additional information is called the dependence structure, which describes
the dependence or inter-correlation among variables. A typical way to extract the dependence
structure from joint distributions is the Copula function (Trivedi & Zimmer, 2007) in statistics.
However, modeling MATS is more complicated as the marginal distribution for each variable and the
dependence structure among the variables are constantly changing over time.

Generally, there are two classes of approaches to fit multivariate time series. The first class models
individual variables with the independent univariate model, which can capture the marginal dynamics
perfectly even though the serial dependencies are heterogeneous across variables. Some statistical
methods in this class include the ARMA models using the Box-Jenkins methodology (Makridakis
& Hibon, 1997), and state space models (Hyndman et al., 2008). Some deep learning models also
attempt to train each variable separately to reduce overfitting to noisy observations (Zhang et al.,
2019). However, this class of methods abandons the dependence structure among variables.

Another class of approaches tries to capture marginal and joint dynamics simultaneously, where all
variables are jointly modeled and share the same memory (also called hidden state). The most popular
models used in this class are RNNs, which excel at extracting complex dynamic patterns across
variables. Since the serial dependencies are heterogeneous across variables, the shared memory is
hard to preserve some critical marginal information, such as long-term dependencies (Belletti et al.,
2018), or statistical features (e.g., max/min/mean) of each variable (Harutyunyan et al., 2019). For
example, when predicting the sales of N products, each product has different characteristics (e.g.,
popularity or seasonality). Using shared memory to store the data of all products may forget some
critical information about the individual product.

In the context of MATS, another problem of jointly modeling all variables is that the missing values
in some variables will result in biased features (Zhang et al., 2021). If all the variables share one
memory, the biased features will enter the shared memory. Thus predictions based on this shared
memory are unreliable. For example, in Figure 1(c), the missing values at time points t1, t3, t4
generate biased features at each time point such that the constructed memory is biased.

Based on the above analysis, we propose a new model architecture (CoGRUODE) targeting modeling
the MATS from both marginal and joint perspectives. By seamlessly integrating two co-evolved
GRUODE (Brouwer et al., 2019) networks, called marginal block and dependence block, our model
takes advantage of the above two approaches at the same time. The marginal block captures the
marginal dynamics and forms a unique marginal memory for each variable. In this way, the marginal
information (such as long-range dependence and statistical features) of univariate are well preserved.
Meanwhile, the evolution and update of the memory of variable i will not affect the memories of
variable j (j 6= i), which also solves the problem of the adverse effect of missing values across
variables. To avoid losing the information of the dependency structure, the dependence block extracts
the updated information from the marginal block and forms a shared dependence memory. Ultimately,
the memories from both blocks are used for prediction/classification. To demonstrate the superiority
of CoGRUODE, we extensively test the model with three real-world datasets, i.e., the LSST dataset
in UEA Repository, the Human Activity Dataset, and the Physionet 2012 Challenge Dataset. Our
proposed model makes significant improvements compared with the various baselines.

2 RELATED WORK

Learning Multivariate Asynchronous Time Series. Recurrent networks are the most widely used
models for sequential data. However, it is inappropriate to handle MATS because of no built-in
notion of time. A simple way to solve this problem is to input the time interval of each variable as an
additional feature directly when training models (e.g., GRU-∆t). Furthermore, some papers propose
to modify the architecture of classical RNNs by embedding the time intervals into models. For
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example, CT-GRU (Mozer et al., 2017) extends standard GRU by incorporating multiple time scales
of memory and performing a context-dependent selection of time scales for information storage and
retrieval. GRU-D (Che et al., 2018) adds a decay mechanism in the memory, where the memory will
decay exponentially as the time interval grows.

Another stream of methods to tackle this kind of data is based on Neural Ordinary Differential
Equation (NODE) (Chen et al., 2018). Neural ODE converts Neural Networks into continuous-time
models and integrates the dynamics at arbitrarily small intervals. Following this idea, Latent ODE
(Rubanova et al., 2019) embeds the Neural ODE into Variational Auto-encoder (VAE) (Kingma &
Welling, 2013). However, Latent ODE only derives the dynamics in the generation phase rather than
directly deriving the dynamics. The framework that overcomes this issue is the GRU-ODE-Bayes
(GRUODE) (Brouwer et al., 2019), which converts the classical discrete-time GRU cell into the
continuous-time GRU cell and derives the update formula for the Neural ODE part when there are no
observations. Furthermore, Lechner & Hasani (2020) propose ODELSTM by converting standard
LSTM to a continuous version to solve the problem of gradient vanishing and exploding.

Learning Marginal and Dependence Dynamics Separately. Multivariate time series contains
marginal dynamics for each variable and dependence dynamics among variables simultaneously.
Some statistical models thus analyze the multivariate time series by separating the marginal con-
ditional distribution and dependence structure between each variable, such as VARMA models
(Lütkepohl, 2006) (diagonal values represent the marginal information of individual variables and off-
diagonal values stand for the dependence information among variables). However, VARMA models
only apply linear dependence on past history marginally and linear dependence cross-sectionally.

In the machine learning community, some studies try to model the marginal dynamics and dependence
dynamics separately. For example, to preserve long-range dependencies of individual variables, the
block-diagonal RNN (Belletti et al., 2018) divides variables into a few groups and applies RNNs
to each group, and then the output of each block is processed by a fully-connected layer. To store
the statistical features of each variable, Channel-wise LSTM (Harutyunyan et al., 2019) trains each
variable separately at the first LSTM layer and then concatenates the output and feeds it into another
LSTM layer. Wang et al. (2019) propose a new global-local framework named Deep Factor for
time series forecasting, where the global part captures the common latent factor for all variables and
the local part captures the uncertainty factor for each variable, conditioned on the common latent
factor. Zhang et al. (2020) propose mGRN to model the marginal conditional distribution and joint
distribution with two different GRU directly. The models in all of the above studies outperform
standard RNNs in a fair setting, proving the significance of the marginal-dependence training process.

3 BACKGROUND

Notations. Consider a dataset that includes N multivariate time series with time length T . Each
time series i ∈ {1, 2, ..., N} is denoted as Xi,t which contains D variables such that Xi,t =
[X1

i,t, X
2
i,t, ..., X

D
i,t]

T . Each time series is measured at Ki different time points which are specified by
a time vector ti = [ti,1, ti,2, ..., ti,Ki ], where ti,Ki ≤ T . The time intervals between two observational
time points (e.g., [ti,1, ti,2] and [ti,2, ti,3]) are not equally spaced. Given i and a particular observed
time point t, not all variables are measured, but at least one of the D variables should have an
observed value. We thus denote a mask matrix mt = [m1

t , · · · ,mD
t ] to indicate whether a value in

Xt is observed. Specifically, if variable Xd
t has an observation, we denote its value as xdt and set

mask md
t = 1. Otherwise, we denote its value as 0 and set mask md

t = 0. We denote σ and tanh as
the sigmoid function and the hyperbolic tangent function. We also denote� as the Hadamard product.
A typical example for this dataset is the Electronic Medical Records (EHR) from N different patients.
The data of one patient is a multivariate time series, which includes different measurements, such as
heartbeat, pulse, blood pressure, etc. Each measurement occurs at different time points, and at each
observational time point, there is at least one measurement that has observations.

GRUODE. Our model is built upon GRUODE (Brouwer et al., 2019), a continuous-time recurrent
neural network for irregularly sampled time series. The evolution and update of memories in
GRUODE are shown in Figure 2. GRUODE evolves the memory using a Neural ODE when there are
no observations. Specifically, GRUODE divides the evolution of the memory into the ODE part and
the Bayes part.
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Figure 2: Example of evolution and update for
the memory of GRUODE of asynchronous time
series with three variables.

Figure 3: Example of evolution and update for
the memory of CoGRUODE of asynchronous
time series with three variables.

ODE part evolves the memory during two observational time points using

r(t) = σ (WrX(t) + Urh(t) + br) ,

z(t) = σ (WzX(t) + Uzh(t) + bz) , (1)

h̃(t) = tanh (WhX(t) + Uh(r(t)� h(t)) + bh) ,

dh(t)

dt
= (1− z(t))� (h̃(t)− h(t)), (2)

where W(r,z,h) ∈ RH×D, U(r,z,h) ∈ RH×H , b(r,z,h) ∈ RH are trainable parameters (H denotes the
size of memory). r(t), z(t), and h̃(t) are the reset gate, the update gate, and the candidate update
gate which are all in RH . h(t) is the continuous memory and X(t) is the continuous observations (if
continuous input is not available, then X(t) = 0 and equation 2 is autonomous).

Bayes part updates the memory using a standard GRU if there are observations for variables at a
observed time point (such as time point t0, t1, ..., t5 in Figure 2). The updated formula is

h (t+) = GRU (h (t−) , fprep (Xt,mt,h (t−))) , (3)

where GRU represents the operation of standard GRU cell. Xt and mt are the observations and
masks at time point t = tk. h(t−) and h(t+) denote the memory before and after the update. Note
that some variables in Xt are missing and the preprocessing function fprep is designed to solve this
problem by imputing missing values with prediction values (e.g., prediction mean/variance/error)
(details are shown in Appendix A). However, fprep can only be applied in regression tasks, and is not
applicable in classification problem. It is because the loss/error is only computed at the final time
point and no prediction values will be obtained to impute before the final time point.

4 ARCHITECTURE OF COGRUODE

To alleviate the challenges mentioned above, we propose the model CoGRUODE. It consists of two
blocks: marginal block and dependence block. An illustration of CoGRUODE is presented in Figure
3 (A more detailed architecture of CoGRUODE is shown in Appendix C). The marginal block is
designed to capture the marginal dynamics of each variable. Instead of sharing one memory, each
variable has its own memory in marginal block. Therefore, the information of the univariate will be
fully preserved and missing values in some variables will not affect other variables. The dependence
block is designed to model the dependence structure among variables by extracting the information
from the marginal block. The memory in dependence block is shared across all variables to capture
the interaction among variables.
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Marginal block. We use the Neural ODE to evolve marginal memory when there are no observations
for all variables (such as time interval t0 − t1, · · · , t4 − t5 in Figure 3). However, we only update
the marginal memory of observed variables while keep the marginal memory of other unobserved
variables unchanged. For example, at time point t1 in Figure 3, the marginal memories of X2

t and
X3

t are updated but the the marginal memory of X1
t is not updated and it still be evolved with Neural

ODE. One intuitive idea to learn one unique memory for each variable is to train each variable with
different GRUODEs, but the training time will increase as the number of variables increases. It is
thus a challenge when applying to high-dimensional time series.

To tackle the training time problem, we propose two approaches, namely hidden matrix (HM)
approach and hidden vector (HV) approach, in constructing the marginal blocks. Specifically, the
marginal block consists of two parts, namely the ODE part (GRU-ODE-M) and the Bayes part
(GRU-Bayes-M). Mathematically, the two parts are given as follows:

ODE part (GRU-ODE-M):

rM (t) = σ
(
WM

r ~X(t) + UM
r ~ hM (t) + bMr

)
,

zM (t) = σ
(
WM

z ~X(t) + UM
z ~ hM (t) + bMz

)
, (4)

h̃M (t) = tanh
(
WM

h ~X(t) + UM
h ~ (rM (t)� hM (t)) + bMh

)
,

dhM (t)

dt
= (1− zM (t))� (h̃M (t)− hM (t)). (5)

Bayes part (GRU-Bayes-M):

hM,d (t+) =

{
GRU

(
hM,d (t−) , Xd

t

)
, if md

t = 1
hM,d (t−) , if md

t = 0
(6)

HM approach: For each variable d where 1 ≤ d ≤ D, the corresponding marginal memory
hM,d(t), the reset gate rM,d(t), the update gate zM,d(t), and the candidate update gate h̃M,d(t) are
vectors in Rs. The corresponding weight parameters WM,d

(r,z,h) ∈ Rs×1, UM,d
(r,z,h) ∈ Rs×s and bias

parameters bM,d
(r,z,h) ∈ Rs. Hence, hM (t), rM (t), zM (t), and h̃M (t), are all D × s matrices, e.g.,

hM (t) = [hM,1(t), · · · ,hM,D(t)]T . The total weight parameters WM
(r,z,h) U

M
(r,z,h) are tensors such

that WM
(r,z,h) = [WM,1

(r,z,h), · · · ,W
M,D
(r,z,h)]

T ∈ RD×s×1 and UM
(r,z,h) = [UM,1

(r,z,h), · · · , U
M,D
(r,z,h)]

T ∈
RD×s×s. Therefore, WM

(r,z,h) ~ X(t) = [WM,1
(r,z,h)X

1(t), · · · ,WM,D
(r,z,h)X

D(t)]T and UM
(r,z,h) ~

hM (t) = [UM,1
(r,z,h)h

M,1(t), · · · , UM,D
(r,z,h)h

M,D(t)]T .

The marginal block built on HM approach learns marginal memory for each variable independently.
However, if the missing rate of variables is too high, the serial structure of each variable is completely
destroyed, and it is impossible to learn marginal memory based on such sparse observations. In this
case, the marginal block will lose its function and HM approach is not suitable. To form an effective
marginal block, we thus relax the constraints that variables must be trained entirely independently.

HV approach: The marginal memory hM (t), the reset gate rM (t), the update gate zM (t), and
the candidate update gate h̃M (t) are all vectors in RH . WM

(r,z,h) ∈ RH×D, UM
(r,z,h) ∈ RH×H ,

bM(r,z,h) ∈ RH are trainable parameters. Here, ~ represents the usual matrix multiplication. Generally,
WM

(r,z,h) and UM
(r,z,h) are initialized using uniform Xavier (Glorot & Bengio, 2010) and Orthogonal

(Saxe et al., 2013) initialization respectively. However, we choose to initialize UM
(r,z,h) as the diagonal

matrices and WM
(r,z,h) as the block diagonal matrices [Aij ]D×D, where

Aij =

{
[a, a, · · · , a]1×s if i = j

[0, 0, · · · , 0]1×s if i 6= j
. (7)

The block Aij when i = j reflects the marginal information for variable i, while the block Aij when
i 6= j reflects the correlation between variables i and j. Initializing 0 to Aij when i 6= j means that
no interrelation between variables. a and s are hyperparameters. We set a = 1 by default in our
experiments. Each variable occupies s dimensions memory and thus the overall size of marginal
memory H equals s ·D. More details about the two approaches are given in Appendix B.
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Although we initialize the weight matrix to diagonal blocks in the HV approach, entries in the
off-diagonal blocks will slowly move away from 0 during the training process. This means that
information about one variable will leak to other variables. We experimentally find that entries on
the off-diagonal blocks are much smaller than those on the diagonal blocks, indicating the marginal
block mainly focuses on capturing the temporal information for each variable while allowing some
small correlation (see Appendix G).

In marginal block, when the variable has no observations, the memory for this variable will be
evolved using equation 5 and if this variable has an observation, the memory will be updated using
equation 6. Moreover, in equation 6, we do not need the fprep function in equation 3 when updating
the memories, and thus our method can also apply to classification tasks compared to GRUODE.

Dependence block. The dependence block also consists of two parts, namely the ODE part (GRU-
ODE-P) and the Bayes part (GRU-Bayes-P). The updated formulae are
ODE part (GRU-ODE-P):

rP (t) = σ
(
WP

r h̃M (t) + UP
r hP (t) + bPr

)
,

zP (t) = σ
(
WP

z h̃M (t) + UP
z hP (t) + bPz

)
, (8)

h̃P (t) = tanh
(
WP

h h̃M (t) + UP
h hP (t) + bPh

)
,

dhP (t)

dt
=
(
1− zP (t)

)
�
(
h̃P (t)− hP (t)

)
, (9)

Bayes part (GRU-Bayes-P) :

hP (t+) = GRU
(
hP (t−) , h̃M (t+)

)
, (10)

where WP
(r,z,h) ∈ RH×D, UP

(r,z,h) ∈ RH×H , and bP(r,z,h) ∈ RH are trainable parameters. rP (t) ∈
RH , zP (t) ∈ RH , and h̃P (t) ∈ RH are the reset gate, update gate, and candidate update gate of
dependence block. Unlike the marginal memory, the dependence memory hP (t) ∈ RH is shared
by all variables. It evolves as equation 9 when all variables have no observations, and updates as
equation 10 when one variable has an observation.

Note that we use the candidate update gate h̃M (t) obtained from the marginal block instead of X(t)
as the input in the dependence block at each time point. The reason is that there are missing values in
X(t) across variables. However, h̃M (t) is generated by marginal block based on observations X(t).
It contains the most information of observations and it is a continuous-time variable without any
missing values. We use h̃M (t) instead of hM (t) as an input in the dependence block. It is because
the candidate update gate contains more information about Xt while hM (t) is generated by h̃M (t)
and hM (t−).

At last, the marginal memory hM (t) and dependence memory hP (t) capture marginal and dependent
dynamics, respectively. We thus concatenate both memory and feed it into a MLP, to make predictions
(i.e., X̂t = MLP(hM (t),hP (t))) or classification (i.e., Ĉ = MLP(hM (T ),hP (T ))).

We verify the properties above by further ablation studies. We conclude our model CoGRUODE
in Algorithm 1. The explanation of this algorithm and the comparison between the algorithms of
GRUODE and CoGRUODE are displayed in Appendix D.

5 EXPERIMENTS

In this section, we conduct three empirical studies using public datasets to examine the superiority of
CoGRUODE. We defer the descriptions of all experiment datasets and training details in Appendix
F. We compare our model with various baseline models including GRU-∆t, CT-GRU (Mozer et al.,
2017), GRU-D (Che et al., 2018), ODERNN (Rubanova et al., 2019), GRUODE / mGRUODE
(Brouwer et al., 2019), and ODELSTM (Lechner & Hasani, 2020). Hyperparameters, including the
dimension of memory, learning rate, batch size, dropout, and weight decay, are tuned using a random
search for all experiments. To ensure fairness, the number of parameters in all models are adjusted to
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Algorithm 1 Training process of CoGRUODE

Input: Observations: Xt; Observed time points: t = [t1, · · · , tK ]; Masks: mt; time length: T
Initialize: time = 0, hM

0 , hP
0 , and all trainable parameters

Set: hM = hM
0 , hP = hP

0
for k = 1 to K do
hM , h̃M = GRU-ODE-M(hM , time, tk) % marginal memory evolves to tk
hP = GRU-ODE-P(hP , h̃M , time, tk) % dependence memory evolves to tk
time = tk
hM , h̃M = GRU-Bayes-M(hM ,Xt,mt, time, tk) % marginal memory updates at tk
hP = GRU-Bayes-P(hP , h̃M , time, tk) % dependence memory updates at tk

end for
hM, h̃M = GRU-ODE-M(hM , tK , T )% marginal memory evolves to end
hP = GRU-ODE-P(hP , h̃M , tK , T ) % dependence memory evolves to end
X̂t = MLP(hM ,hP ) % prediction/classification with marginal and dependence memory
return hM ,hP , X̂t

Table 1: Correlation matrix for six variables in LSST
dataset

1 2 3 4 5 6

1 1.000 0.169 0.125 0.126 0.122 0.074
2 0.169 1.000 0.800 0.833 0.820 0.479
3 0.125 0.800 1.000 0.929 0.883 0.736
4 0.126 0.833 0.929 1.000 0.900 0.652
5 0.122 0.820 0.883 0.900 1.000 0.606
6 0.074 0.479 0.736 0.652 0.606 1.000
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Figure 4: One sample trajectories

be approximately equal. For all ODE-based models, we numerically solve the ODE using “Euler”
method with time step = 0.02 in LSST dataset, time step = 0.01 in Human Activity dataset, and
time step = 0.1 in Physionet dataset. For all models, a two-layer MLP is used to map the memories
at the final time point to the corresponding number of classes in all datasets.

5.1 LSST DATASET

The Photometric LSST Astronomical Time Series Classification Challenge is a public dataset that
aims to classify simulated astronomical multivariate time-series data (Bagnall et al., 2018). The
dataset possesses a strong dependence structure (see Table 1 and Figure 4) and is collected by
measuring the photon flux using different astronomical filters. Based on the 6 physical processes, this
task aims to classify celestial objects into 14 astronomical classes.

We divide the total samples (4925) into 70% for training, 15% for validation, and 15% for test. Since
the dataset is regular and synchronous, we resample three new datasets at different missing rate (25%,
50%, and 75%). The loss function used in this dataset is loss = 1

N

∑N
n=1 CE (yn, ŷn), where N is

the number of time series. yn denotes the label of nth time series and ŷn is the prediction for this
label. CE denotes the cross-entropy loss.

5.2 HUMAN ACTIVITY DATASET

Human Activity dataset (Kaluža et al., 2010) is a challenge to classify the human activities at each
time into 7 classes based on the data from sensors attached to people’s belts, chests, and ankles. The
data from sensors are 6554 sequences of multivariate time series with 12 variables and 211 time
points. We follow all data preprocessing steps from (Rubanova et al., 2019) and we normalize the
time length and all time series values into 0 to 1. We split all data (6,554) into 70% (4,587) for
training, 15% (983) for validation, and 15% (984) for test. As the activities at each time need to be
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Table 2: Classification Test Accuracy (mean ± std, N = 5) on LSST Datasets.
25% missingness 50% missingness 75% missingness # params (M)

GRU-∆t 61.568%± 0.406% 56.811%± 0.939% 52.162%± 1.670% 0.290
CT-GRU 57.730%± 1.561% 53.838%± 0.804% 49.108%± 0.899% 0.284
GRU-D 59.514%± 1.477% 53.324%± 1.261% 49.757%± 1.038% 0.280

ODERNN 50.649%± 0.563% 43.270%± 1.828% 40.216%± 0.857% 0.285
GRUODE 59.973%± 1.102% 57.054%± 1.257% 50.892%± 1.331% 0.283

mGRUODE 60.000%± 1.510% 56.622%± 1.809% 50.676%± 0.684% 0.288
ODELSTM 59.649%± 1.715% 55.757%± 0.980% 50.027%± 1.537% 0.283

CoGRUODE-HV 62.081%± 0.665% 57.270%± 1.219% 52.351%± 0.781% 0.291
CoGRUODE-HM 62.514%± 1.563% 58.000%± 1.031% 53.973%± 0.919% 0.281

Table 3: Per-time Classification Test
Accuracy (mean ± std, N = 5) on
Human Activity Dataset.

ACCURACY # params(M)

GRU-∆t 87.126%± 0.364% 0.978
CT-GRU 82.288%± 0.218% 0.956
GRU-D 85.514%± 0.858% 0.992

ODERNN 54.244%± 11.443% 0.964
GRUODE 87.261%± 0.281% 1.012

mGRUODE 87.286%± 0.387% 0.986
ODELSTM 86.584%± 0.366% 1.016

CoGRUODE-HV 89.006%± 0.205% 0.955
CoGRUODE-HM 88.346%± 0.367% 0.989

Table 4: Per-sequence Classification Test AUC-ROC
and AUC-PR (mean ± std, N = 5) on Physionet Dataset.

AUC-ROC AUC-PR # params(M)

GRU-∆t 0.823± 0.000 0.474± 0.001 1.065
CT-GRU 0.780± 0.004 0.434± 0.004 1.176
GRU-D 0.853± 0.005 0.539± 0.014 0.959

ODERNN 0.688± 0.031 0.273± 0.041 1.030
GRUODE 0.821± 0.001 0.480± 0.002 0.984

mGRUODE 0.826± 0.001 0.484± 0.001 1.051
ODELSTM 0.781± 0.021 0.420± 0.046 0.995

CoGRUODE-HV 0.913± 0.006 0.692± 0.016 0.962
CoGRUODE-HM 0.831± 0.001 0.485± 0.003 1.023

classified, the loss function is loss = 1
N

1
K

∑N
n=1

∑K
k=1 CE (yn,k, ŷn,k) , where N is the number

of time series, K is the total number of observational time points. yn,k denotes the label of n-th time
series at time point t and ŷn,k is the prediction class for this label.

5.3 PHYSIONET DATASET

The Physionet 2012 challenge dataset (Goldberger et al., 2000) contains 12,000 multivariate irregu-
larly sampled time series, and each time series consists of several measurements lasting for 48 hours
of particular patient admission to ICU. The goal of this dataset is to predict the patients’ in-hospital
mortality based on the measurements data, which is a binary classification problem. In total, 41
variables are included in this dataset, and we select 37 variables by excluding age, gender, height, and
ICUTtype, which are four time-invariant variables. Following the data preprocessing from Rubanova
et al. (2019), we round up the timestamps to one minute. Furthermore, we use the data saved in files
(a) and (b) to train (7,200 samples) and validate (800 samples) the models, and use data saved in
file (c) to test (4,000 samples) the models (Horn et al., 2020). We normalize each variable across all
patients to the interval [0, 1]. The loss function used in this dataset is loss = 1

N

∑N
n=1 CE (yn, ŷn) ,

whereN is the number of time series. yn denotes the label of n-th time series, and ŷn is the prediction
for this label. The datasets are highly imbalanced, with a positive class rate (death class) of around
14%. Thus, we provide AUC-ROC and AUC-PR as the model metric instead of accuracy.

5.4 ABLATION STUDIES

1. We perform four ablation studies on LSST dataset with missing rate 50% to validate the
efficiency of each component of our model. (a) (Original CoGRUODE) using both memories
for classification (i.e., c = MLP(hM (T ), hP (T ))). (b) Using only marginal memory for
classification (i.e., c = MLP(hM (T ))) while keeping the rest of the model unchanged. (c)
Using only dependence memory for classification (i.e., c = MLP(hP (T ))) while keeping the
rest of the model unchanged. (d) Using hM (t) to carry marginal information to dependence
block instead of using h̃M (t) in equation 8. (e) Inputting data Xt into dependence block
directly instead of using h̃M (t). The results in Figure 5 show that (1) using only marginal
memory does not perform well since it loses the dependence information across variables; (2)
if only uses marginal memory, the HV approach gives better results than the HM approach
since it allows a little correlation among variables when constructing marginal memory; (3)
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Figure 5: The results of ablation studies of
CoGRUODE on LSST dataset with missing
rate 50%. (a) is the original CoGRUODE,
(b)-(e) are ablation results

Figure 6: The results of experiments on
LSST dataset with various missing rate (0,
10%, 25%, 40%, 50%, 60%, 75%, 90%,
95%).

using only dependence memory performs slightly worse than using two memories since the
unique marginal memory of each variable contains the heterogeneous serial dependence,
which is hard to be preserved in dependence memory; (4) using h̃M (t) to carry marginal
information to dependence block is slightly better than using hM (t); (5) inputting observed
data Xt into dependence block gives poor accuracy since the missing values across variabes
introduce the bias into memory, indicating the marginal block mitigates the problem of
missing values.

2. We further conduct more experiments on LSST dataset with missing rate ranging from 0
to 95% (see results in Figure 6). We notice that (1) CoGRUODE always outperforms than
GRUODE, showing the superioty of marginal-dependence framework; (2) the HM approach
generally gives better results than HV approach when missing rate is low. However, when
missing rate is high (e.g., greater that 90%), the serial dependece is broken and thus the
marginal block built on HM approach is less efficient. On the contrary, marginal block
built on HV approach proforms well since it allows a little correlation to construct marginal
memory. This result is also proved in the Physionet experiments where CoGRUODE-HM
performs worse than CoGRUODE-HV. The reason is that 23 variables of the 36 variables
have a missing rate of more than 90% (the details of missing rate for each variable are listed
in Appendix F).

6 CONCLUSION

This paper presents a new model architecture called CoGRUODE for multivariate asynchronous time
series prediction/classification. It is a continuous-time model built on the GRUODE and contains
two blocks: marginal block and dependence block. The marginal block and the dependence block
capture the serial dependence of each variable and the dependence structure across all variables
respectively. Two approaches (HM / HV) are proposed to build the marginal block. HM approach
forms independent marginal memory of each variable. HV approach allows a little correlation
between variables in building the marginal memory of each variable. We find that the HM approach
give better results than the HV approach when the missing rate is low. However, when missing rate
is high, the serial dependence is destroyed. The HM approach is less efficient in this case but HV
approach also performs well. The dependence block aims to model the dependence structure among
variables. It retrieves the marginal memory of each variable in the marginal block and forms the
dependence memory. At last, we make prediction/classification using the memories from both blocks.
Our model outperforms various baselines based on three public empirical datasets.
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