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ABSTRACT

Due to the recent successes of generative models much attention has been paid to
de novo generation of drug-like molecules using machine learning. A particular
class of generative models, diffusion probabilistic models, have recently been
shown to work extraordinarily well across a diverse set of generative tasks, and
a growing body of literature has applied diffusion probabilistic models directly
to the molecule discovery problem. However, existing methods work with atom-
based molecule representations, whereas work in the fragment-based drug design
community indicates that using a molecular fragment-based approach can provide
a much better inductive bias for the generative model. To this end, in our work
we attempt to use diffusion probabilistic models to de novo generate drug-like
molecules with a fragment-based representation, yielding more valid and drug-like
molecules than existing approaches.

1 INTRODUCTION

It is extremely expensive and time-consuming to produce new drugs, with some estimates placing the
time required at 10 years and cost at over $1 billion (Wouters et al., 2020). By training on vast datasets
of existing drugs with known properties, machine learning tools can be used to filter molecules from
a database to search for promising candidates for certain applications, and they can also be used to
find minor modifications to existing molecules to improve their utility. However, both approaches
can be severely limiting. The space of possible chemicals is very large – it has been estimated that
there are somewhere between 1020 and 1060 possible drug-like chemicals, but only 108 have ever
been created (Bilodeau et al., 2022). Therefore, rather than examining existing molecules, it might be
more promising to use machine learning tools in order to generate entirely new candidate molecules
de novo and target generation towards desirable properties.

Despite promising early results in de novo generation, this field is still in its infancy. Even when
a machine learning model proports to be able to generate realistic drugs, two major issues persist:
the uniqueness of the molecules and their practicality in real-world settings. Many proposed drugs
generated from existing machine learning models are strikingly similar to molecules in their training
dataset and would not meet the standards of novelty expected in the field of chemistry (Walters &
Murcko, 2020). Further, many top machine learning models produce drugs that would be impossible
to synthesize by a real chemist – Gao & Coley (2020) found that of the top 100 candidate molecules
suggested by certain machine learning models, none of them were practically synthesizable.

Recently, a new class of models known as denoising diffusion probabilistic models have demonstrated
success in a broad range of machine learning tasks. This technique works using two processes: a
forward noising process, and a reverse denoising process. The noising process sequentially adds
noise to the input data until it is transformed into pure noise. A denoising neural network is then
trained to take a noisy sample and predict how to undo the noise. If this network is then fed a sample
of pure noise, it can denoise it to generate an entirely novel sample. This technique has been explored
as a possible avenue for drug discovery with very promising early results in terms of the realism
and diversity of the generated molecules (Xu et al., 2022; Igashov et al., 2022; Hoogeboom et al.,
2022). However, because these methods generate molecules at the level of individual atoms, they are
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limited to small molecules, and they must be extensively trained just to be able to learn to produce
realistic-looking molecules, let alone ones that have desirable properties as drugs. Furthermore, there
is no indication that generated molecules are synthesizable.

To improve synthesizability while still allowing the model to efficiently generate varied and novel
molecules, we propose to create a machine learning model that generates molecules by diffusing
over common molecular fragments, rather than individual atoms. The diffusion process is over
two sets of variables: the identities of fragments in the generated molecules, and the connections
between these fragments. By bypassing the generation of these lower-level fragments, we expect
this model to be more efficient in generating large molecules. Furthermore, the generated molecules
are expected to be more synthesizable, as they are created from fragments of already-existing drugs.
While a fragment-based approach has shown success with methods such as reinforcement learning
(Flam-Shepherd et al., 2022; Yang et al., 2021; Gottipati et al., 2020b) and variational autoencoders
(Kong et al.; Jin et al., 2018), to our knowledge this is the first application of a diffusion model to
molecular fragments.

2 RELATED WORK

To apply deep learning to the task of molecule generation, a good representation of a molecule is
needed. There have generally been three ways to represent molecules, which can be thought of as the
dimensionality of the representation: 1D, 2D, or 3D.

Existing work in this field has typically represented molecules as SMILES strings, a single string that
encodes the connectivity of constituent atoms. While SMILES strings allow researchers to leverage
neural networks that have classically been used for language models, they have the downside of
requiring that any machine learning model that uses it would have to learn the SMILES grammar,
and would find it hard to get an overview of the structure of a molecule. Furthermore, it is not a
unique representation: two very different SMILES strings could represent the exact same molecule.
Examples include Olivecrona et al. (2017) which uses Deep RL to generate SMILES strings, Gupta
et al. (2018), which uses a generative RNN, and Honda et al. (2019) which uses a transformer
architecture.

More recent machine learning models have represented molecules as graphs, with atoms represented
by nodes and bonds represented by edges. Not only is this far closer to how actual chemists conceive
of molecules, but it has also allowed researchers to apply recently developed highly expressive
graph neural networks that are able to recognize structures important to the properties of molecules.
However, generative models for graphs must deal with the permutation invariance property and
the discrete nature of graphs, which can make their implementations more complicated. Examples
include MolGAN (De Cao & Kipf, 2018) and Graph VAE (Liu et al., 2018), as well as Jo et al. (2022)
and Vignac et al. (2022) which both use diffusion models on graphs to generate molecules.

As molecules are physical objects, it can be more realistic to describe them using the 3-dimensional
coordinates of their constituent atoms. Two atoms that may appear far away in a graph representation
might actually be physically very close in real space, which can strongly affect the molecule’s
physical properties. However, there is usually not a single unique 3-dimensional representation of
a molecule. Atomic bonds can be rotated, so each molecule will actually exist in a distribution
of different conformations, depending on these bond angles. Generative models that work with
coordinates must be equivariant to rotations and translations: if the whole coordinate frame were to
be rotated or translated, then the output of any model would need to be rotated or translated in the
same way, as we should be entirely indifferent to the choice of coordinates. These models therefore
use equivariant neural networks as their backbone (Han et al., 2022). An example of this approach is
Satorras et al. (2021), which uses normalizing flows, Hoogeboom et al. (2022), Xu et al. (2022), and
Igashov et al. (2022), which apply denoising diffusion models to atomic coordinates.

Working at the level of molecular fragments rather than individual atoms has proven to be a good way
to bypass lower-level generation and to produce more synthesizable molecules. Methods that use this
technique include Jin et al. (2018) and Kong et al., which use VAEs to build molecular graphs from
subgraphs, and Gottipati et al. (2020a) and Yang et al. (2021), which use reinforcement learning to
produce molecules one fragment at a time.
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For a survey of the use of generative models for molecule generation, see Bilodeau et al. (2022) and
Du et al. (2022).

3 DISCRETE DENOISING DIFFUSION

Denoising diffusion models are a recently developed class of highly effective generative models (Ho
et al., 2020; Sohl-Dickstein et al., 2015). For these models, we start with a dataset of samples x0,
and our aim is to learn a distribution pθ(x

0) over these samples. The superscript 0 is to denote the
“timestep" of the sample: it is initially 0 for unperturbed data, and it is T for pure noise.

To learn pθ(x
0), we use two processes. The first is a noising process q(xt|xt−1), that takes in data at

some timestep t− 1, and applies noise from a predefined distribution to perturb xt−1 and produce a
distribution of noised data xt. The second is the denoising process pθ(xt−1|xt), which depends on the
parameters θ of a neural network. This process learns to “undo" the noise. We can use q(xt|xt−1) to
generate noisy data xt from real samples x0, and then train the denoiser pθ(xt−1|xt) by minimizing
a loss function. With a trained pθ(x

t−1|xt), we can generate realistic-looking samples by taking pure
noise x̂T and progressively denoising it using until we have a generated sample x̂0.

Instead of sampling a full trajectory (x0, x1, . . . xT ), modern denoising diffusion models are trained
by sampling a random t, sampling xt, and directly predicting x0 (Ho et al., 2020). This greatly speeds
up and stabilizes training, but it requires that the noising process q has certain properties (Vignac
et al., 2022):

1. q(xt|x0) should be very simple to compute so that training samples xt can be easily obtained.
2. q(xt−1|xt, x0) should be simple so that when generating a sample, we can use our model’s

prediction of x0 to predict xt−1 given xt.
3. q(xT |x0) should not depend on x0 as T → ∞, so that it can be used as a prior distribution

for sampling xT when generating samples.

In most diffusion models, these conditions are fulfilled by Gaussian noise. However, when working
with categorical features, other types of noise can be used. In Hoogeboom et al. (2021) and Austin et al.
(2021), it is shown that transition matrices can fulfill all of these conditions. A transition matrix Qt is
defined by Qt

ij = q(xt = j|xt−1 = i): that is, each entry denotes the probability of transitioning
from one state to another. For discrete diffusion operating on one-hot vectors x, we define our noising
process q(xt|x0) = Cat(xt; p = xt−1Qt) where Cat is the categorical distribution. To fulfill the
first condition, transition matrices can be multiplied together as Q̄t = Q1Q2 . . .Qt to skip across
multiple timesteps. To fulfill the second condition, the following closed-form expression can be
derived:

q(xt−1|xt, x0) =
q(xt|xt−1, x0)q(xt−1|x0)

q(xt|x0)
= Cat

(
xt−1; p =

xtQt⊤ ⊙ x0Q̄t−1

x0Q̄txt⊤

)
(1)

We can also define the transition matrix so that Q̄T converges to a given distribution as T → ∞,
fulfilling the third condition.

DiGress (Vignac et al., 2022) uses this discrete denoising diffusion approach to generate realistic-
looking graphs. They do so by independently applying noise to each node and each possible edge
between nodes, and using a graph neural network as their denoising network. We base our work on
their implementation, but adapted to work on molecular fragments. Our architecture is described in
the next section.

4 FRAGMENT-BASED DISCRETE DIFFUSION

4.1 FRAGMENT REPRESENTATION

In this work, we apply discrete denoising diffusion models to fragment-based representations of
molecules. We choose to represent molecules and their fragments as graphs because they are easier
to optimize, don’t require conformation information in the training data, and because graphs are the
chemical structure representations that are needed to actually synthesize a molecule.
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To work on the level of fragments rather than individual atoms, we must develop a one-to-one
mapping between molecular graphs and their fragment representation, a nontrivial task. First, we
define an atom-level molecular graph H = (A,B) where A ∈ Rn×da represents n atoms with a
one-hot encoding of da possible atom types, and B ∈ Rn×n×db represents bonds between atoms
with a one-hot encoding of db − 1 possible bond types, or a one-hot encoding indicating a lack of
bond between two atoms.

We can define these same molecules as fragment graphs, G = (X,E). The matrix X ∈ RN×dx

represents N fragments with one-hot encodings for dx possible fragment types. Each node xi ∈ X
is equivalent to its own smaller molecular graph with ni nodes, which we can denote with H(xi) =
(A(xi),B(xi)). The tensor E ∈ Rn×n×de represent de − 1 possible connection between fragments,
or a lack of connection between fragments. These connections are defined by their attachment points
in the underlying atomic graphs of the respective fragments. For example, e1,2,3 = 1 could mean
that fragment x1 and x2 are connected via bond type 2 (a double bond) at node A(xi)4 and node
A(xj)5 in their respective graphs. The fact that edge type 3 between fragment types H(x1) and
H(x2) denotes a double bond between their 4th and 5th atoms is precomputed in a table mapping
(frag_id, frag_id, edge_type) to (atom_id, atom_id, bond_type). A diagram showing the connection
between the fragment-based representation and the atomic representation is shown in Figure 1.

Figure 1: Four representations of the same molecule: its atom-level graph, its atom-level adjacency
matrix, its fragment-level adjacency matrix, and its fragment-level graph. Because atom-level
adjacency matrices naturally factor into a small set of blocks (fragments) with sparse connections
between them, we hypothesize that this is a simpler training objective for the diffusion model to learn.

4.2 GRAPH DIFFUSION

The discrete denoising diffusion model we apply to our fragment-based graphs is identical to what is
used by DiGress (Vignac et al., 2022), so we describe it here.

To generate noisy samples Gt, we sample a timestep t and apply a cumulative transition matrix Q̄t

to each fragment node in X and each possible edge in E. The transition matrices are of the form:

Q̄t
X = ᾱtI + β̄t1dx

mX and Q̄t
E = ᾱtI + β̄t1de

mE (2)

Here, ᾱt and β̄t are time-dependent scheduling variables, and mX and mE are the marginal
probabilities of each node and edge type respectively, taken from the data. A cosine schedule (Nichol
& Dhariwal, 2021) is used to adjust ᾱ and β̄ over time, such that when t = 0, ᾱ0 = 1 and β̄0 = 0,
and the graph does not change at all, and when t = T , ᾱT = 0 and β̄T = 1, the probability for a
node or edge to transition to a given state is given entirely by the marginal probability of that state.

The denoising process is governed by a graph transformer neural network (Dwivedi & Bresson, 2020)
that takes in a noised graph Gt and predicts the unperturbed graph Ĝ0. The denoising network is
trained using a simple cross-entropy loss comparing the predicted distribution of fragment types
p̂0X and connection types p̂0E to the true values X0 and E0, with their contributions weighed by a
hyperparameter λ:
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L
(
(p̂X

0
, p̂0E),X

0
)
=

n∑
i=1

cross-entropy(p̂0Xi, X
0
i ) + λ

∑
i≤1,j≤n

cross-entropy(p̂0Ei,j , E
0
i,j) (3)

At generation time, a random fragment graph is initialized with the number of fragments sampled
according to the training distribution of fragment counts, and the fragment types and edges are
sampled according to the training distribution marginal probabilities of each fragment and edge type,
mX and mE . This yields a random fragment graph Ĝt=T . The graph transformer predicts G̃0, given
Ĝt. Next, using the posterior formula pθ(Gt−1|Gt,G0) given by Equation 1 and marginalizing over
all possible values of x and e, a partially-denoised Ĝt−1 is sampled given G̃0 and Ĝt . This process
is repeated until a molecule is generated, Ĝ0. Once a fragment-based representation of a molecule
is generated, using a precomputed library of correspondences between fragment types and atomic
graphs and fragment connection types and connecting atoms, we can directly translate our molecules
into their atom-based representation.

5 EXPERIMENTS

Figure 2: The proportion of the initial 4.7 million molecules which can be constructed using only the
top k most frequently seen fragments (k on the x-axis). The dashed red line denotes the recovery
proportion we used in practice by selecting the top 100 fragments.

5.1 DATASET

As no publicly available dataset of molecules in a fragment-based representation exists, we instead
generated our own molecular fragment dataset from a subset of the ZINC15 (Irwin & Shoichet, 2005;
Irwin et al., 2012) dataset. ZINC15 is a large database consisting of over 230 million purchasable
compounds. We selected the drug-like molecules currently in-stock to purchase in order to restrict
our dataset size, resulting in a set of 4.7 million molecules.

Next, we broke each molecule into its constituent fragments using the Breaking Retrosynthetically
Interesting Chemical Substructures (BRICS) algorithm (Degen et al., 2008) (implemented in RDKit
(Landrum)). After fragmenting all molecules, we measured how frequently each fragment was seen
across the dataset. In order to keep the number of node types the diffusion model must consider to a
relatively small number, we selected only the top 100 most frequently seen fragments in the dataset
and filtered our dataset to only retain molecules whose fragments were in the top 100 most seen
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fragments. All selected fragments can be seen in detail in Appendix B. Notably, even after filtering
the dataset based on the top 100 fragments we still obtain a dataset of 2,093,767 molecules. Figure 2
shows the proportion of the original 4.7 million molecules that can be recovered when using only the
top k most frequently appearing fragments. The red dotted line represents the number of molecules
recovered by keeping the top 100 fragments as we do in practice.

In order to properly construct molecules from fragment graphs we need to know which atoms on
a pair of fragments have a bond between them. In light of this, we select a set of edge types for
each pair of fragments in the top 100 fragment set as follows. For each fragment pair, we compute a
histogram based on the pair of atoms between the fragments which are most commonly seen across
the dataset. We then filter then choose the top 3 most seen atom connection points between the
fragments and label them as edge ID 1, 2, and 3 respectively, discarding any molecules which have
fragment connection points outside the top 3 most seen. If any fragment pair has l < 3 attachment
points seen in the dataset we only include l edge IDs for that fragment pair. Finally, in order to get a
dataset small enough to train our models tractably, we uniformly sampled 100,000 molecules from
the molecules left after filtering and fixed them as the dataset used for all experiments.

5.2 MOLECULE GENERATION

Figure 3: Side-by-side comparison of fragment graphs and their corresponding molecules at different
diffusion timesteps. Note that invalid connections between fragments are not shown in the molecular
representation.

Our diffusion model was trained with a batch size of 128, AdamW with a learning rate of 2e−4,
and using 1,000 diffusion steps to sample. All models were allowed to train for ten hours. Further
hyperparameter details are included in Appendix A

Figure 3 shows an example diffusion sequence generated by the fragment-diffusion model. The top
row of the figure shows the generated fragment graphs while the bottom row shows the molecule
generated by this fragment graph. Note that if a triple (frag_id, frag_id, edge_type) specified by the
diffusion model is not contained within our dataset the fragments in the triple are left disconnected in
the resulting overall molecule. We can see that, over time, the fragment-diffusion model samples
a simple fragment graph that generates a compelling drug-like molecule at termination. Finally,
Figure 4 displays random samples from the fully trained fragment diffusion model.

5.3 EVALUATION

Each method was trained (or simply run, in the case of uniform sampling) and evaluated over three
random seeds. We measured the methods across four metrics. Molecule Validity measures the
percentage of molecules that are not disconnected and that do not violate basic valency constraints.
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Figure 4: A set of 8 randomly sampled molecular graphs generated by a fully trained model

The Quantitative Estimate of Druglikeness (QED) and Octanol-Water Partition Coefficient (LogP)
are both heuristic-based metrics that evaluate how drug-like a molecule appears. The Synthetic
Accessibility (SA) Score measures how much a molecule appears to be composed of commonly seen
reagants, penalizing rare or complicated substructures. Each of these metrics was computed using
RDKit (Landrum).

We compare our model to four baselines. First, we compare with the original DiGress implementation
on the atom-level graphs. DiGress uses an augmented set of molecular features (namely, an encoding
of the valency of the atoms, their charge, and their weight). However, extending these features to
fragments is not straightforward (e.g., how should we measure the valency of a molecular fragment?)
and so we did not include them in our fragment-graph diffusion model. As such, we evaluate against
both the atom-graph diffusion model without extra molecular features (to more faithfully compare
with the fragment-graph) and with extra molecular features. This atom-graph diffusion model was
trained with the same hyperparameters as our fragment-based diffusion model. Further, to evaluate
how much moving to a fragment-based representation helps with building valid, synthesizable, drug-
like molecules we sample fragment graphs in an unconstrained, uniform fashion. To more closely
resemble the molecules generated by our fragment-diffusion we also uniformly sample fragment
chains, graphs G = (X,E) such that ∀x ∈ X we have that |{e : e ∈ E,x ∈ e}| ∈ {1, 2}.

A comparison of results is shown in Table 1. We see that our model consistently produces valid
molecules, while also yielding the best performance on the QED and LogP metrics by a considerable
margin. The atom-based diffusion methods create valid molecules at a significantly lower rate, while
the drug-like qualities of their generated molecules are worse than those of fragment-based diffusion.
Interestingly, the atom-based diffusion with augmented features performed within the margin of error
of the non-augmented version for all metrics besides the SA score, on which the augmented version
performs better. This indicates that the lack of domain-specific molecular features is not necessary
for fragment-based diffusion to perform well.

The uniform sampling methods performed exceptionally well at building valid molecules, with the
chain uniform approach yielding nearly 100% validity across all seeds, indicating that a fragment-
based vocabulary for the generative model is indeed a strong inductive bias. Despite the uniform
methods’ strength in generating valid molecules, the fragment-based diffusion model scores signif-
icantly higher on metrics measuring the drug-likeness of generated molecules, indicating that the
diffusion model captures the drug-like nature of the training dataset. The fragment-based diffusion
model achieves a worse SA score than other methods, perhaps because it generates complex molecules
that use rare molecular substructures. It is important to note that the SA score is a rough proxy of
synthesizability – the only real way to determine synthesizability is by evaluating with an algorithm
that computes a full synthesis pathway, which we leave to future work.

6 DISCUSSION

While our initial results are promising, there are a number of limitations to our approach that could
be addressed in future versions of this architecture. Firstly, as explained in Section 5.1, we work with
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Table 1: Model performance
Model % Validity (↑) QED (↑) LogP (↑) SA Score (↓)

Unconstrained Uniform 84.7 ± 1.20 0.41 ± 0.01 1.34 ± 0.08 6.88 ± 0.27
Chain Uniform 99.3 ± 0.40 0.57 ± 0.00 1.21 ± 0.09 5.41± 0.02
Atom-Graph Diffusion 70.0 ± 10.6 0.52 ± 0.07 1.23 ± 0.24 6.11 ± 0.34
Augmented Atom-Graph Diffusion 67.5 ± 6.10 0.49 ± 0.05 1.11 ± 0.07 5.68 ± 0.25

Fragment-Graph Diffusion 100± 0.00 0.61± 0.03 2.68± 0.15 6.88 ± 0.09

only the top 100 fragments, which cover 44% of the molecules in the ZINC database. We also limit
ourselves to 3 possible edge types connecting each pair of fragments limiting our coverage further
and preventing the model from predicting novel connections between different fragments that may be
chemically valid, but not present in the training dataset. These two choices limit the expressivity of
our architecture, but including more possible fragments or edge types could decrease performance, as
there may not be enough data to learn the properties of rarer fragments. It remains to be seen how
to tune these choices to balance the expressivity of the model with its performance. We could also
use other methods to define our fragments and their connections: either by consulting a database of
chemical reagents and their reactions to determine possible fragments and bonds, or by using the
approach of Kong et al., who automatically search atomic graphs for the minimal set of “principal
subgraphs" that yield full coverage of their dataset.

Secondly, the current architecture can only sample from the training distribution, which is only the
first step in designing a full drug discovery algorithm. Our overall goal is to produce molecules that
possess certain properties desirable for a drug. This can be accomplished by adding conditioning to
our architecture, which would guide the denoising process toward desirable samples.

Another limiting factor in our implementation is how we diffuse over connections between fragments.
Currently, as described in Section 4.1, the connections between fragments are determined by the
most common connections between fragments seen in data, with edge labels assigned arbitrarily. An
alternative approach would be to additionally learn the connections between fragments. This could be
approached by a two-stage approach: first, a diffusion model selects the fragments types and which
fragments are connected to which fragments, producing edges ei,j = (xi,xj). and once these are
established, a second network (either another diffusion model or a standard graph neural network for
link prediction) predicts the corresponding bonds bk,l ∈ A(xi)×A(xj).

Lastly, while we work with molecular graphs due to their simplicity, we would be able to achieve
more accurate property prediction if we worked directly with 3D atomic (or fragment) coordinates.
Extending our method to 3D conformers would not be simple: while in a graph-based approach, we
only need to learn to select fragments and connect them together, if we were to use 3D coordinates
instead, we would need to learn three things: which fragments to select, the positions of each
fragment relative to each other fragment, and the conformation of the fragments themselves. These
three features are all heavily interrelated: if two fragments are close to each other, then they would
significantly affect each other’s conformations. While this would be a difficult task to approach, we
believe it to be a theoretically interesting avenue of research that could be extended to other related
problems in 3D space, such as materials discovery, protein binding, or even point cloud generation.

7 CONCLUSION

In this work, we have shown that combining a denoising diffusion model with a fragment-based
representation of molecules can lead to the generation of more realistic, complicated druglike
molecules. Further evaluations are needed to test the performance of this model, but it appears to be
a promising approach for generating realistic molecules that are larger and more complex than can
those that are accessible by current models. In the future, this generation can then be tuned towards
specific drug design goals, potentially making it cheaper and faster to develop new drugs.

We hope to extend this work further by modifying the diffusion process over edges between fragments,
applying this model to graphs in other fields, and developing an approach for 3-dimensional graphs.
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A HYPERPARAMETERS

Learning
Optimizer Adam
Batch Size 128
Learning Rate 2e-4

Diffusion Model
Noise Schedule Cosine
Diffusion Steps 1000
Lambda 5

GNN
Architecture Graph Transformer
Number of Layers 8
Activation Function ReLU
Input MLP Dimensions:

Nodes 128
Edges 64
Graph 128
Layers 2

Transformer Dimensions:
Nodes 256
Edges 64
Graphs 64
Attention Heads 8

Table 2: Hyperparameters used for both fragment-level molecule generation, and atom-level molecule
generation baseline.
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B ALL FRAGMENTS

Figure 5: The 100 most common fragments returned by the fragmentation algorithm.
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