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ABSTRACT

Knowledge Graph Question Answering (KGQA) has traditionally focused on
entity-centric queries that return a single answer entity. However, real-world
queries are often relational, seeking to understand how entities are associated. In
this work, we introduce relation-centric KGQA, a complementary setting where
the answer is a subgraph capturing the semantic connections among entities rather
than an individual entity. The main challenge lies in the abundance of candidate
subgraphs, where trivial or overly common connections often obscure the identifi-
cation of unique and informative answers. To tackle this, we propose UniRel-R1,
a unified framework that integrates subgraph selection, multi-stage graph prun-
ing, and an LLM fine-tuned with reinforcement learning. The reward function
is designed to encourage compact and specific subgraphs with more informative
relations and lower-degree intermediate entities. Extensive experiments show that
UniRel-R1 achieves significant gains in connectivity and reward over Vanilla base-
lines and generalizes effectively to unseen entities and relations.

1 INTRODUCTION

Traditional knowledge graph question answering (KGQA) is largely entity-centric, aiming to return
a single target entity. For example, a query such as “Who is Meghan Markle’s husband’s grand-
mother?” yields “Queen Elizabeth II” as the answer (see Figure [T{a)). Alternatively, users also
often pose relation-centric queries that seek to uncover the relationships between entities rather than
retrieve an individual fact. For example, “How are Meghan Markle and Queen Elizabeth II associ-
ated?” requires constructing a subgraph that captures their semantic connections. Such queries are
common in real-world settings but remain beyond the scope of traditional KGQA systems.

Existing work in KGQA has primarily adhered to the entity-centric paradigm, often augmenting
LLMs with structured knowledge to improve accuracy. Retrieval-augmented generation (RAG) in-
corporates KG facts as contextual input (Linders & Tomczak, [2025)), while other approaches com-
bine LLMs with graph neural networks (GNNs) for joint reasoning over text and structure (Xu et al.,
20255 Yasunaga et al., 2021; |[He et al., 2024). To enhance interpretability, some methods generate
explicit reasoning paths for multi-hop queries (Zhou et al.| 2018}, |(Chakraborty, 2024} Zhang et al.,
2018), and others employ reinforcement learning (RL) or search strategies such as Monte Carlo
Tree Search (MCTS) to explore candidate paths (Shen et al.| [2025). Despite these advances, current
systems ultimately return a single entity, leaving relation-centric queries unexplored.

In this work, we introduce relation-centric KGQA, a complementary setting to the standard entity-
centric KGQA. Instead of producing an entity, the answer is a subgraph that captures the underlying
relational structure among the seed entities. As demonstrated in Figure[T(a), multiple subgraphs may
serve as answers. While Answer Al is the shortest, it reflects an overly common relation and conveys
little information, whereas Answers A2 and A3 provide more unique and informative connections.
This illustrates the central challenge of relation-centric KGQA: Among many candidate subgraphs,
trivial or generic ones often obscure unique and informative answers.

To address this challenge, we propose UniRel-R1, a unified framework for relation-centric KGQA.
UniRel-R1 integrates subgraph selection, multi-stage graph pruning, and RL-tuned LLM. Fig-
ure [T[b) illustrates the pipeline, which begins by extracting seed entities from a natural language
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Figure 1: An overview of KGQA and our proposed UniRel-R1 framework. (a) An illustrative
example contrasting entity-centric KGQA with relation-centric KGQA. (b) The UniRel-R1 pipeline,
which integrates subgraph selection, graph pruning, and RL-tuned LLM.

query. It then performs subgraph selection to identify candidate relational structures. A pruning
stage follows to remove trivial or overly generic entities and relations, yielding a compact subgraph.
The subgraph is textualized and provided alongside the query to an RL-tuned LLM, where the re-
ward design encourages concise and informative outputs by favoring smaller structures with rarer
relations and lower-degree intermediates. In this way, UniRel-R1 ensures that the final answers are
not only valid but also capture distinctive and meaningful relations.

We conduct extensive experiments across seven benchmark knowledge graphs and a diverse set
of LLMs from the Qwen and Llama families. To this end, we build relation-centric query sets
covering both two-entity and multi-entity settings, evaluated under in-domain and cross-domain
scenarios. Results show that UniRel-R1 consistently outperforms Vanilla baselines, yielding at least
a 35% improvement in connectivity and over a 245% gain in reward, while generalizing to unseen
entities and relations. Interestingly, Qwen models are substantially more sensitive to the removal
of semantic information than Llama models, highlighting a fundamental difference in how these
families leverage semantic cues.

2 PROBLEM STATEMENT

In relation-centric KGQA, a knowledge graph is formally defined as G = (£, R, T), where & is the
set of entities, R the set of relation types, and 7 C £ x R x & the set of triples. Given a query g, let
&y C & denote the set of seed entities extracted from g. The task is to construct a subgraph:

G =R T CG.

A subgraph G* is considered valid if it connects all entities in £, with £; C £*, thereby ensuring
that the answer is grounded in the semantics of G. When multiple valid subgraphs exist, user pref-
erences may vary depending on their background knowledge or task requirements. In this work, we
prioritize subgraphs that are more informative, rather than those dominated by trivial or overly com-
mon structures. Accordingly, our optimization objective balances compactness, relation rarity, and
lower-degree intermediate entities, ensuring that the resulting subgraphs emphasize non-trivial and
distinctive semantic relations. Alternative optimization objectives can also be defined, depending on
the specific application scenario.
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Figure 2: An example of multi-step graph pruning. From the initial subgraph (left), Stage 1 removes
overly common entities (e.g., Female), Stage 2 enforces connectivity through intersections, Stage 3
prunes leaf entities, and Stage 4 enhances compactness by removing high-penalty intersection nodes
(yellow). The final subgraph (right) retains the most informative relations among the seed entities.

3 FRAMEWORK: UNIREL-R1

In this section, we outline the overall pipeline of UniRel-RI, which consists of three stages. A task-
specific subgraph is first constructed from the knowledge graph based on entities mentioned in the
query (Sec.[3.1). The subgraph is then refined through multi-stage pruning to remove redundant or
trivial entities and relations (Sec.[3.2). Finally, an RL-tuned LLM processes the textualized sub graph
with the query to generate an answer that highlights the most informative relations(Sec. [3.3) /"

3.1 SUBGRAPH SELECTION

The first stage of our framework constructs an initial candidate subgraph from the knowledge graph.
Given a query ¢, the seed entity set is extracted from ¢ as &, = {e1,es,...,en,}. For each seed
entity e; € &,, we define its k-hop expansion as

VF(e) = {v e & | dist(ei,v) <k}, TF(ei) = {(u,r,v) € T |u,v € V¥(es)},
where dist(+, -) denotes the distance in the undirected projection of G.

The candidate subgraph is obtained by aggregating the k-hop neighborhoods of all seed entities:
’r_ / ’ 4 /o k(. ’ k(. r_ 4
g=RT), V=, Vi) T=U, T R={reR|@nrveT}

The subgraph G’ serves as the initial candidate, refined through pruning in the next stage.

3.2 MULTI-STEP GRAPH PRUNING

The candidate subgraph G’ = (V', R/, T') often contains redundant structures and overly generic
entities that obscure meaningful relational patterns. To mitigate this issue, we refine G’ through a
principled multi-stage pruning process.

As a measure of entity generality, we introduce the hub penalty, defined for each e € £ as:
HubPenalty(e) = log (1 + deg(e)), (1)

where deg(e) denotes the degree of e in the undirected projection of G. The penalty increases with
entity degree, such that highly connected entities (e.g., male) receive larger values, while rarer and
more specific entities (e.g., president) are penalized less. This formulation provides a principled
criterion for filtering out uninformative entities and guiding the pruning of G’.

Figure2|shows the multi-stage pruning on the example in Figure[I] with each stage explained below.

Stage 1: Local Pruning. For each expansion set V¥(e;), we impose a threshold p on the hub
penalty to eliminate overly common entities. Each non-seed v with HubPenalty(v) > p is removed
along with its incident relations. Subsequently, entities that become isolated (i.e., with no incident
relations) are discarded. The resulting pruned neighborhoods are denoted by V§ (e;) and Tpk (€;).

"Note that the framework can be extended to alternative optimization objectives by modifying the pruning
criteria and adjusting the reward function accordingly.
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Stage 2: Connectivity Guarantee. Following local pruning, the filtered neighborhoods {Vf(ei)}
may fail to ensure connectivity among all seed entities. To evaluate connectivity, we compute pair-
wise intersections Z;; = V[’f (e;)N V;f (e;) and construct an auxiliary graph H, = ({V(e:)}, {(i,4) |
Z.; # 0}), where each node represents a pruned neighborhood Vﬁ(ei), and an edge (4,7) is in-
troduced whenever their intersection is non-empty. If #, is connected, then all seed entities are
jointly connected in the candidate subgraph. Otherwise, the threshold p is incrementally relaxed and
Stage 1 is reapplied until connectivity is restored.

Stage 3: Leaf Entity Pruning. Once the connectivity is ensured, we iteratively eliminate non-seed
entities whose neighbor set N'(v) = {u € V' | Ir € R : (v,r,u) € T' or (u,r,v) € T'} contains
only a single distinct element (JA/(v)| = 1). Such leaf-like entities and their incident relations are
iteratively pruned until no further removal is possible.

Stage 4: Compactness Control. If the refined subgraph remains excessively large, we further
enforce compactness by leveraging the intersections {Z;;} defined in Stage 2. Let Z+ = {Z;; |
Z;; # 0} denote the collection of all non-empty intersections. We then select a subset Z¢ C Z
whose index pairs jointly cover all seed entities, i.e., UIij crelt, g} = {0,1,...,m — 1}. For each
valid subset Z¢, a candidate subgraph is constructed in two steps. First, within each intersection Z;;,
we retain the m entities with the lowest hub penalties:

Zij = argmingcz,; uj=m ZUEL{ HubPenalty(v).

Second, each selected set Z-j is expanded via a k-hop search restricted to the corresponding pruned
neighborhoods: N*(Z;;) = Zi; U {u € V¥(e:) UV (e;) | dist(u,v) < k, v € Z;;}. The candidate node
set associated with Z¢ is then V(Z°¢) = UL_], cre NP (Z;), and its induced subgraph is subsequently
simplified using Stage 3.
Finally, the most compact subgraph under parameters (m, p) is obtained as:

Gy =W, Ry T,
where V" = argmingcz+ [V(S)|, T,"={(u,m,v) €e T' |u,v e V'L, R ={r e R" | (u,r,v) € T,"}.

Stage 5: Iterative Reduction. If the subgraph remains larger than the target size, the parameter m
is decreased, and Stage 4 is reapplied until a sufficiently compact subgraph is obtained.

3.3 RELATIONAL ANSWER GENERATION VIA LLM

Given the refined subgraph G7°, the final step is to generate an answer that highlights the most
informative relational structure. We employ an RL-tuned LLM to produce relational explanations
conditioned on the query and textualized subgraph, with optimization based on RL algorithms and
the task-specific reward function detailed in the following sections.

3.3.1 REINFORCEMENT LEARNING ALGORITHMS

Reinforcement Learning with Verifiable Reward (RLVR). Our approach builds on the RLVR
paradigm (Lambert et al., [2024)), which applies to domains where the quality of generated responses
can be deterministically verified. In its standard form, RLVR employs a rule-based verifier v : X —
{0, 1} that assigns binary rewards:

1, if x; satisfies a task-specific correctness check,
ri =v(z;) =

0, otherwise.

This binary scheme is effective for tasks with unambiguous success criteria (e.g., mathematical
problem-solving and code generation). In our setting, we design a corresponding rule-based reward
to verify model generated relations, described in Sec. (3.3.2

Group Relative Policy Optimization (GRPO). For policy optimization, we adopt Group Relative
Policy Optimization (GRPO) (Shao et al., 2024), which evaluates responses based on their relative
performance within a sampled group from the policy.

Given a query ¢, we sample from the previous policy 7y, , (- | ¢) to get G responses {0;}&; with
rewards {r; }. The advantage A; is the group-normalized reward, defined as:
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G
1 . .
a E min(p; A, clip(pi, 1 — o, 1+ &) A;) — B Dxw (mo(-|q) || meet (19)) | -

=1

Lcrro(8) = —

This objective encourages the policy 7y to favor above-average responses. A [-scaled KL term
regularizes the policy updates to prevent large deviations from a reference policy 7yef.

3.3.2 REWARD DESIGN

In relation-centric KGQA, a valid answer must follow the required format, ensure connectivity, and
emphasize informative entities and relations. To capture these aspects, we design a composite reward
with four components: Format, Connectivity, Entity Informativeness, and Relation Informativeness.

Formally, for each answer a, we define:

Format Reward. The format reward is defined as Rt (a) € {—1, 1}, where Rgpnt(a) = 1 when a
conforms to the required format for parsing and Ry, (a) = —1 otherwise.

Connectivity Reward. The connectivity reward evaluates whether the output subgraph connects the
extracted entities &, and is defined as Reon(a) € {—|1&41/2],- .., [1&]/2] — 1}, where the mini-
mum indicates full disconnection, intermediate values reflect partial connectivity (e.g., —||&4|/2]+1
for (I + 1)-connected entities), and the maximum denotes full connectivity.

Entity Informativeness Reward. This component favors informative over generic entities. For a
generated answer a with entity set £(a), the reward is the sum of normalized hub penalties:

_ HubPenalty(e)
maxyece HubPenalty (v)

Ren(@) =Y, Ren(€): Rem(€) = e [-1,0), @

where HubPenalty (e) is defined in Equation|[]

Relation Informativeness Reward. This component favors infrequent relations, which are more
informative. The informativeness of a relation r is measured by its inverse document frequency
(IDF) (Robertson, [2004): IDF(r) = log(%) , where |T| is the number of triples in G and

the denominator is the frequency of r. Frequent relations (e.g., gender) receive lower IDF scores,
while rarer ones (e.g., invention) score higher.

Given an answer a with relation set R (a), the reward is the sum of normalized IDF scores:

IDF(r)
re - re 3 re = -1 _17 .
R ](CL) ZrER(a) R 1(7") R 1(7’) maXsecRr IDF(S) € [ O} (3)

Overall Reward. The final reward for an answer a aggregates all four components:

Yy

R(a) = Remi(a) + Reon(a) + § (Bonled 4 o)) @

where z and y are normalization constants ensuring Re%'(“), RT%M) € [-1,0], with values deter-
mined by the maximum permitted subgraph size.

By construction, the reward is bounded as a function of the number of seed entities |£,|: R(a) €
[—LI€/2] =2, [1€]/21). If Rime(a) = =1, then R(a) = —[|&]/2] = 2. If Reon(a) = —[1&,]/2],
then R(a) = —[|&,]/2].

4 EXPERIMENT

In this section, we evaluate the effectiveness of UniRel-R1 on relation-centric KGQA across multiple
datasets and LLMs. We first describe the datasets and models, then present the main results, followed
by analyses on generalization and on scalability through multi-entity queries.
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4.1 EXPERIMENT SETUP

Datasets. We evaluate on seven benchmark KG datasets to ensure diversity in scale, domain, and
relational complexity: Freebasel3 (Socher et al., 2013), FB15k-237 (Toutanova & Chen, 2015),
MetaQA (Zhang et al., [2018)), DBpedia50/500 (Auer et al., [2007), YAGO3-10 (Mahdisoltani et al.,
2015)), and UMLS (Bodenreider, 2004). These datasets span encyclopedic, biomedical, and com-
monsense knowledge, providing a comprehensive testbed for relation-centric KGQA. Dataset statis-
tics are reported in Appendix [A.2]

Query Construction. Existing KGQA benchmarks focus on entity-centric queries that return a
single entity. To adapt them to the relation-centric setting, we constructed 2,500 queries per dataset,
with 2,000 for training and 500 for testing. For each dataset, we generated two-entity queries with
dist(e;, ;) < 4in the knowledge graph. To evaluate the scalability of UniRel-R1, we further created
multi-entity queries (involving three and four entities) on DBpediaS0. Full construction details are
provided in Appendix [A.2]

Models. To assess generalizability of our method, we evaluated UniRel-RI1 on LLMs from the
Qwen (Yang et al., [2025)) and Llama (Grattafior1 et al., [2024) families, covering diverse architec-
tures and scales. Specifically, we used Qwen-2.5-3B/7B/14B-Instruct, Llama-3.2-3B-Instruct, and
Llama-3.1-8B-Instruct, spanning 3B—14B parameters. These results demonstrate the broad applica-
bility and robustness of our approach across different model sizes and architectures.

Prompts. We designed structured prompts that encode the textualized knowledge graph as node
and edge tables and incorporate the query, requiring the model to return the corresponding subgraph
in a standardized triple format. This ensures parsable outputs that are directly comparable across
models. Prompt templates are provided in Appendix [A.2]

Evaluation Metrics. We evaluate performance using two primary metrics: Connectivity Ratio (C)
and Average Reward (R). The Connectivity Ratio measures the percentage of queries for which
the generated subgraph successfully connects all seed entities, while the Average Reward reflects
the overall subgraph quality defined in Equation 4] Additional metrics, such as individual reward
components, are described in Appendix [A.2]

4.2 MAIN RESULTS

Parameter Choice. For the normalization terms z and y in Equation ] we calibrated their values
using the Qwen-2.5-3B-Instruct model on the largest dataset, DBpedia500. To balance the contri-
butions of the reward components, we set z = 7 and y = 6. These values were fixed and applied
uniformly across all datasets and models to ensure consistency and comparability. Further details of
this parameter tuning are provided in Appendix [A.3]

Table [T] presents the performance of Vanilla and UniRel-R1 across datasets. Each entry is reported
as (C, R), where C denotes the connectivity ratio and R the average reward. The last row shows the
Optimal Reward, obtained via exhaustive search.

Overall, UniRel-R1 consistently surpasses Vanilla. Across datasets, it delivers at least a 35% im-
provement in connectivity and a 245% increase in average reward, underscoring its effectiveness in
generating valid and informative subgraphs. Within both the Qwen and Llama families, larger mod-
els demonstrate stronger performance under Vanilla, reflecting the advantages of increased capacity.
UniRel-R1 further amplifies these gains, highlighting the complementary benefits of model scaling
and task adaptation.

In terms of model-specific results, Qwen-14B achieves the best outcomes on FB15k-237 and
MetaQA, while Llama-8B performs best on the remaining datasets. On Freebasel3 and DBpe-
diaS0, performance nearly matches the optimal reward, likely due to the relatively high connectivity
of these graphs. Detailed reward breakdowns and additional metrics are provided in Appendix [A.3]

Case Study. Beyond the quantitative results in Table [I} we present case studies on multiple
datasets to qualitatively assess the outputs of UniRel-RI. Representative examples are shown in
Figure 3] where our generated subgraphs are compared with those from the smallest subgraph base-
line (i.e., with the fewest edges). The baseline often relies on trivial relations (e.g., gender or place
of birth), whereas UniRel-R1 highlights semantically richer intermediates (e.g., influenced by Dante
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Table 1: Performance comparison between Vanilla and UniRel-R1 where each entry represents (con-
nectivity ratio, average reward).

Models Datasets g cbasel3  FBI5k-237 MetaQA DBpedia50  DBpedia500  YAGO3-10 UMLS

Qwen Models
Qwen3B Vanilla (41.2%,-0.53)  (0.6%, -1.41)  (0.4%, -1.30)  (11.2%, -1.10)  (0.6%, -1.43) (1.0%, -1.4)  (23.0%, -0.73)
UniRel-R1  (86.0%, 0.64)  (62.0%, -0.02) (72.8%,0.07)  (91.0%, 0.55)  (64.8%, -0.06) (67.4%,-0.03)  (69.0%, 0.08)
Qwen7B Vanilla (57.8%,0.04)  (3.4%,-1.06) (4.8%,-1.13) (24.8%,-0.64) (1.0%,-1.18)  (10.4%, -1.08) (37.6%, -0.56)
UniRel-R1  (93.0%, 0.75)  (70.6%, 0.15) ~ (79.0%, 0.15)  (93.6%,0.59)  (72.6%, 0.05)  (76.4%, 0.09)  (86.2%, 0.24)
Qwenl4B Vanilla (72.0%, 0.24)  (17.8%,-0.88) (11.6%, -0.87) (37.8%,-0.55)  (6.8%, -1.18)  (16.6%, -0.84) (41.8%, -0.41)
UniRel-R1  (97.2%, 0.83) (98.4%, 0.67)  (82.8%,0.14)  (89.8%,0.22)  (97.6%, 0.36)
Llama Models
Llama3B Vanilla 0.0%, -2.97)  (0.0%,-2.97)  (0.0%,-2.92)  (0.0%,-3.00) (0.0%,-2.92)  (0.0%,-2.93)  (0.0%, -2.92)
UniRel-R1  (95.8%,0.80) (70.6%, 0.14)  (70.6%,0.12)  (60.6%, 0.04)  (38.8%, -0.47)  (75.4%,0.09)  (34.6%, 0.36)
Llama8B Vanilla (1.0%, -2.89)  (0.4%,-2.74)  (0.0%,-2.80)  (0.0%,-2.96)  (0.0%,-2.67)  (0.2%,-2.51)  (0.0%, -2.87)
UniRel-R1 (82.6%, 0.27)  (82.6%, 0.20)
Optimal Reward 0.92 0.77 0.65 0.72 0.65 0.67 0.79
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Figure 3: Case studies in Freebase13 and FB15k-237.

Alighieri) that yield more informative explanations. This improvement results from pruning, which
filters generic nodes, together with RL optimization that promotes unique and meaningful structures.
Additional case studies are provided in Appendix

4.3 GENERALIZATION

To further examine the robustness and transferability of UniRel-R1, we evaluate its ability to gen-
eralize across datasets. Tablereports the generalization results, where each tuple denotes (C, R).
Specifically, UniRel-R1 is trained on the largest dataset, DBpedia500, and then directly evaluated
on the remaining datasets without additional training.

As shown in the Original rows, the models successfully generate valid subgraphs even for previously
unseen entities and relations, demonstrating a notable degree of cross-domain transferability. Com-
pared with the Vanilla results in Table[I} these models achieve substantially higher performance, in
many cases approaching the connectivity and reward of their in-domain UniRel-R1 counterparts.

This observation motivates the hypothesis that LLMs can exploit semantic regularities acquired
during training to generalize to novel patterns. To test this, we construct Modified versions of
each dataset by replacing all entities and relations with random identifiers (e.g., ENT1, ... ENTn,
RELL, ... ,RELm), thereby eliminating semantic cues.

As expected, the Modified rows exhibit a substantial drop in performance across all datasets for
the Qwen family, confirming the central role of semantic information in enabling transferability.
In contrast, the Llama family is less affected: The 3B model shows only marginal changes, and
although the 8B model does experience reductions, the magnitude remains considerably smaller
than that observed for Qwen models. For example, on YAGO3-10, Qwen-3B suffers reductions
of 58.3% in connectivity ratio and 266.67% in average reward, whereas Llama-3B shows much
smaller changes of 0.45% and 13.89%. Overall, these results indicate that Qwen models are more
sensitive to the removal of semantic information than Llama models.

To further probe this effect, we conduct an additional experiment on MetaQA, where only a fraction
of entities and relations are replaced with random identifiers. We consider partial modifications at
25%, 50%, and 75%, thereby progressively diminishing the amount of preserved semantic informa-
tion. As shown in Figure d}, Qwen models exhibit a steady decline in both connectivity ratio and
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Table 2: Cross-dataset generalization of UniRel-R1 trained on DBpedia500 where each entry repre-
sents (connectivity ratio, average reward).

Models
m Qwen3B Qwen7B Qwenl4B Llama3B Llama8B

Freebasel3 Original ~ (80.0%, 0.52)  (83.4%,0.59) (94.0%,0.77)  (81.8%,0.55)  (91.0%, 0.72)
Modified  (69.6%,0.33)  (74.8%,0.43)  (84.0%,0.60)  (81.6%, 0.55)  (87.0%, 0.65)

FB15k-237 Original ~ (47.0%,-0.23)  (61.6%,0.01)  (76.6%,0.16)  (45.6%,-0.28)  (69.8%, 0.08)
Modified (20.8%,-0.71) (41.4%,-0.32) (52.4%,-0.12) (45.8%,-0.25) (59.4%,-0.03)

Original ~ (60.6%, -0.12)  (69.8%, 0.04)  (78.0%, 0.11)  (64.2%,-0.06)  (80.0%, 0.18)

MetaQA i idified  (29.2%.-0.56) (49.0%, -021)  (60.8%, -0.02)  (672%, 0.06)  (72.6%. 0.15)
DBpedias0 Original (91.4%,0.55)  (96.6%, 0.64)  (97.6%, 0.66) (56.8%,-0.02) (98.2%, 0.66)
P Modified  (54.6%, -0.06) (73.0%.027)  (84.0%.045)  (84.6%,045) (91.8%.0.57)
YAGO3-10 Original ~ (56.6%, -0.18)  (67.4%,0.01)  (80.6%, 0.15) (44.8%,-0.36) (83.0%, 0.18)
Modified  (23.6%. -0.66) (41.4%, -034) (48.2%,-0.24) (44.6%.-0.31) (62.2%, -0.03)
UMLS Original ~ (49.0%, -0.19)  (55.8%,-0.07)  (74.0%,0.10)  (56.4%,-0.12)  (66.6%, 0.05)
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Figure 4: Comparison of connectivity ratio and average reward under different modification levels.

average reward as the modification level increases, indicating that their generalization performance
is highly dependent on the semantic regularities of the knowledge graph. By contrast, Llama models
are less affected: the 3B variant shows minor fluctuations, with a slight initial decline followed by a
modest recovery, whereas the 8B model exhibits a mild downward trend with reductions of 9.25%
in connectivity ratio and 16.67% in average reward between the original and fully modified settings.

Taken together, these findings suggest that Qwen models rely more on semantic information for
cross-dataset generalization, whereas Llama models draw more on structural connectivity to sustain
stable performance.

4.4 SCALABILITY

To assess the scalability of UniRel-R1, we extend our evaluation from two-entity queries to queries
involving three and four entities on the DBpediaS0 dataset. Unlike the two-entity case, where con-
nectivity is measured by a connectivity ratio, multi-entity queries allow for a richer characterization.

For three-entity queries, we report both the pairwise connectivity ratio (the percentage of queries
where only two entities are connected) and the full connectivity ratio (all three entities are con-
nected). For four-entity queries, we distinguish three levels: (i) pairwise connectivity ratio, (ii)
triple connectivity ratio, and (iii) full connectivity ratio.

Table [3] summarizes the performance of Vanilla and UniRel-R1 on DBpedia50 across three-entity
and four-entity queries. Across both settings, Vanilla models exhibit limited ability to recover valid
subgraphs. By contrast, UniRel-R1 demonstrates substantial generalization gains: for three-entity
queries, the full connectivity ratio increases by 591.3% and the reward by 277.27%, while for four-
entity queries, the corresponding gains reach 355.6% and 87.5%. Moreover, Llama models consis-
tently outperform Qwen models, in some cases approaching the optimal reward, highlighting their
stronger capacity to leverage structural information.
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Table 3: Performance comparison of Vanilla and UniRel-R1 on DBpedia50 across three-entity and
four-entity queries.

Models Three Entities Four Entities
Full Conn.  Pairwise Conn. Reward | Full Conn. Triple Conn. Pairwise Conn. Reward

Qwen3B Vanilla 4.2% 2.2% -1.21 1.8% 0.0% 0.6% -2.31
UniRel-R1 69.2% 17.2% 1.17 8.2% 18.6% 50.8% -0.29
Qwen7B Vanilla 10.4% 6.6% -0.66 52% 2.0% 4.8% -0.84
¢ UniRel-R1 73.4% 18.0% 1.27 55.4% 16.4% 18.0% 0.78
Qwenl14B Vanilla 13.8% 13.6% -0.56 4.8% 0.6% 5.6% -2.37
UniRel-R1 95.4% 2.0% 1.59 83.2% 6.1% 4.3% 1.26
Llama3B Vanilla 0.0% 0.0% -2.93 0.0% 0.0% 0.0% -3.82
N UniRel-R1 90.8% 7.6% 1.57 48.4% 18.4% 24.2% 0.68
LlamaSB Vanilla 0.0% 0.0% -2.90 0.0% 0.0% 0.0% -3.78
UniRel-R1 94.6% 4.8% 1.61 80.0% 5.6% 10.2% 1.26

Optimal Reward \ 1.74 \ 1.63

These findings collectively demonstrate the scalability of the proposed framework to more com-
plex multi-entity scenarios and underscore its applicability to real-world KGQA tasks that involve
reasoning over multiple entities.

5 RELATED WORK

Knowledge Graph Question Answering. Recent progress in KGQA has increasingly incorporated
LLMs to exploit their strong natural language understanding. A prominent direction is to generate
direct answers by enriching LLMs with KG evidence, most commonly via RAG frameworks that
retrieve relevant triples as context (Linders & Tomczak, 2025). Another line of work integrates
LLMs with GNNs to enable joint reasoning over text and structured knowledge (Xu et al., 2025;
Yasunaga et al., 2021; He et al., 2024). In parallel, research emphasizing explainability focuses
on explicit reasoning paths for multi-hop questions, where the answer requires traversing multiple
triples (Zhou et al., 2018; |[Chakraborty, |2024; Zhang et al.| |2018). Such methods often employ
RL or search strategies, including MCTS, to iteratively refine candidate paths (Shen et al.l [2025).
Others adopt embedding-based reasoning approaches (Saxena et al., |2020; [Shi et al.| 2021)), where
multi-hop inference is captured implicitly through learned representations across multiple layers.

Improving LLM Reasoning via RLVR. Recent work has demonstrated RLVR’s broad applica-
bility across a wide spectrum of tasks, including mathematical and logical reasoning (Guo et al.|
20235)), code generation (Wang et al., |2025a), multi-modal reasoning (Huang et al.l 2025b; Wang
et al., 2025b} [L1 et al., [2025)), structured data tasks like relation extraction (Dai et al., 2025b) and
GUI navigation (Shi et al.||2025)), and complex reasoning strategies such as parallel thinking (Zheng
et al., [2025). Concurrent research focuses on improving the framework through two main direc-
tions: exploring training paradigms like self-play (Liu et al., 2025} Huang et al.| |2025a) and test-
time reinforcement learning (Zuo et al.| |2025), and developing more effective RL algorithms such
as DAPO (Yu et al., |2025), VAPO (Yue et al., 2025), and high-entropy guided optimization tech-
niques (Dai et al., [2025a}; |Wang et al.| 2025c};|Zhou et al., 2025)).

6 CONCLUSION

In this paper, we introduced relation-centric KGQA, where the goal is to return a subgraph that cap-
tures semantic associations among entities, a complementary setting to the standard entity-centric
KGQA. We presented UniRel-RI, a unified framework that integrates subgraph selection, multi-
stage pruning, and RL-tuned LLMs, where the reward design explicitly favors compact subgraphs
with rarer relations and lower-degree intermediates, thereby steering the model toward concise
and distinctive relational answers. Through extensive evaluations on seven benchmark knowledge
graphs, we demonstrated that UniRel-R1 delivers substantial improvements over Vanilla baselines,
achieving large gains in both connectivity and reward while maintaining strong generalization to
unseen entities and relations. Our analysis further revealed a model-level distinction: Qwen models
exhibit a stronger reliance on semantic cues, whereas Llama models maintain more stable perfor-
mance by leveraging structural connectivity. Finally, our results on multi-entity queries confirm the
scalability of UniRel-R1, showing that the framework extends naturally to complex reasoning tasks.
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REPRODUCIBILITY STATEMENT

We ensure reproducibility of our work as follows. The prompts used in all experiments are provided
in Appendix and a complete list of hyperparameters is included in Appendix All datasets
and models employed in our experiments are publicly available. In addition, detailed descriptions
of dataset modifications and query constructions are documented in Appendix [A.2]

THE USE OF LARGE LANGUAGE MODELS

This manuscript was refined with the assistance of LLMs, which were used to improve clarity,
grammar, and overall readability. The use of these models was restricted to language editing and did
not influence the scientific content.

A DETAILS OF EXPERIMENTS

A.1 HYPERPARAMETERS

We summarize the key hyperparameters used in our experiments below.
Data / Input Configuration.

Max Prompt Length: 8192
Max Response Length: 2048
Validation Batch Size: 1024
Seed: 1

Optimization

Global Batch Size (Actor/Critic): 64
Learning Rate: 1 x 10~6

Weight Decay: 1 x 1072
Optimizer: AdamW (bf16)

Max Gradient Norm: 1.0

Rollout Configuration

Number of Rollouts: 5 (train), 1 (validation)
Rollout Temperature: 1.0 (train), 0.6 (validation)
Rollout Top-p: 1.0 (train), 0.95 (validation)

Max Batched Tokens: 10240

KL Control. KL Coefficient (Axr,): 1 x 1072

Training Setup. Total Epochs: 20 (2-entities), 40 (3-entities, 4-entities)

A.2 IMPLEMENTATION DETAILS

Datasets Table E] summarizes the datasets used in our experiments, including their sources,
number of entities, and number of triples. For FB15k-237, we replace machine identifiers
with their corresponding human-readable entity names. To address the issue of long and com-
plex relation names in Freebase, we transform each relation into a simplified alias with the
assistance of ChatGPT, followed by manual verification. For example, the original relation
/film/actor/film./film/performance/filmis shortened to acted_in.

Query Construction For two-entity queries, we first sampled pairs of seed entities such that the
shortest path distance dist(e;,e;) < 4 in the knowledge graph. The sampling procedure (Algo-
rithm|[T)) performs repeated random selection of a source entity and then selects a target entity reach-
able within & hops. This ensures that queries follow the graph’s local connectivity.

To evaluate scalability, we further constructed queries involving three and four entities on the DB-
pedia50 dataset. For triplets (u, v, w), we required that the third entity w is within & hops of at least
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Table 4: Statistics of knowledge graph datasets used in our experiments.

Datasets Source #Entities #Relations  #Triples
Freebasel3  Freebase 75,043 13 375,514
FB15k-237  Freebase 14,265 237 310,116
MetaQA Movie-domain 40,151 9 134,741
DBpedia50  Subset of DBpedia (Wikipedia) 30,449 365 43,756
DBpedia500 Larger subset of DBpedia 490,598 573 4,268,614
YAGO3-10 Subset of YAGO3 (Wikipedia, WordNet, GeoNames) 123,182 37 1,089,040
UMLS Unified Medical Language System 135 46 6,529

Algorithm 1 Entity Pair Sampling

1: Randomly sample an entity u from the graph.

2: Run BFS up to k hops to obtain reachable set N (u, k).
3: Randomly sample v € N (u, k) with d(u,v) < k.

4: Return (u,v) as the entity pair.

one of the first two entities (u or v). For quadruplets (u, v, w, z), we extended this requirement so
that the fourth entity z is within k hops of at least one of {u, v, w}. This OR-connectivity guarantees
that multi-entity queries yield semantically well-connected subgraphs.

After sampling seed entities, we converted them into natural language questions using a set of man-
ually designed templates. For example, given the pair (Meghan Markle, Queen Elizabeth II), we
generate the query: “How are Meghan Markle and Queen Elizabeth Il associated?” We also used
alternative phrasings such as “For what reason are [entityl] and [entity2] related?” to improve
linguistic diversity.

Prompts For each experiment, we constructed prompts that contextualize the knowledge graph
and the query into a unified text input. Specifically, the graph is represented as node and edge
tables, followed by the natural language query, together with task-specific instructions. This design
ensures that the model has access to both structural and semantic information.

An example prompt corresponding to Figure [2]is shown below.
You are given a directed graph as two CSV-like sections in this order:

1) Node table (header included) :
node_id, node_attr

2) Edge table (header included) :
src, edge_attr, dst

Task

— Use ONLY edges from the Edge table to answer the question by outputting
a path.

— When printing each edge, replace IDs with the exact node_attr from the
Node table.

— Output MUST be text triples, not numeric IDs.

Output format (STRICT | no extra text):
PATH:
("subject" |predicate|"object")

END

Rules

— Use only listed edges; do NOT invent edges.

— Map IDs -+ node_attr; preserve node_attr exactly.
— Output NOTHING outside the PATH block.

- If no path exists, output exactly:
PATH:

14
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END

Graph:

node_1id, node_attr

1, Meghan Markle

2, Prince Harry

3, Prince William

4, Queen Elizabeth II

src, edge_attr, dst
1, spouse, 2

, grandmother, 2

, grandmother, 3

, brother, 3

N D

Question: How are Meghan Markle and Queen Elizabeth II associated?

Your output must be ONLY the PATH block.

Additional Evaluation Metrics Besides the two primary metrics, Connectivity Ratio and Aver-
age Reward, we report additional reward components to provide a more fine-grained evaluation of
relational answers:

e Correct Format Percentage (F'): the proportion of generated subgraphs that conform to the re-
quired output format.

e Average Entity Informativeness (I): the negative of the average informativeness score of entities
(Equation @]); lower values indicate more informative entities.

e Average Relation Informativeness (Ir): the negative of the average informativeness score of rela-
tions (Equation [3); lower values indicate more informative realtions.

Note that Average Entity Informativeness and Average Relation Informativeness are only available
when the format reward equals 1 and the generated subgraph is connected. Therefore, for two-entity
queries, we compute these averages only over the connected answers.

A.3 DETAILS OF MAIN RESULTS

Table 5: Evaluation results of Qwen-2.5-3B-Instruct model on DBpedia500 under different param-
eter settings. Only reachable cases are reported for /i and Ig.

F C In In

100.0% 59.0% -5.12  -5.84
100.0%  60.6% -5.62 -6.43
100.0% 64.8%  -5.83 -7.24
100.0% 642% -639 -7.95

[ IEEN [ U, T )
P Iie NI, R NG N

Parameter Choice. For the normalization terms y and « in Equation[d] we calibrated their values
using the Qwen-2.5-3B-Instruct model on the largest dataset, DBpedia5S00. Since the shortest dis-
tance between entity pairs is bounded by dist(e;, e;) < 4, the optimal case for two-entity queries
typically involves about four relations and five entities. Accordingly, we initialized the parameter
search from (z,y) = (5,4).

Table |3| presents the evaluation across different (z,y) values. Transitioning from (5,4) to (6,5)
leads to a marginal improvement in Connectivity Ratio of 1.6%, but this gain is offset by a reduction
in informativeness, with Ir decreasing by 0.50 and Iz by 0.59, resulting in a total loss of 1.09. By
comparison, (7,6) achieves the highest Connectivity Ratio of 64.8%, representing a 4.2% increase
over (6,5), while the informativeness loss remains essentially identical: I decreases by 0.21 and
I'r by 0.81, again summing to 1.09. This outcome highlights that (7, 6) delivers a substantially better
trade-off, offering a larger connectivity gain without incurring additional informativeness penalties.
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Table 6: Average relation and entity informativeness of Vanilla and UniRel-R1 where each tuple
represents (Ir, Ig).

Models Datasets g cehasel3 FBISk-237 MetaQA  DBpediaS0 DBpedia500 YAGO3-10  UMLS

Qwen Models
Qwen3B Vanilla (0.59,0.67) (1.93,1.93) (1.19,1.12) (0.91,0.53) (1.31,1.225) (0.60,0.26) (1.08, 1.61)
UniRel-R1  (0.34,0.94) (2.97,2.28) (2.90,2.45) (2.01,1.78) (3.109,4.04) (2.78,4.69) (1.25,4.78)
Qwen7B Vanilla (0.32,0.75) (1.63,1.79) (2.52,1.63) (1.07,0.71) (2.14,1.519) (1.88,1.43) (1.10,2.06)
UniRel-R1  (0.36, 1.19) (2.01,2.84) (2.90,2.71) (2.02,1.79) (3.12,4.20) (2.81,4.81) (1.34,6.26)
Qwenl4B Vanilla (0.33,0.87) (2.06,2.52) (1.93,0.50) (1.46,1.05) (3.00,3.00) (1.82,1.84) (1.38,2.58)
UniRel-R1  (0.35,1.20) (1.69,4.18) (2.78,3.81) (1.99,1.98) (2.99,5.19) (2.46,5.68) (1.42,6.71)
Llama Models
Liamazp  Vanilla ) () () --) ) ) )
UniRel-R1  (0.35,1.23) (2.14,2.87) (2.14,2.87) (1.89,1.69) (3.05,4.22) (2.89,4.57) (0.62,1.58)
Llama8B Vanilla (0.07,3.07) (3.87,6.82) (--) (- -) (--) (4.17,11.62) (--)
UniRel-R1  (0.36, 1.29) (1.97,4.23) (1.97,4.23) (2.02,1.96) (3.03,5.78)  (2.78,6.08) (1.43,6.83)
Optimal Search (0.29,0.77) (1.12,1.86) (2.66,1.78) (2.08,1.45) (2.58,1.92) (2.526,1.67) (0.91,1.93)

Table 7: Correct format percentage of Vanilla and UniRel-R1.

Models Datasets g oehasel3 FBI5k-237 MetaQA DBpediaS0 DBpedia500 YAGO3-10 UMLS

Qwen Models
Qwen3B Var}illa 83.6% 78.8% 84.6% 84.6% 78.2% 78.0% 93.0%
UniRel-R1 100.0% 99.8% 95.4% 100.0% 99.8% 100.0% 100.0%
Qwen7B Var}illa 96.6% 93.8% 89.4% 95.0% 90.0% 86.8% 88.8%
UniRel-R1 100.0% 100.0% 95.8% 100.0% 100.0% 100.0% 100.0%
Qwenl4B Val}illa 93.4% 91.2% 94.0% 88.2% 85.4% 94.2% 93.8%
UniRel-R1 100.0% 100.0% 95.6% 100.0% 100.0% 100.0% 100.0%

Llama Models
Llama3B Var}illa 1.6% 1.6% 4.2% 0.4% 3.8% 3.4% 3.8%
UniRel-R1 100.0% 99.8% 99.8% 100.0% 100.0% 100.0% 100.0%
Llama8B Var}illa 4.4% 12.6% 10.2% 2.0% 16.6% 24.6% 4.6%
UniRel-R1 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0%

When further increasing the parameters to (8,7), the Connectivity Ratio ceases to improve and
instead begins to decline.

Based on these observations, we selected (y,2) = (7,6) as the final configuration. These values
were fixed and applied uniformly across all datasets and models with two-entity queries to ensure
consistency and comparability.

Performance Comparison across Models and Datasets. Table[6|reports the average relation and
entity informativeness of Vanilla and UniRel-R1 across datasets, where lower values indicate more
informative relations or entities.

For Vanilla, the connected answers are typically simple subgraphs with shorter lengths, which ex-
plains the relatively low initial scores. After applying UniRel-R1, additional relations and entities
may be introduced to ensure connectivity, which can increase the informativeness scores compared
to the optimal baseline.

Compared with the optimal search, certain datasets (e.g., Llama-8B on DBpedia50) exhibit lower
IR but higher /g, revealing a gap between relation- and entity-level informativeness. By contrast,
datasets with larger reward gaps from the optimal (e.g., FB15k-237) often show a small difference
in Ir but a large difference in Iy, suggesting that extra high-degree or hub-penalty entities were
included to achieve connectivity.

Table [/| further reveals that Qwen models exhibit a stronger ability to follow prompt instructions
under Vanilla, maintaining relatively high correct format percentages (often above 80%). In contrast,
Llama models struggle to produce valid outputs in the absence of structural guidance, with correct
format rates frequently below 5%. With UniRel-R1, however, both families achieve nearly perfect
compliance across all datasets, indicating that reinforcement-guided adaptation is highly effective in
enforcing structural answers.
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Case Study. We present three additional case studies to further illustrate the differences between
the shortest subgraph and the UniRel-R1.

Question: How are Football and University of Rome La Sapienza related?

Shortest Subgraph:

has_country contains
Italy

Football University of Rome La Sapienza

UniRel-R1:

team-sport team_location headquarter_city
%

Football ¢+————— A.S. Roma —————— Rome University of Rome La Sapienza

Question: How are Dianne Wiest and Villanova University related?

Shortest Subgraph:

nationality contains

Dianne Wiest ——— United States of America ———— Villanova University
UniRel-R1:

Dianne Wiest =225, University of Maryland, College Park fraternitiesandsororities Alpha Delta Pi
fraternities.and.sororities Villanova University
Question: How are 2003 NFL Draft and Philip Baker Hall related?
Shortest Subgraph:
school contains nationality

2003 NFL Draft ——— University of Miami ————— United States of America <—————— Philip Baker Hall
UniRel-R1:

school fraternities.and-sororities

2003 NFL Draft —— Marshall University

fraternities.and.sororities student

University of Toledo ——— Philip Baker Hall

Alpha Sigma Phi
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