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Abstract

During natural evolution, the primary visual cortex (V1) of lower mammals typ-
ically forms salt-and-pepper organizations, while higher mammals and primates
develop pinwheel structures with distinct topological properties. Despite the
general belief that V1 neurons primarily serve as edge detectors, the functional
advantages of pinwheel structures over salt-and-peppers are not well recognized.
To this end, we propose a two-dimensional self-evolving spiking neural network
that integrates Hebbian-like plasticity and empirical morphological data. Through
extensive exposure to image data, our network evolves from salt-and-peppers to
pinwheel structures, with neurons becoming localized bandpass filters responsive
to various orientations. This transformation is accompanied by an increase in
visual field overlap. Our findings indicate that neurons in pinwheel centers (PCs)
respond more effectively to complex spatial textures in natural images, exhibiting
stronger and quicker responses than those in salt-and-pepper organizations. PCs
act as first-order stage processors with heightened sensitivity and reduced latency
to intricate contours, while adjacent iso-orientation domains serve as second-order
stage processors that refine edge representations for clearer perception. This study
presents the first theoretical evidence that pinwheel structures function as crucial
detectors of spatial contour saliency in the visual cortex.

1 Introduction

The seminal work of Hubel and Wiesel revealed orientation-selective columns in the visual cortex
of higher mammals [1, 2]. In higher mammals’ primary visual cortex (V1), neurons cluster into
"pinwheel" structures around singularities [3], unlike in some mammals like rodents, which display
"salt-and-pepper" organizations [4] or mini-columns [5]. While there are established theories and
experiments for studying the formation of topological organization maps in the visual cortex [6, 7, 8,
9, 10, 11], the functional significance of pinwheel-like columnar organization remains an unresolved
question and is even debated [12, 13].
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Sophisticated visual analyses, such as image pattern extraction [14], pattern symmetry [15], material
properties [16], and textures [17], are crucial for understanding complex visual inputs. Imaging
and electrophysiological studies have shown that iso-orientation domains (IODs) undergo cross-
orientation suppression [18], reducing a neuron’s response to its preferred orientation when another
orientation is also present in the stimulus [13, 19, 20]. This indicates IODs encoding the linear oriented
stimuli, which is crucial for detecting edges and contours [21, 22]. Cross-orientation suppression is
believed to facilitate the detection of local discontinuities, such as orientation discontinuities [23, 24,
25], leading to perceptual "pop-out" effects and the perception of illusory contours [24, 26, 27]. In
contrast, neurons at pinwheel centers (PCs) exhibit greater selectivity for cross-orientation stimuli
[12, 13]. This indicates that PCs respond more effectively to multi-orientation patterns, such as
pattern symmetry than IODs [12]. This indicates PCs may contribute to encode more complex contour
features. However, PCs are less selective but have longer response latency than IODs for stimulus
orientation in the hierarchy process within OPMs when it comes to a single stimulus orientation
[13, 19, 28]. Some studies indicate that colors [29], textures [30], darks and lights [31], luminance
[32], and mirror symmetry [15] play a role in salient to visual processing. Despite these insights, the
functional implications of how neurons within IODs and PCs of pinwheels process complex contour
stimuli—potentially affecting stimulus salience for both IODs and PCs—from bottom-up visual
inputs remain poorly understood, particularly from a temporal-spatial neural dynamics standpoint.

In response to these challenges, our research contributes the following:

• We propose a novel 2D self-evolving spiking neural network (SESNN) model that investi-
gates the spiking mechanisms behind orientation preference maps (OPMs), spanning from
salt-and-pepper organizations in mice to pinwheel structures in cats and macaques. The
SESNN uniquely produces sparse codes through local synaptic plasticity during natural
scene learning, establishing a new benchmark for neural coding strategies.

• PCs act as first-stage processors, detecting natural images and initiating spiking waves to
neighboring IODs, which then process as second-stage neurons. This indicates that early
processing involves complex contours, not just edge detection.

• PCs react faster to a variety of orientation features than IODs, indicating their function in
detecting complex orientations and serving as geometric saliency detectors. This suggests
PCs have an evolutionary advantage due to self-organized pinwheel structures, which
improves their ability to process complex contours.

2 Results

2.1 Visual overlap underlying pinwheels emergence

Our SESNN model generates diverse OPMs, from salt-and-peppers to pinwheel structures, by
adjusting the visual overlap metric ε. This metric, crucial for the variety of visual topologies across
species, is shown in Fig. 1a to produce pinwheel structures at high overlap, akin to those in cats and
macaques, while low overlap results in salt-and-pepper organizations, typical of mice or rats. High
overlap also enables cortical neurons to sample natural scenes more frequently, aiding in generating
high-resolution images during decoding.

Fig. 1a shows how visual input overlap levels from 10 to 15 pixels affect pinwheel structure
representation in the model. The top panel illustrates a higher overlap (15 pixels), and the middle,
a lower overlap (12 pixels). This comparison reveals the impact of stimulus overlap on pinwheel
density and layout in the visual cortex. Below the threshold (10 pixels in our case), salt-and-pepper
patterns form, as the bottom panel indicates. Thus, 9 pixels of overlap are excluded from pinwheel
analysis, as shown in Fig. 1b-d.

We quantitatively analyze the OPMs shown in Fig. 1a with several metrics [7, 33]:

Pinwheel counts, defined as the number of PCs, can be measured by 2D FFT [34] which are located
at the intersection of the real and imaginary components that equal 0 [33]. It exhibits a decreasing
trend as the visual input overlap increases (illustrated in Fig. 1b), suggesting that a greater overlap in
the visual field may lead to a reduction in the number of discrete pinwheel structures.
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Figure 1: RF visual overlaps underlying the emergence of OPM and the salt-and-peppers are revealed
via our SESNN model. a. Modifying the overlap parameter (ε) among neighboring neurons receiving
(16 × 16 pixels) visual inputs from natural images influences the dimensions (e.g., b. Pinwheel
counts, c. Nearest-neighbor pinwheel distance, d. Hypercolumn size) of pinwheel structures and salt-
and-pepper organizations. (Lines: mean. Shaded area: SD.) e. Comparing the SESNN model overlap
with actual anatomical data overlap percentages in different species (mice, cats, and macaques). f.
Relationship between the IOD size and the extent of the visual field in anatomical data (mice, cats,
and macaques).

The nearest-neighbor pinwheel distance (NNPD) in millimeter (mm) unit is defined as the distance
between the two nearest PCs. The increasing trend of visual input overlap expands the distance
between neighboring pinwheels (Fig. 1c).

The size of hypercolumns (mm) is defined with periodicity measured by 2D FFT and also increases
with the visual input overlap (shown in Fig. 1d). This paper does not account for left- and right-eye
dominance columns, so the hypercolumn size is defined as the full 180° cycle of repeating column
spacing (Λ) (mm).

It’s noteworthy that pinwheel density is not included as a metric in our analysis. This omission
is because the observed pinwheel density, irrespective of the hypercolumn size, approaches π
pinwheels/Λ2, conforming to topological constraints [33, 34].

Our findings emphasize the importance of overlap degrees. Greater overlap (e.g., ε1 = 15 pixels)
fosters stronger local clustering, leading to larger hypercolumn sizes, fewer pinwheels, and longer
NNPDs, versus lower overlap (e.g., ε2 = 12 pixels). Minimal overlap (e.g., ε3 = 9 pixels), yields
weak clustering, resembling salt-and-pepper organizations (Fig. 1a). This suggests that shared input
among V1 neurons significantly influences OPM and salt-and-pepper formation. A strong positive
correlation (R2 = 0.99) between the SESNN model and species’ visual RF overlaps (mouse, cat,
macaque) is observed in Fig. 1e. This relationship highlights the overlap index’s key role in spatial
organization within orientation maps. The model’s predictions on IOD sizes and visual field extent
(Fig. 1f) align with empirical data [7], confirming the SESNN model’s robustness in simulating
neuroanatomical organization and the biological development of orientation maps.

2.2 Spatial-temporal distributed spiking waves propagate within pinwheels

V1 neurons stimulated by natural images primarily fire within pinwheel structures, particularly within
and around PCs (Fig. 2a-b). This pattern is especially pronounced in higher mammals with large
IODs, such as macaques and cats.
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Figure 2: Spatial-temporal response pattern within pinwheels. a. This figure displays the neuronal
responses on OPM with a large IOD in a pinwheel structure. The neurons that fire at time t0 are
shown as large black dots at PC, and they expand towards the periphery at time t0+1, also denoted
as large black dots. The other small dots represent resting neurons. b. Distance between firing
neurons and the PC at time t0 and t0+1. c. This panel shows the response onset latency of neurons
and the mean distance (± SD) between these neurons within a pinwheel. The distance is measured
as the Euclidean distance within a 2D grid, simulating the structure of a 2D V1 area. (Significance:
***p<0.001, Mann-Whitney U test.)

We define the response onset latency as 1 ms for the initial discharge from pinwheel structures, with
subsequent firings occurring at 2 ms, based on a 1 ms time unit. Stimulated by natural images, the
discharges start at the PCs and exhibit pronounced diffusion within the IODs sequentially, depending
on their distance from the center, as suggested in Fig. 2c.

2.3 Visual bottom-up saliency detection: functional role of pinwheel in geometric encoding

In this section, we investigate whether pinwheel structures respond distinctly to salient features in
input images. The ground truth boundary from the BSDS 500 dataset [35] used as binary input
represents geometric complexity (edges and curves) (Fig. 3a). The complexity is measured by
calculating the local pixel entropy using sliding windows, with a 15×15 pixel neighborhood to assess
pixel value dispersion in the binary images. The computation adheres to the following equation:

H(i, j) = −
L−1∑
k=0

p(mk) log2 p(mk), (1)

where H(i, j) denotes the entropy at pixel position (i, j) in the entropy map, L the count of distinct
gray levels within the local neighborhood around pixel (i, j), and mk the kth gray level within this
specified neighborhood. A large entropy value reflects great unpredictability or complexity in the
pixel values, signifying a highly variable pixel value distribution. Conversely, a low entropy value
indicates a high degree of predictability, less variation, and reduced complexity in the contours of
pixel values. In addition, the saliency map of images is generated based on the classical methodology
[36].

Furthermore, we propose a bimodal ratio analysis to compute the orientation bimodal ratio (OBR) to
indicate a neuron’s orientation tuning curve as either unimodal (single peak) or perfectly bimodal
(two peaks of equal strength). This analysis focuses on identifying the peaks in the orientation tuning
curve and quantifying their relative strengths.

OBR =
2 ·min(R1, R2)

R1 +R2
, (2)
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Figure 3: Pinwheel structures in V1 exhibit geometric properties. a. A BSDS 500 grayscale image
displays boundaries, saliency, and entropy maps. b. Natural images show a positive link between
saliency and entropy. c. Neuronal response onset latency from pinwheels and salt-and-peppers
relates to structural complexity, measured by local pixel entropy. (Data: mean ± SD, significance:
****p<0.0001, Welch’s t-test.)

where R1 and R2 represent the normalized firing rates corresponding to the strengths of the two most
pronounced peaks in the orientation tuning curve. The OBR ranges from 0, denoting unimodality, to
1, indicating perfect bimodality in the neuron’s orientation tuning.

A positive correlation is observed between the saliency map and the geometrical complexity of
the BSDS500 dataset (Fig. 3b), demonstrating that higher geometrical complexity correlates with
increased saliency. Significantly, in response to the stimulus shown in the BSDS500 image (Fig. 3a),
pinwheel structures primarily activate in areas of high contour complexity (regions with the highest
saliency in this binary image), which is a response pattern have not been observed in salt-and-peppers
(Fig. 3c).

To confirm the disparity in contour complexity responses between pinwheel and salt-and-pepper
organizations, we design a star-like binary input (depicted in Fig. 4a), including four identical entities
to negate the impact of neuronal positioning within the SESNN model. This approach reaffirms the
saliency-complexity correlation (Fig. 4b) and the priority of pinwheel activation over salt-and-peppers
in response to heightened complexity (Fig. 4c).

Findings show that PCs exhibit enhanced saliency detection and significantly faster response times
than IODs, indicating that PCs respond more quickly and sensitively to geometrically complex stimuli,
while IODs are slower and react to simpler geometrical stimuli (see Fig. 4d). Both saliency and
latency measurements are normalized to a 0-1 scale for comparison.

The enhanced saliency detection of PCs is due to the complex orientation preference in RFs. As
addressed in Fig. 4e, the ordinate represents the OBR, reflecting that neurons near PC generally
exhibit bimodal orientation tuning curves with near-equal peak strengths while there is a primary
peak and a secondary peak at a relatively far position from PC (x = 2). And the secondary peak is
nearly absent at the IODs level (x = 3), leading to an OBR close to 0. Salt-and-peppers, however,
show less variation, maintaining a consistent OBR.

In conclusion, PCs demonstrate selectivity for more intricate orientations. This is experimentally
supported by [13, 37], who suggest that PCs are particularly sensitive to specific geometric configura-
tions, such as T junctions. Characterized by multiple orientations and an OBR nearing 1 (Fig. 4e),
these neurons tend to initiate action potentials in response to complex orientations. Consequently,
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Figure 4: Geometric properties emergence in PCs of V1 on star-like patterns. a. We introduce
artificial star-like patterns to assess neural response to complexity. b. Star-like images show a link
between saliency and entropy. c. Neuron response times in PCs and salt-and-peppers reduce with
lower entropy. d. The analysis compares PCs and IODs for saliency and response to star-like patterns;
the inset details saliency and latency. e. OBR varies across cortical distance; the red line marks PCs,
and the black line, salt-and-peppers (an arbitrary point for salt-and-peppers). (Data: mean ± SD,
significance: **p<0.01, ***p<0.001, ****p<0.0001, Welch’s t-test.)

this leads to pinwheels being the first to respond. In contrast, neurons in salt-and-peppers do not
exhibit a similar responsiveness to complex orientations as observed in pinwheels.

3 Methods

3.1 The architecture of SESNN model

Our SESNN model is a two-dimensional network of excitatory (E-) and inhibitory (I-) leaky integrate-
and-fire neurons (LIF) (5), stimulated by whitened natural images to mimic the LGN’s functions
of contrast normalization and edge enhancement without complex modeling [42, 43, 44]. We use
160 whitened natural images as the training dataset, normalized to zero mean and uniform variance,
derived from 20 base images (512×512 pixels) [44, 45]. To capture orientation details, each of the
base images undergoes a 90-degree clockwise rotation and flip, creating 8 variations per original.

The configuration features E- and I- neurons in recurrent networks with periodic boundary conditions
(PBC), simulating a continuous 2D cortical surface. Under natural image stimuli, the SESNN forms
single neuron receptive fields and population-level pinwheel structures in the OPM (Fig. 5e-f). To
validate the model, we compare its evolution from randomness to organized states against biological
data from macaque pinwheel structures and a baseline model [41], using metrics such as pinwheel
density (pinwheels/ Λ2), NNPD (mm), and hypercolumn size (mm) [7, 33, 34] (Fig. 5f and Table 1).

Table 1: SESNN pinwheels (mean ± SD) vs. macaque pinwheels.

Metric E-I baseline SESNN model Macaque

Pinwheel density (pinwheels/Λ2) ∼ 2.941 3.175± 0.397 ∼ 3.327
NNPD (mm) N/A 0.277± 0.043 ∼ 0.242
Hypercolumn size (mm) N/A 0.839± 0.054 ∼ 0.760
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Figure 5: Architecture of proposed SESNN model. a. The SESNN model comprises 4,900 E- and
1,225 I- neurons [38, 39, 40]. It processes 160 natural images (100 patches each), presenting each
512×512 pixel patch to E-neurons for 100 ms with input overlap. The FF and E-E connections
adhere to the Hebbian-Oja (HO) rule; others follow the Correlation Measuring (CM) rule. b. E-
and I-neurons are spatially arranged with periodic boundaries, sharing coordinates with connected
boundaries as per diagram arrows. Identical connections are marked by same-color arrows. c. Initial
weights are Gaussian distributed. d. Post-training connection strengths are depicted, with medians in
red. e. Receptive fields (RF) emerge after training. f. Post-training spatial organization is compared
among the SESNN model’s OPM, macaque V1, and an SNN-based model [41], with color bars for
orientation and a 1 mm scale bar on the cortical surface.

3.2 Experiment-data-justified overlapping visual fields among nearby neurons

In each trial, E-neuron processes 100 different 16×16 patches for 100 milliseconds each, randomly
selected from the training dataset to serve as the receptive fields (RFs) (see Fig. 5a middle and
right panels). It is assumed that these visual inputs overlap on the retina (Fig. 5a, middle panel
and its inset). To reflect biological conditions, we perform a statistical analysis based on data from
cats, macaques, and mice (Table 2), calculating average overlaps of 99.84% for cats, 99.70% for
macaques, and 96.08% for mice using (Eq. 3). These results closely align with our SESNN model’s
configurations (refer to Fig. 1e). Receptive field (RF) size in V1 is more related to resolution than
orientation map formation. In macaque V1, RF size increases more than tenfold from fovea to
periphery, while orientation map properties show little variation [46, 47]. Our study does not focus
on RF size variations across the retina, as we expect minimal effects from these shifts across species,
provided the overlap remains constant. Since the fovea is key for detailed visual information, we use
V1 RFs in the area centralis to modeling.

We propose the visual input overlap metric εpercentage, which is defined as follows:

εpercentage =
2
√
ρV1Sunit − LunitM

RFsize
2
√
ρV1Sunit − 1

× 100% (3)

where Sunit represents the unit cortical area, RFsize denotes the size of the RF in V1, ρV1 represents
the density of neurons in V1, Lunit denotes the unit length of the RF and M refers to the cortical
magnification factor (CMF). We consider only an effective cortical layer composed of output neurons.
This is because the apparent overlap within a vertical cortical column primarily contributes to
intermediary processing stages for the same input. Therefore, such overlaps should not be conflated
with overlaps in the input space.

3.3 Neural dynamics

E-neurons receive stimuli from natural images as well as noise N (0, 0.04) from other brain areas
(noise term). I-neurons indirectly receive natural image stimuli by adjusting E-neurons. The neural
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Table 2: Comparative anatomical data of the retina and V1 across three species. a. This table includes
three diverse species, encompassing both primates (e.g., macaques) and non-primates (e.g., mice and
cats). b. V1 neuron density (neurons/mm2) within 2D surface. c. Size of V1 RF in area centralis
(deg). d. Cortical magnification factor (CMF) (mm/deg) of V1.

(A)SPECIES (B)V1 NEURON DENSITY (C)V1 RF SIZE (D)CMF

CAT ∼ 99, 200 [48] ∼ 1.0 [49] ∼ 0.67 [50]
MACAQUE ∼ 243, 000 [48] ∼ 0.2 [51] ∼ 2.0 [51]
MOUSE ∼ 86, 600 [48] ∼ 4.0 [52] ∼ 0.02 [53]

spiking dynamics are modeled using biologically inspired LIF neurons, incorporating refractory
periods and adaptive firing thresholds [54]. The neural dynamics are iteratively formulated as follows:

u
(K)
i (t+ 1) = u

(K)
i (t)e

− η

τ(K) + hK(i)
∑
j

FF(image→E)
ij Xj (4)

+
∑
K∗

∑
j

β
(K∗→K)
ij ·W (K∗→K)

ij · z(K
∗)

j (t) + noise,

hK(i) =

{
1, if i is an E-neuron ID,

0, if i is an I-neuron ID,
(5)

∆θ
(K)
i ∝ pi(z

(K∗)
i = 1)− p

(K)
i , (6)

where i = 1, 2, . . . , Nth (the neuron IDs of E-neurons and I-neurons).

In neural dynamics equation, u(K)
i (t) denotes the membrane potential of neuron i at time t, applicable

to neurons of class K, which includes E- and I- neuron groups. The membrane time constant,
symbolized by τ in the resistor-capacitor circuit, governs the decay rate of the membrane potential in
individual neurons. Notably, inhibitory neurons are configured to fire more rapidly than excitatory
neurons [43, 55]. This setup reduces reconstruction error and hastens system convergence, leading to
a more efficient and accurate representation of input stimuli.

3.4 Hebbian Learning in SESNN

The learning rules consist of the Hebbian Oja’s variant (HO) [42] for input weight adjustments and
the Correlation Measuring (CM) rules [43, 44] for intra-network weight changes (Fig. 5a-c). These
facilitate adaptive synaptic weight adjustment based on firing pattern correlations, emulating a key
learning mechanism in biological neural networks.

The formula for these adjustments is given by:

HO : ∆W
(K∗→K)
ij ∝ yixj − y2iW

(K∗→K)
ij , (7)

CM : ∆W
(K∗→K)
ij ∝ yixj − ⟨yi⟩ ⟨xj⟩

(
1 +W

(K∗→K)
ij

)
, (8)

where x, y denote the spike rates of presynaptic and postsynaptic neurons, respectively, with ⟨·⟩
denotes the lifetime average. After each stimulus presentation of 100 ms, we calculate the network’s
neuronal instantaneous spike rates using exponential moving averages (EMAs), which aggregate
spikes over time to reflect recent activity (see section A.1). Lifetime averages, also computed as
EMAs, are crucial for homeostatic stability, helping to modulate neuronal properties or synaptic
strengths for consistent activity. See the appendix for the hyperparameters.

Our SESNN model reflects experimental findings [56, 57] by representing V1 pyramidal neurons with
weaker synaptic strengths, essential for preventing over-excitation and maintaining neural balance.
We apply the HO rule [42] to E-E connections with a normalization factor to keep synaptic weights
between 0 and 1, while stronger lateral E-I connections under the CM rule lack this normalization
[44, 43]. Post-training synaptic strengths are depicted in Fig. 5d. Stabilizing neural network training
requires careful learning rate adjustment. A slower rate for E-E connections compared to others is
crucial to prevent E-neuron over-excitation, aligning with empirical data [56, 57, 58].
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The HO and CM rules facilitate LTP and LTD mechanisms, common in rate learning rules that do not
require precise spike timing. We selected these rules for their ease of tuning and ability to stabilize
recurrent excitation.

4 Related works

Functional roles of pinwheel structure can be revealed by SESNN model The classical self-
organizing map model [8] and other computational approaches like on-off models [6, 7, 9, 59] and
related ANNs [10, 60, 61] lack the dynamic and temporal fidelity needed to realistically simulate the
emergence of pinwheel structures in the visual cortex. To address these shortcomings, we propose the
novel SESNN model, integrating retinotopy data [48, 49, 51, 52], detailed morphological data [62,
63, 64], and CMF [50, 51, 53] to enhance biological fidelity. The SESNN model effectively simulates
macaque cortical organization and pinwheel development within OPMs (Fig. 5f). Furthermore, our
investigations reveal that the degree of overlap—reflecting similar feedforward inputs from identical
RGCs to neighboring neurons—positively correlates with the retino-cortical mapping ratio [6], aiding
in distinguishing between different V1 organizational patterns.

PCs and IODs in neural processing hierarchies Our findings show that PCs and IODs exhibit
distinct neural activity waves, leading to varied responses to contour complexity from spatial-temporal
dynamics: PCs react first to complex contours, having more multi-orientation selective neurons (Fig.
4e, x = 1) before activity spreads to IODs, which process simpler edges (Fig. 4d and e). PCs display
a stronger correlation with contour saliency, indicating a heightened role in processing visual stimuli
over IODs (Figs. 3b and 4b). In rodents with salt-and-pepper organizations, contour saliency is
less pronounced (Figs. 3c and 4c). While PCs are thought to indicate higher-order processing due
to delayed response [13, 28], this is likely due to the nature of the stimuli. Studies reveal IODs
show cross-orientation suppression under complex stimuli [12], unlike PCs with broader tuning. The
SESNN model illustrates a preference for complex stimuli in PCs and simple stimuli in IODs, with
activity cascading from PCs to IODs upon encountering complex contours (Fig. 4d and e).

PCs as geometric saliency detector The SESNN model reveals PCs have broader orientation
tuning and less selectivity for complex contours, unlike IODs, which show sharper tuning and cross-
orientation suppression, preferring simpler edges (x = 1 in Fig. 4e) [12, 13, 19, 58, 65, 66, 67].
PCs’ excitation leads to reduced cross-orientation suppression. With binary input, PCs correlate
more positively with contour complexity than IODs (Figs. 3b and 4b), making them more salient
in processing visual stimuli. This differs from rodents with salt-and-pepper organizations that lack
distinct contour complexity saliency (Figs. 3c and 4c). Prior studies [12, 13, 28] suggest PCs have
delayed response latency, indicative of higher-order processing. This arises from using drifting grating
stimuli that activate IODs more readily. Koch et al. [12] note that IODs show cross-orientation
suppression under complex stimuli, narrowing their tuning, unlike PCs. However, these studies omit
temporal neural data within pinwheel structures. The SESNN model supports physiological findings
that IODs and PCs favor single and complex orientation stimuli, respectively.

5 Conclusion and limitations

The advantages of pinwheel structures in visual representation and encoding are not fully understood.
To address this, we develop a two-dimensional self-evolving spiking neural network (SESNN) that
incorporates Hebbian-like plasticity and empirical morphological data. This model evolves to function
as localized, bandpass filters, enhancing its responsiveness to a range of orientations and complex
spatial textures in natural images. Our findings reveal that neurons within pinwheel structures respond
more effectively to these textures, with stronger and quicker reactions than those in salt-and-pepper
configurations. Specifically, PCs act as first-order stage processors with heightened sensitivity and
reduced response latency to intricate contours, while IODs function as second-stage processors,
refining edge representation for greater clarity. This advanced processing capability of pinwheel
structures, particularly in detecting spatial contour saliency, not only deepens our understanding
of visual processing in higher mammals but may also inform new strategies for visual saliency
algorithms in computational models.

Using sliding windows, local entropy assesses variation and complexity in spatial distributions by
capturing local intensity changes, indirectly reflecting geometric complexity through edges, corners,
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and patterns. Since this method cannot directly measure geometric shapes, we verify the use of the
Ramer-Douglas-Peucker algorithm to approximate and directly measure geometric structures (refer
to section A.5) [68]. This algorithm simplifies shape contours by reducing vertices while preserving
the overall form. The resulting polygon will allow us to calculate the distribution of edge lengths
and angles, with geometric entropy defined as the sum of these entropy values. In future studies, we
will utilize the Ramer-Douglas-Peucker algorithm to enhance our geometric analysis by identifying
and measuring the complexity of specific structural features, such as junctions, sharp corners, and
textures, which are essential in complex visual scenes.
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A Appendices

A.1 Exponential moving average

We compute the network’s neuronal instantaneous spike rates as exponential moving averages
(EMAs), which accumulate spikes over time (see Eq. 9). EMAs are utilized to track recent neuronal
activity levels. Concurrently, lifetime average values are also calculated using EMAs, which are
crucial for maintaining homeostatic stability. This method helps stabilize the neural network by
adjusting neuronal properties or synaptic strengths to sustain consistent activity levels over time.

xj(t) = (1− ζ)xj(t− 1) + ζ · zj(t), (9)

where ζ = 1− e−
1
10 , indicating that the 10 ms is a temporal window of the moving average weighted

with exponential decay. The initialization of xj is 0. The exponential moving average is calculated
dynamically and updated along with synaptic weights.

⟨xj⟩ := (1− ξ) · ⟨xj⟩+ ξ · xj , (10)
where ξ = 1− e−1. It is dynamically updated to ensure the sum of the weights remains constant over
time.

A.2 Detailed parameters and connectivity settings for SESNN

Detailed neural dynamics: The FF connection, labeled FF(image→E)
ij , links pixel Xj of the whitened

image patch to E-neuron i. W (K∗→K)
ij signifies the synaptic weight from neuron j of neuron class

K∗ to neuron i of neuron class K, with its sign determined by the connection type, described as
β
(K∗→K)
ij (the neuron receives excitatory connections, set as +1; conversely, the neuron receives

inhibitory connections, the sign is set as -1). z(K
∗)

j (t) indicates the spike output of neuron j at time t .

Upon reaching the spike threshold θ (initialized as 2), a spike is emitted, z(K
∗)

j (t) is set to 1, then
the membrane potential is reset to 0 mV, remaining so until the refractory period (3 ms) concludes.
Within V1, homeostatic plasticity [33, 54] ensures neural activity stability by dynamically adjusting
the firing threshold θ. This adjustment is based on the deviation of the current firing rate pi (t) from
the target rates p(K)

i (p(E) = 2, p(I) = 4), as outlined in Eq. 6 [54]. We assign τ (E) = 10 ms for
E-neurons and τ (I) = 5 ms for I-neurons. To enhance computational efficiency, we set the time step
to 1 ms.

Hyperparameters: For the synaptic plasticity,learning rates are ηFF = 0.2 (image to E-neuron),
ηEE = 0.01 (E- to E-neuron), ηEI = 0.7 (I- to E-neuron), ηII = 1.5 (I- to I-neuron), and ηIE = 0.7 (E-
to I-neuron), while the neural connectivity parameters are αmax,E = 1.0 (E- max weight), αmax,I = 0.5
(I- max weight), σEE = 3.5 (E-E coupling range), σEI = 2.9 (E-I coupling range), σIE = 2.6 (I-E
coupling range), and σII = 2.1 (I-I coupling range).

Neural connectivity within 2D cortical area: E- and I- neurons are arranged symmetrically on
a two-dimensional lattice, as illustrated in Fig. 5b. PBCs are employed to mimic the large number
of neurons in the actual V1 cortical surface. Specifically, neurons at the boundary are connected
to neurons at corresponding symmetric positions on the opposite boundary. The initial connection
weights between neurons are modeled by a Gaussian function of their distance (see Fig. 5c), which
can be expressed as:

WK∗→K
0 (i, j) = αK∗ × exp

(
−d (i, j)

2

2σK∗
2

)
. (11)

In this equation, d(i, j) represents the Euclidean distance from neuron i to neuron j in a grid, α
determines the maximum connection weight, which is set to αEE = 1, αEI = 1, αIE = 0.5, αII = 0.5,
and σ governs the rate at which the weight decays with distance. The synaptic types predominantly
determine the parameters for this connection weight distribution function. To accurately replicate
the neuronal architecture of V1 in macaques. The connectivity radiuses, denoted by σ, are set to
σEE = 3.5, σEI = 2.9, σIE = 2.6, σII = 2.1. These values are based on anatomical data indicating
that the axon length scales of E- and I-neurons are approximately 200 µm and 100 µm, respectively,
while the dendrite length scales are around 150 µm for E-neurons and 75 µm for I-neurons in the V1
[62, 63, 64]. We prune any connection strengths below a threshold of 0.01 to maintain computational
efficiency and biological plausibility.
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A.3 Anatomical data integration

Neural connection data

The experimental subjects include six adult cats with unknown genders, with data sourced from
research by Armen Stepanyants et al.[63]; and eight macaques, aged 5-11 years, including six males
and two females, with data sourced from research by Joseph Amatrudo et al.[64].

Neuronal synaptic plasticity

The subjects are rats aged 14-16 days, with unknown gender and quantity, with data sourced from
research by Holmgren et al.[56]; transgenic mice, with unknown quantity and gender, with data
sourced from research by Hofer et al. [57].

Retinal-V1 topological projection data

Receptive field data: V1 neuron counts for macaques, cats, tree shrews, ferrets, mice, rats, and gray
squirrels respectively come from Tehovnik et al. [69] (subjects: 3 macaques, unknown gender and
age), Scholl et al. [49] (subjects: cats, unknown gender and age), Veit et al.[50] (subjects: 9 male and
7 female tree shrews, aged 3-8 years), Huberman et al.[70] (subjects: 8 ferrets, unknown gender and
age), Niell et al.[52] (subjects: mice, aged 2–6 months, unknown gender), Foik et al.[71](subjects: 21
rats, unknown gender and age), and Hall et al.[72] (subjects: 17 gray squirrels, unknown gender and
age). V1 neuron density: Neuron density data for macaques, cats, mice, rats, and gray squirrels come
from Srinivasana et al.[51] (subjects: unknown gender and age); tree shrew, ferret, and gray squirrel
density data respectively come from Weigand et al.[73].

Cortical magnification factor

Cortical magnification factor data for macaques, cats, tree shrews, ferrets, mice, rats, and gray
squirrels are sourced from Tehovnik et al.[69] (subjects: 3 macaques, unknown gender and age),
Veit et al.[50](subjects: cats, unknown gender and age), Bosking et al.[46] (subjects: tree shrews,
unknown gender and age), Rockland et al. [74] (subjects: 9 ferrets, female, unknown age), Beest et
al.[53] (subjects: 28 mice, 11 males and 17 females, ages 2-14 months), Keller et al.[75] (subjects:
male rats, age 3 months), and Hall et al.[72] (subjects: 17 gray squirrels, unknown gender and age).

Additionally, the anatomical data concerning inter-ocular distances are obtained from Najafian et al.
[7].

A.4 Unveiling species-specific factors distinguishing pinwheels and salt-and-peppers

A.4.1 Anatomical data suggests RFs density underlying V1 organizations

Table 3: Comparative anatomical data of the retina and V1 across species.

a. Species
(mean)

b. Retina
(mm2)

c. V1 size
(mm2)

d. V1 neurons
density

(neurons/mm2)

e. V1 RF
size in area

centralis (deg)

f. RFs density
((c)× (d)/(b))
(RFs/mm2)

Macaque 636[6] 1,090[48] 243,000[48] 0.2[51] 416,462.26
Cat 510[6] 380[6, 48] 99,200[48] 1.0[49] 73,913.73
Tree shrew 122[6, 76] 73[6, 48] 192,800[73] 2.0[50] 115,363.93
Ferret 83[6, 74] 78[48] 95,813[73] 3.0[70] 90,041.13
Mouse 15[6] 2.5[48] 86,600[48] 4.0[52] 14,433.33
Rat 52[6, 77] 7.1[48] 90,800[48] 3.0[71] 12,397.69
Gray squirrel 205[6] 32[6] 84,213[73] 2.0[72] 13,145.44

We analyzed anatomical data from seven species, including primates (e.g., macaques) and non-
primates (e.g., mice, rats, cats, tree shrews, gray squirrels, and ferrets), as detailed in Table 3. We first
find that V1 RFD (ρRF) acts as a linear classifier (y = 4.42×104x), effectively distinguishing species
with pinwheel structures from those with salt-and-pepper organizations. In this classifier, species
like macaques, cats, tree shrews, and ferrets, which have higher RFD, are associated with pinwheel
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Figure 6: A linear classifier based on RFD (y = 4.42 × 104x) effectively differentiates species
with salt-and-pepper organizations (rats, mice, gray squirrels) from those with pinwheel structures
(macaques, ferrets, cats, tree shrews). a. This classifier reflects variations in V1 organizations across
species. b. A plot categorizing species by the ratio of V1 neuron number to retina size acts as a
divider, implying a critical ratio for the formation of pinwheel structures.

structures (light red area in Fig. 6) and exceed the classification threshold. In contrast, species with
lower RFD, such as mice, rats, and gray squirrels, are linked to salt-and-pepper organizations (light
blue area in Fig. 6). Thus, V1 RFD serves as a predictive metric for V1 organizational patterns across
species. The ρRF is calculated as follows:

ρRF =
n

sr
=

n

[(sRF − ε) (
√
n− 1) + sRF]

2 , (12)

where n denotes the total number of neurons in V1, sr indicates the retinal surface area, sV1 corre-
sponds to the V1 2D surface area, and ρV1 signifies the neuronal density within V1. The variable ε
quantifies the degree of visual input overlap among adjacent neurons, and sRF represents the RF size.
Concerning the Eq. 12 and anatomical data (Table 3), the two main factors influencing RFD ρRF are
the overlap ε of visual inputs between adjacent RFs and V1 neuronal density ρV 1. We discuss the
overlap in the main text. Neuronal density is discussed in the following sections.

A.4.2 SESNN reveals neuronal connection range influencing V1 clusters
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Figure 7: Neuronal connection range within V1 contributes to the formation of pinwheel structures. a.
Modifying the synaptic connection range reshapes the dimensions of pinwheel structures. b-d. The
relationship between the synaptic connection range (σ) and the number of pinwheels, NNPD (mm),
and hypercolumn size (mm). The scale bar: 1 mm in V1 cortical surface. Color scheme: orientation
preference. Lines: mean. Shaded area: SD.
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The anatomical data in Table 3d for seven species show variability in V1 neuronal density (ρV1),
which influences inter-neuronal spacing and connection strength. We explore how V1 cortical
orientation patterns form by adjusting the lateral connection range, impacting axon reach among E-
and I-neurons, as depicted in Fig. 7. We modulate axonal arborization through parameter σ to adjust
the connection range, allowing us to simulate neuronal connections in areas with varying densities.
This setup enables the SESNN model to predict changes in cortical patterns (Fig. 7). Our observations
indicate that increasing axon lengths, thereby extending the connection range, enlarges hypercolumn
sizes within pinwheel structures (Fig. 7d), reduces the overall number of pinwheels (Fig. 7b), and
increases NNPD (Fig. 7c). These findings underscore the critical role of neural synaptic connection
range in organizing orientation maps.

A.5 Relationship between maximum values of local pixel entropy and local geometrical
entropy for various shapes

To address the limitations of using local pixel entropy (LPE) with sliding windows alone to capture
complex geometric properties, we conduct a new analysis comparing the maximum values of LPE
with local geometrical entropy (LGE) across various shapes. These shapes include lines, angles, and
junctions (L-, T-, X-junctions), as well as jagged edges. Both LPE and LGE values were normalized
to the range [0,1] for consistency.

Let P = {v1, v2, . . . , vn} be a polygon with vertices vi = (xi, yi), where i = 1, 2, . . . , n. The edges
of the polygon are the line segments between consecutive vertices, denoted as ei = ∥vi+1 − vi∥,
where ∥ · ∥ represents the Euclidean distance. The angle θi between two consecutive edges ei and
ei+1 can be computed using the dot product:

θi = cos−1

(
ei · ei+1

∥ei∥∥ei+1∥

)
. (13)

With the set of edge lengths {e1, e2, . . . , en} and angles {θ1, θ2, . . . , θn}, we calculate the entropy
for both distributions. The entropy H of a discrete distribution X with probability mass function p(x)
is given by:

H(X) = −
∑
x∈X

p(x) log p(x). (14)

For the edge lengths and angles, the probability mass function is estimated by normalizing the
frequency of occurrence of each unique edge length and angle in the polygon:

H(Lengths) = −
n∑

i=1

p(ei) log p(ei), (15)

H(Angles) = −
n∑

i=1

p(θi) log p(θi). (16)

To enhance the sensitivity of geometrical entropy to structural complexity, particularly in differen-
tiating shapes that have similar edge lengths and angles but different structural arrangements, we
introduce a scaling factor based on the logarithm of the number of vertices n. The defined geometrical
entropy (GE) with the scaling factor is thus defined as:

GE = (H(Lengths) +H(Angles))× log(n). (17)

This modification allows GE to capture additional complexity arising from intersections and the
global arrangement of vertices, providing a more comprehensive assessment of the shape’s structural
intricacies.
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Our results, summarized in Table 4, show that while LPE can reflect the complexity of certain patterns,
it does not fully capture the geometric variations seen in more intricate shapes. For instance, the LPE
values for line structures remain relatively low compared to those for jagged edges, which have the
highest LPE and LGE values due to their high structural complexity. This comparison highlights the
added value of incorporating LGE to better characterize local geometric structures, providing a more
nuanced measure of complexity that includes both intensity distribution and spatial organization.

Table 4: Relationship between maximum values of LPE and LGE for various shapes. Both metrics
are normalized to the range [0,1].

Various shapes Max local pixel entropy Max local geometrical entropy
Line 1 0.56 0.43
Line 2 0.56 0.43
Angle 1 0.81 0.87
Angle 2 0.79 0.86
Angle 3 0.77 0.87
L-junction 0.78 0.74
T-junction 0.78 0.64
X-junction 0.78 0.84
Jagged edges 1.00 1.00

A.6 Pinwheel centers response to different orientation bandwidths
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Figure 8: PCs in V1 prefer orientations and ablation study. a. Probability distribution of preferred
acute angles in PCs. b. Ablation study on normalized complexity across response onset latencies.
Data: mean ± SD.

Understanding the tuning of PCs in V1 to edges, corners, and junctions is essential. In Fig. 4e, we
show that PCs exhibit broader orientation tuning curves than IODs when using star-like patterns as
stimuli, potentially enabling the detection of T-junctions and corners, as demonstrated by Ming Li et
al. [13] and Erin Koch et al. [12]. We further examine the distribution of PCs’ tuning curves using
gratings as inputs, specifically analyzing acute angles formed by the primary and secondary peaks
(Fig. 8a). This analysis reveals that PCs are more frequently associated with larger acute angles,
closer to orthogonal (90°), suggesting a preference for orthogonal junctions. However, this result does
not differentiate between L- and T- junctions based solely on angle. We propose that such high-order
feature extraction be deferred to higher visual cortices, like V2 and V4, which are involved in texture
detection, as noted by Tianye Wang et al. [78] and Anna W. Roe et al. [79].

A.7 Ablation study

We present a mechanism of multiple orientation tuning that is essential for processing complexity. Our
analysis of PCs’ preferred acute angles (Fig. 8a) suggests that their broad tuning enables the detection
of complex junctions, such as T- and L-junctions, likely due to variations in local connectivity within
and between IODs.

To test this, we conduct an ablation study by disrupting local connectivity and shuffling the spatial
arrangement of orientation-tuned RFs in the pinwheel orientation map, while keeping other properties
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constant (Fig. 8b). The control group (red) maintains higher complexity over time, whereas shuffling
connections—especially both feedforward and lateral—resulted in a decline in complexity. This
highlights the importance of structured connectivity in preserving complex neural responses in V1
and supports the conclusion that structured connectivity underlies enhanced saliency detection by
pinwheels.

A.8 Computing infrastructure

Table 5: Computing infrastructure

CPU Intel® Xeon® Gold 6348 CPU @ 2.60GHz
GPU A100

Memory 512 GB
Operating system Ubuntu 20.04.6 LTS

Simulation platform MATLAB R2023a and Python 3.9

The simulations and analyses in this study are performed on a high-performance computing infras-
tructure to ensure efficient processing of large datasets and complex models. The system is powered
by an Intel® Xeon® Gold 6348 CPU running at 2.60 GHz and an NVIDIA A100 GPU, providing
robust computational power for intensive tasks. The system includes 512 GB of memory, which
supports handling memory-intensive applications and large-scale simulations. The operating system
used is Ubuntu 20.04.6 LTS, known for its stability and compatibility with scientific software. The
simulations are conducted using MATLAB R2023a and Python 3.9, both of which are widely used
in scientific computing and neural modeling, enabling effective implementation and analysis of the
models presented in this study.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The abstract and introduction section state the claims made.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We discussed over the potential limitations in the last paragraph of the discus-
sion.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [NA]
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Justification: The paper does not include theoretical results.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: The information for reproducing the experiments are provided in the methods
section and the appendix.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]
Justification: The data and codes are available on request from the authors.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: The training and test details are provided in Methods section 2.1.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: he errorbars and statistical significance are provided for each data analysis.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
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• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: The computer resources used are described in the appendix.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The research conform with the NeurIPS Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: Our work mainly focus on explaning the biological mechanisms underline
pinwheel structure in the visual system, thus has no societal impact.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: The paper poses no such risks.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: The used open-access data and code are explained and cited in Methods section
and Appendix accordingly.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: The details of the code and model are part of the submissions including details
about training in Methods section and limitations in discussion.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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