
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

Language Modeling With Factorization
Memory

Anonymous authors
Paper under double-blind review

Abstract

We propose Factorization Memory, an efficient recurrent neural network
(RNN) architecture that achieves performance comparable to Transformer
models on short-context language modeling tasks while also demonstrat-
ing superior generalization in long-context scenarios. Our model builds
upon Mamba-2, enabling Factorization Memory to exploit parallel compu-
tations during training while preserving constant computational and mem-
ory complexity during inference. To further optimize model efficiency and
representational capacity, we develop a sparse formulation of Factorization
Memory that updates only a subset of recurrent states at each step while
preserving the strong performance of its dense counterpart. To our knowl-
edge, this represents the first RNN architecture that successfully combines
sparse memory activation with competitive performance across both short
and long-context settings. This work provides a systematic empirical anal-
ysis of Factorization Memory in comparison to Transformer and Mamba-2
architectures.

1 Introduction

Transformer-based language modeling (Brown et al., 2020) has significantly advanced nat-
ural language processing (NLP) through multitask fine-tuning (Taori et al., 2023; Sanh
et al., 2021). This paradigm shift has redefined NLP development, moving from training
task-specific models to building general models capable of solving multiple tasks.

A particularly challenging frontier is ultra-long-context understanding, where traditional
models encounter fundamental limitations. Long-context comprehension is essential for
complex reasoning Yang et al. (2025b), software development Zheng et al. (2023), and multi-
session conversations Maharana et al. (2024). The quadratic complexity of transformers,
O(n2), remains a well-known bottleneck, posing significant challenges for scalability. Ad-
dressing this computational complexity requires forgoing the attention mechanism, which is
the primary source of inefficiency.

Recently, there has been increasing interest in revisiting the recurrent neural networks
(RNNs) due to their bounded memory requirements and linear generation complexity. State-
space models (SSMs) (Gu & Dao, 2024) have inspired parallelization-enabled RNNs, making
them viable competitors to Transformer. This led to the development of modern recurrent
architectures such as Mamba Gu & Dao (2024), Mamba-2 (Dao & Gu, 2024), MiniLSTM
(Feng et al., 2024), Gated Linear Attention (Yang et al., 2024), RWKV Peng et al. (2023),
and others. Unlike Transformers, rather than accessing the entire input sequence at infer-
ence, RNNs encode sequences into fixed-size recurrent states.

This compressive nature limits RNN performance on tasks requiring precise recall of long
token sequences. RNNs encode an unbounded sequence into a fixed-size hidden state Oren
et al. (2024), creating a bottleneck: finite bits must represent unlimited information. Precise
recall over long spans (e.g. verbatim repetition of a random passage) is fundamentally
difficult. Even though some models use time-dependent parameters and does very well
on many memory tasks, this core limitation still applies when lossless recall is needed.
Increasing the hidden state size can help, but at the cost of inference efficiency, potentially
erasing RNNs’ performance advantage over Transformers.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Memory
States (!)

"! ""#! ""

ℎ"!

ℎ"$

ℎ"%

ℎ"#!!

ℎ"#!$

ℎ"#!%

ℎ!!

ℎ!$

ℎ!%

Merged
Memory State

for ! = #

Output: $"

ℎ&!

ℎ&$

ℎ&%

…

… ………

Inputs (n)

…

…

…
$ = %

k (updated memory states)

!! !"#! !"

ℎ"!

ℎ"$

ℎ"%

ℎ"#!!

ℎ"#!$

ℎ"#!%

ℎ!!

ℎ!$

ℎ!%

ℎ&!

ℎ&$

ℎ&%

…

… ………

Inputs (n)

…

…

…

Memory
States (#)

Merged
Memory State

for ! = #

Output: $"

$ ≪ &

k (updated memory states)

Figure 1: Factorization Memory - Layer Schematics. Left: In the dense formulation all m
memory states are updated at each timestamp. The updates are weighted with memory-
input affinity scores, and the thickness of the arrows represents the strength of the update.
Right: In the sparse formulation, only selected top-k states are updated at each timestamp.
Grey shading indicates that the state is used neither in update nor in merge operations.

To balance efficiency and capacity, we propose Factorization Memory, a novel RNN ar-
chitecture that reconciles these competing objectives. Unlike Mamba or similar models,
Factorization Memory employs sparse recurrent state updates, enabling selective updates
of only a small subset of parameters at each time step (see Figure 1). This reduces the
computational overhead associated with recurrent state updates, allowing larger recurrent
states while maintaining a bounded computational cost. Unlike prior work that explores
sparsity as a theoretical property Cheng et al. (2024); Liu et al. (2021), our method achieves
compute and memory savings during training and inference thanks to partial activation.

Our empirical evaluations (see Section 4) show that not only Factorization Memory is com-
petitive with Transformer and Mamba-2 on short-context tasks, but it also exhibits superior
performance extrapolation beyond the training context length. Furthermore, it achieves
higher inference efficiency than these models (see Section 4.2.3).

The contributions of this paper are as follows:

1. We introduce Factorization Memory, a recurrent memory model that demonstrates
competitive performance on short-context tasks while outperforming Transformer and
Mamba-2 in long-context extrapolation.

2. We propose sparse RNN memory mechanism that selectively updates only a subset of
states, bounding the computation and memory cost while scaling up the model and
maintaining a strong benchmark over its non-sparse counterpart.

3. We release optimized CUDA/Triton kernels for Factorization Memory, ensuring repro-
ducibility and facilitating future research into sparse RNNs1.

2 Background

In this section, we will briefly review the fundamentals of Transformer and RNN architec-
tures and their relationship with Factorization Memory.

Transformer A standard Transformer (Vaswani et al., 2017) layer can be expressed as a
composition of self-attention, residual connections, and a feedforward MLP. Here, we focus
on the self-attention mechanism, which models dependencies between input and output
tokens. Given inputs X projected onto queries, keys, and values (Q, K, V), attention in its
simplest form can be expressed as follows2:

Attention(Q,K, V)t =

∑N
i=1 e

qTt ki · vi∑N
i=1 e

qTt ki

, (1)

The attention output is a linear combination of value projections up to time step t. This
formulation can be interpreted as an RNN with an unbounded number of key-value states

1To comply with the double-blind review process, we will release the code upon acceptance.
2We use the latest attention architecture for our experiment baseline.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

to which qt attends (Oren et al., 2024). In auto-regressive settings, self-attention represents
the most expressive form of a multi-state RNN with infinitely growing state size.

Recurrent Neural Networks , Recurrent models such as Mamba-2 (Dao & Gu, 2024)
maintain a fixed-sized recurrent state to represent the input sequence. These models follow
the recurrence:

ht = Atht−1 + Btxt (2)

where ht is the recurrent state and xt is the input at time t. The forms of At and Bt deter-
mine model expressiveness and computational properties. In structured state-space models
(SSMs) like Mamba-2, At and Bt do not depend on the recurrent state ht itself (though they
may depend on previous layer hidden state). This recurrence can be parallelized using the
parallel prefix scan algorithm (Blelloch, 1990), allowing scalable training while retaining
the inference efficiency.

Gated Linear Attention (GLA) (Yang et al., 2024) introduces a gating mechanism to
selectively control information flow in sequence models. Instead of treating all tokens
equally, GLA applies multiplicative gating to dynamically regulate which information passes
through. This gating mechanism allows finer control over long-range dependencies while
maintaining efficient computation.

Inspired by Mamba-2’s structured recurrence and Gated Linear Attention’s selective gating,
Factorization Memory adopts a similar approach to recurrence with a focus on computational
efficiency and enhanced capacity. Factorization Memory constrains At and Bt, ensuring that
only a small portion of ht is updated and used at each time step.

3 Factorization Memory

The main intuition of Factorization Memory architecture is that a model should selectively
choose and manage parts of hidden recurrent state. As shown in Figure 1, this architecture
maintains a 2-dimensional recurrent state with m rows (memory states). Upon receiving in-
put X = {xt}t=1..n, memory states can be updated with two strategies: (1) dense: weighted
update over memory states, and (2) sparse: selecting only k memory states for update.

3.1 Dense Memory Update

At each step t, the dense Factorization Memory updates all m memory states. Input x̄t

is put into memory proportionally to the affinity scores, defined as αt = softmax(Wαxt).
Formally, Factorization Memory recurrence can be expressed as follows:

ht = diag (1 − ηtαt)ht−1 + ηtαt ⊗ x̄t, (3)

where ηt = σ(wT
η xt) is the update rate governing the trade-off between state update and

retention. When ηt = 0, the input is completely prevented from influencing the memory.

αt essentially represents a conditional probability distribution over the memory states, quan-
tifying their relevance to the input vector. A uniform αt distributes the input evenly across
all memory states, while a highly skewed αt factorizes the input into a few selected states.
From a capacity perspective, it is desirable for each memory state to encode information
corresponding to distinct aspects of the input, essentially clustering the tokens by the ”top-
ics”; therefore, skewed updates are generally preferred. To control the sharpness of this
distribution, we introduce a temperature parameter τ in our experiments, redefining αt as
softmax(Wαxt/τ) where appropriate.

The output of the layer is obtained by projecting the aggregated memory states. To merge
m separate memory states, we apply root mean square (RMS) normalization to each row of
the recurrent state ht, followed by computing a linear combination of the normalized states.
More formally, yt = Wo norm(ht)

Tϕt, where Wo is the output projection matrix, and ϕt is
the combination weights. To compute ϕt, we reuse the affinity scores αt, ensuring that the
same memory states involved in the update are also used in memory aggregation. This choice
of ϕt is important for the Sparse Factorization Memory (see Section 3.2). Similarly to the

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

update rate, we introduce merge rate µt = σ(wT
µxt) to control the scale of the aggregation:

ϕt = µtαt.

Combining all these components, the dense update in Factorization Memory is as follows:

αt = softmax(Wαxt) ∈ Rm memory affinity scores (4)

ηt = σ(wT
η xt) ∈ (0, 1) shared update rate (5)

µt = σ(wT
µxt) ∈ (0, 1) shared merge rate (6)

θt = ηtαt ∈ Rm memory update weights (7)

ϕt = µtαt ∈ Rm memory merge weights (8)

x̄t = Wixt input projection (9)

ht = diag (1 − θt)ht−1 + θt ⊗ x̄t memory update with linear recurrence (10)

yt = Wo norm(ht)
Tϕt output projection of merged memory states (11)

where xt ∈ Rdmodel is a token embedding, wη, wµ ∈ Rdmodel are trainable parameters
for update and merge rates, Wα ∈ Rm×dmodel is a trainable matrix for memory affinity,
ht, ht−1 ∈ Rm×dmemory are the memory states, Wo and Wi are the projection matrices for
adapting dimensions between dmodel and dmemory. σ(·) denotes the sigmoid activation.

Similar to Mamba-2, Factorization Memory can rely on the parallel prefix scan algorithm
for efficient training, enabling scalability across long sequences. During inference, the layer
achieves efficiency by maintaining only the most recent recurrent state, eliminating the need
for recomputation over the full sequence (unlike Transformer).

3.2 Sparse Memory Update

While skewed dense memory updates factorize the input into a few selected states, compu-
tationally, all m memory states are still updated, requiring O(mdmemory) operations (see
Appendix A.2 for derivation). Unlike other RNN variants (Section 5), Factorization Mem-
ory uses the same probability distribution αt for memory update (write) and output merge
(read) (equation 4).

We take computational advantage by treating αt as a router and selecting only top-k most
relevant memory states for both the memory read and write. Formally, we re-normalize αt

scores with the top-k sparse mask as follows:

γt = T (αt, k) select top-k relevant memory states, compute sparse 0-1 mask (12)

ᾱt =
γt ⊙ αt

γtαt
re-normalize affinity scores after applying top-k mask. (13)

ᾱt contains the new affinity scores and the rest of Factorization Memory computations
remain the same as in the dense version (see Section 3.1). The sparse mask reduce the
compute operations by dropping all subsequent operations where γt = 0. Since we reuse the
affinity scores in the update and merge operations, only k memory states need to be loaded
for every timestep t.

k is a configurable parameter, which allows to balance computation with respect to the full
capacity of m memory states, with k = m we recover the dense update in Factorization
Memory, in the ideal case we want k as small as possible to realize compute reduction. We
explore the trade-offs of tuning k in Section 4.1.3.

4 Experiments

4.1 Test Loss Evaluation

In the following experiments, we want to establish general properties of Factorization Mem-
ory model through the test loss evaluations.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

4.1.1 Model Settings, Pre-Training and Evaluation Datasets

We adopt the modern Transformer architecture as in (Touvron et al., 2023) and simply re-
place the attention layers with their Factorization Memory counterparts. We also benchmark
our model against Mamba-23, an exemplar of the modern RNN family. For Transformer
model, we are using Flash Attention 2 Dao (2024) during training and testing.

Train/Test Dataset We pre-train and evaluate the language models on a curated sample
of Web data predominantly comprising English and Japanese texts. The dataset is filtered to
ensure high-quality content, with an approximate size of 250B tokens. Following established
practices (Penedo et al., 2023; Li et al., 2024a), our filtering pipeline removes duplicates,
excessively short or long sequences, and low-information content with classification-based
filtering. To ensure the language balance we employ fastText language identification models
(Joulin et al., 2016b;a). For the test loss evaluations we reserve a random subset of this
dataset. For training, we compose smaller subsets for each model following compute-optimal
training regime of ≥ 20 tokens per parameter (Hoffmann et al., 2022).

Long Context Dataset To evaluate long-context capabilities, we construct a benchmark
of 1,000 English and 1,000 Japanese documents, exceeding 128K tokens each. These texts are
sourced from publicly available Web novels to preserve coherence and linguistic consistency
over extended contexts. To prevent data contamination, we ensure the evaluation samples
do not overlap with the training corpus by sourcing it with later cutoff dates that those
used in training, in addition to applying exact and fuzzy deduplication.

4.1.2 Long Context Scaling Law

When designing a new model architecture, it is essential to assess whether performance
remains predictable as the model scales. We conduct experiments across multiple model
sizes, analyzing Factorization Memory test loss (see Figure 3a). We compare its scaling
behavior against Transformer and Mamba-2 baselines under identical training conditions
(see Figures 2b and 2c). Transformer uses grouped query attention mechanism based on
LLaMA architecture Touvron et al. (2023) and trained and tested using Flash Attention
2 Dao (2024). Mamba-2 implementation is from the original repository 4. All models are
trained on the context size of 1024 tokens and evaluated on the same 1024-token window.

Figure 2 presents test loss curves across different model architectures, sizes, and hyper-
parameters. For each model, we identify the Pareto frontier of the test loss function —
termed the Loss Frontier — plotted against forward pass FLOPS.5 Figure 3a shows how
this frontier evolves with scale.

Factorization Memory exhibits predictable performance improvements with scale, mirroring
Transformer and Mamba-2 models. Its loss frontier is shifted upward compared to Trans-
former and Mamba-2, which suggests that, under the same training conditions, it requires
slightly more compute to achieve comparable test loss on 1024-token window.

The central design objective of Factorization Memory is to efficiently process long contexts
through increased capacity. We examine extrapolation to extended context by assessing
performance on a 2048-token context window and compute the corresponding loss frontiers
(see Figure 3b). We filter out test samples with fewer than 2048 tokens to avoid bias from
short sequences. Factorization Memory demonstrates a scaling trend in the loss frontier,
while Transformer and Mamba-2 exhibit a lower degree of extrapolation. Mamba-2 generally
achieves better long-context generalization than Transformers, likely due to its recurrent
architecture. However, Factorization Memory surpasses Mamba-2 as more training FLOPS
are allocated to it, showcasing superior scaling in context extrapolation.

To validate our context extrapolation findings, we analyze the mean test loss across all con-
text lengths up to 128K tokens computed on Long Context Dataset (see Figure 4). Trans-

3We use Mamba-2 as in: https://huggingface.co/state-spaces/mamba2-1.3b.
4https://github.com/state-spaces/mamba
5Although total amount of compute should include backward pass, for simplicity we report only

forward pass FLOPS. The backward pass during training can be approximated of 4x of forward
pass.

5

https://huggingface.co/state-spaces/mamba2-1.3b

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

1018 1019 1020

FLOPS (Forward Pass)

2.0

3.0
Te

st
L

os
s

(L
og

Sc
al

e)

Scaling Law (Factorization Memory)
63m
156m
359m
829m
1687m
Loss Frontier

(a)
openre

1018 1019 1020

FLOPS (Forward Pass)

2.0

3.0

Te
st

L
os

s
(L

og
Sc

al
e)

Scaling Law (Transformer)
62m
156m
353m
826m
1679m
Loss Frontier

(b)

1018 1019 1020

FLOPS (Forward Pass)

2.0

3.0

Te
st

L
os

s
(L

og
Sc

al
e)

Scaling Law (Mamba-2)
62m
164m
352m
835m
1649m
Loss Frontier

(c)

Figure 2: Loss Frontier: All models are trained with the context length of 1024 tokens,
while varying the number of model parameters, learning rate, and training budget.

1018 1019 1020 1021

FLOPS (Forward Pass)

2.0

2.25

2.5

2.75

3.0

3.25

3.5
3.75

Te
st

L
os

s
(L

og
Sc

al
e)

Scaling Law @ 1024 Tokens

Transformer — Loss Frontier
Transformer — Power Law Fit
Mamba-2 — Loss Frontier
Mamba-2 — Power Law Fit
Factorization Memory — Loss Frontier
Factorization Memory — Power Law Fit

(a) The models are trained and evaluated on the
context window of 1024 tokens. All the tested
models consistently improve their test loss as
more FLOPS are allocated to training.

1019 1020

FLOPS (Forward Pass)

2.0

2.25

2.5

2.75

3.0

3.25

3.5
3.75

Te
st

L
os

s
(L

og
Sc

al
e)

Scaling Law @ 2048 Tokens

Transformer — Loss Frontier
Transformer — Power Law Fit
Mamba-2 — Loss Frontier
Mamba-2 — Power Law Fit
Factorization Memory — Loss Frontier
Factorization Memory — Power Law Fit

(b) The models are trained on with context win-
dow of 1024 tokens but evaluated on 2048. Fac-
torization Memory shows a consistent test loss
improvement with increasing training FLOPS,
outperforming Mamba-2 and Transformer.

Figure 3: Loss Frontier Scaling

former and Mamba-2 exhibit limited extrapolation to longer contexts, with test loss rising
sharply beyond their 1024-token training window. While Factorization Memory also expe-
riences increased test loss beyond 1024 tokens, this increase rarely exceeds the uncertainty
in predicting the first 128 tokens.

4.1.3 Memory Scaling

We systematically investigate two key aspects of Factorization Memory design and their
impact on performance. First, we examine whether increasing memory states m improves
performance. We hypothesize that a wider memory enhances capacity to store and retrieve
information, leading to better representations and more effective learning. Second, we ex-
plore the benefits of a sparse memory formulation (see Section 3.2): a sparse representation
could improve computational efficiency while maintaining performance.

Figure 5 presents results from 60–70 million parameters model. We systematically increase
the number of memory states m by powers of two and evaluate test loss performance. All
models are trained under the same conditions and exposed to the same sequence of training
instances. To enforce a skewed αt allocation and bring about a sparsity component in
memory updates, we experiment with the temperature τ : αt = softmax (Wαxt/τ). For each
m, we report results for the optimal τ ∈ {1, 0.5, 0.25, 0.125}, optimized via grid-search.

For the dense memory, the results in Figure 5 indicate a clear trend of improvement in test
loss as the number of states increases. Specifically, the model demonstrates a consistent
reduction in test loss suggesting increased capacity.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

25 27 29 211 213 215

Context Length

2.5

5.0

7.5

10.0

12.5

L
os

s-
So

-F
ar

English Long Context Loss (≈ 1687m Parameters)

Transformer (1679m)
Mamba-2 (1649m)
Factorization Memory (1687m)

25 27 29 211 213 215

Context Length

2.5

5.0

7.5

10.0

12.5

L
os

s-
So

-F
ar

Japanese Long Context Loss (≈ 1687m Parameters)

Transformer (1679m)
Mamba-2 (1649m)
Factorization Memory (1687m)

Figure 4: Loss-So-Far. Left: English. Right: Japanese. Factorization Memory consis-
tently achieves performance comparable with Transformer and Mamba-2 at the training
context length of 210 = 1024 tokens. At the same time Factorization Memory shows better
extrapolation at the long context. This pattern holds for all tested model sizes (see Ap-
pendix A.1).

22 23 24 25 26 27 28

Total Number of Memory States (m)

2.80

2.85

2.90

2.95

3.00

Te
st

L
os

s

Dense vs Sparse Memory Updates

Sparse Memory Update
(k = 4 memory states are updated at each timestamp)
Sparse Memory Update
(k = 25% of total memory states are updated at each timestamp)
Dense Memory Update
(all memory states are updated at each timestamp)

Figure 5: Comparison of dense and sparse memory updates: test loss generally decreases
with an increasing number of memory states, even for sparse updates. Notably, updating
only 25% of memory states achieves the same loss as dense formulation when the number
of memory states is sufficiently large while reducing computational cost by 75%.

For the sparse memory, we investigate two distinct variants. In the first variant, referred
to as fixed memory activation, updates are restricted to only 4 memory states per token,
regardless of the number of states. In the second variant, termed proportional memory
activation, only 25% of the total memory states are activated. While the fixed memory
activation approach offers the best computational efficiency, it imposes strict constraints on
updates, limiting the model performance. The proportional activation strategy still reduces
the number of total operations and allows for greater flexibility in memory utilization.

Figure 5 reveals two key observations. First, increasing memory width improves perfor-
mance for both sparse memory variants, albeit with diminishing returns in the fixed mem-
ory activation approach. The performance for fixed memory activation plateaus around a
m = 27 = 128, whereas proportional memory activation continues to increase. According
to the model definition, this shows that the router remained stationary across tokens. This
outcome implies that each memory state encode distinct aspects of the input, achieving a
non-redundant representation.

Second, proportional memory activation matches dense memory performance when the num-
ber of memory states is sufficiently large, suggesting that sparse memory activation is a more
effective for scaling memory. Additionally, we observe that the optimal test loss requires a
progressively lower temperature τ with increased states, supporting the benefits of skewed
and sparse updates.

4.2 Downstream Task Evaluation

In this section, we evaluate the efficacy of the model architectures on the standard English
and Japanese LLM benchmarks (see Appendix A.4 for a detailed description of each). The
benchmarks are composed of multiple-choice questions, which we evaluate in n-shot manner
(except for IFEval (Zhou et al., 2023), where we follow the evaluation protocol specified in

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

.

Model Average HellaSwag MMLU TQA MUSR IFEval Winogrande

Transformer 29.53 34.49 24.99 39.11 10.98 16.68 50.91
Mamba-2 29.06 32.95 26.71 38.79 8.53 15.37 52.01
Factorization Memory 30.98 34.08 24.40 42.07 11.70 20.99 52.64

Model Average JCS JNLI MARC-ja xWino

Transformer 56.41 48.70 41.95 80.99 54.01
Mamba-2 49.73 37.53 34.43 75.01 51.93
Factorization Memory 59.80 53.80 47.49 84.08 53.81

Table 1: English (top) and Japanese (bottom) downstream evaluations: Factorization Mem-
ory achieves the highest average performance, outperforming Transformer and Mamba-2.

the original paper). The responses are selected based on the model’s probability distribution,
with the most probable answer (or answers) chosen given the prompt6.

4.2.1 Model Settings

To ensure fair comparison, we pre-train 1B-parameter models on identical data samples
with the same training budget (Section 4.1.1 describes the pre-training dataset), attributing
performance differences to architectures rather than training samples. We keep the models’
hyperparameters the same where possible: all models for these experiments comprise 16
decoder layers, interleaving the target layer with MLP and residual connections. The model
hidden size dmodel = 2048. Factorization Memory uses m = 64 memory states with sparsity
k = 8, and dmemory = dmodel. The hyperparameters of Mamba-2 and self-attention layers
are scaled accordingly to match the target model size (see also Section 4.1.1 for base settings).

4.2.2 Results

The downstream evaluation results on English and Japanese are shown in Table 1. On the
English tasks, Factorization Memory achieves the highest average score (30.98) performing
best on TruthfulQA, MUSR, IFEval, and Winogrande. The Transformer model follows
closely behind with an average score of 29.53, being slightly competitive on HellaSwag but
underperforming on most of the other metrics. The Mamba-2 model, while performing
better in MMLU, lags in overall performance (average score 29.06).

On Japanese metrics, the our proposed model once again leads with the highest average
score (59.80), outperforming both Transformer (56.41) and Mamba-2 (49.73). It achieves the
best performance on JCS, JNLI, and MARC-ja, indicating strong commonsense reasoning,
natural language inference, and sentiment classification capabilities. Transformer performs
best on xWino, while Mamba-2 consistently underperforms its competitors.

To ensure reproducibility of the experiments on the publicly available data, we also trained
these 1B parameter models on the same 84B-token random sample of DCLM dataset Li
et al. (2024b). The evaluation breakdown is available in Section A.3, Table 2. The exper-
iments concur with our previous observation: on average, Factorization Memory performs
competitively with both Transformers and Mamba-2.

4.2.3 Inference Speed

To evaluate the efficiency of 1B-parameters models, we benchmark inference speed on 16k
token prompts, measuring the average generation time (see Figure 6). We use the optimized
CUDA/Triton kernels for all the models, Key-Value (KV) cache on Transformer, and run
experiments on a single H100 GPU (80GB). The results demonstrate that Factorization
Memory consistently outperforms Transformer, whose quadratic complexity in sequence
length leads to significant slowdowns, and it also exhibits a consistent 35-40% speed-up over
Mamba-2, highlighting the efficiency of its sparse updates.

6We run Language Model Evaluation Harness framework for all evaluations https://github.
com/EleutherAI/lm-evaluation-harness.

8

https://github.com/EleutherAI/lm-evaluation-harness
https://github.com/EleutherAI/lm-evaluation-harness

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

40000 60000 80000 100000 120000
Number of Tokens (Prompt + Generated)

0

5000

10000

15000

20000

A
ve

ra
ge

G
en

er
at

io
n

Ti
m

e
(s

ec
on

ds
)

Inference Speed (on 16k Token Prompts)

Transformer
Mamba-2
Factorization Memory

(a) All Models

40000 60000 80000 100000 120000
Number of Tokens (Prompt + Generated)

500

1000

1500

2000

2500

A
ve

ra
ge

G
en

er
at

io
n

Ti
m

e
(s

ec
on

ds
)

Inference Speed (on 16k Token Prompts)

Mamba-2
Factorization Memory

(b) Mamba-2 vs. Factorization Memory

Figure 6: Inference Speed Comparison: Factorization Memory achieves better inference
speed on long contexts than both Mamba-2 and Transformer models.

5 Related Work

Memory-Augmented Transformer Significant research has focused on augmenting
Transformer with memory modules: Kang et al. (2025) for long context processing, Bulatov
et al. (2022) for extended context retention, Ko et al. (2024) for temporal reasoning. Unlike
these, our approach removes self-attention entirely.

RNNs Factorization Memory is closely related to modern RNNs implementations such
as RWKV (Peng et al., 2023), State-Space Models (Gu & Dao, 2024), Linear Attention
Katharopoulos et al. (2020), and Gated Linear Attention (Yang et al., 2024; 2025a; Arora
et al., 2025). In contrast to these models, our approach selectively updates small portions
of the recurrent state, enhancing both efficiency and capacity.

Hybrid Architectures such as Hymba (Dong et al., 2024) and Griffin (De et al., 2024)
combine the strengths of recurrence and attention model. We focus on “pure” architectures
to isolate and evaluate model properties without confounding factors. Although a hybrid
model is out the scope for this work, our approach can be a base for other architectures.

Mixture of Experts (Shazeer et al., 2017) introduces sparsity in MLP layers, whereas our
method sparsifies along the time dimension, making the two approaches orthogonal.

Accelerated Attention Several studies focus on accelerating attention through optimized
implementations (Dao, 2023) or formulations (Liu et al., 2024; Zhang et al., 2022). While
these approaches improve efficiency, they still incur quadratic complexity.

Test-Time Training Recent test-time training approaches (Behrouz et al., 2024; Sun
et al., 2024) adapt model parameters at inference, boosting capacity and mimicking memory.
These approaches are orthogonal to Factorization Memory and compatible with our model.

Transformer Adaptation to RNN Many recent approaches adapt attention layers into
subquadratic analogs such as linear attention Zhang et al. (2025); Goldstein et al. (2025);
Wang et al. (2025). While motivated by quadratic attention complexity, they focus on
post-training adaptation of transformer models into existing linear recurrent architectures.
Factorization Memory is compatible with these adaptation frameworks.

6 Limitation

The scope of this study is constrained by computational resources. This limits our investiga-
tion to relatively small-scale models with a low FLOPS budget. While our findings provide
insights mostly concerning the test loss behavior, their generalization to larger models and
more complex evaluations remains an open questions to address as future work.

7 Conclusion

We introduce Factorization Memory, an efficient RNN architecture that achieves perfor-
mance comparable to Transformer and Mamba-2 models on short-context language modeling
tasks while also demonstrating superior generalization in long-context scenarios. Factorized
memory combined with sparse updates have proven effective in enhancing both the model
efficiency and capacity in our experiments, offering a promising direction for research.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

References

Simran Arora, Sabri Eyuboglu, Michael Zhang, Aman Timalsina, Silas Alberti, Dylan Zins-
ley, James Zou, Atri Rudra, and Christopher Ré. Simple linear attention language mod-
els balance the recall-throughput tradeoff, 2025. URL https://arxiv.org/abs/2402.
18668.

Ali Behrouz, Peilin Zhong, and Vahab Mirrokni. Titans: Learning to memorize at test time,
2024. URL https://arxiv.org/abs/2501.00663.

Guy E Blelloch. Prefix sums and their applications. 1990.

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla
Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini
Agarwal, Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya
Ramesh, Daniel M. Ziegler, Jeffrey Wu, Clemens Winter, Christopher Hesse, Mark Chen,
Eric Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess, Jack Clark, Christopher Berner,
Sam McCandlish, Alec Radford, Ilya Sutskever, and Dario Amodei. Language models
are few-shot learners. In Proceedings of the 34th International Conference on Neural
Information Processing Systems, NIPS ’20, Red Hook, NY, USA, 2020. Curran Associates
Inc. ISBN 9781713829546.

Aydar Bulatov, Yuri Kuratov, and Mikhail S. Burtsev. Recurrent memory transformer,
2022. URL https://arxiv.org/abs/2207.06881.

Hongrong Cheng, Miao Zhang, and Javen Qinfeng Shi. A survey on deep neural network
pruning-taxonomy, comparison, analysis, and recommendations, 2024. URL https://
arxiv.org/abs/2308.06767.

Tri Dao. FlashAttention-2: Faster attention with better parallelism and work partitioning,
2023. URL https://arxiv.org/abs/2307.08691.

Tri Dao. FlashAttention-2: Faster attention with better parallelism and work partitioning.
In International Conference on Learning Representations (ICLR), 2024.

Tri Dao and Albert Gu. Transformers are ssms: Generalized models and efficient algorithms
through structured state space duality, 2024. URL https://arxiv.org/abs/2405.21060.

Soham De, Samuel L. Smith, Anushan Fernando, Aleksandar Botev, George Cristian-
Muraru, Albert Gu, Ruba Haroun, Leonard Berrada, Yutian Chen, Srivatsan Srini-
vasan, Guillaume Desjardins, Arnaud Doucet, David Budden, Yee Whye Teh, Raz-
van Pascanu, Nando De Freitas, and Caglar Gulcehre. Griffin: Mixing gated lin-
ear recurrences with local attention for efficient language models, 2024. URL https:
//arxiv.org/abs/2402.19427.

Xin Dong, Yonggan Fu, Shizhe Diao, Wonmin Byeon, Zijia Chen, Ameya Sunil Mahabalesh-
warkar, Shih-Yang Liu, Matthijs Van Keirsbilck, Min-Hung Chen, Yoshi Suhara, Yingyan
Lin, Jan Kautz, and Pavlo Molchanov. Hymba: A hybrid-head architecture for small
language models, 2024. URL https://arxiv.org/abs/2411.13676.

Denis Emelin and Rico Sennrich. Wino-X: Multilingual Winograd schemas for commonsense
reasoning and coreference resolution. In Marie-Francine Moens, Xuanjing Huang, Lucia
Specia, and Scott Wen-tau Yih (eds.), Proceedings of the 2021 Conference on Empirical
Methods in Natural Language Processing, pp. 8517–8532, Online and Punta Cana, Domini-
can Republic, November 2021. Association for Computational Linguistics. doi: 10.18653/
v1/2021.emnlp-main.670. URL https://aclanthology.org/2021.emnlp-main.670.

Leo Feng, Frederick Tung, Mohamed Osama Ahmed, Yoshua Bengio, and Hossein Hajimir-
sadeghi. Were RNNs all we needed?, 2024. URL https://arxiv.org/abs/2410.01201.

Daniel Goldstein, Eric Alcaide, Janna Lu, and Eugene Cheah. Radlads: Rapid attention
distillation to linear attention decoders at scale, 2025. URL https://arxiv.org/abs/
2505.03005.

10

https://arxiv.org/abs/2402.18668
https://arxiv.org/abs/2402.18668
https://arxiv.org/abs/2501.00663
https://arxiv.org/abs/2207.06881
https://arxiv.org/abs/2308.06767
https://arxiv.org/abs/2308.06767
https://arxiv.org/abs/2307.08691
https://arxiv.org/abs/2405.21060
https://arxiv.org/abs/2402.19427
https://arxiv.org/abs/2402.19427
https://arxiv.org/abs/2411.13676
https://aclanthology.org/2021.emnlp-main.670
https://arxiv.org/abs/2410.01201
https://arxiv.org/abs/2505.03005
https://arxiv.org/abs/2505.03005

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Albert Gu and Tri Dao. Mamba: Linear-time sequence modeling with selective state spaces,
2024. URL https://arxiv.org/abs/2312.00752.

Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Song, and
Jacob Steinhardt. Measuring massive multitask language understanding, 2021.

Jordan Hoffmann, Sebastian Borgeaud, Arthur Mensch, Elena Buchatskaya, Trevor Cai,
Eliza Rutherford, Diego de Las Casas, Lisa Anne Hendricks, Johannes Welbl, Aidan
Clark, Tom Hennigan, Eric Noland, Katie Millican, George van den Driessche, Bogdan
Damoc, Aurelia Guy, Simon Osindero, Karen Simonyan, Erich Elsen, Jack W. Rae, Oriol
Vinyals, and Laurent Sifre. Training compute-optimal large language models, 2022. URL
https://arxiv.org/abs/2203.15556.

Armand Joulin, Edouard Grave, Piotr Bojanowski, Matthijs Douze, Hérve Jégou, and
Tomas Mikolov. Fasttext.zip: Compressing text classification models. arXiv preprint
arXiv:1612.03651, 2016a.

Armand Joulin, Edouard Grave, Piotr Bojanowski, and Tomas Mikolov. Bag of tricks for
efficient text classification. arXiv preprint arXiv:1607.01759, 2016b.

Jikun Kang, Wenqi Wu, Filippos Christianos, Alex J. Chan, Fraser Greenlee, George
Thomas, Marvin Purtorab, and Andy Toulis. LM2: Large memory models, 2025. URL
https://arxiv.org/abs/2502.06049.

Angelos Katharopoulos, Apoorv Vyas, Nikolaos Pappas, and François Fleuret. Transformers
are rnns: Fast autoregressive transformers with linear attention. In Proceedings of the 37th
International Conference on Machine Learning, volume 119, pp. 5156–5165. PMLR, Jul
2020. URL https://proceedings.mlr.press/v119/katharopoulos20a.html.

Phillip Keung, Yichao Lu, György Szarvas, and Noah A. Smith. The multilingual Amazon
reviews corpus. In Proceedings of the 2020 Conference on Empirical Methods in Natural
Language Processing, 2020.

Ching-Yun Ko, Sihui Dai, Payel Das, Georgios Kollias, Subhajit Chaudhury, and Aurelie
Lozano. MemReasoner: A memory-augmented LLM architecture for multi-hop reasoning.
In The First Workshop on System-2 Reasoning at Scale, NeurIPS’24, 2024. URL https:
//openreview.net/forum?id=ODcMy97cVZ.

Kentaro Kurihara, Daisuke Kawahara, and Tomohide Shibata. JGLUE: Japanese general
language understanding evaluation. In Nicoletta Calzolari, Frédéric Béchet, Philippe
Blache, Khalid Choukri, Christopher Cieri, Thierry Declerck, Sara Goggi, Hitoshi Isahara,
Bente Maegaard, Joseph Mariani, Hélène Mazo, Jan Odijk, and Stelios Piperidis (eds.),
Proceedings of the Thirteenth Language Resources and Evaluation Conference, pp. 2957–
2966, Marseille, France, June 2022. European Language Resources Association. URL
https://aclanthology.org/2022.lrec-1.317.

Jeffrey Li, Alex Fang, Georgios Smyrnis, Maor Ivgi, Matt Jordan, Samir Gadre, Hri-
tik Bansal, Etash Guha, Sedrick Keh, Kushal Arora, Saurabh Garg, Rui Xin, Niklas
Muennighoff, Reinhard Heckel, Jean Mercat, Mayee Chen, Suchin Gururangan, Mitchell
Wortsman, Alon Albalak, Yonatan Bitton, Marianna Nezhurina, Amro Abbas, Cheng-
Yu Hsieh, Dhruba Ghosh, Josh Gardner, Maciej Kilian, Hanlin Zhang, Rulin Shao,
Sarah Pratt, Sunny Sanyal, Gabriel Ilharco, Giannis Daras, Kalyani Marathe, Aaron
Gokaslan, Jieyu Zhang, Khyathi Chandu, Thao Nguyen, Igor Vasiljevic, Sham Kakade,
Shuran Song, Sujay Sanghavi, Fartash Faghri, Sewoong Oh, Luke Zettlemoyer, Kyle Lo,
Alaaeldin El-Nouby, Hadi Pouransari, Alexander Toshev, Stephanie Wang, Dirk Groen-
eveld, Luca Soldaini, Pang Wei Koh, Jenia Jitsev, Thomas Kollar, Alexandros G. Di-
makis, Yair Carmon, Achal Dave, Ludwig Schmidt, and Vaishaal Shankar. Datacomp-
lm: In search of the next generation of training sets for language models, 2024a. URL
https://arxiv.org/abs/2406.11794.

11

https://arxiv.org/abs/2312.00752
https://arxiv.org/abs/2203.15556
https://arxiv.org/abs/2502.06049
https://proceedings.mlr.press/v119/katharopoulos20a.html
https://openreview.net/forum?id=ODcMy97cVZ
https://openreview.net/forum?id=ODcMy97cVZ
https://aclanthology.org/2022.lrec-1.317
https://arxiv.org/abs/2406.11794

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Jeffrey Li, Alex Fang, Georgios Smyrnis, Maor Ivgi, Matt Jordan, Samir Gadre, Hritik
Bansal, Etash Guha, Sedrick Keh, Kushal Arora, Saurabh Garg, Rui Xin, Niklas Muen-
nighoff, Reinhard Heckel, Jean Mercat, Mayee Chen, Suchin Gururangan, Mitchell Worts-
man, Alon Albalak, Yonatan Bitton, Marianna Nezhurina, Amro Abbas, Cheng-Yu Hsieh,
Dhruba Ghosh, Josh Gardner, Maciej Kilian, Hanlin Zhang, Rulin Shao, Sarah Pratt,
Sunny Sanyal, Gabriel Ilharco, Giannis Daras, Kalyani Marathe, Aaron Gokaslan, Jieyu
Zhang, Khyathi Chandu, Thao Nguyen, Igor Vasiljevic, Sham Kakade, Shuran Song, Sujay
Sanghavi, Fartash Faghri, Sewoong Oh, Luke Zettlemoyer, Kyle Lo, Alaaeldin El-Nouby,
Hadi Pouransari, Alexander Toshev, Stephanie Wang, Dirk Groeneveld, Luca Soldaini,
Pang Wei Koh, Jenia Jitsev, Thomas Kollar, Alexandros G. Dimakis, Yair Carmon, Achal
Dave, Ludwig Schmidt, and Vaishaal Shankar. Datacomp-lm: In search of the next gen-
eration of training sets for language models. arXiv preprint arXiv:2406.11794, 2024b.

Stephanie Lin, Jacob Hilton, and Owain Evans. TruthfulQA: Measuring how models
mimic human falsehoods. In Smaranda Muresan, Preslav Nakov, and Aline Villavi-
cencio (eds.), Proceedings of the 60th Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers), pp. 3214–3252, Dublin, Ireland, May 2022.
Association for Computational Linguistics. doi: 10.18653/v1/2022.acl-long.229. URL
https://aclanthology.org/2022.acl-long.229.

Aixin Liu, Bei Feng, Bin Wang, Bingxuan Wang, Bo Liu, Chenggang Zhao, Chengqi Dengr,
Chong Ruan, Damai Dai, Daya Guo, et al. Deepseek-v2: A strong, economical, and
efficient mixture-of-experts language model. arXiv preprint arXiv:2405.04434, 2024.

Shiwei Liu, Decebal Constantin Mocanu, Yulong Pei, and Mykola Pechenizkiy. Selfish sparse
rnn training, 2021. URL https://arxiv.org/abs/2101.09048.

Adyasha Maharana, Dong-Ho Lee, Sergey Tulyakov, Mohit Bansal, Francesco Barbieri, and
Yuwei Fang. Evaluating very long-term conversational memory of LLM agents. In Lun-Wei
Ku, Andre Martins, and Vivek Srikumar (eds.), Proceedings of the 62nd Annual Meeting of
the Association for Computational Linguistics (Volume 1: Long Papers), pp. 13851–13870,
Bangkok, Thailand, August 2024. Association for Computational Linguistics. doi: 10.
18653/v1/2024.acl-long.747. URL https://aclanthology.org/2024.acl-long.747/.

Matanel Oren, Michael Hassid, Nir Yarden, Yossi Adi, and Roy Schwartz. Transform-
ers are multi-state RNNs. In Yaser Al-Onaizan, Mohit Bansal, and Yun-Nung Chen
(eds.), Proceedings of the 2024 Conference on Empirical Methods in Natural Language
Processing, pp. 18724–18741, Miami, Florida, USA, November 2024. Association for
Computational Linguistics. doi: 10.18653/v1/2024.emnlp-main.1043. URL https:
//aclanthology.org/2024.emnlp-main.1043/.

Guilherme Penedo, Quentin Malartic, Daniel Hesslow, Ruxandra Cojocaru, Hamza Alobei-
dli, Alessandro Cappelli, Baptiste Pannier, Ebtesam Almazrouei, and Julien Launay. The
refinedweb dataset for falcon llm: outperforming curated corpora with web data only.
In Proceedings of the 37th International Conference on Neural Information Processing
Systems, NIPS ’23, Red Hook, NY, USA, 2023. Curran Associates Inc.

Bo Peng, Eric Alcaide, Quentin Anthony, Alon Albalak, Samuel Arcadinho, Stella Biderman,
Huanqi Cao, Xin Cheng, Michael Chung, Matteo Grella, Kranthi Kiran GV, Xuzheng
He, Haowen Hou, Jiaju Lin, Przemyslaw Kazienko, Jan Kocon, Jiaming Kong, Bartlomiej
Koptyra, Hayden Lau, Krishna Sri Ipsit Mantri, Ferdinand Mom, Atsushi Saito, Guangyu
Song, Xiangru Tang, Bolun Wang, Johan S. Wind, Stanislaw Wozniak, Ruichong Zhang,
Zhenyuan Zhang, Qihang Zhao, Peng Zhou, Qinghua Zhou, Jian Zhu, and Rui-Jie Zhu.
RWKV: Reinventing RNNs for the Transformer era, 2023. URL https://arxiv.org/
abs/2305.13048.

Keisuke Sakaguchi, Ronan Le Bras, Chandra Bhagavatula, and Yejin Choi. Winogrande:
An adversarial winograd schema challenge at scale, 2019. URL https://arxiv.org/abs/
1907.10641.

Victor Sanh, Albert Webson, Colin Raffel, Stephen H. Bach, Lintang Sutawika, Zaid
Alyafeai, Antoine Chaffin, Arnaud Stiegler, Teven Le Scao, Arun Raja, Manan Dey,

12

https://aclanthology.org/2022.acl-long.229
https://arxiv.org/abs/2101.09048
https://aclanthology.org/2024.acl-long.747/
https://aclanthology.org/2024.emnlp-main.1043/
https://aclanthology.org/2024.emnlp-main.1043/
https://arxiv.org/abs/2305.13048
https://arxiv.org/abs/2305.13048
https://arxiv.org/abs/1907.10641
https://arxiv.org/abs/1907.10641

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

M. Saiful Bari, Canwen Xu, Urmish Thakker, Shanya Sharma, Eliza Szczechla, Tae-
woon Kim, Gunjan Chhablani, Nihal V. Nayak, Debajyoti Datta, Jonathan Chang,
Mike Tian-Jian Jiang, Han Wang, Matteo Manica, Sheng Shen, Zheng Xin Yong,
Harshit Pandey, Rachel Bawden, Thomas Wang, Trishala Neeraj, Jos Rozen, Abheesht
Sharma, Andrea Santilli, Thibault Févry, Jason Alan Fries, Ryan Teehan, Stella Bider-
man, Leo Gao, Tali Bers, Thomas Wolf, and Alexander M. Rush. Multitask prompted
training enables zero-shot task generalization. CoRR, abs/2110.08207, 2021. URL
https://arxiv.org/abs/2110.08207.

Noam Shazeer, Azalia Mirhoseini, Krzysztof Maziarz, Andy Davis, Quoc Le, Geoffrey Hin-
ton, and Jeff Dean. Outrageously large neural networks: The sparsely-gated mixture-of-
experts layer, 2017. URL https://arxiv.org/abs/1701.06538.

Zayne Sprague, Xi Ye, Kaj Bostrom, Swarat Chaudhuri, and Greg Durrett. Musr: Testing
the limits of chain-of-thought with multistep soft reasoning, 2024. URL https://arxiv.
org/abs/2310.16049.

Yu Sun, Xinhao Li, Karan Dalal, Jiarui Xu, Arjun Vikram, Genghan Zhang, Yann Dubois,
Xinlei Chen, Xiaolong Wang, Sanmi Koyejo, Tatsunori Hashimoto, and Carlos Guestrin.
Learning to (learn at test time): Rnns with expressive hidden states, 2024. URL https:
//arxiv.org/abs/2407.04620.

Alon Talmor, Jonathan Herzig, Nicholas Lourie, and Jonathan Berant. CommonsenseQA: A
question answering challenge targeting commonsense knowledge. In Jill Burstein, Christy
Doran, and Thamar Solorio (eds.), Proceedings of the 2019 Conference of the North Amer-
ican Chapter of the Association for Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pp. 4149–4158, Minneapolis, Minnesota,
June 2019. Association for Computational Linguistics. doi: 10.18653/v1/N19-1421. URL
https://aclanthology.org/N19-1421.

Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann Dubois, Xuechen Li, Carlos Guestrin,
Percy Liang, and Tatsunori B. Hashimoto. Stanford alpaca: An instruction-following
llama model. https://github.com/tatsu-lab/stanford_alpaca, 2023.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei,
Nikolay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, Dan Bikel, Lukas
Blecher, Cristian Canton Ferrer, Moya Chen, Guillem Cucurull, David Esiobu, Jude
Fernandes, Jeremy Fu, Wenyin Fu, Brian Fuller, Cynthia Gao, Vedanuj Goswami, Na-
man Goyal, Anthony Hartshorn, Saghar Hosseini, Rui Hou, Hakan Inan, Marcin Kardas,
Viktor Kerkez, Madian Khabsa, Isabel Kloumann, Artem Korenev, Punit Singh Koura,
Marie-Anne Lachaux, Thibaut Lavril, Jenya Lee, Diana Liskovich, Yinghai Lu, Yuning
Mao, Xavier Martinet, Todor Mihaylov, Pushkar Mishra, Igor Molybog, Yixin Nie, An-
drew Poulton, Jeremy Reizenstein, Rashi Rungta, Kalyan Saladi, Alan Schelten, Ruan
Silva, Eric Michael Smith, Ranjan Subramanian, Xiaoqing Ellen Tan, Binh Tang, Ross
Taylor, Adina Williams, Jian Xiang Kuan, Puxin Xu, Zheng Yan, Iliyan Zarov, Yuchen
Zhang, Angela Fan, Melanie Kambadur, Sharan Narang, Aurelien Rodriguez, Robert Sto-
jnic, Sergey Edunov, and Thomas Scialom. Llama 2: Open foundation and fine-tuned
chat models, 2023. URL https://arxiv.org/abs/2307.09288.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N.
Gomez, Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. In Proceedings of
the 31st International Conference on Neural Information Processing Systems, NIPS’17,
pp. 6000–6010, Red Hook, NY, USA, 2017. Curran Associates Inc. ISBN 9781510860964.

Junxiong Wang, Daniele Paliotta, Avner May, Alexander M. Rush, and Tri Dao. The
mamba in the llama: Distilling and accelerating hybrid models, 2025. URL https:
//arxiv.org/abs/2408.15237.

Songlin Yang, Bailin Wang, Yikang Shen, Rameswar Panda, and Yoon Kim. Gated linear
attention transformers with hardware-efficient training, 2024. URL https://arxiv.org/
abs/2312.06635.

13

https://arxiv.org/abs/2110.08207
https://arxiv.org/abs/1701.06538
https://arxiv.org/abs/2310.16049
https://arxiv.org/abs/2310.16049
https://arxiv.org/abs/2407.04620
https://arxiv.org/abs/2407.04620
https://aclanthology.org/N19-1421
https://github.com/tatsu-lab/stanford_alpaca
https://arxiv.org/abs/2307.09288
https://arxiv.org/abs/2408.15237
https://arxiv.org/abs/2408.15237
https://arxiv.org/abs/2312.06635
https://arxiv.org/abs/2312.06635

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Songlin Yang, Bailin Wang, Yu Zhang, Yikang Shen, and Yoon Kim. Parallelizing linear
transformers with the delta rule over sequence length, 2025a. URL https://arxiv.org/
abs/2406.06484.

Wang Yang, Zirui Liu, Hongye Jin, Qingyu Yin, Vipin Chaudhary, and Xiaotian Han.
Longer context, deeper thinking: Uncovering the role of long-context ability in reasoning,
2025b. URL https://arxiv.org/abs/2505.17315.

Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali Farhadi, and Yejin Choi. Hellaswag: Can a
machine really finish your sentence? CoRR, abs/1905.07830, 2019. URL http://arxiv.
org/abs/1905.07830.

Michael Zhang, Simran Arora, Rahul Chalamala, Alan Wu, Benjamin Spector, Aaryan
Singhal, Krithik Ramesh, and Christopher Ré. Lolcats: On low-rank linearizing of large
language models, 2025. URL https://arxiv.org/abs/2410.10254.

Xiaofeng Zhang, Yikang Shen, Zeyu Huang, Jie Zhou, Wenge Rong, and Zhang Xiong.
Mixture of attention heads: Selecting attention heads per token, 2022. URL https:
//arxiv.org/abs/2210.05144.

Qinkai Zheng, Xiao Xia, Xu Zou, Yuxiao Dong, Shan Wang, Yufei Xue, Zihan Wang, Lei
Shen, Andi Wang, Yang Li, Teng Su, Zhilin Yang, and Jie Tang. Codegeex: A pre-
trained model for code generation with multilingual benchmarking on humaneval-x. In
Proceedings of the 29th ACM SIGKDD Conference on Knowledge Discovery and Data
Mining, pp. 5673–5684, 2023.

Jeffrey Zhou, Tianjian Lu, Swaroop Mishra, Siddhartha Brahma, Sujoy Basu, Yi Luan,
Denny Zhou, and Le Hou. Instruction-following evaluation for large language models,
2023. URL https://arxiv.org/abs/2311.07911.

A Appendix

A.1 Long Context Scaling Law

Figure 7 presents the complete set of long-context evaluations, extending Figure 4 (see
Section 4.1.2 for experiment details).

A.2 FLOPS Calculation

Let us denote dmodel as the hidden size of the model and dmemory as the memory hidden size.
The FLOPS introduced by each Factorization Memory layer per token can be approximated
as follows.

dmemory(2dmodel − 1) input projection in equation 9 (14)

+m(2dmodel − 1) memory affinity scores in equation 4 (15)

+ 2(2dmodel − 1) + 2m update and merge rates, θt and ϕt (16)

+m(4dmemory + 3) normalization for each memory state, norm(ht) (17)

+mdmemory + dmemory(m− 1) memory merge in equation 10 (18)

+ dmodel(2dmemory − 1) output projection (19)

If we exclude input and output projections and assume dmemory = dmodel, then the recur-
rence update FLOPS can be bounded by O(mdmemory).

For the sparse formulation with top-k selection, the compute reduction per-token can be
estimated as (m−k)(9dmemory + 5); the compute for the affinity scores remains unchanged.

14

https://arxiv.org/abs/2406.06484
https://arxiv.org/abs/2406.06484
https://arxiv.org/abs/2505.17315
http://arxiv.org/abs/1905.07830
http://arxiv.org/abs/1905.07830
https://arxiv.org/abs/2410.10254
https://arxiv.org/abs/2210.05144
https://arxiv.org/abs/2210.05144
https://arxiv.org/abs/2311.07911

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

25 27 29 211 213 215

Context Length

4

6

8

L
os

s-
So

-F
ar

English Long Context Loss (≈ 63m Parameters)

Transformer (62m)
Mamba-2 (62m)
Factorization Memory (63m)

25 27 29 211 213 215

Context Length

4

6

8

L
os

s-
So

-F
ar

Japanese Long Context Loss (≈ 63m Parameters)

Transformer (62m)
Mamba-2 (62m)
Factorization Memory (63m)

25 27 29 211 213 215

Context Length

4

6

8

10

L
os

s-
So

-F
ar

English Long Context Loss (≈ 156m Parameters)

Transformer (156m)
Mamba-2 (164m)
Factorization Memory (156m)

25 27 29 211 213 215

Context Length

4

6

8

10

L
os

s-
So

-F
ar

Japanese Long Context Loss (≈ 156m Parameters)

Transformer (156m)
Mamba-2 (164m)
Factorization Memory (156m)

25 27 29 211 213 215

Context Length

4

6

8

10

12

L
os

s-
So

-F
ar

English Long Context Loss (≈ 359m Parameters)

Transformer (353m)
Mamba-2 (352m)
Factorization Memory (359m)

25 27 29 211 213 215

Context Length

4

6

8

10

12

L
os

s-
So

-F
ar

Japanese Long Context Loss (≈ 359m Parameters)

Transformer (353m)
Mamba-2 (352m)
Factorization Memory (359m)

25 27 29 211 213 215

Context Length

2.5

5.0

7.5

10.0

12.5

L
os

s-
So

-F
ar

English Long Context Loss (≈ 829m Parameters)

Transformer (826m)
Mamba-2 (835m)
Factorization Memory (829m)

25 27 29 211 213 215

Context Length

2.5

5.0

7.5

10.0

12.5

L
os

s-
So

-F
ar

Japanese Long Context Loss (≈ 829m Parameters)

Transformer (826m)
Mamba-2 (835m)
Factorization Memory (829m)

25 27 29 211 213 215

Context Length

2.5

5.0

7.5

10.0

12.5

L
os

s-
So

-F
ar

English Long Context Loss (≈ 1687m Parameters)

Transformer (1679m)
Mamba-2 (1649m)
Factorization Memory (1687m)

25 27 29 211 213 215

Context Length

2.5

5.0

7.5

10.0

12.5

L
os

s-
So

-F
ar

Japanese Long Context Loss (≈ 1687m Parameters)

Transformer (1679m)
Mamba-2 (1649m)
Factorization Memory (1687m)

Figure 7: Loss-So-Far. Left: English evaluation. Right: Japanese evaluation. Factoriza-
tion Memory model consistently achieves comparable performance at the trained context
length of 1024 tokens with Transformer and Mamba-2 and at the same time shows better
extrapolation at the long context.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

.

Model Average HellaSwag MMLU TQA MUSR IFEval Winogrande

Transformer 29.30 44.92 25.63 37.78 8.70 8.63 50.91
Mamba-2 28.88 43.21 23.84 38.08 13.68 4.21 51.46
Factorization Memory 30.05 45.19 26.80 39.37 15.12 6.18 50.12

Table 2: English downstream evaluations on publicly available dataset, DCLM (DataComp
for Language Model): Factorization Memory achieves the highest average performance,
outperforming Transformer and Mamba-2. Results on Japanese are omitted, as DCLM is
an English-language dataset.

A.3 Reproducibility Notes

To ensure reproducibility of the experiments on the publicly available data, we trained 1B-
parameter models on the same 84B-token random sample of DCLM dataset Li et al. (2024b).
This subset corresponds to approximately 4x the compute-optimal budget, Hoffmann et al.
(2022). We report the results on English downstream tasks on Table 2. Results on Japanese
are omitted, as DCLM is an English-language dataset. On average, Factorization Memory
performs competitively with both Transformers and Mamba-2, while maintaining superior
inference speed as described on 4.2.3.

A.4 Evaluation Benchmarks

The English benchmarks used in our evaluation are as follows:

• HellaSwag Zellers et al. (2019) is a test set to benchmark model ability to perform
commonsense reasoning, given questions that require understanding and reasoning beyond
simple pattern matching.

• MMLU (Massive Multitask Language Understanding) Hendrycks et al. (2021) is a test
to measure model multitask accuracy. It covers 57 tasks that covers history, computer
science, mathematics, chemistry, and other topics.

• TruthfulQA Lin et al. (2022) measures models’ inclination to replicate common online
falsehoods

• MUSR (Multistep Soft Reasoning) Sprague et al. (2024) evaluates models on multi-
step reasoning tasks that simulate real-world decision-making scenarios. It measures the
model’s ability to reason over multiple pieces of information sequentially.

• The Instruction-Following Evaluation - IFEval Zhou et al. (2023) - is a benchmark de-
signed to assess the proficiency of large language models (LLMs) in adhering to specific
instructions.

• Winogrande Sakaguchi et al. (2019) is a large-scale dataset for commonsense reasoning,
designed to be challenging by reducing linguistic biases and requiring deeper contextual
understanding to resolve pronoun ambiguities.

The Japanese benchmarks included in our evaluation are as follows:

• JCS / JCommonSenseQA (Kurihara et al., 2022) is the Japanese version of Common-
SenseQA (Talmor et al., 2019), which consists of multiple-choice questions that evaluate
model ability in answering commonsense questions.

• JNLI / Japanese Natural Language Inference (Kurihara et al., 2022) is a test set to
evaluate a model’s ability to recognize the inference relation that a premise sentence
has to a hypothesis sentence. There are three inference relations, namely: entailment,
contradiction, and neutral which are presented to the model in a multiple-choice question
format.

• MARC / Multilingual Amazon Review Corpus is a text classification test set that is
based on the MARC dataset (Keung et al., 2020). MARC-ja is the Japanese subset of this
dataset, which is a binary classification task for positive and negative review sentiment.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

• xWino/ xWinograd-ja is the Japanese subset of the Winograd schema challenge (Emelin
& Sennrich, 2021), which is a pair of sentences that differ in only one or two contrastive
words that are easily disambiguated by a human reader. This evaluation measures model’s
ability to use commonsense knowledge to disambiguate and debias the ambiguous sen-
tence.

17

	Introduction
	Background
	Factorization Memory
	Dense Memory Update
	Sparse Memory Update

	Experiments
	Test Loss Evaluation
	Model Settings, Pre-Training and Evaluation Datasets
	Long Context Scaling Law
	Memory Scaling

	Downstream Task Evaluation
	Model Settings
	Results
	Inference Speed

	Related Work
	Limitation
	Conclusion
	Appendix
	Long Context Scaling Law
	FLOPS Calculation
	Reproducibility Notes
	Evaluation Benchmarks

