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Abstract

We propose Factorization Memory, an efficient recurrent neural network
(RNN) architecture that achieves performance comparable to Transformer
models on short-context language modeling tasks while also demonstrat-
ing superior generalization in long-context scenarios. Our model builds
upon Mamba-2, enabling Factorization Memory to exploit parallel compu-
tations during training while preserving constant computational and mem-
ory complexity during inference. To further optimize model efficiency and
representational capacity, we develop a sparse formulation of Factorization
Memory that updates only a subset of recurrent states at each step while
preserving the strong performance of its dense counterpart. To our knowl-
edge, this represents the first RNN architecture that successfully combines
sparse memory activation with competitive performance across both short
and long-context settings. This work provides a systematic empirical anal-
ysis of Factorization Memory in comparison to Transformer and Mamba-2
architectures.

1 Introduction

Transformer-based language modeling (Brown et al., 2020) has significantly advanced nat-
ural language processing (NLP) through multitask fine-tuning (Taori et al., 2023; Sanh
et al., 2021). This paradigm shift has redefined NLP development, moving from training
task-specific models to building general models capable of solving multiple tasks.

A particularly challenging frontier is ultra-long-context understanding, where traditional
models encounter fundamental limitations. Long-context comprehension is essential for
complex reasoning Yang et al. (2025b), software development Zheng et al. (2023), and multi-
session conversations Maharana et al. (2024). The quadratic complexity of transformers,
O(n2), remains a well-known bottleneck, posing significant challenges for scalability. Ad-
dressing this computational complexity requires forgoing the attention mechanism, which is
the primary source of inefficiency.

Recently, there has been increasing interest in revisiting the recurrent neural networks
(RNNs) due to their bounded memory requirements and linear generation complexity. State-
space models (SSMs) (Gu & Dao, 2024) have inspired parallelization-enabled RNNs, making
them viable competitors to Transformer. This led to the development of modern recurrent
architectures such as Mamba Gu & Dao (2024), Mamba-2 (Dao & Gu, 2024), MiniLSTM
(Feng et al., 2024), Gated Linear Attention (Yang et al., 2024), RWKV Peng et al. (2023),
and others. Unlike Transformers, rather than accessing the entire input sequence at infer-
ence, RNNs encode sequences into fixed-size recurrent states.

This compressive nature limits RNN performance on tasks requiring precise recall of long
token sequences. RNNs encode an unbounded sequence into a fixed-size hidden state Oren
et al. (2024), creating a bottleneck: finite bits must represent unlimited information. Precise
recall over long spans (e.g. verbatim repetition of a random passage) is fundamentally
difficult. Even though some models use time-dependent parameters and does very well
on many memory tasks, this core limitation still applies when lossless recall is needed.
Increasing the hidden state size can help, but at the cost of inference efficiency, potentially
erasing RNNs’ performance advantage over Transformers.
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Figure 1: Factorization Memory - Layer Schematics. Left: In the dense formulation all m
memory states are updated at each timestamp. The updates are weighted with memory-
input affinity scores, and the thickness of the arrows represents the strength of the update.
Right: In the sparse formulation, only selected top-k states are updated at each timestamp.
Grey shading indicates that the state is used neither in update nor in merge operations.

To balance efficiency and capacity, we propose Factorization Memory, a novel RNN ar-
chitecture that reconciles these competing objectives. Unlike Mamba or similar models,
Factorization Memory employs sparse recurrent state updates, enabling selective updates
of only a small subset of parameters at each time step (see Figure 1). This reduces the
computational overhead associated with recurrent state updates, allowing larger recurrent
states while maintaining a bounded computational cost. Unlike prior work that explores
sparsity as a theoretical property Cheng et al. (2024); Liu et al. (2021), our method achieves
compute and memory savings during training and inference thanks to partial activation.

Our empirical evaluations (see Section 4) show that not only Factorization Memory is com-
petitive with Transformer and Mamba-2 on short-context tasks, but it also exhibits superior
performance extrapolation beyond the training context length. Furthermore, it achieves
higher inference efficiency than these models (see Section 4.2.3).

The contributions of this paper are as follows:

1. We introduce Factorization Memory, a recurrent memory model that demonstrates
competitive performance on short-context tasks while outperforming Transformer and
Mamba-2 in long-context extrapolation.

2. We propose sparse RNN memory mechanism that selectively updates only a subset of
states, bounding the computation and memory cost while scaling up the model and
maintaining a strong benchmark over its non-sparse counterpart.

3. We release optimized CUDA/Triton kernels for Factorization Memory, ensuring repro-
ducibility and facilitating future research into sparse RNNs1.

2 Background

In this section, we will briefly review the fundamentals of Transformer and RNN architec-
tures and their relationship with Factorization Memory.

Transformer A standard Transformer (Vaswani et al., 2017) layer can be expressed as a
composition of self-attention, residual connections, and a feedforward MLP. Here, we focus
on the self-attention mechanism, which models dependencies between input and output
tokens. Given inputs X projected onto queries, keys, and values (Q, K, V ), attention in its
simplest form can be expressed as follows2:

Attention(Q,K, V )t =

∑N
i=1 e

qTt ki · vi∑N
i=1 e

qTt ki

, (1)

The attention output is a linear combination of value projections up to time step t. This
formulation can be interpreted as an RNN with an unbounded number of key-value states

1To comply with the double-blind review process, we will release the code upon acceptance.
2We use the latest attention architecture for our experiment baseline.
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to which qt attends (Oren et al., 2024). In auto-regressive settings, self-attention represents
the most expressive form of a multi-state RNN with infinitely growing state size.

Recurrent Neural Networks , Recurrent models such as Mamba-2 (Dao & Gu, 2024)
maintain a fixed-sized recurrent state to represent the input sequence. These models follow
the recurrence:

ht = Atht−1 + Btxt (2)

where ht is the recurrent state and xt is the input at time t. The forms of At and Bt deter-
mine model expressiveness and computational properties. In structured state-space models
(SSMs) like Mamba-2, At and Bt do not depend on the recurrent state ht itself (though they
may depend on previous layer hidden state). This recurrence can be parallelized using the
parallel prefix scan algorithm (Blelloch, 1990), allowing scalable training while retaining
the inference efficiency.

Gated Linear Attention (GLA) (Yang et al., 2024) introduces a gating mechanism to
selectively control information flow in sequence models. Instead of treating all tokens
equally, GLA applies multiplicative gating to dynamically regulate which information passes
through. This gating mechanism allows finer control over long-range dependencies while
maintaining efficient computation.

Inspired by Mamba-2’s structured recurrence and Gated Linear Attention’s selective gating,
Factorization Memory adopts a similar approach to recurrence with a focus on computational
efficiency and enhanced capacity. Factorization Memory constrains At and Bt, ensuring that
only a small portion of ht is updated and used at each time step.

3 Factorization Memory

The main intuition of Factorization Memory architecture is that a model should selectively
choose and manage parts of hidden recurrent state. As shown in Figure 1, this architecture
maintains a 2-dimensional recurrent state with m rows (memory states). Upon receiving in-
put X = {xt}t=1..n, memory states can be updated with two strategies: (1) dense: weighted
update over memory states, and (2) sparse: selecting only k memory states for update.

3.1 Dense Memory Update

At each step t, the dense Factorization Memory updates all m memory states. Input x̄t

is put into memory proportionally to the affinity scores, defined as αt = softmax(Wαxt).
Formally, Factorization Memory recurrence can be expressed as follows:

ht = diag (1 − ηtαt)ht−1 + ηtαt ⊗ x̄t, (3)

where ηt = σ(wT
η xt) is the update rate governing the trade-off between state update and

retention. When ηt = 0, the input is completely prevented from influencing the memory.

αt essentially represents a conditional probability distribution over the memory states, quan-
tifying their relevance to the input vector. A uniform αt distributes the input evenly across
all memory states, while a highly skewed αt factorizes the input into a few selected states.
From a capacity perspective, it is desirable for each memory state to encode information
corresponding to distinct aspects of the input, essentially clustering the tokens by the ”top-
ics”; therefore, skewed updates are generally preferred. To control the sharpness of this
distribution, we introduce a temperature parameter τ in our experiments, redefining αt as
softmax(Wαxt/τ) where appropriate.

The output of the layer is obtained by projecting the aggregated memory states. To merge
m separate memory states, we apply root mean square (RMS) normalization to each row of
the recurrent state ht, followed by computing a linear combination of the normalized states.
More formally, yt = Wo norm(ht)

Tϕt, where Wo is the output projection matrix, and ϕt is
the combination weights. To compute ϕt, we reuse the affinity scores αt, ensuring that the
same memory states involved in the update are also used in memory aggregation. This choice
of ϕt is important for the Sparse Factorization Memory (see Section 3.2). Similarly to the

3
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update rate, we introduce merge rate µt = σ(wT
µxt) to control the scale of the aggregation:

ϕt = µtαt.

Combining all these components, the dense update in Factorization Memory is as follows:

αt = softmax(Wαxt) ∈ Rm memory affinity scores (4)

ηt = σ(wT
η xt) ∈ (0, 1) shared update rate (5)

µt = σ(wT
µxt) ∈ (0, 1) shared merge rate (6)

θt = ηtαt ∈ Rm memory update weights (7)

ϕt = µtαt ∈ Rm memory merge weights (8)

x̄t = Wixt input projection (9)

ht = diag (1 − θt)ht−1 + θt ⊗ x̄t memory update with linear recurrence (10)

yt = Wo norm(ht)
Tϕt output projection of merged memory states (11)

where xt ∈ Rdmodel is a token embedding, wη, wµ ∈ Rdmodel are trainable parameters
for update and merge rates, Wα ∈ Rm×dmodel is a trainable matrix for memory affinity,
ht, ht−1 ∈ Rm×dmemory are the memory states, Wo and Wi are the projection matrices for
adapting dimensions between dmodel and dmemory. σ(·) denotes the sigmoid activation.

Similar to Mamba-2, Factorization Memory can rely on the parallel prefix scan algorithm
for efficient training, enabling scalability across long sequences. During inference, the layer
achieves efficiency by maintaining only the most recent recurrent state, eliminating the need
for recomputation over the full sequence (unlike Transformer).

3.2 Sparse Memory Update

While skewed dense memory updates factorize the input into a few selected states, compu-
tationally, all m memory states are still updated, requiring O(mdmemory) operations (see
Appendix A.2 for derivation). Unlike other RNN variants (Section 5), Factorization Mem-
ory uses the same probability distribution αt for memory update (write) and output merge
(read) (equation 4).

We take computational advantage by treating αt as a router and selecting only top-k most
relevant memory states for both the memory read and write. Formally, we re-normalize αt

scores with the top-k sparse mask as follows:

γt = T (αt, k) select top-k relevant memory states, compute sparse 0-1 mask (12)

ᾱt =
γt ⊙ αt

γtαt
re-normalize affinity scores after applying top-k mask. (13)

ᾱt contains the new affinity scores and the rest of Factorization Memory computations
remain the same as in the dense version (see Section 3.1). The sparse mask reduce the
compute operations by dropping all subsequent operations where γt = 0. Since we reuse the
affinity scores in the update and merge operations, only k memory states need to be loaded
for every timestep t.

k is a configurable parameter, which allows to balance computation with respect to the full
capacity of m memory states, with k = m we recover the dense update in Factorization
Memory, in the ideal case we want k as small as possible to realize compute reduction. We
explore the trade-offs of tuning k in Section 4.1.3.

4 Experiments

4.1 Test Loss Evaluation

In the following experiments, we want to establish general properties of Factorization Mem-
ory model through the test loss evaluations.

4
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4.1.1 Model Settings, Pre-Training and Evaluation Datasets

We adopt the modern Transformer architecture as in (Touvron et al., 2023) and simply re-
place the attention layers with their Factorization Memory counterparts. We also benchmark
our model against Mamba-23, an exemplar of the modern RNN family. For Transformer
model, we are using Flash Attention 2 Dao (2024) during training and testing.

Train/Test Dataset We pre-train and evaluate the language models on a curated sample
of Web data predominantly comprising English and Japanese texts. The dataset is filtered to
ensure high-quality content, with an approximate size of 250B tokens. Following established
practices (Penedo et al., 2023; Li et al., 2024a), our filtering pipeline removes duplicates,
excessively short or long sequences, and low-information content with classification-based
filtering. To ensure the language balance we employ fastText language identification models
(Joulin et al., 2016b;a). For the test loss evaluations we reserve a random subset of this
dataset. For training, we compose smaller subsets for each model following compute-optimal
training regime of ≥ 20 tokens per parameter (Hoffmann et al., 2022).

Long Context Dataset To evaluate long-context capabilities, we construct a benchmark
of 1,000 English and 1,000 Japanese documents, exceeding 128K tokens each. These texts are
sourced from publicly available Web novels to preserve coherence and linguistic consistency
over extended contexts. To prevent data contamination, we ensure the evaluation samples
do not overlap with the training corpus by sourcing it with later cutoff dates that those
used in training, in addition to applying exact and fuzzy deduplication.

4.1.2 Long Context Scaling Law

When designing a new model architecture, it is essential to assess whether performance
remains predictable as the model scales. We conduct experiments across multiple model
sizes, analyzing Factorization Memory test loss (see Figure 3a). We compare its scaling
behavior against Transformer and Mamba-2 baselines under identical training conditions
(see Figures 2b and 2c). Transformer uses grouped query attention mechanism based on
LLaMA architecture Touvron et al. (2023) and trained and tested using Flash Attention
2 Dao (2024). Mamba-2 implementation is from the original repository 4. All models are
trained on the context size of 1024 tokens and evaluated on the same 1024-token window.

Figure 2 presents test loss curves across different model architectures, sizes, and hyper-
parameters. For each model, we identify the Pareto frontier of the test loss function —
termed the Loss Frontier — plotted against forward pass FLOPS.5 Figure 3a shows how
this frontier evolves with scale.

Factorization Memory exhibits predictable performance improvements with scale, mirroring
Transformer and Mamba-2 models. Its loss frontier is shifted upward compared to Trans-
former and Mamba-2, which suggests that, under the same training conditions, it requires
slightly more compute to achieve comparable test loss on 1024-token window.

The central design objective of Factorization Memory is to efficiently process long contexts
through increased capacity. We examine extrapolation to extended context by assessing
performance on a 2048-token context window and compute the corresponding loss frontiers
(see Figure 3b). We filter out test samples with fewer than 2048 tokens to avoid bias from
short sequences. Factorization Memory demonstrates a scaling trend in the loss frontier,
while Transformer and Mamba-2 exhibit a lower degree of extrapolation. Mamba-2 generally
achieves better long-context generalization than Transformers, likely due to its recurrent
architecture. However, Factorization Memory surpasses Mamba-2 as more training FLOPS
are allocated to it, showcasing superior scaling in context extrapolation.

To validate our context extrapolation findings, we analyze the mean test loss across all con-
text lengths up to 128K tokens computed on Long Context Dataset (see Figure 4). Trans-

3We use Mamba-2 as in: https://huggingface.co/state-spaces/mamba2-1.3b.
4https://github.com/state-spaces/mamba
5Although total amount of compute should include backward pass, for simplicity we report only

forward pass FLOPS. The backward pass during training can be approximated of 4x of forward
pass.

5
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Figure 2: Loss Frontier: All models are trained with the context length of 1024 tokens,
while varying the number of model parameters, learning rate, and training budget.
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Figure 3: Loss Frontier Scaling

former and Mamba-2 exhibit limited extrapolation to longer contexts, with test loss rising
sharply beyond their 1024-token training window. While Factorization Memory also expe-
riences increased test loss beyond 1024 tokens, this increase rarely exceeds the uncertainty
in predicting the first 128 tokens.

4.1.3 Memory Scaling

We systematically investigate two key aspects of Factorization Memory design and their
impact on performance. First, we examine whether increasing memory states m improves
performance. We hypothesize that a wider memory enhances capacity to store and retrieve
information, leading to better representations and more effective learning. Second, we ex-
plore the benefits of a sparse memory formulation (see Section 3.2): a sparse representation
could improve computational efficiency while maintaining performance.

Figure 5 presents results from 60–70 million parameters model. We systematically increase
the number of memory states m by powers of two and evaluate test loss performance. All
models are trained under the same conditions and exposed to the same sequence of training
instances. To enforce a skewed αt allocation and bring about a sparsity component in
memory updates, we experiment with the temperature τ : αt = softmax (Wαxt/τ). For each
m, we report results for the optimal τ ∈ {1, 0.5, 0.25, 0.125}, optimized via grid-search.

For the dense memory, the results in Figure 5 indicate a clear trend of improvement in test
loss as the number of states increases. Specifically, the model demonstrates a consistent
reduction in test loss suggesting increased capacity.

6
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Figure 4: Loss-So-Far. Left: English. Right: Japanese. Factorization Memory consis-
tently achieves performance comparable with Transformer and Mamba-2 at the training
context length of 210 = 1024 tokens. At the same time Factorization Memory shows better
extrapolation at the long context. This pattern holds for all tested model sizes (see Ap-
pendix A.1).
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Figure 5: Comparison of dense and sparse memory updates: test loss generally decreases
with an increasing number of memory states, even for sparse updates. Notably, updating
only 25% of memory states achieves the same loss as dense formulation when the number
of memory states is sufficiently large while reducing computational cost by 75%.

For the sparse memory, we investigate two distinct variants. In the first variant, referred
to as fixed memory activation, updates are restricted to only 4 memory states per token,
regardless of the number of states. In the second variant, termed proportional memory
activation, only 25% of the total memory states are activated. While the fixed memory
activation approach offers the best computational efficiency, it imposes strict constraints on
updates, limiting the model performance. The proportional activation strategy still reduces
the number of total operations and allows for greater flexibility in memory utilization.

Figure 5 reveals two key observations. First, increasing memory width improves perfor-
mance for both sparse memory variants, albeit with diminishing returns in the fixed mem-
ory activation approach. The performance for fixed memory activation plateaus around a
m = 27 = 128, whereas proportional memory activation continues to increase. According
to the model definition, this shows that the router remained stationary across tokens. This
outcome implies that each memory state encode distinct aspects of the input, achieving a
non-redundant representation.

Second, proportional memory activation matches dense memory performance when the num-
ber of memory states is sufficiently large, suggesting that sparse memory activation is a more
effective for scaling memory. Additionally, we observe that the optimal test loss requires a
progressively lower temperature τ with increased states, supporting the benefits of skewed
and sparse updates.

4.2 Downstream Task Evaluation

In this section, we evaluate the efficacy of the model architectures on the standard English
and Japanese LLM benchmarks (see Appendix A.4 for a detailed description of each). The
benchmarks are composed of multiple-choice questions, which we evaluate in n-shot manner
(except for IFEval (Zhou et al., 2023), where we follow the evaluation protocol specified in

7
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.

Model Average HellaSwag MMLU TQA MUSR IFEval Winogrande

Transformer 29.53 34.49 24.99 39.11 10.98 16.68 50.91
Mamba-2 29.06 32.95 26.71 38.79 8.53 15.37 52.01
Factorization Memory 30.98 34.08 24.40 42.07 11.70 20.99 52.64

Model Average JCS JNLI MARC-ja xWino

Transformer 56.41 48.70 41.95 80.99 54.01
Mamba-2 49.73 37.53 34.43 75.01 51.93
Factorization Memory 59.80 53.80 47.49 84.08 53.81

Table 1: English (top) and Japanese (bottom) downstream evaluations: Factorization Mem-
ory achieves the highest average performance, outperforming Transformer and Mamba-2.

the original paper). The responses are selected based on the model’s probability distribution,
with the most probable answer (or answers) chosen given the prompt6.

4.2.1 Model Settings

To ensure fair comparison, we pre-train 1B-parameter models on identical data samples
with the same training budget (Section 4.1.1 describes the pre-training dataset), attributing
performance differences to architectures rather than training samples. We keep the models’
hyperparameters the same where possible: all models for these experiments comprise 16
decoder layers, interleaving the target layer with MLP and residual connections. The model
hidden size dmodel = 2048. Factorization Memory uses m = 64 memory states with sparsity
k = 8, and dmemory = dmodel. The hyperparameters of Mamba-2 and self-attention layers
are scaled accordingly to match the target model size (see also Section 4.1.1 for base settings).

4.2.2 Results

The downstream evaluation results on English and Japanese are shown in Table 1. On the
English tasks, Factorization Memory achieves the highest average score (30.98) performing
best on TruthfulQA, MUSR, IFEval, and Winogrande. The Transformer model follows
closely behind with an average score of 29.53, being slightly competitive on HellaSwag but
underperforming on most of the other metrics. The Mamba-2 model, while performing
better in MMLU, lags in overall performance (average score 29.06).

On Japanese metrics, the our proposed model once again leads with the highest average
score (59.80), outperforming both Transformer (56.41) and Mamba-2 (49.73). It achieves the
best performance on JCS, JNLI, and MARC-ja, indicating strong commonsense reasoning,
natural language inference, and sentiment classification capabilities. Transformer performs
best on xWino, while Mamba-2 consistently underperforms its competitors.

To ensure reproducibility of the experiments on the publicly available data, we also trained
these 1B parameter models on the same 84B-token random sample of DCLM dataset Li
et al. (2024b). The evaluation breakdown is available in Section A.3, Table 2. The exper-
iments concur with our previous observation: on average, Factorization Memory performs
competitively with both Transformers and Mamba-2.

4.2.3 Inference Speed

To evaluate the efficiency of 1B-parameters models, we benchmark inference speed on 16k
token prompts, measuring the average generation time (see Figure 6). We use the optimized
CUDA/Triton kernels for all the models, Key-Value (KV) cache on Transformer, and run
experiments on a single H100 GPU (80GB). The results demonstrate that Factorization
Memory consistently outperforms Transformer, whose quadratic complexity in sequence
length leads to significant slowdowns, and it also exhibits a consistent 35-40% speed-up over
Mamba-2, highlighting the efficiency of its sparse updates.

6We run Language Model Evaluation Harness framework for all evaluations https://github.
com/EleutherAI/lm-evaluation-harness.
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Figure 6: Inference Speed Comparison: Factorization Memory achieves better inference
speed on long contexts than both Mamba-2 and Transformer models.

5 Related Work

Memory-Augmented Transformer Significant research has focused on augmenting
Transformer with memory modules: Kang et al. (2025) for long context processing, Bulatov
et al. (2022) for extended context retention, Ko et al. (2024) for temporal reasoning. Unlike
these, our approach removes self-attention entirely.

RNNs Factorization Memory is closely related to modern RNNs implementations such
as RWKV (Peng et al., 2023), State-Space Models (Gu & Dao, 2024), Linear Attention
Katharopoulos et al. (2020), and Gated Linear Attention (Yang et al., 2024; 2025a; Arora
et al., 2025). In contrast to these models, our approach selectively updates small portions
of the recurrent state, enhancing both efficiency and capacity.

Hybrid Architectures such as Hymba (Dong et al., 2024) and Griffin (De et al., 2024)
combine the strengths of recurrence and attention model. We focus on “pure” architectures
to isolate and evaluate model properties without confounding factors. Although a hybrid
model is out the scope for this work, our approach can be a base for other architectures.

Mixture of Experts (Shazeer et al., 2017) introduces sparsity in MLP layers, whereas our
method sparsifies along the time dimension, making the two approaches orthogonal.

Accelerated Attention Several studies focus on accelerating attention through optimized
implementations (Dao, 2023) or formulations (Liu et al., 2024; Zhang et al., 2022). While
these approaches improve efficiency, they still incur quadratic complexity.

Test-Time Training Recent test-time training approaches (Behrouz et al., 2024; Sun
et al., 2024) adapt model parameters at inference, boosting capacity and mimicking memory.
These approaches are orthogonal to Factorization Memory and compatible with our model.

Transformer Adaptation to RNN Many recent approaches adapt attention layers into
subquadratic analogs such as linear attention Zhang et al. (2025); Goldstein et al. (2025);
Wang et al. (2025). While motivated by quadratic attention complexity, they focus on
post-training adaptation of transformer models into existing linear recurrent architectures.
Factorization Memory is compatible with these adaptation frameworks.

6 Limitation

The scope of this study is constrained by computational resources. This limits our investiga-
tion to relatively small-scale models with a low FLOPS budget. While our findings provide
insights mostly concerning the test loss behavior, their generalization to larger models and
more complex evaluations remains an open questions to address as future work.

7 Conclusion

We introduce Factorization Memory, an efficient RNN architecture that achieves perfor-
mance comparable to Transformer and Mamba-2 models on short-context language modeling
tasks while also demonstrating superior generalization in long-context scenarios. Factorized
memory combined with sparse updates have proven effective in enhancing both the model
efficiency and capacity in our experiments, offering a promising direction for research.
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A Appendix

A.1 Long Context Scaling Law

Figure 7 presents the complete set of long-context evaluations, extending Figure 4 (see
Section 4.1.2 for experiment details).

A.2 FLOPS Calculation

Let us denote dmodel as the hidden size of the model and dmemory as the memory hidden size.
The FLOPS introduced by each Factorization Memory layer per token can be approximated
as follows.

dmemory(2dmodel − 1) input projection in equation 9 (14)

+m(2dmodel − 1) memory affinity scores in equation 4 (15)

+ 2(2dmodel − 1) + 2m update and merge rates, θt and ϕt (16)

+m(4dmemory + 3) normalization for each memory state, norm(ht) (17)

+mdmemory + dmemory(m− 1) memory merge in equation 10 (18)

+ dmodel(2dmemory − 1) output projection (19)

If we exclude input and output projections and assume dmemory = dmodel, then the recur-
rence update FLOPS can be bounded by O(mdmemory).

For the sparse formulation with top-k selection, the compute reduction per-token can be
estimated as (m−k)(9dmemory + 5); the compute for the affinity scores remains unchanged.
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Figure 7: Loss-So-Far. Left: English evaluation. Right: Japanese evaluation. Factoriza-
tion Memory model consistently achieves comparable performance at the trained context
length of 1024 tokens with Transformer and Mamba-2 and at the same time shows better
extrapolation at the long context.
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.

Model Average HellaSwag MMLU TQA MUSR IFEval Winogrande

Transformer 29.30 44.92 25.63 37.78 8.70 8.63 50.91
Mamba-2 28.88 43.21 23.84 38.08 13.68 4.21 51.46
Factorization Memory 30.05 45.19 26.80 39.37 15.12 6.18 50.12

Table 2: English downstream evaluations on publicly available dataset, DCLM (DataComp
for Language Model): Factorization Memory achieves the highest average performance,
outperforming Transformer and Mamba-2. Results on Japanese are omitted, as DCLM is
an English-language dataset.

A.3 Reproducibility Notes

To ensure reproducibility of the experiments on the publicly available data, we trained 1B-
parameter models on the same 84B-token random sample of DCLM dataset Li et al. (2024b).
This subset corresponds to approximately 4x the compute-optimal budget, Hoffmann et al.
(2022). We report the results on English downstream tasks on Table 2. Results on Japanese
are omitted, as DCLM is an English-language dataset. On average, Factorization Memory
performs competitively with both Transformers and Mamba-2, while maintaining superior
inference speed as described on 4.2.3.

A.4 Evaluation Benchmarks

The English benchmarks used in our evaluation are as follows:

• HellaSwag Zellers et al. (2019) is a test set to benchmark model ability to perform
commonsense reasoning, given questions that require understanding and reasoning beyond
simple pattern matching.

• MMLU (Massive Multitask Language Understanding) Hendrycks et al. (2021) is a test
to measure model multitask accuracy. It covers 57 tasks that covers history, computer
science, mathematics, chemistry, and other topics.

• TruthfulQA Lin et al. (2022) measures models’ inclination to replicate common online
falsehoods

• MUSR (Multistep Soft Reasoning) Sprague et al. (2024) evaluates models on multi-
step reasoning tasks that simulate real-world decision-making scenarios. It measures the
model’s ability to reason over multiple pieces of information sequentially.

• The Instruction-Following Evaluation - IFEval Zhou et al. (2023) - is a benchmark de-
signed to assess the proficiency of large language models (LLMs) in adhering to specific
instructions.

• Winogrande Sakaguchi et al. (2019) is a large-scale dataset for commonsense reasoning,
designed to be challenging by reducing linguistic biases and requiring deeper contextual
understanding to resolve pronoun ambiguities.

The Japanese benchmarks included in our evaluation are as follows:

• JCS / JCommonSenseQA (Kurihara et al., 2022) is the Japanese version of Common-
SenseQA (Talmor et al., 2019), which consists of multiple-choice questions that evaluate
model ability in answering commonsense questions.

• JNLI / Japanese Natural Language Inference (Kurihara et al., 2022) is a test set to
evaluate a model’s ability to recognize the inference relation that a premise sentence
has to a hypothesis sentence. There are three inference relations, namely: entailment,
contradiction, and neutral which are presented to the model in a multiple-choice question
format.

• MARC / Multilingual Amazon Review Corpus is a text classification test set that is
based on the MARC dataset (Keung et al., 2020). MARC-ja is the Japanese subset of this
dataset, which is a binary classification task for positive and negative review sentiment.
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• xWino/ xWinograd-ja is the Japanese subset of the Winograd schema challenge (Emelin
& Sennrich, 2021), which is a pair of sentences that differ in only one or two contrastive
words that are easily disambiguated by a human reader. This evaluation measures model’s
ability to use commonsense knowledge to disambiguate and debias the ambiguous sen-
tence.
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