Under review as a conference paper at ICLR 2026

LANGUAGE MODELING WITH FACTORIZATION
MEMORY

Anonymous authors
Paper under double-blind review

ABSTRACT

We propose Factorization Memory, an efficient recurrent neural network
(RNN) architecture that achieves performance comparable to Transformer
models on short-context language modeling tasks while also demonstrat-
ing superior generalization in long-context scenarios. Our model builds
upon Mamba-2, enabling Factorization Memory to exploit parallel compu-
tations during training while preserving constant computational and mem-
ory complexity during inference. To further optimize model efficiency and
representational capacity, we develop a sparse formulation of Factorization
Memory that updates only a subset of recurrent states at each step while
preserving the strong performance of its dense counterpart. To our knowl-
edge, this represents the first RNN architecture that successfully combines
sparse memory activation with competitive performance across both short
and long-context settings. This work provides a systematic empirical anal-
ysis of Factorization Memory in comparison to Transformer and Mamba-2
architectures.

1 INTRODUCTION

Transformer-based language modeling (Brown et al., [2020) has significantly advanced nat-
ural language processing (NLP) through multitask fine-tuning (Taori et al., [2023}; [Sanh
et al., 2021). This paradigm shift has redefined NLP development, moving from training
task-specific models to building general models capable of solving multiple tasks.

A particularly challenging frontier is ultra-long-context understanding, where traditional
models encounter fundamental limitations. Long-context comprehension is essential for
complex reasoning Yang et al.| (2025b)), software development |Zheng et al.| (2023), and multi-
session conversations Maharana et al.| (2024). The quadratic complexity of transformers,
O(n?), remains a well-known bottleneck, posing significant challenges for scalability. Ad-
dressing this computational complexity requires forgoing the attention mechanism, which is
the primary source of inefficiency.

Recently, there has been increasing interest in revisiting the recurrent neural networks
(RNNSs) due to their bounded memory requirements and linear generation complexity. State-
space models (SSMs) (Gu & Dao, [2024) have inspired parallelization-enabled RNNs, making
them viable competitors to Transformer. This led to the development of modern recurrent
architectures such as Mamba |Gu & Daol (2024)), Mamba-2 (Dao & Gu, [2024), MiniLSTM
(Feng et all 2024), Gated Linear Attention (Yang et all 2024), RWKYV [Peng et al.| (2023),
and others. Unlike Transformers, rather than accessing the entire input sequence at infer-
ence, RNNs encode sequences into fixed-size recurrent states.

This compressive nature limits RNN performance on tasks requiring precise recall of long
token sequences. RNNs encode an unbounded sequence into a fixed-size hidden state |Oren
et al.[(2024), creating a bottleneck: finite bits must represent unlimited information. Precise
recall over long spans (e.g. verbatim repetition of a random passage) is fundamentally
difficult. Even though some models use time-dependent parameters and does very well
on many memory tasks, this core limitation still applies when lossless recall is needed.
Increasing the hidden state size can help, but at the cost of inference efficiency, potentially
erasing RNNs’ performance advantage over Transformers.

Under review as a conference paper at ICLR 2026

! Inputs (n) X1 Xn—-1 F Xn Inputs (n) X1 Xn-1 |_ Xn
,,,,,,,,,,,,,, Lk (updated memory states) k (updated memory states)
s hi
hg* hT* hit 1 hi s hg* P hi -
L k=m k<m
Memory Merged Memory Merged
States (m) N RIS States (m) Memory Stae

Figure 1: Factorization Memory - Layer Schematics. Left: In the dense formulation all m
memory states are updated at each timestamp. The updates are weighted with memory-
input affinity scores, and the thickness of the arrows represents the strength of the update.
Right: In the sparse formulation, only selected top-k states are updated at each timestamp.
Grey shading indicates that the state is used neither in update nor in merge operations.

To balance efficiency and capacity, we propose Factorization Memory, a novel RNN ar-
chitecture that reconciles these competing objectives. Unlike Mamba or similar models,
Factorization Memory employs sparse recurrent state updates, enabling selective updates
of only a small subset of parameters at each time step (see Figure [1J). This reduces the
computational overhead associated with recurrent state updates, allowing larger recurrent
states while maintaining a bounded computational cost. Unlike prior work that explores
sparsity as a theoretical property [Cheng et al.[(2024); Liu et al.[(2021)), our method achieves
compute and memory savings during training and inference thanks to partial activation.

Our empirical evaluations (see Section [4]) show that not only Factorization Memory is com-
petitive with Transformer and Mamba-2 on short-context tasks, but it also exhibits superior
performance extrapolation beyond the training context length. Furthermore, it achieves
higher inference efficiency than these models (see Section .

The contributions of this paper are as follows:

1. We introduce Factorization Memory, a recurrent memory model that demonstrates
competitive performance on short-context tasks while outperforming Transformer and
Mamba-2 in long-context extrapolation.

2. We propose sparse RNN memory mechanism that selectively updates only a subset of
states, bounding the computation and memory cost while scaling up the model and
maintaining a strong benchmark over its non-sparse counterpart.

3. We release optimized CUDA /Triton kernels for Factorization Memory, ensuring repro-
ducibility and facilitating future research into sparse RNN

2 BACKGROUND

In this section, we will briefly review the fundamentals of Transformer and RNN architec-
tures and their relationship with Factorization Memory.

Transformer A standard Transformer (Vaswani et all 2017) layer can be expressed as a
composition of self-attention, residual connections, and a feedforward MLP. Here, we focus
on the self-attention mechanism, which models dependencies between input and output
tokens. Given inputs X projected onto queries, keys, and values (Q, K, V), attention in its
simplest form can be expressed as followsﬂ

Zi\il etk v,

YL ettt

The attention output is a linear combination of value projections up to time step ¢. This
formulation can be interpreted as an RNN with an unbounded number of key-value states

Attention(Q, K, V), = (1)

1To comply with the double-blind review process, we will release the code upon acceptance.
2We use the latest attention architecture for our experiment baseline.

Under review as a conference paper at ICLR 2026

to which g; attends (Oren et al 2024). In auto-regressive settings, self-attention represents
the most expressive form of a multi-state RNN with infinitely growing state size.

Recurrent Neural Networks , Recurrent models such as Mamba-2 (Dao & Gu, 2024)
maintain a fixed-sized recurrent state to represent the input sequence. These models follow
the recurrence:

hy = Aghy_1 + Byxy (2)

where h; is the recurrent state and x; is the input at time ¢. The forms of A; and B; deter-
mine model expressiveness and computational properties. In structured state-space models
(SSMs) like Mamba-2, A; and B; do not depend on the recurrent state h; itself (though they
may depend on previous layer hidden state). This recurrence can be parallelized using the
parallel prefix scan algorithm (Blelloch, [1990)), allowing scalable training while retaining
the inference efficiency.

Gated Linear Attention (GLA) (Yang et al) [2024) introduces a gating mechanism to
selectively control information flow in sequence models. Instead of treating all tokens
equally, GLA applies multiplicative gating to dynamically regulate which information passes
through. This gating mechanism allows finer control over long-range dependencies while
maintaining efficient computation.

Inspired by Mamba-2’s structured recurrence and Gated Linear Attention’s selective gating,
Factorization Memory adopts a similar approach to recurrence with a focus on computational
efficiency and enhanced capacity. Factorization Memory constrains A; and By, ensuring that
only a small portion of h; is updated and used at each time step.

3 FACTORIZATION MEMORY

The main intuition of Factorization Memory architecture is that a model should selectively
choose and manage parts of hidden recurrent state. As shown in Figure|l] this architecture
maintains a 2-dimensional recurrent state with m rows (memory states). Upon receiving in-
put X = {x¢}+=1..n, memory states can be updated with two strategies: (1) dense: weighted
update over memory states, and (2) sparse: selecting only k memory states for update.

3.1 DENSE MEMORY UPDATE

At each step t, the dense Factorization Memory updates all m memory states. Input Z;
is put into memory proportionally to the affinity scores, defined as «; = softmax(W,xy).
Formally, Factorization Memory recurrence can be expressed as follows:

hy = diag (1 — meaw) he—1 + oy ® Ty, (3)
where 1, = a(w%ﬂ x¢) is the update rate governing the trade-off between state update and
retention. When 7, = 0, the input is completely prevented from influencing the memory.

oy essentially represents a conditional probability distribution over the memory states, quan-
tifying their relevance to the input vector. A uniform «a; distributes the input evenly across
all memory states, while a highly skewed oy factorizes the input into a few selected states.
From a capacity perspective, it is desirable for each memory state to encode information
corresponding to distinct aspects of the input, essentially clustering the tokens by the ”top-
ics”; therefore, skewed updates are generally preferred. To control the sharpness of this
distribution, we introduce a temperature parameter 7 in our experiments, redefining o; as
softmax(W,z;/7) where appropriate.

The output of the layer is obtained by projecting the aggregated memory states. To merge
m separate memory states, we apply root mean square (RMS) normalization to each row of
the recurrent state h;, followed by computing a linear combination of the normalized states.
More formally, y; = W, norm(h;)” ¢;, where W, is the output projection matrix, and ¢; is
the combination weights. To compute ¢;, we reuse the affinity scores «;, ensuring that the
same memory states involved in the update are also used in memory aggregation. This choice
of ¢ is important for the Sparse Factorization Memory (see Section [3.2)). Similarly to the

Under review as a conference paper at ICLR 2026

update rate, we introduce merge rate p; = a(wl:f:rt) to control the scale of the aggregation:
bt = pray.

Combining all these components, the dense update in Factorization Memory is as follows:

oy = softmax(W,z;) € R™ memory affinity scores (4)
N = a(w;‘;wt) €(0,1) shared update rate (5)
e = a(ngt) €(0,1) shared merge rate (6)
0; = noy € R™ memory update weights (7)
o1 = g € R™ memory merge weights (8)
Ty = Wiz input projection (9)
hy =diag (1 —60;) hy—1 +0; ® Ty memory update with linear recurrence (10)
y; = Wonorm(hy)T ¢, output projection of merged memory states (11)

where z; € R%medact is a token embedding, Wy, Wy, € Rémodet gre trainable parameters
for update and merge rates, W, € R™X9model ig a trainable matrix for memory affinity,
hi, hi—q € RmMXdmemory are the memory states, W, and W; are the projection matrices for
adapting dimensions between dymoder a0d dmemory- 0(-) denotes the sigmoid activation.

Similar to Mamba-2, Factorization Memory can rely on the parallel prefix scan algorithm
for efficient training, enabling scalability across long sequences. During inference, the layer
achieves efficiency by maintaining only the most recent recurrent state, eliminating the need
for recomputation over the full sequence (unlike Transformer).

3.2 SPARSE MEMORY UPDATE

While skewed dense memory updates factorize the input into a few selected states, compu-
tationally, all m memory states are still updated, requiring O(mdmemory) Operations (see
Appendix for derivation). Unlike other RNN variants (Section [f]), Factorization Mem-
ory uses the same probability distribution oy for memory update (write) and output merge

(read) (equation [d)).

We take computational advantage by treating a; as a router and selecting only top-k most
relevant memory states for both the memory read and write. Formally, we re-normalize oy
scores with the top-k sparse mask as follows:

v = T(ag, k) select top-k relevant memory states, compute sparse 0-1 mask (12)
5 = Yt © oy

YO

re-normalize affinity scores after applying top-k mask. (13)

@ contains the new affinity scores and the rest of Factorization Memory computations
remain the same as in the dense version (see Section [3.1). The sparse mask reduce the
compute operations by dropping all subsequent operations where v; = 0. Since we reuse the
affinity scores in the update and merge operations, only k& memory states need to be loaded
for every timestep t.

k is a configurable parameter, which allows to balance computation with respect to the full
capacity of m memory states, with k = m we recover the dense update in Factorization
Memory, in the ideal case we want k as small as possible to realize compute reduction. We
explore the trade-offs of tuning k in Section [£.1.3}

4 EXPERIMENTS

4.1 TEesT L0oss EVALUATION

In the following experiments, we want to establish general properties of Factorization Mem-
ory model through the test loss evaluations.

Under review as a conference paper at ICLR 2026

4.1.1 MODEL SETTINGS, PRE-TRAINING AND EVALUATION DATASETS

We adopt the modern Transformer architecture as in (Touvron et al., 2023) and simply re-
place the attention layers with their Factorization Memory counterparts. We also benchmark
our model against Mamba—ﬂ an exemplar of the modern RNN family. For Transformer
model, we are using Flash Attention 2 |Dao| (2024) during training and testing.

Train/Test Dataset We pre-train and evaluate the language models on a curated sample
of Web data predominantly comprising English and Japanese texts. The dataset is filtered to
ensure high-quality content, with an approximate size of 250B tokens. Following established
practices (Penedo et al., |2023; |[Li et al.l [2024a)), our filtering pipeline removes duplicates,
excessively short or long sequences, and low-information content with classification-based
filtering. To ensure the language balance we employ fastText language identification models
(Joulin et al. 2016bja)). For the test loss evaluations we reserve a random subset of this
dataset. For training, we compose smaller subsets for each model following compute-optimal
training regime of > 20 tokens per parameter (Hoffmann et al., 2022).

Long Context Dataset To evaluate long-context capabilities, we construct a benchmark
of 1,000 English and 1,000 Japanese documents, exceeding 128K tokens each. These texts are
sourced from publicly available Web novels to preserve coherence and linguistic consistency
over extended contexts. To prevent data contamination, we ensure the evaluation samples
do not overlap with the training corpus by sourcing it with later cutoff dates that those
used in training, in addition to applying exact and fuzzy deduplication.

4.1.2 LONG CONTEXT SCALING LAwW

When designing a new model architecture, it is essential to assess whether performance
remains predictable as the model scales. We conduct experiments across multiple model
sizes, analyzing Factorization Memory test loss (see Figure . We compare its scaling
behavior against Transformer and Mamba-2 baselines under identical training conditions
(see Figures and |_2_c[) Transformer uses grouped query attention mechanism based on
LLaMA architecture [Touvron et al. (2023) and trained and tested using Flash Attention
2 Daol (2024). Mamba-2 implementation is from the original repository [*| All models are
trained on the context size of 1024 tokens and evaluated on the same 1024-token window.

Figure [2| presents test loss curves across different model architectures, sizes, and hyper-
parameters. For each model, we identify the Pareto frontier of the test loss function —
termed the Loss Frontier — plotted against forward pass FLOPSE Figure shows how
this frontier evolves with scale.

Factorization Memory exhibits predictable performance improvements with scale, mirroring
Transformer and Mamba-2 models. Its loss frontier is shifted upward compared to Trans-
former and Mamba-2, which suggests that, under the same training conditions, it requires
slightly more compute to achieve comparable test loss on 1024-token window.

The central design objective of Factorization Memory is to efficiently process long contexts
through increased capacity. We examine extrapolation to extended context by assessing
performance on a 2048-token context window and compute the corresponding loss frontiers
(see Figure . We filter out test samples with fewer than 2048 tokens to avoid bias from
short sequences. Factorization Memory demonstrates a scaling trend in the loss frontier,
while Transformer and Mamba-2 exhibit a lower degree of extrapolation. Mamba-2 generally
achieves better long-context generalization than Transformers, likely due to its recurrent
architecture. However, Factorization Memory surpasses Mamba-2 as more training FLOPS
are allocated to it, showcasing superior scaling in context extrapolation.

To validate our context extrapolation findings, we analyze the mean test loss across all con-
text lengths up to 128K tokens computed on Long Context Dataset (see Figure |4). Trans-

3We use Mamba-2 as in: https://huggingface.co/state-spaces/mamba2-1.3bl

“https://github.com/state-spaces/mamba

5 Although total amount of compute should include backward pass, for simplicity we report only
forward pass FLOPS. The backward pass during training can be approximated of 4x of forward
pass.

https://huggingface.co/state-spaces/mamba2-1.3b

Under review as a conference paper at ICLR 2026

Scaling Law (Factorization Memory)

Scaling Law (Transformer)

Scaling Law (Mamba-2)

63m 62m o
156m 156m 164m
) —— 359m) 353m o) 352m
S —— 8m 3 826m 3 835m
730 — 1es7m Z30F 1679m 1 2,30 l69m |
; ** Loss Frontier é Loss Frontier é Loss Frontier
K 5 3
& & &
20¢ L L L 1 20¢ L L L 1 201 L L L 1
10'% 10" 102 10" 10" 102 1018 10" 102
FLOPS (Forward Pass) FLOPS (Forward Pass) FLOPS (Forward Pass)
(a) (c)
openre

Figure 2: Loss Frontier: All models are trained with the context length of 1024 tokens,
while varying the number of model parameters, learning rate, and training budget.

Scaling Law @ 1024 Tokens

T T
----- Transformer — Loss Frontier

3751
351
325

== Transformer — Power Law Fit
----- Mamba-2 — Loss Frontier

==+ Mamba-2 — Power Law Fit
----- Factorization Memory — Loss Frontier
+ Factorization Memory — Power Law Fit _{

e
=}

275

N
W
T

Test Loss (Log Scale)
N
2
T

g
(=)
T

1 1 1 1
1018 1019 1020 102!
FLOPS (Forward Pass)

(a) The models are trained and evaluated on the
context window of 1024 tokens. All the tested
models consistently improve their test loss as
more FLOPS are allocated to training.

Scaling Law @ 2048 Tokens

.......... T T
375 e T
T T N mmmemmse e
35+ SRS
~ 325F 1
)
<
S L 4
3 3.0
on
Q275 -
=)
=3
@«
2 L 4
& 2.5
(A R Transformer — Loss Frontier
& 2.25 [~ —. Teansformer — Power Law Fit b
----- Mamba-2 — Loss Frontier
2.0 == Mamba-2 — Power Law Fit 4
----- Factorization Memory — Loss Frontier
== Factorization Memory — Power Law Fit

1 61 9 1 620
FLOPS (Forward Pass)

(b) The models are trained on with context win-
dow of 1024 tokens but evaluated on 2048. Fac-
torization Memory shows a consistent test loss
improvement with increasing training FLOPS,

outperforming Mamba-2 and Transformer.

Figure 3: Loss Frontier Scaling

former and Mamba-2 exhibit limited extrapolation to longer contexts, with test loss rising
sharply beyond their 1024-token training window. While Factorization Memory also expe-
riences increased test loss beyond 1024 tokens, this increase rarely exceeds the uncertainty
in predicting the first 128 tokens.

4.1.3 MEMORY SCALING

We systematically investigate two key aspects of Factorization Memory design and their
impact on performance. First, we examine whether increasing memory states m improves
performance. We hypothesize that a wider memory enhances capacity to store and retrieve
information, leading to better representations and more effective learning. Second, we ex-
plore the benefits of a sparse memory formulation (see Section : a sparse representation
could improve computational efficiency while maintaining performance.

Figure [5] presents results from 60-70 million parameters model. We systematically increase
the number of memory states m by powers of two and evaluate test loss performance. All
models are trained under the same conditions and exposed to the same sequence of training
instances. To enforce a skewed «ay; allocation and bring about a sparsity component in
memory updates, we experiment with the temperature 7: a; = softmax (Wy,a;/7). For each
m, we report results for the optimal 7 € {1,0.5,0.25,0.125}, optimized via grid-search.

For the dense memory, the results in Figure [5| indicate a clear trend of improvement in test
loss as the number of states increases. Specifically, the model demonstrates a consistent
reduction in test loss suggesting increased capacity.

Under review as a conference paper at ICLR 2026

English Long Context Loss (=~ 1687m Parameters)

Japanese Long Context Loss (= 1687m Parameters)
T

125 F T T T T T T 125 F T T T T T 7
Transformer (1679m) [Transformer (1679m)
5 100 Mamba-2 (1649m) 1 L 100 [~ Mamba2(164m)]
5 Factorization Memory (1687m) Lx: F Factorization Memory (1687m)
a 15F 1 4 75f]
= so0f 1 - sof]
25k I I I L L L el 2.5 E Il Il L el
25 27 29 2]1 213 215 25 27 29 211 213 215
Context Length Context Length

Figure 4: Loss-So-Far. Left: English. Right: Japanese. Factorization Memory consis-
tently achieves performance comparable with Transformer and Mamba-2 at the training
context length of 210 = 1024 tokens. At the same time Factorization Memory shows better
extrapolation at the long context. This pattern holds for all tested model sizes (see Ap-

pendix .

Dense vs Sparse Memory Updates

T T
3.00F oonr.. Sparse Memory Update
\ (k = 4 memory states are updated at each timestamp)
\ _ Sparse Memory Update
' (k = 25% of total memory states are updated at each timestamp)

295 \,

N Dense Memory Update

\ (all memory siates are updated at cach timestamp)

290 F

Test Loss

285

2.80 -

22 23 2‘4 2‘5 2‘(. 27 28
Total Number of Memory States (m)

Figure 5: Comparison of dense and sparse memory updates: test loss generally decreases
with an increasing number of memory states, even for sparse updates. Notably, updating
only 25% of memory states achieves the same loss as dense formulation when the number
of memory states is sufficiently large while reducing computational cost by 75%.

For the sparse memory, we investigate two distinct variants. In the first variant, referred
to as fized memory activation, updates are restricted to only 4 memory states per token,
regardless of the number of states. In the second variant, termed proportional memory
activation, only 25% of the total memory states are activated. While the fixed memory
activation approach offers the best computational efficiency, it imposes strict constraints on
updates, limiting the model performance. The proportional activation strategy still reduces
the number of total operations and allows for greater flexibility in memory utilization.

Figure [f] reveals two key observations. First, increasing memory width improves perfor-
mance for both sparse memory variants, albeit with diminishing returns in the fixed mem-
ory activation approach. The performance for fixed memory activation plateaus around a
m = 27 = 128, whereas proportional memory activation continues to increase. According
to the model definition, this shows that the router remained stationary across tokens. This
outcome implies that each memory state encode distinct aspects of the input, achieving a
non-redundant representation.

Second, proportional memory activation matches dense memory performance when the num-
ber of memory states is sufficiently large, suggesting that sparse memory activation is a more
effective for scaling memory. Additionally, we observe that the optimal test loss requires a
progressively lower temperature 7 with increased states, supporting the benefits of skewed
and sparse updates.

4.2 DOWNSTREAM TASK EVALUATION

In this section, we evaluate the efficacy of the model architectures on the standard English
and Japanese LLM benchmarks (see Appendix for a detailed description of each). The
benchmarks are composed of multiple-choice questions, which we evaluate in n-shot manner
(except for IFEval (Zhou et al., |2023)), where we follow the evaluation protocol specified in

Under review as a conference paper at ICLR 2026

Model | Average | HellaSwag MMLU TQA MUSR IFEval Winogrande
Transformer 29.53 34.49 24.99 39.11 10.98 16.68 50.91
Mamba-2 29.06 32.95 26.71 38.79 8.53 15.37 52.01
Factorization Memory | 30.98 34.08 24.40 42.07 11.70 20.99 52.64
Model | Average | JCS JNLI MARC-ja xWino
Transformer 56.41 48.70 41.95 80.99 54.01
Mamba-2 49.73 37.53 34.43 75.01 51.93
Factorization Memory 59.80 | 53.80 47.49 84.08 53.81

Table 1: English (top) and Japanese (bottom) downstream evaluations: Factorization Mem-
ory achieves the highest average performance, outperforming Transformer and Mamba-2.

the original paper). The responses are selected based on the model’s probability distribution,
with the most probable answer (or answers) chosen given the promp

4.2.1 MODEL SETTINGS

To ensure fair comparison, we pre-train 1B-parameter models on identical data samples
with the same training budget (Section describes the pre-training dataset), attributing
performance differences to architectures rather than training samples. We keep the models’
hyperparameters the same where possible: all models for these experiments comprise 16
decoder layers, interleaving the target layer with MLP and residual connections. The model
hidden size d.noqe; = 2048. Factorization Memory uses m = 64 memory states with sparsity
k =8, and dmemory = dmodel- The hyperparameters of Mamba-2 and self-attention layers
are scaled accordingly to match the target model size (see also Sectionfor base settings).

4.2.2 RESULTS

The downstream evaluation results on English and Japanese are shown in Table [I} On the
English tasks, Factorization Memory achieves the highest average score (30.98) performing
best on TruthfulQA, MUSR, IFEval, and Winogrande. The Transformer model follows
closely behind with an average score of 29.53, being slightly competitive on HellaSwag but
underperforming on most of the other metrics. The Mamba-2 model, while performing
better in MMLU, lags in overall performance (average score 29.06).

On Japanese metrics, the our proposed model once again leads with the highest average
score (59.80), outperforming both Transformer (56.41) and Mamba-2 (49.73). It achieves the
best performance on JCS, JNLI, and MARC-ja, indicating strong commonsense reasoning,
natural language inference, and sentiment classification capabilities. Transformer performs
best on xWino, while Mamba-2 consistently underperforms its competitors.

To ensure reproducibility of the experiments on the publicly available data, we also trained
these 1B parameter models on the same 84B-token random sample of DCLM dataset |Li
et al| (2024b)). The evaluation breakdown is available in Section Table |2 The exper-
iments concur with our previous observation: on average, Factorization Memory performs
competitively with both Transformers and Mamba-2.

4.2.3 INFERENCE SPEED

To evaluate the efficiency of 1B-parameters models, we benchmark inference speed on 16k
token prompts, measuring the average generation time (see Figure@. We use the optimized
CUDA /Triton kernels for all the models, Key-Value (KV) cache on Transformer, and run
experiments on a single H100 GPU (80GB). The results demonstrate that Factorization
Memory consistently outperforms Transformer, whose quadratic complexity in sequence
length leads to significant slowdowns, and it also exhibits a consistent 35-40% speed-up over
Mamba-2, highlighting the efficiency of its sparse updates.

5We run Language Model Evaluation Harness framework for all evaluations https://github.
com/EleutherAI/lm-evaluation-harness.

https://github.com/EleutherAI/lm-evaluation-harness
https://github.com/EleutherAI/lm-evaluation-harness

Under review as a conference paper at ICLR 2026

Average Generation Time (seconds)

20000

15000

10000

5000

Inference Speed (on 16k Token Prompts)
T T T T T

Transformer

—— Mamba-2
Factorization Memory

40000 60000 80000 100000 120000
Number of Tokens (Prompt + Generated)

(a) All Models

Average Generation Time (seconds)

2500

2000

1500

1000

500

Inference Speed (on 16k Token Prompts)

[—— Mamba-2
Factorization Memory

! ! ! ! !

40000 60000 80000 100000 120000
Number of Tokens (Prompt + Generated)

(b) Mamba-2 vs. Factorization Memory

Figure 6: Inference Speed Comparison: Factorization Memory achieves better inference
speed on long contexts than both Mamba-2 and Transformer models.

5 RELATED WORK

Memory-Augmented Transformer Significant research has focused on augmenting
Transformer with memory modules: Kang et al.|[(2025) for long context processing, |Bulatov
et al.| (2022) for extended context retention, [Ko et al.[(2024) for temporal reasoning. Unlike
these, our approach removes self-attention entirely.

RNNs Factorization Memory is closely related to modern RNNs implementations such
as RWKV (Peng et al., [2023), State-Space Models (Gu & Dao, [2024)), Linear Attention
Katharopoulos et al.| (2020), and Gated Linear Attention (Yang et al.| |2024; |2025a; |[Arora
et al., 2025). In contrast to these models, our approach selectively updates small portions
of the recurrent state, enhancing both efficiency and capacity.

Hybrid Architectures such as Hymba (Dong et al.l 2024)) and Griffin (De et al.| 2024)
combine the strengths of recurrence and attention model. We focus on “pure” architectures
to isolate and evaluate model properties without confounding factors. Although a hybrid
model is out the scope for this work, our approach can be a base for other architectures.

Mixture of Experts (Shazeer et al.| |2017)) introduces sparsity in MLP layers, whereas our
method sparsifies along the time dimension, making the two approaches orthogonal.

Accelerated Attention Several studies focus on accelerating attention through optimized
implementations (Dao, 2023) or formulations (Liu et al.| [2024; |Zhang et al., [2022). While
these approaches improve efficiency, they still incur quadratic complexity.

Test-Time Training Recent test-time training approaches (Behrouz et al.| 2024} |Sun
et al.|2024)) adapt model parameters at inference, boosting capacity and mimicking memory.
These approaches are orthogonal to Factorization Memory and compatible with our model.

Transformer Adaptation to RNN Many recent approaches adapt attention layers into
subquadratic analogs such as linear attention |[Zhang et al.| (2025); |Goldstein et al.| (2025));
Wang et al.| (2025). While motivated by quadratic attention complexity, they focus on
post-training adaptation of transformer models into existing linear recurrent architectures.
Factorization Memory is compatible with these adaptation frameworks.

6 LIMITATION

The scope of this study is constrained by computational resources. This limits our investiga-
tion to relatively small-scale models with a low FLOPS budget. While our findings provide
insights mostly concerning the test loss behavior, their generalization to larger models and
more complex evaluations remains an open questions to address as future work.

7 CONCLUSION

We introduce Factorization Memory, an efficient RNN architecture that achieves perfor-
mance comparable to Transformer and Mamba-2 models on short-context language modeling
tasks while also demonstrating superior generalization in long-context scenarios. Factorized
memory combined with sparse updates have proven effective in enhancing both the model
efficiency and capacity in our experiments, offering a promising direction for research.

Under review as a conference paper at ICLR 2026

REFERENCES

Simran Arora, Sabri Eyuboglu, Michael Zhang, Aman Timalsina, Silas Alberti, Dylan Zins-
ley, James Zou, Atri Rudra, and Christopher Ré. Simple linear attention language mod-
els balance the recall-throughput tradeoff, 2025. URL https://arxiv.org/abs/2402.
18668l

Ali Behrouz, Peilin Zhong, and Vahab Mirrokni. Titans: Learning to memorize at test time,
2024. URL https://arxiv.org/abs/2501.00663.

Guy E Blelloch. Prefix sums and their applications. 1990.

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla
Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini
Agarwal, Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya
Ramesh, Daniel M. Ziegler, Jeffrey Wu, Clemens Winter, Christopher Hesse, Mark Chen,
Eric Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess, Jack Clark, Christopher Berner,
Sam McCandlish, Alec Radford, Ilya Sutskever, and Dario Amodei. Language models
are few-shot learners. In Proceedings of the 34th International Conference on Neural
Information Processing Systems, NIPS "20, Red Hook, NY, USA, 2020. Curran Associates
Inc. ISBN 9781713829546.

Aydar Bulatov, Yuri Kuratov, and Mikhail S. Burtsev. Recurrent memory transformer,
2022. URL https://arxiv.org/abs/2207.06881.

Hongrong Cheng, Miao Zhang, and Javen Qinfeng Shi. A survey on deep neural network
pruning-taxonomy, comparison, analysis, and recommendations, 2024. URL https://
arxiv.org/abs/2308.06767.

Tri Dao. FlashAttention-2: Faster attention with better parallelism and work partitioning,
2023. URL https://arxiv.org/abs/2307.08691.

Tri Dao. FlashAttention-2: Faster attention with better parallelism and work partitioning.
In International Conference on Learning Representations (ICLR), 2024.

Tri Dao and Albert Gu. Transformers are ssms: Generalized models and efficient algorithms
through structured state space duality, 2024. URL https://arxiv.org/abs/2405.21060.

Soham De, Samuel L. Smith, Anushan Fernando, Aleksandar Botev, George Cristian-
Muraru, Albert Gu, Ruba Haroun, Leonard Berrada, Yutian Chen, Srivatsan Srini-
vasan, Guillaume Desjardins, Arnaud Doucet, David Budden, Yee Whye Teh, Raz-
van Pascanu, Nando De Freitas, and Caglar Gulcehre. Griffin: Mixing gated lin-
ear recurrences with local attention for efficient language models, 2024. URL https:
//arxiv.org/abs/2402.19427,

Xin Dong, Yonggan Fu, Shizhe Diao, Wonmin Byeon, Zijia Chen, Ameya Sunil Mahabalesh-
warkar, Shih-Yang Liu, Matthijs Van Keirsbilck, Min-Hung Chen, Yoshi Suhara, Yingyan
Lin, Jan Kautz, and Pavlo Molchanov. Hymba: A hybrid-head architecture for small
language models, 2024. URL https://arxiv.org/abs/2411.13676.

Denis Emelin and Rico Sennrich. Wino-X: Multilingual Winograd schemas for commonsense
reasoning and coreference resolution. In Marie-Francine Moens, Xuanjing Huang, Lucia
Specia, and Scott Wen-tau Yih (eds.), Proceedings of the 2021 Conference on Empirical
Methods in Natural Language Processing, pp. 8517-8532, Online and Punta Cana, Domini-
can Republic, November 2021. Association for Computational Linguistics. doi: 10.18653/
v1/2021.emnlp-main.670. URL https://aclanthology.org/2021.emnlp-main.670.

Leo Feng, Frederick Tung, Mohamed Osama Ahmed, Yoshua Bengio, and Hossein Hajimir-
sadeghi. Were RNNs all we needed?, 2024. URL https://arxiv.org/abs/2410.01201,

Daniel Goldstein, Eric Alcaide, Janna Lu, and Eugene Cheah. Radlads: Rapid attention
distillation to linear attention decoders at scale, 2025. URL https://arxiv.org/abs/
2505.03005.

10

https://arxiv.org/abs/2402.18668
https://arxiv.org/abs/2402.18668
https://arxiv.org/abs/2501.00663
https://arxiv.org/abs/2207.06881
https://arxiv.org/abs/2308.06767
https://arxiv.org/abs/2308.06767
https://arxiv.org/abs/2307.08691
https://arxiv.org/abs/2405.21060
https://arxiv.org/abs/2402.19427
https://arxiv.org/abs/2402.19427
https://arxiv.org/abs/2411.13676
https://aclanthology.org/2021.emnlp-main.670
https://arxiv.org/abs/2410.01201
https://arxiv.org/abs/2505.03005
https://arxiv.org/abs/2505.03005

Under review as a conference paper at ICLR 2026

Albert Gu and Tri Dao. Mamba: Linear-time sequence modeling with selective state spaces,
2024. URL https://arxiv.org/abs/2312.00752.

Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Song, and
Jacob Steinhardt. Measuring massive multitask language understanding, 2021.

Jordan Hoffmann, Sebastian Borgeaud, Arthur Mensch, Elena Buchatskaya, Trevor Cai,
Eliza Rutherford, Diego de Las Casas, Lisa Anne Hendricks, Johannes Welbl, Aidan
Clark, Tom Hennigan, Eric Noland, Katie Millican, George van den Driessche, Bogdan
Damoc, Aurelia Guy, Simon Osindero, Karen Simonyan, Erich Elsen, Jack W. Rae, Oriol
Vinyals, and Laurent Sifre. Training compute-optimal large language models, 2022. URL
https://arxiv.org/abs/2203.15556.

Armand Joulin, Edouard Grave, Piotr Bojanowski, Matthijs Douze, Hérve Jégou, and
Tomas Mikolov. Fasttext.zip: Compressing text classification models. arXiv preprint
arXiv:1612.03651, 2016a.

Armand Joulin, Edouard Grave, Piotr Bojanowski, and Tomas Mikolov. Bag of tricks for
efficient text classification. arXiv preprint arXiv:1607.01759, 2016b.

Jikun Kang, Wenqi Wu, Filippos Christianos, Alex J. Chan, Fraser Greenlee, George
Thomas, Marvin Purtorab, and Andy Toulis. LM2: Large memory models, 2025. URL
https://arxiv.org/abs/2502.06049.

Angelos Katharopoulos, Apoorv Vyas, Nikolaos Pappas, and Francois Fleuret. Transformers
are rnns: Fast autoregressive transformers with linear attention. In Proceedings of the 37th
International Conference on Machine Learning, volume 119, pp. 5156-5165. PMLR, Jul
2020. URL https://proceedings.mlr.press/vi19/katharopoulos20a.html.

Phillip Keung, Yichao Lu, Gyorgy Szarvas, and Noah A. Smith. The multilingual Amazon
reviews corpus. In Proceedings of the 2020 Conference on Empirical Methods in Natural
Language Processing, 2020.

Ching-Yun Ko, Sihui Dai, Payel Das, Georgios Kollias, Subhajit Chaudhury, and Aurelie
Lozano. MemReasoner: A memory-augmented LLM architecture for multi-hop reasoning.
In The First Workshop on System-2 Reasoning at Scale, NeurIPS’24, 2024. URL https:
//openreview.net/forum?id=0DcMy97cVZ.

Kentaro Kurihara, Daisuke Kawahara, and Tomohide Shibata. JGLUE: Japanese general
language understanding evaluation. In Nicoletta Calzolari, Frédéric Béchet, Philippe
Blache, Khalid Choukri, Christopher Cieri, Thierry Declerck, Sara Goggi, Hitoshi Isahara,
Bente Maegaard, Joseph Mariani, Hélene Mazo, Jan Odijk, and Stelios Piperidis (eds.),
Proceedings of the Thirteenth Language Resources and Evaluation Conference, pp. 2957—
2966, Marseille, France, June 2022. European Language Resources Association. URL
https://aclanthology.org/2022.1rec-1.317.

Jeffrey Li, Alex Fang, Georgios Smyrnis, Maor Ivgi, Matt Jordan, Samir Gadre, Hri-
tik Bansal, Etash Guha, Sedrick Keh, Kushal Arora, Saurabh Garg, Rui Xin, Niklas
Muennighoff, Reinhard Heckel, Jean Mercat, Mayee Chen, Suchin Gururangan, Mitchell
Wortsman, Alon Albalak, Yonatan Bitton, Marianna Nezhurina, Amro Abbas, Cheng-
Yu Hsieh, Dhruba Ghosh, Josh Gardner, Maciej Kilian, Hanlin Zhang, Rulin Shao,
Sarah Pratt, Sunny Sanyal, Gabriel IlTharco, Giannis Daras, Kalyani Marathe, Aaron
Gokaslan, Jieyu Zhang, Khyathi Chandu, Thao Nguyen, Igor Vasiljevic, Sham Kakade,
Shuran Song, Sujay Sanghavi, Fartash Faghri, Sewoong Oh, Luke Zettlemoyer, Kyle Lo,
Alaaeldin El-Nouby, Hadi Pouransari, Alexander Toshev, Stephanie Wang, Dirk Groen-
eveld, Luca Soldaini, Pang Wei Koh, Jenia Jitsev, Thomas Kollar, Alexandros G. Di-
makis, Yair Carmon, Achal Dave, Ludwig Schmidt, and Vaishaal Shankar. Datacomp-
Im: In search of the next generation of training sets for language models, 2024a. URL
https://arxiv.org/abs/2406.11794.

11

https://arxiv.org/abs/2312.00752
https://arxiv.org/abs/2203.15556
https://arxiv.org/abs/2502.06049
https://proceedings.mlr.press/v119/katharopoulos20a.html
https://openreview.net/forum?id=ODcMy97cVZ
https://openreview.net/forum?id=ODcMy97cVZ
https://aclanthology.org/2022.lrec-1.317
https://arxiv.org/abs/2406.11794

Under review as a conference paper at ICLR 2026

Jeffrey Li, Alex Fang, Georgios Smyrnis, Maor Ivgi, Matt Jordan, Samir Gadre, Hritik
Bansal, Etash Guha, Sedrick Keh, Kushal Arora, Saurabh Garg, Rui Xin, Niklas Muen-
nighoff, Reinhard Heckel, Jean Mercat, Mayee Chen, Suchin Gururangan, Mitchell Worts-
man, Alon Albalak, Yonatan Bitton, Marianna Nezhurina, Amro Abbas, Cheng-Yu Hsieh,
Dhruba Ghosh, Josh Gardner, Maciej Kilian, Hanlin Zhang, Rulin Shao, Sarah Pratt,
Sunny Sanyal, Gabriel Ilharco, Giannis Daras, Kalyani Marathe, Aaron Gokaslan, Jieyu
Zhang, Khyathi Chandu, Thao Nguyen, Igor Vasiljevic, Sham Kakade, Shuran Song, Sujay
Sanghavi, Fartash Faghri, Sewoong Oh, Luke Zettlemoyer, Kyle Lo, Alaaeldin El-Nouby,
Hadi Pouransari, Alexander Toshev, Stephanie Wang, Dirk Groeneveld, Luca Soldaini,
Pang Wei Koh, Jenia Jitsev, Thomas Kollar, Alexandros G. Dimakis, Yair Carmon, Achal
Dave, Ludwig Schmidt, and Vaishaal Shankar. Datacomp-lm: In search of the next gen-
eration of training sets for language models. arXiv preprint arXiw:2406.11794, 2024b.

Stephanie Lin, Jacob Hilton, and Owain Evans. TruthfulQA: Measuring how models
mimic human falsehoods. In Smaranda Muresan, Preslav Nakov, and Aline Villavi-
cencio (eds.), Proceedings of the 60th Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers), pp. 3214-3252, Dublin, Ireland, May 2022.
Association for Computational Linguistics. doi: 10.18653/v1/2022.acl-long.229. URL
https://aclanthology.org/2022.acl-long.229.

Aixin Liu, Bei Feng, Bin Wang, Bingxuan Wang, Bo Liu, Chenggang Zhao, Chengqi Dengr,
Chong Ruan, Damai Dai, Daya Guo, et al. Deepseek-v2: A strong, economical, and
efficient mixture-of-experts language model. arXiv preprint arXiv:2405.04434, 2024.

Shiwei Liu, Decebal Constantin Mocanu, Yulong Pei, and Mykola Pechenizkiy. Selfish sparse
rnn training, 2021. URL https://arxiv.org/abs/2101.09048|

Adyasha Maharana, Dong-Ho Lee, Sergey Tulyakov, Mohit Bansal, Francesco Barbieri, and
Yuwei Fang. Evaluating very long-term conversational memory of LLM agents. In Lun-Wei
Ku, Andre Martins, and Vivek Srikumar (eds.), Proceedings of the 62nd Annual Meeting of
the Association for Computational Linguistics (Volume 1: Long Papers), pp. 13851-13870,
Bangkok, Thailand, August 2024. Association for Computational Linguistics. doi: 10.
18653/v1/2024.acl-long.747. URL https://aclanthology.org/2024.acl-long.747/!

Matanel Oren, Michael Hassid, Nir Yarden, Yossi Adi, and Roy Schwartz. Transform-
ers are multi-state RNNs. In Yaser Al-Onaizan, Mohit Bansal, and Yun-Nung Chen
(eds.), Proceedings of the 2024 Conference on Empirical Methods in Natural Language
Processing, pp. 18724-18741, Miami, Florida, USA, November 2024. Association for
Computational Linguistics. doi: 10.18653/v1/2024.emnlp-main.1043. URL https:
//aclanthology.org/2024.emnlp-main.1043/.

Guilherme Penedo, Quentin Malartic, Daniel Hesslow, Ruxandra Cojocaru, Hamza Alobei-
dli, Alessandro Cappelli, Baptiste Pannier, Ebtesam Almazrouei, and Julien Launay. The
refinedweb dataset for falcon llm: outperforming curated corpora with web data only.
In Proceedings of the 37th International Conference on Neural Information Processing
Systems, NIPS ’23, Red Hook, NY, USA, 2023. Curran Associates Inc.

Bo Peng, Eric Alcaide, Quentin Anthony, Alon Albalak, Samuel Arcadinho, Stella Biderman,
Huangi Cao, Xin Cheng, Michael Chung, Matteo Grella, Kranthi Kiran GV, Xuzheng
He, Haowen Hou, Jiaju Lin, Przemyslaw Kazienko, Jan Kocon, Jiaming Kong, Bartlomiej
Koptyra, Hayden Lau, Krishna Sri Ipsit Mantri, Ferdinand Mom, Atsushi Saito, Guangyu
Song, Xiangru Tang, Bolun Wang, Johan S. Wind, Stanislaw Wozniak, Ruichong Zhang,
Zhenyuan Zhang, Qihang Zhao, Peng Zhou, Qinghua Zhou, Jian Zhu, and Rui-Jie Zhu.
RWKYV: Reinventing RNNs for the Transformer era, 2023. URL https://arxiv.org/
abs/2305.13048.

Keisuke Sakaguchi, Ronan Le Bras, Chandra Bhagavatula, and Yejin Choi. Winogrande:
An adversarial winograd schema challenge at scale, 2019. URL https://arxiv.org/abs/
1907.10641.

Victor Sanh, Albert Webson, Colin Raffel, Stephen H. Bach, Lintang Sutawika, Zaid
Alyafeai, Antoine Chaffin, Arnaud Stiegler, Teven Le Scao, Arun Raja, Manan Dey,

12

https://aclanthology.org/2022.acl-long.229
https://arxiv.org/abs/2101.09048
https://aclanthology.org/2024.acl-long.747/
https://aclanthology.org/2024.emnlp-main.1043/
https://aclanthology.org/2024.emnlp-main.1043/
https://arxiv.org/abs/2305.13048
https://arxiv.org/abs/2305.13048
https://arxiv.org/abs/1907.10641
https://arxiv.org/abs/1907.10641

Under review as a conference paper at ICLR 2026

M. Saiful Bari, Canwen Xu, Urmish Thakker, Shanya Sharma, Eliza Szczechla, Tae-
woon Kim, Gunjan Chhablani, Nihal V. Nayak, Debajyoti Datta, Jonathan Chang,
Mike Tian-Jian Jiang, Han Wang, Matteo Manica, Sheng Shen, Zheng Xin Yong,
Harshit Pandey, Rachel Bawden, Thomas Wang, Trishala Neeraj, Jos Rozen, Abheesht
Sharma, Andrea Santilli, Thibault Févry, Jason Alan Fries, Ryan Teehan, Stella Bider-
man, Leo Gao, Tali Bers, Thomas Wolf, and Alexander M. Rush. Multitask prompted
training enables zero-shot task generalization. CoRR, abs/2110.08207, 2021. URL
https://arxiv.org/abs/2110.08207.

Noam Shazeer, Azalia Mirhoseini, Krzysztof Maziarz, Andy Davis, Quoc Le, Geoffrey Hin-
ton, and Jeff Dean. Outrageously large neural networks: The sparsely-gated mixture-of-
experts layer, 2017. URL https://arxiv.org/abs/1701.06538.

Zayne Sprague, Xi Ye, Kaj Bostrom, Swarat Chaudhuri, and Greg Durrett. Musr: Testing
the limits of chain-of-thought with multistep soft reasoning, 2024. URL https://arxiv.
org/abs/2310.16049.

Yu Sun, Xinhao Li, Karan Dalal, Jiarui Xu, Arjun Vikram, Genghan Zhang, Yann Dubois,
Xinlei Chen, Xiaolong Wang, Sanmi Koyejo, Tatsunori Hashimoto, and Carlos Guestrin.
Learning to (learn at test time): Rnns with expressive hidden states, 2024. URL https:
//arxiv.org/abs/2407.04620.

Alon Talmor, Jonathan Herzig, Nicholas Lourie, and Jonathan Berant. CommonsenseQA: A
question answering challenge targeting commonsense knowledge. In Jill Burstein, Christy
Doran, and Thamar Solorio (eds.), Proceedings of the 2019 Conference of the North Amer-
ican Chapter of the Association for Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pp. 4149-4158, Minneapolis, Minnesota,
June 2019. Association for Computational Linguistics. doi: 10.18653/v1/N19-1421. URL
https://aclanthology.org/N19-1421|

Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann Dubois, Xuechen Li, Carlos Guestrin,
Percy Liang, and Tatsunori B. Hashimoto. Stanford alpaca: An instruction-following
llama model. https://github.com/tatsu-lab/stanford_alpaca, 2023.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei,
Nikolay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, Dan Bikel, Lukas
Blecher, Cristian Canton Ferrer, Moya Chen, Guillem Cucurull, David Esiobu, Jude
Fernandes, Jeremy Fu, Wenyin Fu, Brian Fuller, Cynthia Gao, Vedanuj Goswami, Na-
man Goyal, Anthony Hartshorn, Saghar Hosseini, Rui Hou, Hakan Inan, Marcin Kardas,
Viktor Kerkez, Madian Khabsa, Isabel Kloumann, Artem Korenev, Punit Singh Koura,
Marie-Anne Lachaux, Thibaut Lavril, Jenya Lee, Diana Liskovich, Yinghai Lu, Yuning
Mao, Xavier Martinet, Todor Mihaylov, Pushkar Mishra, Igor Molybog, Yixin Nie, An-
drew Poulton, Jeremy Reizenstein, Rashi Rungta, Kalyan Saladi, Alan Schelten, Ruan
Silva, Eric Michael Smith, Ranjan Subramanian, Xiaoqing Ellen Tan, Binh Tang, Ross
Taylor, Adina Williams, Jian Xiang Kuan, Puxin Xu, Zheng Yan, Iliyan Zarov, Yuchen
Zhang, Angela Fan, Melanie Kambadur, Sharan Narang, Aurelien Rodriguez, Robert Sto-
jnic, Sergey Edunov, and Thomas Scialom. Llama 2: Open foundation and fine-tuned
chat models, 2023. URL https://arxiv.org/abs/2307.09288.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N.
Gomez, Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. In Proceedings of
the 31st International Conference on Neural Information Processing Systems, NIPS’17,
pp. 6000-6010, Red Hook, NY, USA, 2017. Curran Associates Inc. ISBN 9781510860964.

Junxiong Wang, Daniele Paliotta, Avner May, Alexander M. Rush, and Tri Dao. The
mamba in the llama: Distilling and accelerating hybrid models, 2025. URL https:
//arxiv.org/abs/2408.15237.

Songlin Yang, Bailin Wang, Yikang Shen, Rameswar Panda, and Yoon Kim. Gated linear

attention transformers with hardware-efficient training, 2024. URL https://arxiv.org/
abs/2312.06635.

13

https://arxiv.org/abs/2110.08207
https://arxiv.org/abs/1701.06538
https://arxiv.org/abs/2310.16049
https://arxiv.org/abs/2310.16049
https://arxiv.org/abs/2407.04620
https://arxiv.org/abs/2407.04620
https://aclanthology.org/N19-1421
https://github.com/tatsu-lab/stanford_alpaca
https://arxiv.org/abs/2307.09288
https://arxiv.org/abs/2408.15237
https://arxiv.org/abs/2408.15237
https://arxiv.org/abs/2312.06635
https://arxiv.org/abs/2312.06635

Under review as a conference paper at ICLR 2026

Songlin Yang, Bailin Wang, Yu Zhang, Yikang Shen, and Yoon Kim. Parallelizing linear
transformers with the delta rule over sequence length, 2025a. URL https://arxiv.org/
abs/2406.06484.

Wang Yang, Zirui Liu, Hongye Jin, Qingyu Yin, Vipin Chaudhary, and Xiaotian Han.
Longer context, deeper thinking: Uncovering the role of long-context ability in reasoning,
2025b. URL https://arxiv.org/abs/2505.17315|

Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali Farhadi, and Yejin Choi. Hellaswag: Can a
machine really finish your sentence? CoRR, abs/1905.07830, 2019. URL http://arxiv.
org/abs/1905.07830.

Michael Zhang, Simran Arora, Rahul Chalamala, Alan Wu, Benjamin Spector, Aaryan
Singhal, Krithik Ramesh, and Christopher Ré. Lolcats: On low-rank linearizing of large
language models, 2025. URL https://arxiv.org/abs/2410.10254.

Xiaofeng Zhang, Yikang Shen, Zeyu Huang, Jie Zhou, Wenge Rong, and Zhang Xiong.
Mixture of attention heads: Selecting attention heads per token, 2022. URL https:
//arxiv.org/abs/2210.05144,

Qinkai Zheng, Xiao Xia, Xu Zou, Yuxiao Dong, Shan Wang, Yufei Xue, Zihan Wang, Lei
Shen, Andi Wang, Yang Li, Teng Su, Zhilin Yang, and Jie Tang. Codegeex: A pre-
trained model for code generation with multilingual benchmarking on humaneval-x. In
Proceedings of the 29th ACM SIGKDD Conference on Knowledge Discovery and Data
Mining, pp. 5673-5684, 2023.

Jeffrey Zhou, Tianjian Lu, Swaroop Mishra, Siddhartha Brahma, Sujoy Basu, Yi Luan,

Denny Zhou, and Le Hou. Instruction-following evaluation for large language models,
2023. URL https://arxiv.org/abs/2311.07911.

A APPENDIX

A.1 LoNG CONTEXT SCALING LAw

Figure [7| presents the complete set of long-context evaluations, extending Figure [4f (see
Section for experiment details).

A.2 FLOPS CALCULATION

Let us denote dy,o4er as the hidden size of the model and dynemory as the memory hidden size.
The FLOPS introduced by each Factorization Memory layer per token can be approximated
as follows.

dmemory(2dmoder — 1) input projection in equation [J] (14)
+m(2dmoder — 1) memory affinity scores in equation [4] (15)
+2(2dmoder — 1) + 2m update and merge rates, 6; and ¢, (16)
+ m(4dmemory + 3) normalization for each memory state, norm(h:) (17)
+Mdmemory + Amemory(m — 1) memory merge in equation [I0] (18)
+ dimodel (2dmemory — 1) output projection (19)

If we exclude input and output projections and assume dpemory = dmodel, then the recur-
rence update FLOPS can be bounded by O(mdmemory)-

For the sparse formulation with top-k selection, the compute reduction per-token can be
estimated as (m — k) (9dmemory + 5); the compute for the affinity scores remains unchanged.

14

https://arxiv.org/abs/2406.06484
https://arxiv.org/abs/2406.06484
https://arxiv.org/abs/2505.17315
http://arxiv.org/abs/1905.07830
http://arxiv.org/abs/1905.07830
https://arxiv.org/abs/2410.10254
https://arxiv.org/abs/2210.05144
https://arxiv.org/abs/2210.05144
https://arxiv.org/abs/2311.07911

Under review as a conference paper at ICLR 2026

English Long Context Loss (=~ 63m Parameters) Japanese Long Context Loss (= 63m Parameters)
T T T T T T T T T T T T

—— Transformer (62m) g = Transformer (62m)

—— Mamba-2 (62m) —— Mamba-2 (62m)

—— Factorization Memory (63m) —— Factorization Memory (63m)

Loss-So-Far
[=))

Loss-So-Far
[=))

— T
PP R U B
PP R U B

) \ N \,
1 1 1 1 1 1 1 1 1 1 1 1
25 27 29 211 213 215 25 27 29 211 213 215
Context Length Context Length
English Long Context Loss (=~ 156m Parameters) Japanese Long Context Loss (= 156m Parameters)
10 T T T T T T 10 T T T T T T
—— Transformer (156m) —— Transformer (156m)]
sk —— Mamba-2 (164m)] sk —— Mamba-2 (164m)]
[E —— Factorization Memory (156m) E —— Factorization Memory (156m) 1
3 S]
2 o 1% °r]
))]
— — 1
4+ b 4+ B
1 1 1 1 1 1 1 1 1 1 1 1]
25 27 29 211 213 215 25 27 29 2]] 2]3 2]5
Context Length Context Length
English Long Context Loss (= 359m Parameters) Japanese Long Context Loss (= 359m Parameters)
12 F T T T T T T | 12F T T T T T T |
—— Transformer (353m) —— Transformer (353m)]
wEk— Mamba-2 (352m)] Wwk— Mamba-2 (352m)]
= =
£ —— Factorization Memory (359m) E —— Factorization Memory (359m)]
3 8 188 1
3 6F 15 6F]
4 bl 4 a
1 1 1 1 1 1 1 1 1 1 1 1
5 27 29 oll PE 15 5 77 29 oll H13 15
Context Length Context Length
English Long Context Loss (= 829m Parameters) Japanese Long Context Loss (=~ 829m Parameters)
125 F T T T T T T 3 125 F T T T T T T 3
Transformer (826m) —— Transformer (826m)
= Mamba-2 (835m) = Mamba-2 (835m)
10.0 B 10.0 | B
E Factorization Memory (829m) E Factorization Memory (829m)
& 5L 1 8 7s5f]
H 2
5] 1<)
= 50F 1 ~ sof 9
25k Il Il Il Il Il Il | 25k Il Il I Il Il Il |
95 27 29 ol 213 l5 5 27 29 ol PE 915
Context Length Context Length
English Long Context Loss (=~ 1687m Parameters) Japanese Long Context Loss (=~ 1687m Parameters)
125 F T T T T T T B 12.5F T T T T T T B
Transformer (1679m) Transformer (1679m)
100 F Mamba-2 (1649m)] 10,0 F—— Mamba-2 (1649m)]
E Factorization Memory (1687m) [}_“ : Factorization Memory (1687m)
4 75 {1 & 7s5b]
£ £
= s0F 1 = sof 9
25k 1 1 ! 1 1 1 E| 25k ! | | |
75 77 29 ol 713 9l5 5 o7 29 ol 713)15
Context Length Context Length

Figure 7: Loss-So-Far. Left: English evaluation. Right: Japanese evaluation. Factoriza-
tion Memory model consistently achieves comparable performance at the trained context
length of 1024 tokens with Transformer and Mamba-2 and at the same time shows better
extrapolation at the long context.

15

Under review as a conference paper at ICLR 2026

Model | Average | HellaSwag MMLU TQA MUSR IFEval Winogrande

Transformer
Mamba-2 28.88 43.21 23.84 38.08 13.68 4.21 51.46

29.30 44.92 25.63 37.78 8.70 8.63 50.91

Factorization Memory | 30.05 45.19 26.80 39.37 15.12 6.18 50.12

Table 2: English downstream evaluations on publicly available dataset, DCLM (DataComp
for Language Model): Factorization Memory achieves the highest average performance,
outperforming Transformer and Mamba-2. Results on Japanese are omitted, as DCLM is
an English-language dataset.

A.3 REPRODUCIBILITY NOTES

To ensure reproducibility of the experiments on the publicly available data, we trained 1B-
parameter models on the same 84B-token random sample of DCLM dataset |Li et al.| (2024b)).
This subset corresponds to approximately 4x the compute-optimal budget, Hoffmann et al.
(2022). We report the results on English downstream tasks on Table[2] Results on Japanese
are omitted, as DCLM is an English-language dataset. On average, Factorization Memory
performs competitively with both Transformers and Mamba-2, while maintaining superior
inference speed as described on

A.4 EVALUATION BENCHMARKS

The English benchmarks used in our evaluation are as follows:

e HellaSwag |Zellers et al| (2019)) is a test set to benchmark model ability to perform
commonsense reasoning, given questions that require understanding and reasoning beyond
simple pattern matching.

e MMLU (Massive Multitask Language Understanding) [Hendrycks et al.| (2021)) is a test
to measure model multitask accuracy. It covers 57 tasks that covers history, computer
science, mathematics, chemistry, and other topics.

e TruthfulQA |Lin et al|(2022) measures models’ inclination to replicate common online
falsehoods

e MUSR (Multistep Soft Reasoning) [Sprague et al.| (2024)) evaluates models on multi-
step reasoning tasks that simulate real-world decision-making scenarios. It measures the
model’s ability to reason over multiple pieces of information sequentially.

e The Instruction-Following Evaluation - IFEval [Zhou et al.[(2023) - is a benchmark de-
signed to assess the proficiency of large language models (LLMs) in adhering to specific
instructions.

e Winogrande [Sakaguchi et al| (2019) is a large-scale dataset for commonsense reasoning,
designed to be challenging by reducing linguistic biases and requiring deeper contextual
understanding to resolve pronoun ambiguities.

The Japanese benchmarks included in our evaluation are as follows:

e JCS / JCommonSenseQA (Kurihara et al., 2022) is the Japanese version of Common-
SenseQA (Talmor et al.l 2019)), which consists of multiple-choice questions that evaluate
model ability in answering commonsense questions.

e JNLI / Japanese Natural Language Inference (Kurihara et al [2022)) is a test set to
evaluate a model’s ability to recognize the inference relation that a premise sentence
has to a hypothesis sentence. There are three inference relations, namely: entailment,
contradiction, and neutral which are presented to the model in a multiple-choice question
format.

¢ MARC / Multilingual Amazon Review Corpus is a text classification test set that is
based on the MARC dataset (Keung et al.l|2020). MARC-ja is the Japanese subset of this
dataset, which is a binary classification task for positive and negative review sentiment.

16

Under review as a conference paper at ICLR 2026

e xWino/ xWinograd-ja is the Japanese subset of the Winograd schema challenge (Emelin
& Sennrichl, 2021)), which is a pair of sentences that differ in only one or two contrastive
words that are easily disambiguated by a human reader. This evaluation measures model’s

ability to use commonsense knowledge to disambiguate and debias the ambiguous sen-
tence.

17

	Introduction
	Background
	Factorization Memory
	Dense Memory Update
	Sparse Memory Update

	Experiments
	Test Loss Evaluation
	Model Settings, Pre-Training and Evaluation Datasets
	Long Context Scaling Law
	Memory Scaling

	Downstream Task Evaluation
	Model Settings
	Results
	Inference Speed

	Related Work
	Limitation
	Conclusion
	Appendix
	Long Context Scaling Law
	FLOPS Calculation
	Reproducibility Notes
	Evaluation Benchmarks

