

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 UNCERTAINTY-AWARE GAUSSIAN MAP FOR VISION-LANGUAGE NAVIGATION

Anonymous authors

Paper under double-blind review

ABSTRACT

Vision-Language Navigation (VLN) requires an agent to navigate 3D environments following natural language instructions. During navigation, existing agents commonly encounter perceptual uncertainty, such as insufficient evidence for reliable grounding or ambiguity in interpreting spatial cues, yet they typically ignore such information when predicting actions. In this work, we explicitly model three forms of perceptual uncertainty (*i.e.*, geometric, semantic, and appearance uncertainty) and integrate them into the agent’s observation space to enable informed decision-making. Concretely, our agent first constructs a Semantic Gaussian Map (SGM), composed of differentiable 3D Gaussian primitives initialized from panoramic observations, that encodes both the geometric structure and semantic content of the environment. On top of SGM, geometric uncertainty is estimated through variational perturbations of Gaussian position and scale to assess structural reliability; semantic uncertainty is captured by perturbing Gaussian semantic attributes to reveal ambiguous interpretations; and appearance uncertainty is characterized by Fisher Information, which measures the sensitivity of rendered observations to Gaussian-level variations. These uncertainties are incorporated into SGM, extending it into a unified 3D Value Map, which grounds them as affordances and constraints that support reliable navigation. Comprehensive evaluations across multiple VLN benchmarks (*i.e.*, R2R, RxR, REVERIE) demonstrate the effectiveness of our agent. The code will be released.

1 INTRODUCTION

Vision-Language Navigation (VLN) requires embodied agents to navigate diverse 3D environments following natural language instructions [1]. To achieve robust performance, agents must combine accurate spatial perception with reliable decision-making strategies [2].

Early agents adopted sequence-to-sequence frameworks [1, 3, 4], directly mapping language and visual observations into actions. Later works introduced map-based paradigms that explicitly encoded spatial connectivity via topological graphs [5, 6], incorporated semantic information for object-level reasoning [7, 8], and leveraged grid-based [7, 9] or volumetric voxel-based representations [10] to capture 3D structure. For policy learning, agents evolved from pure imitation [11, 12] to hybrid approaches that combine imitation and reinforcement with tailored rewards [4, 13, 14]. More recently, several agents have employed world models [15–18] to perform look-ahead planning. Despite these advances, existing agents typically ignore uncertainty in perception when making decisions. Their training recipes discourage expressing uncertainty or recognizing unreliable situations, instead incentivizing them to predict actions regardless of confidence [10]. For instance, as illustrated in Fig. 1 , agents may confuse visually similar doors, especially when the interior cues behind them provide insufficient evidence, leading to unreliable grounding of the correct target. In addition, Fig. 1 illustrates how occlusions mask critical spatial information, introducing ambiguity in assessing path traversability. Previous agents often fail under such conditions, whereas uncertainty offers valuable cues about the reliability of perception and the feasibility of actions [6, 9, 10].

In light of the foregoing discussions, this work explicitly models geometric, semantic, and appearance uncertainty in perception and consolidates them into a unified 3D Value Map for reliable navigation. **First**, our agent constructs a *Semantic Gaussian Map (SGM)* that represents the environment as a collection of differentiable 3D Gaussian primitives. Each primitive is initialized from sparse

Figure 1: **Motivation.** Previous VLN agents typically ignore perceptual uncertainty when making decisions. As a result, they often confuse visually similar structures (*e.g.*, multiple doors) due to limited interior evidence (📍) and struggle when occlusions obscure spatial cues, leaving traversability ambiguous and causing unsafe or suboptimal paths (📍). In contrast, our agent explicitly models and leverages such uncertainty for more reliable navigation. Brighter colors indicate higher uncertainty.

pseudo-lidar point clouds obtained from multi-view RGB-D observations and further enriched with semantic properties based on their object instance or stuff membership in the 3D scene. **Second**, building on SGM, **the agent estimates three forms of perceptual uncertainty that are inherent to its observations**. *Geometric uncertainty* is modeled through variational inference, which approximates the posterior distribution over position and scale perturbations of Gaussians, thereby assessing structural reliability and enabling the pruning of unreliable primitives. In the same manner, *semantic uncertainty* is estimated by perturbing the semantic attributes of Gaussians, which reveals ambiguous interpretations and allows the agent to down-weight unreliable semantic cues during decision-making. *Appearance uncertainty* reflects the sensitivity of rendered observations to Gaussian-level perturbations, quantified by Fisher Information as the reconstruction loss surface curvature around each Gaussian. **Third**, our agent composes a unified *3D Value Map* by transforming these uncertainties into affordances and constraints within its perceptual space, thereby guiding informed and more reliable trajectories.

Our agent is evaluated on three VLN benchmarks, *i.e.*, R2R [1], RxR [19], and REVERIE [20] (§4.2, §4.3). It improves SR by **2%** and SPL by **1%** on R2R, yields **1.1%** and **1.7%** increases in SR and nDTW on RxR with comparable SDTW, and achieves **2.94%** and **2.57%** higher RGS and RGSPN scores on REVERIE. Extensive ablation studies confirm the contribution of each component (§4.4).

2 RELATED WORK

Vision-Language Navigation (VLN). Early VLN agents adopted sequence-to-sequence frameworks that directly map instructions and multi-view observations to actions [1, 3, 4]. Yet such models struggle with long-horizon reasoning and robustness in unseen environments, which has spurred a variety of extensions. As a primary step, subsequent agents introduced explicit memory mechanisms, such as topological graphs [6, 21] or episodic memory buffers [22–24], to better retain and recall spatial and semantic cues over extended trajectories. Later works further advanced the agent with transformer-based architectures that jointly encode instruction and observation [17, 25]. Moreover, extensive efforts are devoted to mitigating data limitations through instruction generation [26–30] and synthetic data creation [18]. **Several works enable the agent to explore steps forward by anticipating future observations before decision-making [16, 17, 31].** To improve policy robustness, the combination of imitation learning [32] and reinforcement learning [33] has been widely adopted in VLN agents [13]. **Other works aim to reduce computational costs while maintaining VLN performance by designing lightweight cross-modal or selective memorization architectures [34].** Recently, benefiting from the quality and speed of 3D Gaussian Splatting [35], a growing line of work has adopted it as the agent’s scene representation, demonstrating strong performance [36].

In parallel, a few recent studies begin to explore uncertainty-related signals in VLN. For instance, VLN-Copilot [37] estimates **decision-level** uncertainty from the action distribution to decide when to request external large language model assistance. In contrast, our work focuses on **perception-level** uncertainty that arises from the agent’s observations and models geometric, semantic, and appearance reliability to support informed decision-making.

108 **Uncertainty Estimation in Deep Learning.** Uncertainty estimation has long been recognized
 109 as a central challenge in deep learning, with a variety of approaches proposed across vision and
 110 robotics [38]. A prominent line of work follows the Bayesian paradigm, which characterizes un-
 111 certainty through predictive distributions over model parameters, often approximated via variational
 112 inference, Laplace approximation, or sampling methods [39–41]. Another common strategy relies
 113 on ensembling, where multiple models trained with different initializations, data subsets, or hyperpa-
 114 rameters are aggregated to approximate appearance uncertainty [42–46]. In parallel, sampling-based
 115 techniques like Hamiltonian Monte Carlo provide asymptotic guarantees but incur prohibitive costs
 116 for high-dimensional models [47]. To alleviate this computational burden, several works leverage
 117 regularization-based approximations, such as Monte Carlo Dropout [48] and its variants [49], which
 118 approximate Bayesian inference with minimal changes to standard training. Recent efforts exploit
 119 second-order information, where the Hessian or Fisher Information of the loss surface is approxi-
 120 mated to assess how sensitive predictions are to parameter variations [50–52].

121 However, most existing approaches rely on implicit latent representations, where globally entangled
 122 features obscure uncertainty estimation and hinder region-specific reasoning. By contrast, the ex-
 123 plicit structure of 3D Gaussian Splatting [35] provides a natural and interpretable way to associate
 124 physically meaningful attributes (*i.e.*, position, scale, semantics) with each primitive. While re-
 125 cent studies have explored this explicit structure for estimating uncertainty, they largely concentrate
 126 on novel view synthesis and image reconstruction [53, 54]. In contrast, our agent leverages these
 127 physically grounded primitives to construct a unified 3D Value Map, which explicitly quantifies
 128 uncertainty and encodes it as affordances and constraints to guide navigation.

129 3 METHOD

131 **Problem Formulation.** In VLN, an agent is placed in a 3D scene and required to reach a target
 132 location [1] (or identify a target object [20]) following instructions \mathcal{X} . At each step t , the agent
 133 receives a panoramic observation composed of multiple RGB views $\mathcal{I}_t = \{\mathcal{I}_{t,k} \in \mathbb{R}^{H \times W \times 3}\}_{k=1}^K$
 134 and associated depth maps $\mathcal{D}_t = \{\mathcal{D}_{t,k} \in \mathbb{R}^{H \times W}\}_{k=1}^K$. Based on these observations, the agent
 135 learns a navigation policy $\pi(a_t | \mathcal{X}, \mathcal{I}_t, \mathcal{D}_t)$ that predicts actions $a_t \in \mathcal{A}_t$, which includes navigable
 136 neighbor nodes, previously observed nodes accessible via backtracking, and a [STOP] action.

137 **Overview (Fig. 2).** At each step, our agent constructs a *Semantic Gaussian Map (SGM)* from
 138 multi-view RGB-D observations, where primitives are enriched with semantic properties (§3.1).
 139 Building on SGM, the agent models *geometric*, *semantic*, and *appearance uncertainty* to capture the
 140 perceptual unreliability in VLN (§3.2). These uncertainties are then integrated into a *3D Value Map*,
 141 encoding affordances and constraints in the agent’s perceptual space for decision-making (§3.3).

143 3.1 SEMANTIC GAUSSIAN MAP

145 At each waypoint, the agent transforms multi-view RGB-D observations into a collection of differ-
 146 entiable 3D Gaussian primitives, each encoding both geometric and semantic properties. Through
 147 differentiable rendering, these primitives are jointly optimized to form a *Semantic Gaussian Map*
 148 (*SGM*), which serves as the foundational substrate for subsequent uncertainty modeling.

149 **Initialization.** Given multi-view RGB-D observations $\mathcal{O}_t = \{\mathcal{I}_t, \mathcal{D}_t\}$ at step t , the agent first
 150 generates a sparse pseudo-lidar point cloud via camera-to-world transformation. Each pixel (u, v)
 151 in $\mathcal{I}_{t,k}$ is back-projected into the 3D coordinates (x, y, z) using its depth $D_{t,k}(u, v)$ and camera
 152 intrinsics (c^u, c^v, f^x, f^y) , where (c^u, c^v) are the principal point and (f^x, f^y) are the focal lengths:

$$153 \quad z = D_{t,k}(u, v), \quad x = \frac{(u - c^u)z}{f^x}, \quad y = \frac{(v - c^v)z}{f^y}. \quad (1)$$

155 These 3D points are then transformed to world coordinates using the camera pose, yielding a sparse
 156 point cloud \mathcal{P}_t . Each point initializes a Gaussian primitive \mathbf{g}_i , parameterized by position (mean)
 157 $\boldsymbol{\mu}_i \in \mathbb{R}^3$, covariance matrix $\boldsymbol{\Sigma}_i \in \mathbb{R}^{3 \times 3}$, opacity $\alpha_i \in [0, 1]$, spherical harmonics coefficients for
 158 color $\mathbf{c}_i \in \mathbb{R}^3$, and semantic property $\mathbf{s}_i \in \mathbb{R}^3$ (t is omitted for simplicity). In detail, $\boldsymbol{\Sigma}$ is factorized
 159 into a scale matrix \mathbf{E} and a rotation matrix \mathbf{R} as $\boldsymbol{\Sigma} = \mathbf{R} \mathbf{E} \mathbf{E}^\top \mathbf{R}^\top$, where $\mathbf{E} = \text{diag}(e^x, e^y, e^z)$
 160 and \mathbf{R} is constructed from a unit quaternion $\mathbf{r} \in \mathbb{R}^4$. For \mathbf{s} , we apply SAM2 [55] to segment
 161 the panoramic observation \mathcal{I} into spatially coherent regions $\{\mathbf{m}_k\}_{k=1}^K$ and extract their CLIP [56]
 162 embeddings, which are then attached to the corresponding Gaussians as new semantic attributes.

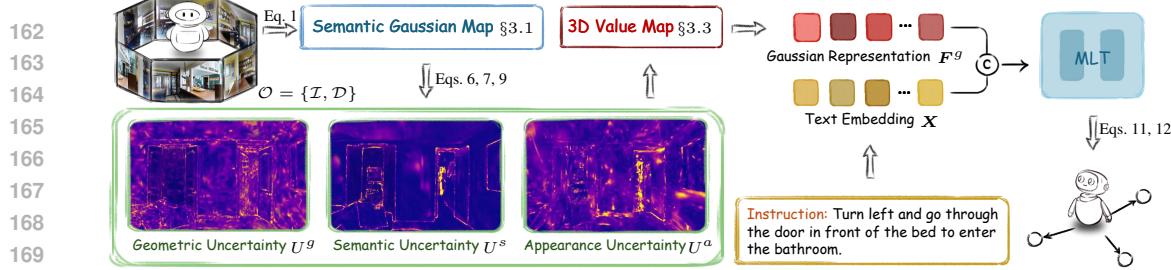


Figure 2: **Pipeline overview.** At each step, our agent constructs a *Semantic Gaussian Map* (§3.1) from its panoramic observation $\mathcal{O} = \{\mathcal{I}, \mathcal{D}\}$. On top of this map, it estimates geometric U^g , semantic U^s , and appearance U^a uncertainties (§3.2) and embeds them back to obtain a unified *3D Value Map* (§3.3) that grounds affordances and constraints. Finally, Gaussian representations \mathbf{F}^g derived from the value map are concatenated with the instruction embedding \mathbf{X} and fed into a multi-layer transformer \mathcal{F}^{MLT} to predict the next action over candidate waypoints (§3.3).

Construction. SGM is progressively constructed by optimizing Gaussian primitives through differentiable rendering, which enforces consistency with the current observation. Specifically, the rendered color $\hat{\mathcal{I}}$ at pixel (u, v) is obtained by α -blending depth-ordered Gaussians:

$$\hat{I}(u, v) = \sum_i \mathbf{c}_i \alpha'_i \prod_{j=1}^{i-1} (1 - \alpha'_j) \in \mathbb{R}^3, \quad \alpha'_i = \alpha_i \cdot \exp\left(-\frac{1}{2}(\mathbf{x}' - \boldsymbol{\mu}'_i)^\top \boldsymbol{\Sigma}'^{-1} (\mathbf{x}' - \boldsymbol{\mu}'_i)\right) \in \mathbb{R}^+, \quad (2)$$

where $\mathbf{x}' = (u, v)$ and $\boldsymbol{\mu}'_i$ is the Gaussian center in the image plane, and $\boldsymbol{\Sigma}'_i$ is the 2D covariance.

Following the same principle, the rendered depth $\hat{D}(u, v)$ and semantic $\hat{S}(u, v)$ are computed as:

$$\hat{D}(u, v) = \sum_i z_i \alpha'_i \prod_{j=1}^{i-1} (1 - \alpha'_j) \in \mathbb{R}^+, \quad \hat{S}(u, v) = \sum_i s_i \alpha'_i \prod_{j=1}^{i-1} (1 - \alpha'_j) \in \mathbb{R}^3. \quad (3)$$

Furthermore, Gaussians with small scale often capture irrelevant surface noise, while low-opacity primitives represent negligible background clutter. These Gaussians contribute minimally to the agent’s spatial comprehension and can potentially introduce misleading cues for its decision-making. Therefore, after several rounds of differentiable rendering optimization, we further refine SGM by retaining only Gaussians subject to the constraints $\|\mathbf{e}_i\|_2 > \tau_e \wedge \alpha_i > \tau_\alpha$. Consequently, the refined SGM serves as a foundational substrate for subsequent uncertainty modeling and estimation.

3.2 UNCERTAINTY ESTIMATION

SGM provides an explicit 3D map enriched with spatial geometry and semantic context. On top of this map, three forms of perceptual uncertainty are modeled. Geometric uncertainty assesses structural reliability through perturbations of Gaussian position and scale. Semantic uncertainty exposes ambiguous interpretations at the object and region levels by perturbing semantic attributes. Appearance uncertainty characterizes inherent visual ambiguity in observations, arising from occlusions, texture inconsistencies, and other uncontrollable factors.

Geometric Uncertainty. To quantify spatial reliability of SGM, we model position and scale parameters of each Gaussian as random variables with learnable perturbations $\boldsymbol{\chi}_i^\mu \in \mathbb{R}^3$ and $\boldsymbol{\chi}_i^e \in \mathbb{R}^3$:

$$\boldsymbol{\mu}'_i = \boldsymbol{\mu}_i + \boldsymbol{\chi}_i^\mu, \quad \mathbf{e}'_i = \mathbf{e}_i + \boldsymbol{\chi}_i^e, \quad (4)$$

where $\boldsymbol{\mu}'_i$ and \mathbf{e}'_i denote perturbed spatial parameters that encode alternative structural hypotheses of \mathbf{g}_i . The posterior distribution $p(\boldsymbol{\chi} | \mathcal{O})$ over perturbations $\boldsymbol{\chi} = \{\boldsymbol{\chi}_i^\mu, \boldsymbol{\chi}_i^e\}_i$ conditioned on observations \mathcal{O} is generally intractable, as it involves integration over a high-dimensional continuous space. To approximate it, like [53], we introduce variational distributions $q_\phi(\boldsymbol{\chi}) = \{q_{\phi_i^\mu}(\boldsymbol{\chi}_i^\mu), q_{\phi_i^e}(\boldsymbol{\chi}_i^e)\}_i$ and optimize them by minimizing the Kullback–Leibler (KL) divergence to true posterior $p(\boldsymbol{\chi} | \mathcal{O})$:

$$\min_{\phi} d^{\text{KL}}(q_\phi(\boldsymbol{\chi}) \| p(\boldsymbol{\chi} | \mathcal{O})) = \log p(\mathcal{O}) - \underbrace{\left(\mathbb{E}_{q_\phi(\boldsymbol{\chi})} [\log p(\mathcal{O} | \boldsymbol{\chi})] - d^{\text{KL}}(q_\phi(\boldsymbol{\chi}) \| p(\boldsymbol{\chi})) \right)}_{\text{Evidence Lower Bound (ELBO)}}. \quad (5)$$

Since $\log p(\mathcal{O})$ is constant with respect to $\boldsymbol{\chi}$, minimizing KL divergence is equivalent to maximizing ELBO, which serves as the training objective in learning $q_\phi(\boldsymbol{\chi})$. In this process, the prior $p(\boldsymbol{\chi})$ is defined as a zero-mean Gaussian $\mathcal{N}(\mathbf{0}, \delta^2 \mathbf{I})$ for position perturbations $\boldsymbol{\chi}^\mu$, and a scale-dependent

uniform distribution $\mathcal{U}(-\eta e, \eta e)$ for scale perturbations χ^e , where δ controls the standard deviation of position variances and η determines the perturbation range relative to the original scale e .

Based on the learned variational distribution $q_\phi(\chi)$, the geometric uncertainty U_i^g of each Gaussian \mathbf{g}_i is estimated by the variability of its perturbations. In particular, we extract the standard deviations of position and scale perturbations from q_ϕ and aggregate them into a scalar score as:

$$U_i^g = \|\mathcal{F}^{\text{std}}(q_{\phi_i^\mu}(\chi_i^\mu))\|_2 + \|\mathcal{F}^{\text{std}}(q_{\phi_i^e}(\chi_i^e))\|_2 \in \mathbb{R}^+, \quad (6)$$

where $\mathcal{F}^{\text{std}}(\cdot)$ is the operation that extracts the standard deviation of the variational distribution.

Semantic Uncertainty. In addition to geometric unreliability, agents also face semantic ambiguity, where object- and region-level understanding may be unstable. To capture this, we perturb the semantic attribute s_i of each Gaussian with a learnable offset $\chi_i^s \in \mathbb{R}^3$, while keeping geometric parameters fixed to preserve spatial consistency. Following the same variational inference framework, we learn a posterior $q_{\phi^s}(\chi^s)$ by maximizing the corresponding ELBO, regularized by a zero-mean Gaussian prior $p(\chi^s) = \mathcal{N}(\mathbf{0}, \epsilon^2 \mathbf{I})$, where ϵ controls the perturbation magnitude. The semantic uncertainty U_i^s of Gaussian \mathbf{g}_i is defined as the variability of χ_i^s under the posterior $q_{\phi^s}(\chi^s)$:

$$U_i^s = \|\mathcal{F}^{\text{std}}(q_{\phi^s}(\chi_i^s))\|_2 \in \mathbb{R}^+. \quad (7)$$

Appearance Uncertainty. To further capture visual instability, we define appearance uncertainty as the sensitivity of the reconstruction loss $\mathcal{L}^r = \frac{1}{2} \|\hat{\mathcal{I}} - \mathcal{I}\|_2^2$ to variations in SGM. In principle, such sensitivity is characterized by the Hessian matrix $\nabla_{\mathcal{G}}^2 \mathcal{L}^r$ [51, 52]. Because computing this matrix directly is infeasible, like [50, 54], we adopt the Fisher Information as a tractable approximation:

$$\nabla_{\mathcal{G}}^2 \mathcal{L}^r = \underbrace{\nabla_{\mathcal{G}} \hat{\mathcal{I}} \nabla_{\mathcal{G}} \hat{\mathcal{I}}^\top}_{\text{Fisher Information}} + \underbrace{(\hat{\mathcal{I}} - \mathcal{I}) \nabla_{\mathcal{G}}^2 \hat{\mathcal{I}}}_{\text{Residual Term}} \in \mathbb{R}^{(|\mathcal{G}| \cdot d^g) \times (|\mathcal{G}| \cdot d^g)}, \quad (8)$$

where $\nabla_{\mathcal{G}} \hat{\mathcal{I}}$ denotes the gradient of the rendered observations with respect to all Gaussian parameters in \mathcal{G} , $\nabla_{\mathcal{G}}^2 \hat{\mathcal{I}}$ represents their second-order derivatives, $|\mathcal{G}|$ is the number of Gaussians in SGM, and d^g is the feature dimension of each Gaussian. In a refined SGM, where $(\hat{\mathcal{I}} - \mathcal{I})$ in the Residual Term approaches zero, the Hessian reduces to the Fisher Information, which serves as a tractable proxy of the sensitivity. High Fisher Information reveals that even minor Gaussian shifts can induce large variations in the perceptual space, destabilizing both scene understanding and action predictions.

While Fisher Information avoids computing costly second-order derivatives, it still has the same dimension as the Hessian (i.e., $(|\mathcal{G}| \cdot d^g) \times (|\mathcal{G}| \cdot d^g)$), which remains computationally expensive. To reduce this cost, we group parameters associated with each Gaussian $\mathbf{g}_i \in \mathbb{R}^{d^g}$, yielding a diagonal block of size $\mathbb{R}^{d^g \times d^g}$ within the Fisher Information matrix. Each block isolates the sensitivity of \mathbf{g}_i , quantifying the impact of its perturbations on the reconstruction loss. Based on this, the appearance uncertainty U_i^a is defined as the log-determinant of the corresponding Fisher Information block:

$$U_i^a = \log |\nabla_{\mathbf{g}_i} \hat{\mathcal{I}} \nabla_{\mathbf{g}_i} \hat{\mathcal{I}}^\top| \in \mathbb{R}^+, \quad (9)$$

where $|\cdot|$ denotes the matrix determinant. The log-determinant quantifies the volume of the uncertainty ellipsoid in parameter space, yielding a scalar measure of the sensitivity for each Gaussian.

3.3 3D VALUE MAP

To operationalize the estimated uncertainties for navigation, we integrate them into a 3D Value Map. In traditional 3D scene reasoning and robotics, a value map represents a spatial field in which each element encodes task-relevant signals that guide downstream decisions, such as affordance fields [57], cost maps [58], and traversability [59] or reliability maps [60]. Following this notion, our 3D Value Map instantiates a value field on top of SGM, where each Gaussian is augmented with geometric, semantic, and appearance uncertainty estimates. These uncertainties provide unified reliability cues, which can be naturally interpreted as affordances and constraints for navigation.

Construction. By attaching U_i^g , U_i^s , and U_i^a to each Gaussian \mathbf{g}_i , we extend SGM into a 3D Value Map. For ease of notation, we reuse \mathbf{g}_i to denote the Gaussian representation of this value map:

$$\mathbf{g}_i = \{ \boldsymbol{\mu}_i, \mathbf{e}_i, \mathbf{r}_i, \alpha_i, \mathbf{c}_i, \mathbf{s}_i, U_i^g, U_i^s, U_i^a \} \in \mathbb{R}^{20}. \quad (10)$$

270 This augmented representation preserves geometric and semantic information while further incorporating complementary uncertainty measures. Consequently, the 3D Value Map characterizes both
 271 the structural and semantic reliability of the environment, grounding affordances and constraints
 272 into the agent’s observation space to support reliable decision-making.
 273

274 **Action Prediction.** Given the instruction embedding $\mathbf{X} \in \mathbb{R}^{768}$, each \mathbf{g}_i is nonlinearly projected
 275 into a feature vector $\mathbf{F}^{g_i} \in \mathbb{R}^{768}$. This projection embeds all Gaussian attributes, including geometry, semantics, and uncertainty, into a unified feature space. In this space, the agent maintains
 276 a direct correspondence between local geometric structure and its associated uncertainty. \mathbf{F}^{g_i} are
 277 then aggregated into a global representation. The aggregated representation \mathbf{F}^g preserves the fine-
 278 grained coupling between geometry and uncertainty, enabling the agent to make decisions that are
 279 directly informed by such structure-aware uncertainty. Consequently, \mathbf{F}^g is concatenated with \mathbf{X}
 280 and processed by a multi-layer transformer \mathcal{F}^{MLT} [6] to produce candidate node probabilities \mathbf{p} :
 281

$$\mathbf{p} = \text{Softmax}(\mathcal{F}^{\text{MLT}}([\mathbf{F}^g, \mathbf{X}])) \in [0, 1]^{|\mathcal{V}|}, \quad (11)$$

282 where $|\mathcal{V}|$ is the number of candidate waypoints and $[\cdot, \cdot]$ denotes concatenation. These scores are
 283 then aligned with the action space \mathcal{A} through nearest-neighbor mapping \mathcal{N} :
 284

$$\tilde{\mathbf{p}} = \mathcal{N}(\mathbf{p}, \mathcal{V}) \in [0, 1]^{|\mathcal{V}|}, \quad (12)$$

285 where \mathcal{N} denotes the mapping of node-level scores to executable actions via nearest-neighbor
 286 search. This fusion enables the agent to jointly reason about geometric structure and perceptual
 287 confidence, thereby promoting reliable and uncertainty-aware decision-making.
 288

292 3.4 LOSS FUNCTION

293 **SGM Loss.** To supervise SGM construction, we apply a pixel-wise rendering loss between the
 294 rendered outputs and ground-truth observations. Specifically, we combine \mathcal{L}^1 loss and Structural
 295 Similarity [61] loss $\mathcal{L}^{\text{SSIM}}$ for color consistency, and apply \mathcal{L}^1 for depth and semantic alignment:
 296

$$\mathcal{L}^{\text{rgb}} = \|\hat{\mathcal{I}} - \mathcal{I}\|_1 + \mathcal{L}^{\text{SSIM}}(\hat{\mathcal{I}}, \mathcal{I}), \quad \mathcal{L}^{\text{depth}} = \|\hat{\mathcal{D}} - \mathcal{D}\|_1, \quad \mathcal{L}^{\text{sem}} = \|\hat{\mathcal{S}} - \mathcal{S}\|_1. \quad (13)$$

297 where $\mathcal{I}, \mathcal{D}, \mathcal{S}$ denote the ground-truth color, depth, and semantic features, respectively, while
 298 $\hat{\mathcal{I}}, \hat{\mathcal{D}}, \hat{\mathcal{S}}$ are the corresponding rendered outputs from current SGM.
 299

300 **Navigation Loss.** Following the conventional procedure [6, 10, 21], our agent is optimized with a
 301 two-stage training scheme: pretraining with auxiliary objectives such as masked language modeling
 302 and single-step action prediction to strengthen multimodal representations, and finetuning with
 303 behavior cloning and pseudo-expert guidance to refine policy learning. (See details in **Appendix**.)
 304

306 3.5 IMPLEMENTATION DETAILS

307 **Topological Memory.** To support long-horizon reasoning, similar to [6, 10, 21], our agent maintains
 308 a dynamic topological memory that records both visited and navigable nodes as exploration unfolds.
 309 Each node is associated with multimodal features, including the 2D panoramic embeddings and the
 310 3D Value Map representations, while edges encode traversability between locations. This memory
 311 forms a graph structure that evolves with the trajectory, enabling the agent to revisit prior viewpoints
 312 or evaluate alternative routes when needed. **Regions that are ambiguous at the previous node may
 313 become more certain when viewed from a more informative location, while consistently uncertain
 314 areas remain marked as unreliable.** By jointly storing 2D and 3D information in a spatially coherent
 315 manner, the memory provides global context that strengthens consistency and stabilizes decision-
 316 making in diverse environments. (See more details in **Appendix**.)
 317

318 **Network Pretraining.** For R2R [1] and RxR [19], we adopt Masked Language Modeling
 319 (MLM) [62, 63] and Single-step Action Prediction (SAP) [14, 63] as auxiliary objectives. For
 320 REVERIE [20], we additionally employ Object Grounding (OG) [6, 64] to enhance object-level rea-
 321 soning. Pretraining is conducted for 100k iterations with a batch size of 64, optimized by Adam [65]
 322 with a learning rate of 1e-4. At each mini-batch, only one task is sampled with equal probability.
 323

324 **Network Finetuning.** Following standard protocol [6], we finetune the pretrained model using
 325 DAgger [66]. For REVERIE [20], an additional Object Grounding (OG) loss is incorporated with a
 326

Table 1: **Quantitative results** on REVERIE [20]. ‘–’: unavailable statistics. See §4.2 for more details.

Method	REVERIE [20]											
	val unseen						test unseen					
	TL↓	OSR↑	SR↑	SPL↑	RGS↑	RGSPL↑	TL↓	OSR↑	SR↑	SPL↑	RGS↑	RGSPL↑
RCM [13]	11.98	14.23	9.29	6.97	4.89	3.89	10.60	11.68	7.84	6.67	3.67	3.14
FAST-M [20]	45.28	28.20	14.40	7.19	7.84	4.67	39.05	30.63	19.88	11.61	11.28	6.08
SIA [64]	41.53	44.67	31.53	16.28	22.41	11.56	48.61	44.56	30.80	14.85	19.02	9.20
RecBERT [14]	16.78	35.02	30.67	24.90	18.77	15.27	15.86	32.91	29.61	23.99	16.50	13.51
Airbert [68]	18.71	34.51	27.89	21.88	18.23	14.18	17.91	34.20	30.28	23.61	16.83	13.28
HAMT [63]	14.08	36.84	32.95	30.20	18.92	17.28	13.62	33.41	30.40	26.67	14.88	13.08
HOP [69]	16.46	36.24	31.78	26.11	18.85	15.73	16.38	33.06	30.17	24.34	17.69	14.34
DUET [6]	22.11	51.07	46.98	33.73	32.15	23.03	21.30	56.91	52.51	36.06	31.88	22.06
DUET-Imagine [31]	–	–	48.28	33.76	32.97	23.25	–	–	–	–	–	–
COSMO [34]	–	–	56.09	50.81	35.93	–	–	59.33	52.53	36.12	–	–
GridMM [7]	23.20	57.48	51.37	36.47	34.57	24.56	19.97	59.55	53.13	36.60	34.87	23.45
LANA [70]	23.18	52.97	48.31	33.86	32.86	22.77	18.83	57.20	51.72	36.45	32.95	22.85
BEVBert [9]	–	56.40	51.78	36.37	34.71	24.44	–	57.26	52.81	36.41	32.06	22.09
VER [10]	23.03	61.09	55.98	39.66	33.71	23.70	24.74	62.22	56.82	38.76	33.88	23.19
Ours	22.38 ± 0.14	61.98 ± 0.21	56.37 ± 0.19	37.64 ± 0.24	37.65 ± 0.16	27.01 ± 0.20	20.14 ± 0.11	60.12 ± 0.23	55.90 ± 0.20	38.77 ± 0.26	35.68 ± 0.17	25.50 ± 0.18

weight of 0.20. Finetuning is performed for 25k iterations with a batch size of 8 and a learning rate of 1e-5. The best checkpoint is chosen based on performance of `val_unseen` split.

Testing. At each navigable viewpoint, our agent constructs a SGM from panoramic observations and extends it into a 3D Value Map for reliable action prediction. This process terminates once the agent reaches the target location or decides to execute the [STOP] action. (See details in **Appendix**.)

Runtime Analysis. The main overhead arises from constructing the 3D Value Map, particularly semantic attribute extraction in SGM and uncertainty estimation. For training, we mitigate this cost through offline pretraining. During inference, RGB-D observations are resized to 224×224 , and SAM2 [55] can be flexibly replaced by lightweight variants to trade off segmentation quality against runtime efficiency. Once the 3D Value Map is established, action prediction incurs negligible additional cost compared to existing VLN agents [6]. (See more details in **Appendix**.)

Reproducibility. Our model is implemented in PyTorch. To reveal full details of our method, our codes will be released. (See more details in **Appendix**.)

Use of Large Language Models We did not use any large language models in this work.

4 EXPERIMENT

4.1 EXPERIMENTAL SETUP

Datasets. We evaluate our agent on three benchmarks, each posing distinct challenges for VLN. All datasets are built upon the Matterport3D simulator [67], and are split into `train`, `val-seen`, `val-unseen`, and `test` sets according to scenes. **REVERIE** [20] provides 21,702 high-level instructions paired with 4,140 remote target objects. The agent must navigate to the described region and precisely ground the referred object. **R2R** [1] contains 7,189 shortest-path trajectories from 90 indoor scenes with 22K instructions, where the agent is required to follow detailed step-by-step directions. **RxR** [19] offers 126K multilingual instructions (*i.e.*, English, Hindi, Telugu) over 16,522 trajectories, requiring the agent to cope with long-horizon navigation across diverse languages.

Evaluation Metrics. We comprehensively evaluate agents using standard metrics [6] across different benchmarks. For R2R [1], we report Success Rate (SR), Trajectory Length (TL), Navigation Error (NE), Oracle Success Rate (OSR), and Success weighted by Path Length (SPL). For RxR [19], we additionally adopt Normalized Dynamic Time Warping (nDTW) and Success weighted nDTW (SDTW) to assess trajectory fidelity and path alignment. For REVERIE [20], evaluation further considers Remote Grounding Success (RGS) and RGS weighted by Path Length (RGSPL), which measure whether the agent successfully localizes the target object at the correct location.

4.2 QUANTITATIVE COMPARISON RESULT

Our results are averaged over five runs on three datasets, with standard deviations reported.

Performance on REVERIE [20]. Table 1 reports the results on REVERIE, which evaluates the agent’s ability to ground remote target objects given high-level instructions. On the `val_unseen` split, our agent outperforms the best reported results (*i.e.*, BEVBert [9]) by a significant margin in terms of RGS (**37.65%** vs 34.71%) and RGSPL (**27.01%** vs 24.44%). **These improvements of 3.94% in RGS and 3.31% in RGSPL clearly demonstrate the effectiveness of our 3D Value Map for accurate navigation and precise object grounding.**

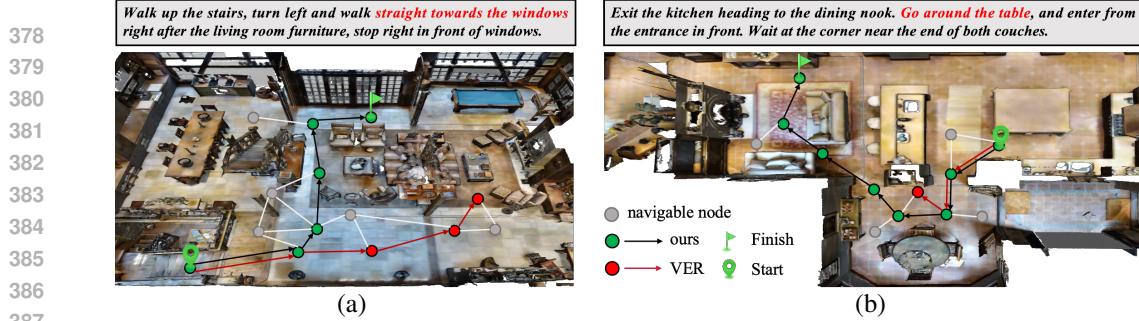


Figure 3: **Qualitative results** on R2R [1]. (a) Under the instruction “*straight towards the windows*”, VER [10] misinterprets the layout and stops early, whereas our agent correctly follows the path and reaches the landmark. (b) Our agent bypasses the obstacle and enters the designated region, while VER halts at the “*table*” without completing the task. See §4.3 for more details.

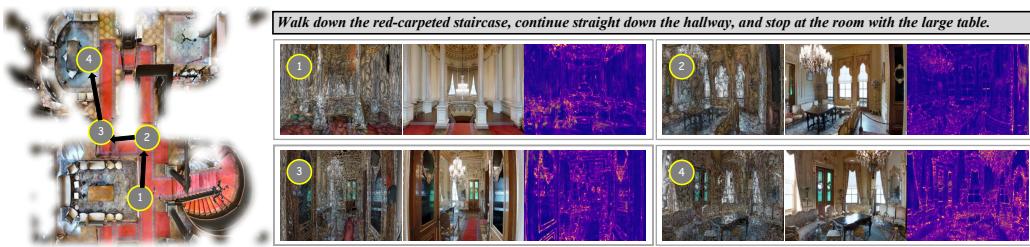


Figure 4: **A representative visual result** on R2R [1]. At each step, we show the constructed SGM, the rendered observations, and the aggregated uncertainty map. While SGM captures the geometry and semantic layout, the uncertainty emphasizes ambiguous regions such as reflective surfaces and repetitive structures, offering complementary cues for reliable grounding. See §4.3 for more details.

Performance on R2R [1]. As shown in Table 2, our agent consistently surpasses recent state-of-the-art methods on R2R. **On the val unseen split, it achieves an SR of 78% compared to 76% from VER [10] and improves SPL from 65% to 66%, corresponding to gains of 2% in SR and 1% in SPL.** These results clearly highlight the ability of our agent to follow detailed instructions in unseen environments.

Table 2: **Quantitative results** on R2R [1] val unseen. ‘–’: unavailable statistics. See §4.2 for more details.

Method	R2R [1]			
	TL _↓	val unseen NE _↓	SR _↑	SPL _↑
Seq2Seq [1]	8.39	7.81	22	–
HAMT [63]	11.46	2.29	66	61
HOP [69]	12.27	3.80	64	57
DUET [6]	13.94	3.31	72	60
DUET-Imagine [31]	14.35	3.19	72	60
COSMO [34]	–	3.15	73	61
LANA [70]	12.0	–	68	62
GridMM [7]	13.27	2.83	75	64
BEVBert [9]	14.55	2.81	75	64
VER [10]	14.83	2.80	76	65
Ours	14.79 _{±0.12}	2.12 _{±0.15}	78_{±0.13}	66_{±0.17}

Performance on RxR [19]. Table 3 presents the results on RxR, which features longer paths and multilingual instructions. Our agent attains higher SR and nDTW (**65.2%** vs 64.1%, **65.6%** vs 63.9%) and comparable SDTW (**53.5%** vs 52.6%) on the val unseen split. Such improvements further demonstrate the benefit of the uncertainty information in long-horizon navigation.

Table 3: **Quantitative results** on RxR [19] val unseen. ‘–’: unavailable statistics. See §4.2.

Method	NE _↓	SR _↑	nDTW _↑	SDTW _↑
LSTM [19]	10.9	22.8	38.9	18.2
EnvDrop+ [71]	–	42.6	55.7	–
HAMT [63]	–	56.5	63.1	48.3
EnvEdit [72]	–	62.8	68.5	54.6
BEVBert [9]	4.6	64.1	63.9	52.6
Ours	4.2_{±0.08}	65.2_{±0.22}	65.6_{±0.19}	53.5_{±0.17}

4.3 QUALITATIVE COMPARISON RESULT

Case Studies. We compare our agent with VER [10] on the R2R val unseen split. In Fig. 3(a), with multiple visually similar “*windows*”, VER misgrounds the target and deviates early, while our agent resolves the ambiguity and follows the correct landmarks. In Fig. 3(b), the instruction requires bypassing the “*table*” and reaching “*the corner near the couches*”. VER collides with the table and stops, whereas our agent detours safely and completes the instruction. These cases show how uncertainty helps disambiguate confounding structures and encode traversability constraints.

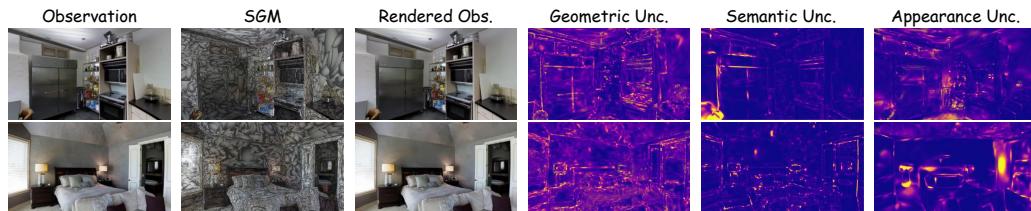


Figure 5: **Visualization** of diverse perceptual forms. From left to right: current observation, SGM, rendered observation, geometric uncertainty map, semantic uncertainty map, appearance uncertainty map. Brighter colors indicate higher uncertainty. See §4.3 for more details.

Moreover, Fig. 4 presents a step-wise visualization of the agent’s trajectory. At each step, we show the constructed SGM, the rendered observations, and the aggregated uncertainty map (summing geometric, semantic, and appearance components). SGM captures the geometry and semantic layout, while the uncertainty highlights visually ambiguous regions such as reflective surfaces, chandeliers, and repetitive structures. These complementary views demonstrate how our agent grounds the instruction throughout navigation and show that uncertainty provides additional information.

Visualization. Fig. 5 illustrates our diverse perceptual forms. *i*) SGM preserves detailed geometric structures while maintaining high-fidelity rendering of the scene. *ii*) Geometric uncertainty reveals structural reliability, particularly highlighting uncertain boundaries and irregular surfaces. *iii*) Semantic uncertainty exposes ambiguity in object- and region-level interpretations, reflecting unstable semantic cues. *iv*) Appearance uncertainty highlights regions where rendered observations are highly sensitive to visual variations, *e.g.*, texture complexity, occlusions, or lighting variations.

4.4 DIAGNOSTIC EXPERIMENT

For thorough examination, we conduct a series of ablative studies on the `val` `unseen` split of R2R [1] and REVERIE [20].

Key Component Analysis. We first study the efficacy of the core components of our framework, *i.e.*, SGM (§3.1) and 3D Value Map (3DVM, §3.3). In Table 4, row #1 gives the performance of our base agent DUET [6]. For row #2, the scores are obtained by using SGM as the 3D scene representation without uncertainty values. In contrast, row #3 leverages only the uncertainty information (*i.e.*,

U^g, U^s, U^a) as the 3D scene representation, without the raw Gaussian parameters.

Row #4 reports the scores of our full framework. *i*) Row #1 vs #2: SGM leads to notable performance improvements against the baseline (*e.g.*, 32.15% \rightarrow **35.48%** RGS on REVERIE). This demonstrates that the agent

benefits from the geometric structure and semantic cues within SGM, achieving stronger navigation performance. *ii*) Row #1 vs #3: the uncertainty information boosts the performance of the baseline (*e.g.*, 72.22% \rightarrow **74.20%** SR on R2R), which indicates that perceptual uncertainty inherent in navigation encodes informative cues that assist navigation decisions. *iii*) Row #2 vs #3: Explicit 3D structure with contextual awareness provides a stronger foundation for navigation than uncertainty alone (*e.g.*, **35.48%** vs 34.02% RGS on REVERIE). *iv*) Row #1 vs #4: Combining all contributions results in the largest gain over baseline, which confirms the effectiveness of our overall design.

Analysis on SGM (§3.1). We investigate how the scale of SGM (*i.e.*, the number of Gaussians) affects navigation performance. To control SGM scale, we apply pruning thresholds τ_e and τ_α to filter out Gaussians with small scale ($\|e_i\|_2 < \tau_e$) or low opacity ($\alpha_i < \tau_\alpha$), as these typically represent noise or irrelevant background clutter. Table 5 shows that, *i*) Slightly removing low-contribution Gaussians improves action accuracy (Row #2). *ii*) Moderate additional pruning yields clear rendering speedups while maintaining competitive accuracy (Row #3). *iii*) Aggressive removal markedly degrades performance (Row #4).

Table 4: **Ablation studies** on `val` `unseen` split of R2R [1] and REVERIE [20]. See §4.4 for more details.

#	Components		R2R [1]		REVERIE [20]		
	SGM	3DVM	SR \uparrow	SPL \uparrow	SR \uparrow	RGS \uparrow	RGSPL \uparrow
1	—	—	72.22	60.41	46.98	32.15	23.03
2	✓	—	76.21	64.57	50.20	35.48	25.64
3	—	✓	74.20	62.89	49.12	34.02	24.71
4	✓	✓	78.32	66.47	53.37	37.65	27.01

Table 5: **Effectiveness of** τ_e and τ_α on `val` `unseen` splits of R2R [1] and REVERIE [20]. $N^{|g|}$ are Gaussian count within SGM.

#	Pruning		$N^{ g } \downarrow$	FPS \uparrow	R2R [1]		REVERIE [20]		
	τ_e	τ_α			SR \uparrow	SPL \uparrow	SR \uparrow	RGS \uparrow	RGSPL \uparrow
1	0.00	0.000	50,000	11.2	77.30	63.26	52.00	35.00	26.50
2	0.01	0.002	45,000	13.1	77.87	64.80	52.70	35.30	27.00
3	0.015	0.005	42,000	15.5	78.32	66.47	53.37	37.65	27.01
4	0.02	0.010	35,000	18.7	74.80	61.68	46.50	32.30	24.80

9

486 **Analysis on 3D Value Map (§3.3).** In Ta-
 487 ble 6, we investigate the contribution of dif-
 488 ferent uncertainty types in our 3D Value Map.
 489 **Row #1 utilizes SGM as the 3D scene repre-
 490 sentation.** *i*) Row #1 vs (#2 or #3): Consistent
 491 performance gains appear when incorporating
 492 any form of perceptual uncertainty, con-
 493 firming that such signals provide useful guidance for navigation. *ii*) Row #2 vs #3: Geometric and
 494 semantic uncertainty contribute richer navigational cues than appearance uncertainty, as the agent
 495 benefits more from recognizing uncertain spatial structure or semantic interpretation than from sen-
 496 sitivity in visual rendering. *iii*) Configuration with all uncertainties achieves the best performance,
 497 highlighting their complementary roles.

498 5 CONCLUSION

500 This work presents a framework for Vision-Language Navigation that explicitly models geometric,
 501 semantic, and appearance uncertainty on top of a Semantic Gaussian Map. By integrating these
 502 uncertainties into a unified 3D Value Map, our agent grounds affordances and constraints into its
 503 perceptual space and achieves more reliable decision-making. Experiments across R2R, RxR, and
 504 REVERIE demonstrate consistent improvements over strong baselines, while qualitative analyses
 505 further validate the effectiveness of our uncertainty-aware design.

507 REFERENCES

- 508 [1] Peter Anderson, Qi Wu, Damien Teney, Jake Bruce, Mark Johnson, Niko Sünderhauf, Ian D. Reid,
 509 Stephen Gould, and Anton van den Hengel. Vision-and-language navigation: Interpreting visually-
 510 grounded navigation instructions in real environments. In *CVPR*, 2018.
- 511 [2] Danny Driess, Ingmar Schubert, Pete Florence, Yunzhu Li, and Marc Toussaint. Reinforcement learning
 512 with neural radiance fields. In *NeurIPS*, 2022.
- 514 [3] Daniel Fried, Ronghang Hu, Volkan Cirik, Anna Rohrbach, Jacob Andreas, Louis-Philippe Morency,
 515 Taylor Berg-Kirkpatrick, Kate Saenko, Dan Klein, and Trevor Darrell. Speaker-follower models for
 516 vision-and-language navigation. In *NeurIPS*, 2018.
- 517 [4] Hao Tan, Licheng Yu, and Mohit Bansal. Learning to navigate unseen environments: Back translation
 518 with environmental dropout. In *NAACL*, 2019.
- 519 [5] Devendra Singh Chaplot, Ruslan Salakhutdinov, Abhinav Gupta, and Saurabh Gupta. Neural topological
 520 slam for visual navigation. In *CVPR*, 2020.
- 522 [6] Shizhe Chen, Pierre-Louis Guhur, Makarand Tapaswi, Cordelia Schmid, and Ivan Laptev. Think global,
 523 act local: Dual-scale graph transformer for vision-and-language navigation. In *CVPR*, 2022.
- 524 [7] Zihan Wang, Xiangyang Li, Jiahao Yang, Yeqi Liu, and Shuqiang Jiang. Gridmm: Grid memory map for
 525 vision-and-language navigation. In *ICCV*, 2023.
- 526 [8] Yicong Hong, Yang Zhou, Ruiyi Zhang, Franck Dernoncourt, Trung Bui, Stephen Gould, and Hao Tan.
 527 Learning navigational visual representations with semantic map supervision. In *CVPR*, 2023.
- 529 [9] Dong An, Yuankai Qi, Yangguang Li, Yan Huang, Liang Wang, Tieniu Tan, and Jing Shao. Bevbert:
 530 Multimodal map pre-training for language-guided navigation. In *ICCV*, 2023.
- 531 [10] Rui Liu, Wenguan Wang, and Yi Yang. Volumetric environment representation for vision-language navi-
 532 gation. In *CVPR*, 2024.
- 533 [11] Dean A Pomerleau. Efficient training of artificial neural networks for autonomous navigation. *Neural
 534 computation*, 3(1), 1991.
- 536 [12] Pieter Abbeel and Andrew Y Ng. Apprenticeship learning via inverse reinforcement learning. In *ICML*,
 537 2004.
- 538 [13] Xin Wang, Qiuyuan Huang, Asli Celikyilmaz, Jianfeng Gao, Dinghan Shen, Yuan-Fang Wang,
 539 William Yang Wang, and Lei Zhang. Reinforced cross-modal matching and self-supervised imitation
 540 learning for vision-language navigation. In *CVPR*, 2019.

Table 6: **Effectiveness of U^g , U^s , U^a on val unseen** of R2R [1] and REVERIE [20]. See §4.4 for more details.

#	Uncertainty			R2R [1]		REVERIE [20]		
	U^g	U^s	U^a	SR↑	SPL↑	SR↑	RGS↑	RGSPL↑
1	–	–	–	76.21	64.57	50.20	35.48	25.64
2	✓	✓	–	77.05	65.12	51.82	36.96	26.11
3	–	–	✓	76.86	65.31	50.94	35.68	26.02
4	✓	✓	✓	78.32	66.47	53.37	37.65	27.01

540 [14] Yicong Hong, Qi Wu, Yuankai Qi, Cristian Rodriguez-Opazo, and Stephen Gould. Vln bert: A recurrent
541 vision-and-language bert for navigation. In *CVPR*, 2021.

542 [15] David Ha and Jürgen Schmidhuber. Recurrent world models facilitate policy evolution. In *NeurIPS*, 2018.

543 [16] Jing Yu Koh, Honglak Lee, Yinfei Yang, Jason Baldridge, and Peter Anderson. Pathdreamer: A world
544 model for indoor navigation. In *ICCV*, 2021.

545 [17] Hanqing Wang, Wei Liang, Luc Van Gool, and Wenguan Wang. Dreamwalker: Mental planning for
546 continuous vision-language navigation. In *ICCV*, 2023.

547 [18] Amir Bar, Gaoyue Zhou, Danny Tran, Trevor Darrell, and Yann LeCun. Navigation world models. In
548 *CVPR*, 2025.

549 [19] Alexander Ku, Peter Anderson, Roma Patel, Eugene Ie, and Jason Baldridge. Room-across-room: Multi-
550 lingual vision-and-language navigation with dense spatiotemporal grounding. In *EMNLP*, 2020.

551 [20] Yuankai Qi, Qi Wu, Peter Anderson, Xin Wang, William Yang Wang, Chunhua Shen, and Anton van den
552 Hengel. Reverie: Remote embodied visual referring expression in real indoor environments. In *CVPR*,
553 2020.

554 [21] Rui Liu, Xiaohan Wang, Wenguan Wang, and Yi Yang. Bird's-eye-view scene graph for vision-language
555 navigation. In *ICCV*, 2023.

556 [22] Zhiwei Deng, Karthik Narasimhan, and Olga Russakovsky. Evolving graphical planner: Contextual
557 global planning for vision-and-language navigation. In *NeurIPS*, 2020.

558 [23] Yujing Chen, Jinmin Zhang, and Yunjiang Lou. Topological and semantic map generation for mobile
559 robot indoor navigation. In *ICIRA*, 2021.

560 [24] Hanqing Wang, Wenguan Wang, Wei Liang, Caiming Xiong, and Jianbing Shen. Structured scene mem-
561 ory for vision-language navigation. In *CVPR*, 2021.

562 [25] Yicong Hong, Cristian Rodriguez, Yuankai Qi, Qi Wu, and Stephen Gould. Language and visual entity
563 relationship graph for agent navigation. In *NeurIPS*, 2020.

564 [26] Deweizhou Zhou, You Li, Fan Ma, Xiaoting Zhang, and Yi Yang. MIGC: Multi-instance generation controller
565 for text-to-image synthesis. In *CVPR*, 2024.

566 [27] Xianghao Kong, Jinyu Chen, Wenguan Wang, Hang Su, Xiaolin Hu, Yi Yang, and Si Liu. Controllable
567 navigation instruction generation with chain of thought prompting. In *ECCV*, 2024.

568 [28] Sheng Fan, Rui Liu, Wenguan Wang, and Yi Yang. Navigation instruction generation with bev perception
569 and large language models. In *ECCV*, 2024.

570 [29] Sheng Fan, Rui Liu, Wenguan Wang, and Yi Yang. Scene map-based prompt tuning for navigation
571 instruction generation. In *CVPR*, 2025.

572 [30] Zun Wang, Jialu Li, Yicong Hong, Songze Li, Kunchang Li, Shoubin Yu, Yi Wang, Yu Qiao, Yali Wang,
573 Mohit Bansal, et al. Bootstrapping language-guided navigation learning with self-refining data flywheel.
574 In *ICLR*, 2025.

575 [31] Akhil Perincherry, Jacob Krantz, and Stefan Lee. Do visual imaginations improve vision-and-language
576 navigation agents? In *CVPR*, 2025.

577 [32] Peter Anderson, Qi Wu, Damien Teney, Jake Bruce, Mark Johnson, Niko Sünderhauf, Ian Reid, Stephen
578 Gould, and Anton Van Den Hengel. Vision-and-language navigation: Interpreting visually-grounded
579 navigation instructions in real environments. In *CVPR*, 2018.

580 [33] Xin Wang, Wenhan Xiong, Hongmin Wang, and William Yang Wang. Look before you leap: Bridging
581 model-free and model-based reinforcement learning for planned-ahead vision-and-language navigation.
582 In *ECCV*, 2018.

583 [34] Siqi Zhang, Yanyuan Qiao, Qunbo Wang, Zike Yan, Qi Wu, Zhihua Wei, and Jing Liu. Cosmo: Combi-
584 nation of selective memorization for low-cost vision-and-language navigation. In *ICCV*, 2025.

585 [35] Bernhard Kerbl, Georgios Kopanas, Thomas Leimkühler, and George Drettakis. 3d gaussian splatting for
586 real-time radiance field rendering. *ACM TOG*, 42(4), 2023.

594 [36] Xiaohan Lei, Min Wang, Wengang Zhou, and Houqiang Li. Gaussnav: Gaussian splatting for visual
595 navigation. *IEEE TPAMI*, 2025.

596 [37] Yanyuan Qiao, Qianyi Liu, Jiajun Liu, Jing Liu, and Qi Wu. Llm as copilot for coarse-grained vision-
597 and-language navigation. In *ECCV*, 2024.

599 [38] Bálint Mucsányi, Michael Kirchhof, and Seong Joon Oh. Benchmarking uncertainty disentanglement:
600 Specialized uncertainties for specialized tasks. In *NeurIPS*, 2024.

601 [39] Radford M Neal. *Bayesian learning for neural networks*, volume 118. Springer Science & Business
602 Media, 2012.

603 [40] Jianxiong Shen, Adria Ruiz, Antonio Agudo, and Francesc Moreno-Noguer. Stochastic neural radiance
604 fields: Quantifying uncertainty in implicit 3d representations. In *3DV*, 2021.

605 [41] Jianxiong Shen, Antonio Agudo, Francesc Moreno-Noguer, and Adria Ruiz. Conditional-flow nerf: Ac-
606 curate 3d modelling with reliable uncertainty quantification. In *ECCV*, 2022.

608 [42] Balaji Lakshminarayanan, Alexander Pritzel, and Charles Blundell. Simple and scalable predictive un-
609 certainty estimation using deep ensembles. In *NeurIPS*, 2017.

610 [43] Jeremiah Liu, John Paisley, Marianthi-Anna Kioumourtzoglou, and Brent Coull. Accurate uncertainty
611 estimation and decomposition in ensemble learning. In *NeurIPS*, 2019.

612 [44] Arsenii Ashukha, Alexander Lyzhov, Dmitry Molchanov, and Dmitry Vetrov. Pitfalls of in-domain un-
613 certainty estimation and ensembling in deep learning. In *ICLR*, 2020.

614 [45] Niko Sünderhauf, Jad Abou-Chakra, and Dimity Miller. Density-aware nerf ensembles: Quantifying
615 predictive uncertainty in neural radiance fields. In *ICRA*, 2023.

617 [46] Anshuk Uppal, Kristoffer Stensbo-Smidt, Wouter Boomsma, and Jes Frellsen. Implicit variational infer-
618 ence for high-dimensional posteriors. In *NeurIPS*, 2023.

619 [47] Yunbum Kook, Yin-Tat Lee, Ruoqi Shen, and Santosh Vempala. Sampling with riemannian hamiltonian
620 monte carlo in a constrained space. In *NeurIPS*, 2022.

621 [48] Yarin Gal and Zoubin Ghahramani. Dropout as a bayesian approximation: Representing model uncer-
622 tainty in deep learning. In *ICML*, 2016.

624 [49] Durk P Kingma, Tim Salimans, and Max Welling. Variational dropout and the local reparameterization
625 trick. In *NeurIPS*, 2015.

626 [50] Lily Goli, Cody Reading, Silvia Sellán, Alec Jacobson, and Andrea Tagliasacchi. Bayes' rays: Uncer-
627 tainty quantification for neural radiance fields. In *CVPR*, 2024.

629 [51] Marco Miani, Lorenzo Beretta, and Søren Hauberg. Sketched lanczos uncertainty score: a low-memory
630 summary of the fisher information. In *NeurIPS*, 2024.

631 [52] Kiwan Maeng, Chuan Guo, Sanjay Kariyappa, and G Edward Suh. Bounding the invertibility of privacy-
632 preserving instance encoding using fisher information. In *NeurIPS*, 2023.

633 [53] Ruiqi Li and Yiu-ming Cheung. Variational multi-scale representation for estimating uncertainty in 3d
634 gaussian splatting. In *NeurIPS*, 2024.

636 [54] Alex Hanson, Allen Tu, Vasu Singla, Mayuka Jayawardhana, Matthias Zwicker, and Tom Goldstein. Pup
637 3d-gs: Principled uncertainty pruning for 3d gaussian splatting. In *CVPR*, 2025.

638 [55] Nikhila Ravi, Valentin Gabeur, Yuan-Ting Hu, Ronghang Hu, Chaitanya Ryali, Tengyu Ma, Haitham
639 Khedr, Roman Räde, Chloe Rolland, Laura Gustafson, et al. Sam 2: Segment anything in images and
640 videos. *arXiv preprint arXiv:2408.00714*, 2024.

641 [56] Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal, Girish
642 Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual models from
643 natural language supervision. In *ICML*, 2021.

644 [57] Xiaohan Wang, Yuehu Liu, Xinhang Song, Yuyi Liu, Sixian Zhang, and Shuqiang Jiang. An interactive
645 navigation method with effect-oriented affordance. In *CVPR*, 2024.

646 [58] Wenlong Huang, Chen Wang, Ruohan Zhang, Yunzhu Li, Jiajun Wu, and Li Fei-Fei. Voxposer: Compos-
647 able 3d value maps for robotic manipulation with language models. In *CoRL*, 2023.

648 [59] Yuxiang Yang, Xiangyun Meng, Wenhao Yu, Tingnan Zhang, Jie Tan, and Byron Boots. Learning
649 semantics-aware locomotion skills from human demonstration. In *CoRL*, 2023.

650 [60] Kashu Yamazaki, Taisei Hanyu, Khoa Vo, Thang Pham, Minh Tran, Gianfranco Doretto, Anh Nguyen,
651 and Ngan Le. Open-fusion: Real-time open-vocabulary 3d mapping and queryable scene representation.
652 In *ICRA*, 2024.

653 [61] Zhou Wang, Alan C Bovik, Hamid R Sheikh, and Eero P Simoncelli. Image quality assessment: from
654 error visibility to structural similarity. *IEEE TIP*, 13(4):600–612, 2004.

655 [62] Jacob Devlin Ming-Wei Chang Kenton and Lee Kristina Toutanova. Bert: Pre-training of deep bidirectional
656 transformers for language understanding. In *NAACL*, 2019.

657 [63] Shizhe Chen, Pierre-Louis Guhur, Cordelia Schmid, and Ivan Laptev. History aware multimodal trans-
658 former for vision-and-language navigation. In *NeurIPS*, 2021.

659 [64] Xiangru Lin, Guanbin Li, and Yizhou Yu. Scene-intuitive agent for remote embodied visual grounding.
660 In *CVPR*, 2021.

661 [65] Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In Yoshua Bengio and
662 Yann LeCun, editors, *ICLR*, 2015.

663 [66] Stéphane Ross, Geoffrey J. Gordon, and Drew Bagnell. A reduction of imitation learning and structured
664 prediction to no-regret online learning. In *AISTATS*, 2011.

665 [67] Angel Chang, Angela Dai, Thomas Funkhouser, Maciej Halber, Matthias Niebner, Manolis Savva, Shuran
666 Song, Andy Zeng, and Yinda Zhang. Matterport3d: Learning from rgb-d data in indoor environments. In
667 *3DV*, 2017.

668 [68] Pierre-Louis Guhur, Makarand Tapaswi, Shizhe Chen, Ivan Laptev, and Cordelia Schmid. Airbert: In-
669 domain pretraining for vision-and-language navigation. In *ICCV*, 2021.

670 [69] Yanyuan Qiao, Yuankai Qi, Yicong Hong, Zheng Yu, Peng Wang, and Qi Wu. Hop: history-and-order
671 aware pre-training for vision-and-language navigation. In *CVPR*, 2022.

672 [70] Xiaohan Wang, Wenguan Wang, Jiayi Shao, and Yi Yang. Lana: A language-capable navigator for
673 instruction following and generation. In *CVPR*, 2023.

674 [71] Sheng Shen, Liunian Harold Li, Hao Tan, Mohit Bansal, Anna Rohrbach, Kai-Wei Chang, Zhewei Yao,
675 and Kurt Keutzer. How much can clip benefit vision-and-language tasks? In *ICLR*, 2021.

676 [72] Jialu Li, Hao Tan, and Mohit Bansal. Envedit: Environment editing for vision-and-language navigation.
677 In *CVPR*, 2022.

678 [73] Chaoning Zhang, Dongshen Han, Yu Qiao, Jung Uk Kim, Sung-Ho Bae, Seungkyu Lee, and Choong Seon
679 Hong. Faster segment anything: Towards lightweight sam for mobile applications. *arXiv preprint*
680 *arXiv:2306.14289*, 2023.

681 [74] Stefan Depeweg, Jose-Miguel Hernandez-Lobato, Finale Doshi-Velez, and Steffen Udluft. Decomposi-
682 tion of uncertainty in bayesian deep learning for efficient and risk-sensitive learning. In *ICML*, 2018.

683 [75] Hao Li, Jingkuan Song, Lianli Gao, Xiaosu Zhu, and Hengtao Shen. Prototype-based aleatoric uncertainty
684 quantification for cross-modal retrieval. In *NeurIPS*, 2023.

685 [76] Matthew Chan, Maria Molina, and Chris Metzler. Estimating epistemic and aleatoric uncertainty with a
686 single model. In *NeurIPS*, 2024.

687 [77] Xiaoyi Cai, Siddharth Ancha, Lakshay Sharma, Philip R Osteen, Bernadette Bucher, Stephen Phillips, Ji-
688 uuguang Wang, Michael Everett, Nicholas Roy, and Jonathan P How. Evora: Deep evidential traversability
689 learning for risk-aware off-road autonomy. *IEEE Transactions on Robotics*, 2024.

690 [78] Xiaoyi Cai, Michael Everett, Jonathan Fink, and Jonathan P How. Risk-aware off-road navigation via a
691 learned speed distribution map. In *IEEE/RSJ IROS*, pages 2931–2937, 2022.

692 [79] Parker Ewen, Adam Li, Yuxin Chen, Steven Hong, and Ram Vasudevan. These maps are made for
693 walking: Real-time terrain property estimation for mobile robots. *IEEE Robotics and Automation Letters*,
694 7(3):7083–7090, 2022.

702 [80] Nikhil Keetha, Jay Karhade, Krishna Murthy Jatavallabhula, Gengshan Yang, Sebastian Scherer, Deva
703 Ramanan, and Jonathon Luiten. Splatam: Splat track & map 3d gaussians for dense rgb-d slam. In
704 *CVPR*, 2024.

705 [81] Shubo Liu, Hongsheng Zhang, Yuankai Qi, Peng Wang, Yanning Zhang, and Qi Wu. Aerialvln: Vision-
706 and-language navigation for uavs. In *ICCV*, 2023.

707 [82] Karmesh Yadav, Jacob Krantz, Ram Ramrakhyta, Santhosh Kumar Ramakrishnan, Jimmy Yang, Austin
708 Wang, John Turner, Aaron Gokaslan, Vincent-Pierre Berges, Roozbeh Mootaghi, Oleksandr Maksymets,
709 Angel X Chang, Manolis Savva, Alexander Clegg, Devendra Singh Chaplot, and Dhruv Batra. Habitat
710 challenge 2023. <https://aihabitat.org/challenge/2023/>, 2023.

711 [83] Ziyu Zhu, Xilin Wang, Yixuan Li, Zhuofan Zhang, Xiaojian Ma, Yixin Chen, Baoxiong Jia, Wei Liang,
712 Qian Yu, Zhidong Deng, Siyuan Huang, and Qing Li. Move to understand a 3d scene: Bridging visual
713 grounding and exploration for efficient and versatile embodied navigation. *ICCV*, 2025.

714 [84] Ziyi Yang, Xinyu Gao, Wen Zhou, Shaohui Jiao, Yuqing Zhang, and Xiaogang Jin. Deformable 3d
715 gaussians for high-fidelity monocular dynamic scene reconstruction. In *CVPR*, 2024.

716 [85] Guanjun Wu, Taoran Yi, Jiemin Fang, Lingxi Xie, Xiaopeng Zhang, Wei Wei, Wenyu Liu, Qi Tian, and
717 Xinggang Wang. 4d gaussian splatting for real-time dynamic scene rendering. In *CVPR*, 2024.

718 [86] Nico Messikommer, Giovanni Cioffi, Mathias Gehrig, and Davide Scaramuzza. Reinforcement learning
719 meets visual odometry. In *ECCV*, 2024.

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756

SUMMARY OF THE APPENDIX

757

758 This appendix contains additional details for the ICLR 2026 submission, titled *Uncertainty-Aware*
759 *Gaussian Map for Vision-Language Navigation*. The appendix is organized as follows:

760

- §A summarizes the notations used throughout the framework.
- §B presents the pseudo-code implementation.
- §C reports additional model details.
- §D gives more runtime analysis.
- §E covers additional experiments.
- §F offers a discussion of our uncertainties and failure cases.
- §G provides a discussion of the limitations and future, societal impact, terms of use, pri-
761 vacy, and license, and use of large language models.

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

A LIST OF SYMBOLS.

Table 7 concisely lists the symbols, excluding unnecessary subscripts for clarity.

Notation	Description	Index
\mathcal{X}	Natural language instructions	§3
\mathcal{I}_t	RGB images at step t	§3.1; Eq. (2)&(3)&(4)&(13)
\mathcal{D}_t	Depth images at step t	§3.1; Eq. (2)&(3)&(6)&(13)
\mathcal{O}_t	Multi-view RGB-D observations at step t	§3.1
\mathcal{P}_t	Sparse point cloud from observations	§3.1; Eq. (1)
\mathcal{A}_t	Predicted action at step t	§3
μ_i	Position (mean) of Gaussian primitive i	§3.1
Σ_i	Covariance matrix of Gaussian primitive i	§3.1
α_i	Opacity of Gaussian primitive i	§3.1; Eq. (2)&(3)&(4)
\mathbf{c}_i	Color (spherical harmonics) of Gaussian primitive i	§3.1; Eq. (2)
s_i	Semantic property of Gaussian primitive i	§3.1; Eq. (3)&(7)
E_i	Scale matrix of Gaussian primitive i	§3.1
R_i	Rotation matrix of Gaussian primitive i	§3.1
r_i	Unit quaternion for rotation of Gaussian primitive i	§3.1
g_i	Gaussian primitive i representation	§3.1; Eq. (2)&(3)&(4)
$\hat{\mathcal{I}}$	Rendered RGB image	§3.1; Eq. (2)&(8)&(13)
$\hat{\mathcal{D}}$	Rendered depth map	§3.1; Eq. (3)&(13)
\hat{F}^σ	Rendered semantic feature	§3.1; Eq. (3)&(13)
\mathcal{X}_i^μ	Perturbation for position of Gaussian i	§3.2; Eq. (4)
\mathcal{X}_i^e	Perturbation for scale of Gaussian i	§3.2; Eq. (4)
\mathcal{X}_i^s	Perturbation for semantic of Gaussian i	§3.2; Eq. (7)
$q_\phi(\mathcal{X})$	Variational distribution for perturbations	§3.2; Eq. (5)
$q_{\phi_i^\mu}(\mathcal{X}_i^\mu)$	Variational distribution for position perturbation of Gaussian i	§3.2; Eq. (6)
$q_{\phi_i^e}(\mathcal{X}_i^e)$	Variational distribution for scale perturbation of Gaussian i	§3.2; Eq. (6)
U_i^g	Geometric uncertainty of Gaussian i	§3.2; Eq. (6)
U_i^s	Semantic uncertainty of Gaussian i	§3.2; Eq. (7)
U_i^a	Appearance uncertainty of Gaussian i	§3.2; Eq. (9)
\mathbf{X}	Instruction embedding	§3.3; Eq. (11)&(12)
\mathbf{F}^{g_i}	Projected feature of Gaussian i	§3.3; Eq. (11)
\mathbf{F}^g	Aggregated Gaussian representation	§3.3; Eq. (11)
\mathbf{p}	Candidate node probabilities	§3.3; Eq. (11)
$\hat{\mathbf{p}}$	Action probabilities after mapping	§3.3; Eq. (12)
\mathcal{L}^{rgb}	RGB rendering loss	§3.4; Eq. (13)
\mathcal{L}^{depth}	Depth rendering loss	§3.4; Eq. (13)
\mathcal{L}^{sem}	Semantic rendering loss	§3.4; Eq. (13)

† Subscript t denotes the navigation step.

Table 7: Notation and Description of Key Symbols.

864 **B PSEUDO CODE**
865866 The pseudo-code of our framework is given in Algorithm 1. Our code will be released.
867868 **Algorithm 1** Pseudo-code for the test mode of our approach in a PyTorch-like style

```

869
870     # I, D, K, E: RGB, depth, intrinsic and extrinsic
871     # X, A: instruction embedding and action space
872     # L: Loss function, e.g., L1 Loss
873     # traj, env: navigation trajectory and navigation environment
874
875     def GET_SGM(obs):
876         I, D, K, E = obs
877         ===== initialize pseudo-lidar point (Eq.1) =====
878         init_pt_cld = GET_PT_CLD(I, D, K, E)
879         ===== initialize Gaussian primitives =====
880         G = INIT_G(init_pt_cld)
881         G.semantic = GET_SEM(I)
882         ===== updating Gaussian primitives (Eqs.2,3) =====
883         for i in range(15):
884             I_r, D_r, S_r = RENDER(G, camera)
885             loss = L(I, I_r) + L(D, D_r) + L(S, S_r)
886             loss.backward()
887             return G
888
889     def GET_UNCERTAINTY_SCORE(G):
890         ===== perturb scale and position (Eq.4) =====
891         mu_perturb = SAMPLE_GAUSSIAN(0, delta)
892         s_perturb = SAMPLE_UNIFORM(-eta*G.s, eta*G.s)
893         ===== compute variational distribution (Eq.5) =====
894         q_phi_mu = VARIATIONAL_INFERENCE(G.mu + mu_perturb, G)
895         q_phi_s = VARIATIONAL_INFERENCE(G.s + s_perturb, G)
896         ===== compute geometric uncertainty (Eq.6) =====
897         U_g = NORM(STD(q_phi_mu)) + NORM(STD(q_phi_s))
898
899         ===== perturb semantic attributes =====
900         sigma_perturb = SAMPLE_GAUSSIAN(0, epsilon)
901         ===== compute variational distribution =====
902         q_phi_sigma = VARIATIONAL_INFERENCE(G.sigma + sigma_perturb, G)
903         ===== compute semantic uncertainty (Eq.7) =====
904         U_s = NORM(STD(q_phi_sigma))
905
906         ===== compute fisher information (Eq.8) =====
907         I_hat = RENDER(G)
908         grad_I = GRADIENT(I_hat, G)
909         F_info = MATMUL(grad_I, TRANSPOSE(grad_I))
910         ===== compute appearance uncertainty (Eq.9) =====
911         U_a = LOG(DET(F_info))
912         return U_g, U_s, U_a
913
914     def GET_ACTION_SCORE(G, X, topo_memory):
915         ===== action score (Eqs.11,12) =====
916         F_g = GET_Gaussian_Representation(G)
917         P_g = MLT([F_g, X])
918         V = topo_memory.candidate()
919         P = NN[P_g, V]
920         return P
921
922     def navigate(env, X):
923         obs = env.reset()
924         topo_memory = INIT_TOPOLOGICAL_MEMORY(obs)
925         traj = []
926         for t in range(MAX_STEPS):
927             ===== update Gaussian primitives =====
928             G_SGM = GET_SGM(obs)
929             ===== integrate Gaussian into memory =====
930             topo_memory.update(G_SGM)
931             ===== compute uncertainty score =====
932             U_g, U_s, U_a = GET_UNCERTAINTY_SCORE(G_SGM)
933             ===== construct 3D Value Map =====
934             G_3DVM = EXTEND_SGM(G_SGM, U_g, U_s, U_a)
935             ===== compute 3D action scores =====
936             P_3D = GET_ACTION_SCORE(G_3DVM, X, topo_memory)
937             ===== compute 2D action scores (Eqs.B1,B2) =====
938             P_2D = GET_2D_ACTION_SCORE(I, topo_memory)
939             ===== decision making =====
940             action = ARGMAX(SUM(P_3D, P_2D), A)
941             traj.append(action)
942             ===== update topological memory =====
943             topo_memory.update_path(obs, action)
944         return traj

```

915 NN: nearest neighbor search; MLT: multi-layer transformer; [,]: concatenation.

916
917

918 **C MODEL DETAILS**
 919

920 Our approach is built upon the 2D observation-based baseline DUET [6], and the proposed 3D Value
 921 Map serves as an additional decision branch on top of it. In this part, we complement the details by
 922 introducing: **i) 2D Action Score** and **ii) Navigation Losses**.
 923

924 **C.1 2D ACTION SCORE**
 925

926 Besides the 3D Value Map branch, we retain the 2D perception pathway inherited from DUET [6],
 927 which leverages 2D panoramic observations to guide navigation. The panoramic views and detected
 928 objects are first encoded by a multi-layer transformer (MLT) into 2D visual embeddings $\mathbf{F}^{2D} \in \mathbb{R}^{768}$. These features are then concatenated with the instruction embedding $\mathbf{X} \in \mathbb{R}^{768}$, and passed
 929 through another transformer head \mathcal{F}^{MLT} to yield 2D action scores:
 930

$$p^{2D} = \text{Softmax}(\mathcal{F}^{MLT}([\mathbf{F}^{2D}, \mathbf{X}])) \in [0, 1]^{|\mathcal{V}|}, \quad (14)$$

931 where $[,]$ denotes concatenation and $|\mathcal{V}|$ is the number of candidate viewpoints. Next, we apply a
 932 nearest-neighbor function \mathcal{N} to aggregate p^{2D} across neighboring nodes \mathcal{V} in topological memory:
 933

$$\hat{p}^{2D} = \mathcal{N}(\mathbf{p}^{2D}, \mathcal{V}) \in [0, 1]^{|\mathcal{V}|}. \quad (15)$$

934 This operation merges scores from spatially adjacent nodes and outputs a unified value for each
 935 candidate, thereby aligning the predictions with the action space \mathcal{A} .
 936

937 **C.2 NAVIGATION LOSSES**
 938

939 Following standard protocol [6, 10], our training follows a two-stage paradigm: pretraining with
 940 auxiliary objectives to enhance multimodal representations, and fine-tuning with behavior cloning
 941 and pseudo-expert guidance to refine navigation policy.
 942

943 In the pretraining stage, three objectives are used depending on the benchmark. For R2R [1] and
 944 RxR [19], we include Masked Language Modeling (MLM) and Single-step Action Prediction (SAP)
 945 tasks. For REVERIE [20], we further incorporate Object Grounding (OG) to support precise local-
 946 ization of target objects. The corresponding losses are formulated as:
 947

$$\mathcal{L}^{MLM} = -\log p(w_i | \mathcal{X}_{\setminus i}, \mathcal{R}), \quad (16)$$

$$\mathcal{L}^{SAP} = \sum_{t=1}^T -\log p(a_t^* | \mathcal{X}, \mathcal{R}_{<t}), \quad (17)$$

$$\mathcal{L}^{OG} = -\log p(o^* | \mathcal{X}, \mathcal{R}), \quad (18)$$

948 where \mathcal{X} is the instruction sequence, w_i a randomly masked token, and $\mathcal{X}_{\setminus i}$ its remaining context.
 949 \mathcal{R} denotes the trajectory, with $\mathcal{R}_{<t}$ indicating the path prefix. The expert action at step t is a_t^* , and
 950 o^* represents the target object.
 951

952 During fine-tuning, we adopt DAgger [6, 66], which alternates between agent rollouts and pseudo-
 953 expert corrections. The pseudo-expert leverages the partially constructed topological memory to
 954 generate shortest-path guidance, allowing the agent to recover from suboptimal actions and gradu-
 955 ally improve its policy in unseen environments.
 956

957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971

972 D RUNTIME ANALYSIS 973

974 Table 8: **Runtime Analysis** on R2R [1] val unseen. Our feature time is decomposed into SGM,
975 variational inference (VI), and Fisher Information (FI) estimation. Wall-clock Time measures per-
976 step latency, Mem. is peak GPU memory usage, and FLOPs measure computational complexity
977

978 Method	979 Wall-clock Time (s) ↓						980 FLOPs (G) ↓			981 R2R		
	979 SGM	979 VI	979 FI	979 Feature	979 Action	979 Total	979 Mem. (GB) ↓	979 Feature	979 Action	979 Total	979 SR ↑	979 SPL ↑
979 BEVBert [9]	—	—	—	2.13	2.41	4.54	4.73	15.71	25.66	41.37	75	64
980 DUET [6]	—	—	—	0.42	0.89	1.31	3.13	2.71	18.68	21.39	72	60
981 Ours (MobileSAM)	0.62	0.11	0.19	0.92	1.71	2.63	3.45	3.82	20.53	24.35	76	65
981 Ours	1.47	0.11	0.19	1.77	1.71	3.48	3.84	4.36	20.53	24.89	78	66

982 D.1 RUNTIME ANALYSIS ON THE OVERALL DESIGN 983

984 Table 8 reports the runtime decomposition in terms of wall-clock time, memory usage, and FLOPs
985 across different components on R2R [1] val unseen split in inference. Compared to DUET [6],
986 our agent achieves substantial performance gains (+6% SR) with only modest increases in runtime
987 (+1.35s), memory (+0.71GB) and FLOPs (+2.96G), highlighting the efficiency of our design.
988

989 D.2 RUNTIME ANALYSIS ON SGM 990

991 As shown in Table. 8, the majority of overhead arises from constructing SGM, dominated by se-
992 mantic attribute extraction with SAM2 [55] (**1.47s**). Owing to the flexibility of our framework,
993 SAM2 can be seamlessly replaced with lightweight variants (e.g., MobileSAM [73]), enabling flex-
994 ible trade-offs between segmentation quality and runtime efficiency (e.g., 78% → 76% SR with
995 1.47s → **0.62s**). This flexibility allows our agent to adapt to different deployment scenarios.
996

997 D.3 RUNTIME ANALYSIS ON VARIATIONAL INFERENCE 998

999 Table 9: **Runtime Analysis** of Variational Inference (VI) on R2R [1] val unseen.

Perturbed Parameters	Inference Time (s) ↓	SR ↑	SPL ↑
None (w/o VI)	—	72	60
Position + Scale	0.08	77	65
Semantic Only	0.07	76	64
All (Pos.+Scale+Sem.)	0.11	78	66

1000 As illustrated in Table. 8, VI introduces only minimal cost (**0.11s**), since it perturbs Gaussian param-
1001 eters with lightweight noise and updates variational distributions. In addition, to further assess the
1002 efficiency of VI, we measure per-step inference time and performance on R2R [1] val unseen
1003 split in Table 9. We can observe that perturbing only spatial parameters (*i.e.*, position and scale) or
1004 only semantic attributes incurs negligible overhead (**0.08s** and **0.07s**, respectively). When applied
1005 jointly, VI maintains a similarly low cost (**0.11s**) while yielding the best navigation performance.
1006

1007 D.4 RUNTIME ANALYSIS ON FISHER INFORMATION ESTIMATION 1008

1009 Fisher Information (FI) estimation emerges as a lightweight component in our framework, requiring
1010 only **0.19s** per step (Table 8). This efficiency stems from approximating FI as the outer product of
1011 first-order gradients, which circumvents the costly computation of the full Hessian. Furthermore,
1012 we adopt a block-diagonal approximation at the Gaussian level, isolating sensitivity within each
1013 primitive and further reducing complexity.
1014

1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

1026

E ADDITIONAL EXPERIMENTS

1028 This section presents supplementary experiments, including hyperparameter sensitivity analysis and
1029 statistical significance tests.
10301031

E.1 HYPERPARAMETER EXPERIMENTS

1033 Table 10: **Sensitivity Analysis** of uncertainty-related hyperparameters on R2R val unseen split. (a) δ and
1034 (b) η regulate geometric uncertainty, while (c) ε governs semantic uncertainty.

(a) Sensitivity to δ			(b) Sensitivity to η			(c) Sensitivity to ε		
δ	SR \uparrow	SPL \uparrow	η	SR \uparrow	SPL \uparrow	ε	SR \uparrow	SPL \uparrow
0.0015	78.27	66.41	0.05	78.30	66.45	0.0015	78.28	66.42
0.002	78.29	66.44	0.1	78.32	66.47	0.002	78.30	66.44
0.0025	78.32	66.47	0.15	78.30	66.44	0.0025	78.32	66.47
0.003	78.30	66.46	0.2	78.28	66.41	0.003	78.29	66.45
0.0035	78.28	66.48				0.0035	78.27	66.43
0.005	78.25	66.40				0.005	78.25	66.39

1043 We evaluate the sensitivity of the three uncertainty-related hyperparameters on R2R val unseen
1044 split: δ and η , which regulate geometric uncertainty, and ε , which governs semantic uncertainty. The
1045 default settings used in our agent are $\delta=0.0025$, $\eta=0.1$, and $\varepsilon=0.0025$. As shown in Table 10, the
1046 agent maintains similar performance when varying δ within 0.0015–0.005, η within 0.05–0.2, and ε
1047 within 0.0015–0.005, demonstrating that our uncertainty estimation is stable over a broad range of
1048 parameter values.1049

E.2 STATISTICAL SIGNIFICANCE TESTS

1051 Table 11: **Statistical Significance Tests** on R2R val unseen split. We report the mean \pm std, confidence
1052 intervals (CI), and paired t-test p -values over 5 runs.

Agent	SR \uparrow			SPL \uparrow		
	mean \pm std	CI	p -value	mean \pm std	CI	p -value
DUET [6]	72.22 \pm 0.21	[72.08, 72.36]	3.42×10^{-12}	60.41 \pm 0.27	[60.27, 60.56]	6.60×10^{-15}
BEVBert [9]	75.82 \pm 0.25	[75.70, 75.95]	8.91×10^{-11}	64.14 \pm 0.22	[64.01, 64.28]	7.30×10^{-10}
VER [10]	76.37 \pm 0.18	[76.27, 76.47]	1.58×10^{-10}	65.07 \pm 0.21	[64.91, 65.23]	2.90×10^{-13}
Ours	78.32 \pm 0.13	[78.25, 78.39]	–	66.47 \pm 0.17	[66.39, 66.54]	–

1053 To assess whether the performance improvements are statistically meaningful beyond random variation,
1054 we conduct significance tests on R2R val unseen split over 5 runs. For each agent, we report the mean and standard deviation,
1055 the confidence interval (CI), and paired t-test p -values against ours. As shown in Table 11, the improvements of our agent over DUET [6], GridMM [7], and
1056 VER [10] are statistically significant (all $p < 0.05$ for both SR and SPL), confirming that the gains
1057 are not attributable to stochastic variance.1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

1080 F UNCERTAINTY DISCUSSION AND FAILURE CASE
10811082 In this section, we provide an extended discussion of our uncertainty formulation, present additional
1083 empirical analyses, and summarize representative failure cases.
10841085 F.1 DISCUSSION OF OUR UNCERTAINTY
10861088 Table 12: **Robustness** to observation noise on R2R val unseen split. We evaluate an *epistemic only*
1089 variant (geometric + semantic), an *aleatoric only* variant (appearance), and our agent under increasing levels of
1090 Gaussian noise in RGB observations.

Noise Level	Epistemic Only SR \uparrow	Aleatoric Only SR \uparrow	Ours SR \uparrow
0%	77.05	76.86	78.32
10%	76.78	76.80	78.09
20%	76.53	76.77	78.12
30%	75.93	76.81	77.98

1091 In deep learning, uncertainty is typically categorized into two types: *epistemic* and *aleatoric* [74–
1092 76]. Epistemic uncertainty arises from a lack of knowledge or limited evidence in the model,
1093 whereas aleatoric uncertainty denotes irreducible randomness or inherent variability in the data that
1094 cannot be reduced by collecting more samples. In embodied navigation [77], epistemic uncertainty
1095 is typically associated with insufficient or unreliable perceptual evidence (e.g., missing views or out-
1096 of-distribution observations), often leading to ambiguous target grounding around visually similar
1097 landmarks [78]. Aleatoric uncertainty captures irreducible ambiguity caused by partial observability,
1098 occlusions, clutter, or sensor noise, which makes traversability inherently uncertain [78, 79].
10991100 Under this taxonomy, our design is as follows. *i*) We interpret geometric and semantic uncertainty
1101 as epistemic uncertainty. These two arise from missing or ambiguous perceptual evidence, such as
1102 sparsely observed regions or visually similar landmarks. Because they can, in principle, be reduced
1103 by acquiring more views, they align with the notion of epistemic uncertainty. *ii*) We interpret appear-
1104 ance uncertainty as aleatoric uncertainty. It reflects the sensitivity of rendered observations to small
1105 local perturbations. This variability is intrinsic to the rendering or measurement process and cannot
1106 be eliminated even if additional scene cues are available, which aligns with aleatoric uncertainty.
11071108 In addition, we examine whether these components behave consistently with the above interpre-
1109 tations. We compare three variants on R2R val unseen split: an *epistemic only* variant that uses
1110 geometric and semantic uncertainty, an *aleatoric only* variant that uses appearance uncertainty, and
1111 our agent. We gradually inject 10%, 20%, and 30% Gaussian noise into RGB observations while
1112 keeping all other settings fixed. As shown in Table 12, two trends align with the intended distinction.
1113 *i*) The *epistemic only* variant degrades as noise increases, reflecting its dependence on the sufficiency
1114 and reliability of perceptual evidence. *ii*) The *aleatoric only* variant remains stable across noise lev-
1115 els, consistent with uncertainty that models inherent observation variability. Moreover, our agent
1116 remains robust under all noise levels and achieves the best overall performance.
11171118 F.2 ANALYSIS OF APPEARANCE UNCERTAINTY
11191120 Figure 6: **Ground Truth vs Rendered Observations.** The renderings closely match the ground
1121 truth, supporting the Fisher-based appearance uncertainty proxy.
11221123 We provide visual comparisons between the rendered observations and the ground truth. Fig. 6
1124 illustrates that the renderings closely match the ground truth, indicating that the residual term in
1125 the Hessian decomposition is negligible. Consequently, the Fisher Information serves as a reliable
1126

proxy for appearance uncertainty and yields a faithful sensitivity signal, thereby corroborating the soundness of our design.

F.3 EFFECTIVENESS OF UNCERTAINTY INFORMATION

Table 13: **Effectiveness of Uncertainty Information** on R2R val unseen split. The uncertainty information encoded in our 3D Value Map is rendered into a 2D panoramic uncertainty map and provided as an additional observation to support decision-making in existing agents.

Agent	SR \uparrow	SPL \uparrow
DUET [6]	72.22	60.41
DUET + 2D uncertainty map	73.52	61.43
BEVBert [9]	75.82	64.14
BEVBert + 2D uncertainty map	76.91	65.77
VER [10]	76.37	65.07
VER + 2D uncertainty map	77.45	65.94

To further verify that the estimated uncertainty information is beneficial for VLN, we apply our uncertainty cues to other agents. Since these agents adopt other forms of scene representation rather than 3DGS [80], we render the uncertainty encoded in our 3D Value Map into a 2D panoramic uncertainty map and provide it as an additional observation to DUET [6], BEVBert [9], and VER [10].

As shown in Table 13, this 2D uncertainty map consistently improves navigation performance across all three agents on R2R [1] val unseen split. For example, DUET improves from 72.22% to **73.52%** SR, while BEVBert and VER obtain similar gains of more than 1% in SR together with corresponding improvements in SPL. These results demonstrate that our uncertainty cues provide useful guidance for improving navigation decisions.

F.4 FAILURE CASES

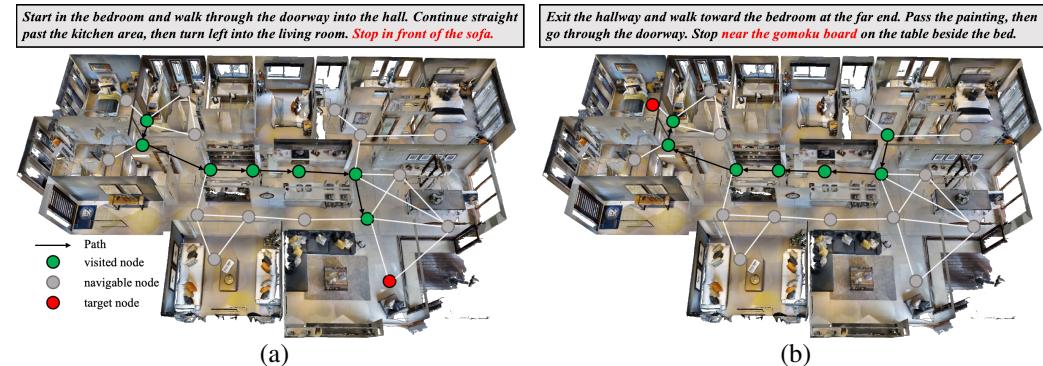


Figure 7: **Failure Cases.** (a) Our agent stops once “*the sofa*” comes into view, as the current observation already provides sufficient evidence of the target, creating confusion about whether further steps are required. (b) Our agent halts at the doorway instead of reaching “*the gomoku board*” near the bed, since the board lies inside the room and cannot be observed from the entrance, leaving the agent uncertain and leading to premature termination.

To illustrate the challenges our agent may still face, we present two representative failure cases. As shown in Fig. 7(a), although the instruction requires stopping at the sofa, the agent terminates as soon as “*the sofa*” enters its observation. This because the current view already provides sufficient evidence of the target, leaving the agent confused about whether perceiving “*the sofa*” is equivalent to reaching the intended stopping point. In addition, in Fig. 7(b), although the instruction requires “*stopping near the gomoku board by the bed*”, the agent halts at the doorway without entering the room. This because “*the board*” is not visible from its current viewpoint, leaving the agent uncertain about whether further exploration is necessary.

1188 Table 14: **Quantitative Analysis** of uncertainty scaling on R2R val unseen split. We scale the estimated
 1189 uncertainty values by factors in $\{1.0, 0.8, 0.6, 0.4, 0.2, 0\}$ and evaluate the agent in simple and complex scenes
 1190 to analyze the influence of uncertainty on navigation performance.

Uncertainty Scale	Simple Scenes SR ↑	Complex Scenes SR ↑
1.0 (ours)	10/10	10/10
0.8	10/10	9/10
0.6	10/10	7/10
0.4	10/10	7/10
0.2	10/10	5/10
0 (No uncertainty)	10/10	2/10

1198 In addition, we further provide a quantitative analysis to examine how uncertainty affects navigation
 1199 performance under different levels of perceptual ambiguity. Specifically, we select 20 representa-
 1200 tive scenes from the R2R val unseen split: 10 simple scenes (e.g., open spaces, few obstacles,
 1201 clear landmarks) and 10 complex scenes (e.g., narrow spaces, occlusions, visually similar struc-
 1202 tures). For each episode, we run the agent while scaling the three uncertainty values by a factor in
 1203 $\{1.0, 0.8, 0.6, 0.4, 0.2, 0\}$.

1204 As shown in Table 14, performance in simple scenes remains consistently high across all scaling
 1205 factors, indicating that these environments contain minimal perceptual ambiguity and rely little on
 1206 uncertainty cues. In contrast, navigation performance in complex scenes drops progressively as
 1207 the uncertainty values are suppressed. Removing the uncertainty information entirely reduces the
 1208 success rate from **10/10** to 2/10, demonstrating that uncertainty cues play a critical role in guiding
 1209 reliable navigation under challenging visual conditions.

1210
 1211
 1212
 1213
 1214
 1215
 1216
 1217
 1218
 1219
 1220
 1221
 1222
 1223
 1224
 1225
 1226
 1227
 1228
 1229
 1230
 1231
 1232
 1233
 1234
 1235
 1236
 1237
 1238
 1239
 1240
 1241

1242 **G DISCUSSION**
12431244 **G.1 LIMITATION AND FUTURE WORK**
1245

1246 This work has several limitations that also highlight directions for future exploration. *i) Simulator*
 1247 *Constraints*. Our framework is trained and evaluated in the static Matterport3D simulator [67],
 1248 which omits real-world challenges such as moving objects, sensor noise, or actuation errors. Ex-
 1249 tending to dynamic and noisy environments will be crucial for deployment. *ii) Task Scope*. We focus
 1250 on indoor VLN tasks (*i.e.*, R2R [1], RxR [19], REVERIE [20]). Applications to broader navigation
 1251 domains, such as aerial VLN [81] or outdoor scenarios [82], remain unexplored. *iii) Environmental*
 1252 *Coverage*. Our approach is primarily validated in structured indoor layouts. Future studies should
 1253 examine its robustness in more cluttered, unstructured, or cross-domain environments. *iv) Predictive*
 1254 *or Active Perception*. Our framework currently estimates perceptual uncertainty based solely
 1255 on the available viewpoint, without actively acquiring additional evidence. Incorporating predictive
 1256 view synthesis, such as world-model based future observation forecasting [16], or integrating active
 1257 perception mechanisms [83] may allow the agent to select more informative viewpoints and thereby
 1258 mitigate perceptual ambiguity. Exploring such predictive and action-guided perception strategies
 1259 represents a promising direction for future research.

1260 **G.2 TOWARD REAL-WORLD DEPLOYMENT**
1261

1262 Although our experiments are conducted in simulation, transferring the proposed framework to real
 1263 robots is an important direction. We outline several practical considerations and discuss how our
 1264 design can be extended to address them.

1265 **Sensor noise and uncertainty degradation.** To assess robustness to imperfect sensing, we inject
 1266 10–30% Gaussian noise into RGB observations and re-evaluate the agent on R2R val unseen
 1267 split in Table. 12. The performance remains stable under these perturbations, suggesting that the
 1268 uncertainty estimates remain stable under moderate sensor noise.

1269 **Dynamic objects and time-varying geometry.** Real environments often contain moving objects
 1270 and non-static geometry. Our Semantic Gaussian Map can be coupled with dynamic 3D Gaussian
 1271 Splatting pipelines [84, 85], which continuously update Gaussians as the scene changes. In such a
 1272 setup, both the scene representation and its associated uncertainties are updated online, enabling the
 1273 agent to react to newly introduced ambiguity.

1274 **Actuation errors and control dynamics.** Actuation errors affect the executed robot pose rather
 1275 than the uncertainty estimation itself. For real-world deployment, our 3D Value Map can be in-
 1276 tegrated with standard closed-loop control and localization modules (*e.g.*, visual odometry [86] or
 1277 SLAM [80]), so that pose uncertainty and perceptual uncertainty are jointly considered when plan-
 1278 ning reliable trajectories.

1279 **G.3 SOCIAL IMPACT**
1280

1281 This work introduces an uncertainty-aware framework for Vision–Language Navigation. By ex-
 1282 plicitly modeling geometric, semantic, and appearance uncertainties, the agent learns to interpret
 1283 environments not only in terms of structure and semantics but also in terms of reliability. This
 1284 design strengthens decision-making and improves navigation performance across multiple bench-
 1285 marks. Beyond quantitative gains, the framework highlights the importance of uncertainty modeling
 1286 for embodied AI, suggesting that safer, more interpretable, and reliability-aware navigation systems
 1287 can be developed for broader real-world applications. We hope that this perspective will inspire
 1288 future research on integrating uncertainty into embodied reasoning and planning.

1289 **G.4 TERMS OF USE, PRIVACY, AND LICENSE**
1290

1291 Matterport3D [67], R2R [1], RxR [19], and REVERIE [20] are available for non-commercial re-
 1292 search purposes.