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ABSTRACT

Vision-Language Navigation (VLN) requires an agent to navigate 3D environ-
ments following natural language instructions. During navigation, existing agents
commonly encounter perceptual uncertainty, such as insufficient evidence for re-
liable grounding or ambiguity in interpreting spatial cues, yet they typically ig-
nore such information when predicting actions. In this work, we explicitly model
three forms of perceptual uncertainty (i.e., geometric, semantic, and appearance
uncertainty) and integrate them into the agent’s observation space to enable in-
formed decision-making. Concretely, our agent first constructs a Semantic Gaus-
sian Map (SGM), composed of differentiable 3D Gaussian primitives initialized
from panoramic observations, that encodes both the geometric structure and se-
mantic content of the environment. On top of SGM, geometric uncertainty is es-
timated through variational perturbations of Gaussian position and scale to assess
structural reliability; semantic uncertainty is captured by perturbing Gaussian se-
mantic attributes to reveal ambiguous interpretations; and appearance uncertainty
is characterized by Fisher Information, which measures the sensitivity of rendered
observations to Gaussian-level variations. These uncertainties are incorporated
into SGM, extending it into a unified 3D Value Map, which grounds them as af-
fordances and constraints that support reliable navigation. Comprehensive evalu-
ations across multiple VLN benchmarks (i.e., R2R, RxR, REVERIE) demonstrate
the effectiveness of our agent. The code will be released.

1 INTRODUCTION

Vision-Language Navigation (VLN) requires embodied agents to navigate diverse 3D environments
following natural language instructions [1]. To achieve robust performance, agents must combine
accurate spatial perception with reliable decision-making strategies [2].

Early agents adopted sequence-to-sequence frameworks [1, 3, 4], directly mapping language and vi-
sual observations into actions. Later works introduced map-based paradigms that explicitly encoded
spatial connectivity via topological graphs [5, 6], incorporated semantic information for object-level
reasoning [7, 8], and leveraged grid-based [7, 9] or volumetric voxel-based representations [10] to
capture 3D structure. For policy learning, agents evolved from pure imitation [11, 12] to hybrid ap-
proaches that combine imitation and reinforcement with tailored rewards [4, 13, 14]. More recently,
several agents have employed world models [15–18] to perform look-ahead planning. Despite these
advances, existing agents typically ignore uncertainty in perception when making decisions. Their
training recipes discourage expressing uncertainty or recognizing unreliable situations, instead in-
centivizing them to predict actions regardless of confidence [10]. For instance, as illustrated in Fig. 1

, agents may confuse visually similar doors, especially when the interior cues behind them provide
insufficient evidence, leading to unreliable grounding of the correct target. In addition, Fig. 1 il-
lustrates how occlusions mask critical spatial information, introducing ambiguity in assessing path
traversability. Previous agents often fail under such conditions, whereas uncertainty offers valuable
cues about the reliability of perception and the feasibility of actions [6, 9, 10].

In light of the foregoing discussions, this work explicitly models geometric, semantic, and appear-
ance uncertainty in perception and consolidates them into a unified 3D Value Map for reliable navi-
gation. First, our agent constructs a Semantic Gaussian Map (SGM) that represents the environment
as a collection of differentiable 3D Gaussian primitives. Each primitive is initialized from sparse
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While the visual evidence is insufficient, 
uncertainty favors the left door.

Both doors 
look the 
same! I 
can't tell 
which one is 
the target.

High uncertainty in the distance;
safer to detour right.

There’s an occlusion ahead; not 
sure the path is safe to traverse.

Our agentOur agent Our agentOur agent

Previous agentsPrevious agents

Previous agentsPrevious agents

Figure 1: Motivation. Previous VLN agents typically ignore perceptual uncertainty when making
decisions. As a result, they often confuse visually similar structures (e.g., multiple doors) due to lim-
ited interior evidence ( ) and struggle when occlusions obscure spatial cues, leaving traversability
ambiguous and causing unsafe or suboptimal paths ( ). In contrast, our agent explicitly models and
leverages such uncertainty for more reliable navigation. Brighter colors indicate higher uncertainty.

pseudo-lidar point clouds obtained from multi-view RGB-D observations and further enriched with
semantic properties based on their object instance or stuff membership in the 3D scene. Second,
building on SGM, the agent estimates three forms of perceptual uncertainty that are inherent to
its observations. Geometric uncertainty is modeled through variational inference, which approxi-
mates the posterior distribution over position and scale perturbations of Gaussians, thereby assessing
structural reliability and enabling the pruning of unreliable primitives. In the same manner, semantic
uncertainty is estimated by perturbing the semantic attributes of Gaussians, which reveals ambigu-
ous interpretations and allows the agent to down-weight unreliable semantic cues during decision-
making. Appearance uncertainty reflects the sensitivity of rendered observations to Gaussian-level
perturbations, quantified by Fisher Information as the reconstruction loss surface curvature around
each Gaussian. Third, our agent composes a unified 3D Value Map by transforming these uncer-
tainties into affordances and constraints within its perceptual space, thereby guiding informed and
more reliable trajectories.

Our agent is evaluated on three VLN benchmarks, i.e., R2R [1], RxR [19], and REVERIE [20] (§4.2,
§4.3). It improves SR by 2% and SPL by 1% on R2R, yields 1.1% and 1.7% increases in SR and
nDTW on RxR with comparable SDTW, and achieves 2.94% and 2.57% higher RGS and RGSPL
scores on REVERIE. Extensive ablation studies confirm the contribution of each component (§4.4).

2 RELATED WORK

Vision-Language Navigation (VLN). Early VLN agents adopted sequence-to-sequence frame-
works that directly map instructions and multi-view observations to actions [1, 3, 4]. Yet such mod-
els struggle with long-horizon reasoning and robustness in unseen environments, which has spurred
a variety of extensions. As a primary step, subsequent agents introduced explicit memory mecha-
nisms, such as topological graphs [6, 21] or episodic memory buffers [22–24], to better retain and
recall spatial and semantic cues over extended trajectories. Later works further advanced the agent
with transformer-based architectures that jointly encode instruction and observation [17, 25]. More-
over, extensive efforts are devoted to mitigating data limitations through instruction generation [26–
30] and synthetic data creation [18]. Several works enable the agent to explore steps forward by
anticipating future observations before decision-making [16, 17, 31]. To improve policy robustness,
the combination of imitation learning [32] and reinforcement learning [33] has been widely adopted
in VLN agents [13]. Other works aim to reduce computational costs while maintaining VLN perfor-
mance by designing lightweight cross-modal or selective memorization architectures [34]. Recently,
benefiting from the quality and speed of 3D Gaussian Splatting [35], a growing line of work has
adopted it as the agent’s scene representation, demonstrating strong performance [36].

In parallel, a few recent studies begin to explore uncertainty-related signals in VLN. For instance,
VLN-Copilot [37] estimates decision-level uncertainty from the action distribution to decide when
to request external large language model assistance. In contrast, our work focuses on perception-
level uncertainty that arises from the agent’s observations and models geometric, semantic, and
appearance reliability to support informed decision-making.
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Uncertainty Estimation in Deep Learning. Uncertainty estimation has long been recognized
as a central challenge in deep learning, with a variety of approaches proposed across vision and
robotics [38]. A prominent line of work follows the Bayesian paradigm, which characterizes un-
certainty through predictive distributions over model parameters, often approximated via variational
inference, Laplace approximation, or sampling methods [39–41]. Another common strategy relies
on ensembling, where multiple models trained with different initializations, data subsets, or hyperpa-
rameters are aggregated to approximate appearance uncertainty [42–46]. In parallel, sampling-based
techniques like Hamiltonian Monte Carlo provide asymptotic guarantees but incur prohibitive costs
for high-dimensional models [47]. To alleviate this computational burden, several works leverage
regularization-based approximations, such as Monte Carlo Dropout [48] and its variants [49], which
approximate Bayesian inference with minimal changes to standard training. Recent efforts exploit
second-order information, where the Hessian or Fisher Information of the loss surface is approxi-
mated to assess how sensitive predictions are to parameter variations [50–52].

However, most existing approaches rely on implicit latent representations, where globally entangled
features obscure uncertainty estimation and hinder region-specific reasoning. By contrast, the ex-
plicit structure of 3D Gaussian Splatting [35] provides a natural and interpretable way to associate
physically meaningful attributes (i.e., position, scale, semantics) with each primitive. While re-
cent studies have explored this explicit structure for estimating uncertainty, they largely concentrate
on novel view synthesis and image reconstruction [53, 54]. In contrast, our agent leverages these
physically grounded primitives to construct a unified 3D Value Map, which explicitly quantifies
uncertainty and encodes it as affordances and constraints to guide navigation.

3 METHOD

Problem Formulation. In VLN, an agent is placed in a 3D scene and required to reach a target
location [1] (or identify a target object [20]) following instructions X . At each step t, the agent
receives a panoramic observation composed of multiple RGB views It = {It,k ∈ RH×W×3}Kk=1

and associated depth maps Dt = {Dt,k ∈ RH×W }Kk=1. Based on these observations, the agent
learns a navigation policy π(at|X , It,Dt) that predicts actions at ∈ At, which includes navigable
neighbor nodes, previously observed nodes accessible via backtracking, and a [STOP] action.

Overview (Fig. 2). At each step, our agent constructs a Semantic Gaussian Map (SGM) from
multi-view RGB-D observations, where primitives are enriched with semantic properties (§3.1).
Building on SGM, the agent models geometric, semantic, and appearance uncertainty to capture the
perceptual unreliability in VLN(§3.2). These uncertainties are then integrated into a 3D Value Map,
encoding affordances and constraints in the agent’s perceptual space for decision-making (§3.3).

3.1 SEMANTIC GAUSSIAN MAP

At each waypoint, the agent transforms multi-view RGB-D observations into a collection of differ-
entiable 3D Gaussian primitives, each encoding both geometric and semantic properties. Through
differentiable rendering, these primitives are jointly optimized to form a Semantic Gaussian Map
(SGM), which serves as the foundational substrate for subsequent uncertainty modeling.

Initialization. Given multi-view RGB-D observations Ot = {It,Dt} at step t, the agent first
generates a sparse pseudo-lidar point cloud via camera-to-world transformation. Each pixel (u, v)
in It,k is back-projected into the 3D coordinates (x, y, z) using its depth Dt,k(u, v) and camera
intrinsics (cu, cv, fx, fy), where (cu, cv) are the principal point and (fx, fy) are the focal lengths:

z = Dt,k(u, v), x =
(u− cu)z

fx
, y =

(v − cv)z

fy
. (1)

These 3D points are then transformed to world coordinates using the camera pose, yielding a sparse
point cloud Pt. Each point initializes a Gaussian primitive gi, parameterized by position (mean)
µi ∈ R3, covariance matrix Σi ∈ R3×3, opacity αi ∈ [0, 1], spherical harmonics coefficients for
color ci ∈ R3, and semantic property si ∈ R3 (t is omitted for simplicity). In detail, Σ is factorized
into a scale matrix E and a rotation matrix R as Σ = REE⊤R⊤, where E = diag(ex, ey, ez)
and R is constructed from a unit quaternion r ∈ R4. For s, we apply SAM2 [55] to segment
the panoramic observation I into spatially coherent regions {mk}Kk=1 and extract their CLIP [56]
embeddings, which are then attached to the corresponding Gaussians as new semantic attributes.
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Geometric Uncertainty Semantic Uncertainty Appearance Uncertainty

.........

.........

Gaussian Representation

Text Embedding

Semantic Gaussian MapSemantic Gaussian Map 3D Value Map3D Value Map

Instruction: Turn left and go through 
the door in front of the bed to enter 
the bathroom.

MLT

O = {I,D}

§3.1 §3.3

Ug Us Ua

F g

X

Eq. 1

Eqs. 6, 7, 9

Eqs. 11, 12

Figure 2: Pipeline overview. At each step, our agent constructs a Semantic Gaussian Map (§3.1)
from its panoramic observation O = {I,D}. On top of this map, it estimates geometric Ug , seman-
tic Us, and appearance Ua uncertainties (§3.2) and embeds them back to obtain a unified 3D Value
Map (§3.3) that grounds affordances and constraints. Finally, Gaussian representations F g derived
from the value map are concatenated with the instruction embedding X and fed into a multi-layer
transformer FMLT to predict the next action over candidate waypoints (§3.3).

Construction. SGM is progressively constructed by optimizing Gaussian primitives through dif-
ferentiable rendering, which enforces consistency with the current observation. Specifically, the
rendered color Î at pixel (u, v) is obtained by α-blending depth-ordered Gaussians:

Î(u, v) =
∑

i
ciα

′
i

∏i−1

j=1
(1− α′

j) ∈ R3, α′
i = αi · exp

(
− 1

2
(x′ − µ′

i)
⊤Σ′−1

i (x′ − µ′
i)
)
∈ R+, (2)

where x′ = (u, v) and µ′
i is the Gaussian center in the image plane, and Σ′

i is the 2D covariance.

Following the same principle, the rendered depth D̂(u, v) and semantic Ŝ(u, v) are computed as:

D̂(u, v) =
∑

i
ziα

′
i

∏i−1

j=1
(1− α′

j) ∈ R+, Ŝ(u, v) =
∑

i
siα

′
i

∏i−1

j=1
(1− α′

j) ∈ R3. (3)

Furthermore, Gaussians with small scale often capture irrelevant surface noise, while low-opacity
primitives represent negligible background clutter. These Gaussians contribute minimally to the
agent’s spatial comprehension and can potentially introduce misleading cues for its decision-making.
Therefore, after several rounds of differentiable rendering optimization, we further refine SGM by
retaining only Gaussians subject to the constraints ∥ei∥2 > τe ∧αi > τα. Consequently, the refined
SGM serves as a foundational substrate for subsequent uncertainty modeling and estimation.

3.2 UNCERTAINTY ESTIMATION

SGM provides an explicit 3D map enriched with spatial geometry and semantic context. On top of
this map, three forms of perceptual uncertainty are modeled. Geometric uncertainty assesses struc-
tural reliability through perturbations of Gaussian position and scale. Semantic uncertainty exposes
ambiguous interpretations at the object and region levels by perturbing semantic attributes. Appear-
ance uncertainty characterizes inherent visual ambiguity in observations, arising from occlusions,
texture inconsistencies, and other uncontrollable factors.

Geometric Uncertainty. To quantify spatial reliability of SGM, we model position and scale pa-
rameters of each Gaussian as random variables with learnable perturbations χµ

i ∈ R3 and χe
i ∈ R3:

µ′
i = µi + χµ

i , e′
i = ei + χe

i , (4)

where µ′
i and e′i denote perturbed spatial parameters that encode alternative structural hypotheses of

gi. The posterior distribution p(χ | O) over perturbations χ = {χµ
i ,χ

e
i}i conditioned on observa-

tions O is generally intractable, as it involves integration over a high-dimensional continuous space.
To approximate it, like [53], we introduce variational distributions qϕ(χ) = {qϕµ

i
(χµ

i ), qϕe
i
(χe

i )}i
and optimize them by minimizing the Kullback–Leibler (KL) divergence to true posterior p(χ|O):

min
ϕ

dKL(qϕ(χ) ∥ p(χ|O)) = log p(O)−
(
Eqϕ(χ)[log p(O|χ)]− dKL(qϕ(χ)∥p(χ))︸ ︷︷ ︸

Evidence Lower Bound (ELBO)

)
.

(5)

Since log p(O) is constant with respect to χ, minimizing KL divergence is equivalent to maximizing
ELBO, which serves as the training objective in learning qϕ(χ). In this process, the prior p(χ) is
defined as a zero-mean Gaussian N (0, δ2I) for position perturbations χµ, and a scale-dependent
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uniform distribution U(−ηe, ηe) for scale perturbations χe, where δ controls the standard deviation
of position variances and η determines the perturbation range relative to the original scale e.

Based on the learned variational distribution qϕ(χ), the geometric uncertainty Ug
i of each Gaussian

gi is estimated by the variability of its perturbations. In particular, we extract the standard deviations
of position and scale perturbations from qϕ and aggregate them into a scalar score as:

Ug
i = ∥F std(qϕµ

i
(χµ

i ))∥2 + ∥F std(qϕe
i
(χe

i ))∥2 ∈ R+, (6)

where F std(·) is the operation that extracts the standard deviation of the variational distribution.

Semantic Uncertainty. In addition to geometric unreliability, agents also face semantic ambigu-
ity, where object- and region-level understanding may be unstable. To capture this, we perturb the
semantic attribute si of each Gaussian with a learnable offset χs

i ∈ R3, while keeping geometric pa-
rameters fixed to preserve spatial consistency. Following the same variational inference framework,
we learn a posterior qϕs(χs) by maximizing the corresponding ELBO, regularized by a zero-mean
Gaussian prior p(χs) = N (0, ϵ2I), where ϵ controls the perturbation magnitude. The semantic
uncertainty Us

i of Gaussian gi is defined as the variability of χs
i under the posterior qϕs(χs):

Us
i = ∥F std(qϕs(χs

i ))∥2 ∈ R+. (7)

Appearance Uncertainty. To further capture visual instability, we define appearance uncertainty as
the sensitivity of the reconstruction loss Lr = 1

2∥Î − I∥22 to variations in SGM. In principle, such
sensitivity is characterized by the Hessian matrix ∇2

GLr [51, 52]. Because computing this matrix
directly is infeasible, like [50, 54], we adopt the Fisher Information as a tractable approximation:

∇2
GLr = ∇G Î ∇G Î⊤︸ ︷︷ ︸

Fisher Information

+(Î − I)∇2
G Î︸ ︷︷ ︸

Residual Term

∈ R(|G|·dg)×(|G|·dg), (8)

where ∇G Î denotes the gradient of the rendered observations with respect to all Gaussian parameters
in G, ∇2

G Î represents their second-order derivatives, |G| is the number of Gaussians in SGM, and dg

is the feature dimension of each Gaussian. In a refined SGM, where (Î − I) in the Residual Term
approaches zero, the Hessian reduces to the Fisher Information, which serves as a tractable proxy
of the sensitivity. High Fisher Information reveals that even minor Gaussian shifts can induce large
variations in the perceptual space, destabilizing both scene understanding and action predictions.

While Fisher Information avoids computing costly second-order derivatives, it still has the same di-
mension as the Hessian (i.e., (|G| · dg)× (|G| · dg)), which remains computationally expensive. To
reduce this cost, we group parameters associated with each Gaussian gi ∈ Rdg

, yielding a diagonal
block of size Rdg×dg

within the Fisher Information matrix. Each block isolates the sensitivity of gi,
quantifying the impact of its perturbations on the reconstruction loss. Based on this, the appearance
uncertainty Ua

i is defined as the log-determinant of the corresponding Fisher Information block:

Ua
i = log

∣∣∇gi Î ∇gi Î
⊤∣∣ ∈ R+, (9)

where | · | denotes the matrix determinant. The log-determinant quantifies the volume of the uncer-
tainty ellipsoid in parameter space, yielding a scalar measure of the sensitivity for each Gaussian.

3.3 3D VALUE MAP

To operationalize the estimated uncertainties for navigation, we integrate them into a 3D Value
Map. In traditional 3D scene reasoning and robotics, a value map represents a spatial field in which
each element encodes task-relevant signals that guide downstream decisions, such as affordance
fields [57], cost maps [58], and traversability [59] or reliability maps [60]. Following this notion,
our 3D Value Map instantiates a value field on top of SGM, where each Gaussian is augmented with
geometric, semantic, and appearance uncertainty estimates. These uncertainties provide unified
reliability cues, which can be naturally interpreted as affordances and constraints for navigation.

Construction. By attaching Ug
i , Us

i , and Ua
i to each Gaussian gi, we extend SGM into a 3D Value

Map. For ease of notation, we reuse gi to denote the Gaussian representation of this value map:

gi = {µi, ei, ri, αi, ci, si, U
g
i , U

s
i , U

a
i } ∈ R20. (10)
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This augmented representation preserves geometric and semantic information while further incor-
porating complementary uncertainty measures. Consequently, the 3D Value Map characterizes both
the structural and semantic reliability of the environment, grounding affordances and constraints
into the agent’s observation space to support reliable decision-making.

Action Prediction. Given the instruction embedding X ∈ R768, each gi is nonlinearly projected
into a feature vector F gi ∈ R768. This projection embeds all Gaussian attributes, including ge-
ometry, semantics, and uncertainty, into a unified feature space. In this space, the agent maintains
a direct correspondence between local geometric structure and its associated uncertainty. F gi are
then aggregated into a global representation. The aggregated representation F g preserves the fine-
grained coupling between geometry and uncertainty, enabling the agent to make decisions that are
directly informed by such structure-aware uncertainty. Consequently, F g is concatenated with X
and processed by a multi-layer transformer FMLT [6] to produce candidate node probabilities p:

p = Softmax
(
FMLT([F g,X]

))
∈ [0, 1]|V|, (11)

where |V| is the number of candidate waypoints and [·, ·] denotes concatenation. These scores are
then aligned with the action space A through nearest-neighbor mapping N :

p̃ = N (p,V) ∈ [0, 1]|V|, (12)

where N denotes the mapping of node-level scores to executable actions via nearest-neighbor
search. This fusion enables the agent to jointly reason about geometric structure and perceptual
confidence, thereby promoting reliable and uncertainty-aware decision-making.

3.4 LOSS FUNCTION

SGM Loss. To supervise SGM construction, we apply a pixel-wise rendering loss between the
rendered outputs and ground-truth observations. Specifically, we combine L1 loss and Structural
Similarity [61] loss LSSIM for color consistency, and apply L1 for depth and semantic alignment:

Lrgb =
∥∥Î − I

∥∥
1
+ LSSIM(Î, I), Ldepth =

∥∥D̂ − D
∥∥
1
, Lsem =

∥∥Ŝ − S
∥∥
1
. (13)

where I,D,S denote the ground-truth color, depth, and semantic features, respectively, while
Î, D̂, Ŝ are the corresponding rendered outputs from current SGM.

Navigation Loss. Following the conventional procedure [6, 10, 21], our agent is optimized with a
two-stage training scheme: pretraining with auxiliary objectives such as masked language model-
ing and single-step action prediction to strengthen multimodal representations, and finetuning with
behavior cloning and pseudo-expert guidance to refine policy learning. (See details in Appendix.)

3.5 IMPLEMENTATION DETAILS

Topological Memory. To support long-horizon reasoning, similar to [6, 10, 21], our agent maintains
a dynamic topological memory that records both visited and navigable nodes as exploration unfolds.
Each node is associated with multimodal features, including the 2D panoramic embeddings and the
3D Value Map representations, while edges encode traversability between locations. This memory
forms a graph structure that evolves with the trajectory, enabling the agent to revisit prior viewpoints
or evaluate alternative routes when needed. Regions that are ambiguous at the previous node may
become more certain when viewed from a more informative location, while consistently uncertain
areas remain marked as unreliable. By jointly storing 2D and 3D information in a spatially coherent
manner, the memory provides global context that strengthens consistency and stabilizes decision-
making in diverse environments. (See more details in Appendix.)

Network Pretraining. For R2R [1] and RxR [19], we adopt Masked Language Modeling
(MLM) [62, 63] and Single-step Action Prediction (SAP) [14, 63] as auxiliary objectives. For
REVERIE [20], we additionally employ Object Grounding (OG) [6, 64] to enhance object-level rea-
soning. Pretraining is conducted for 100k iterations with a batch size of 64, optimized by Adam [65]
with a learning rate of 1e-4. At each mini-batch, only one task is sampled with equal probability.

Network Finetuning. Following standard protocol [6], we finetune the pretrained model using
DAgger [66]. For REVERIE [20], an additional Object Grounding (OG) loss is incorporated with a

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Table 1: Quantitative results on REVERIE [20]. ‘−’: unavailable statistics. See §4.2 for more details.

REVERIE [20]
val unseen test unseenMethod

TL↓ OSR↑ SR↑ SPL↑ RGS↑ RGSPL↑ TL↓ OSR↑ SR↑ SPL↑ RGS↑ RGSPL↑
RCM [13] 11.98 14.23 9.29 6.97 4.89 3.89 10.60 11.68 7.84 6.67 3.67 3.14

FAST-M [20] 45.28 28.20 14.40 7.19 7.84 4.67 39.05 30.63 19.88 11.61 11.28 6.08
SIA [64] 41.53 44.67 31.53 16.28 22.41 11.56 48.61 44.56 30.80 14.85 19.02 9.20

RecBERT [14] 16.78 35.02 30.67 24.90 18.77 15.27 15.86 32.91 29.61 23.99 16.50 13.51
Airbert [68] 18.71 34.51 27.89 21.88 18.23 14.18 17.91 34.20 30.28 23.61 16.83 13.28
HAMT [63] 14.08 36.84 32.95 30.20 18.92 17.28 13.62 33.41 30.40 26.67 14.88 13.08
HOP [69] 16.46 36.24 31.78 26.11 18.85 15.73 16.38 33.06 30.17 24.34 17.69 14.34
DUET [6] 22.11 51.07 46.98 33.73 32.15 23.03 21.30 56.91 52.51 36.06 31.88 22.06

DUET-Imagine [31] − − 48.28 33.76 32.97 23.25 − − − − − −
COSMO [34] − 56.09 50.81 35.93 − − − 59.33 52.53 36.12 − −
GridMM [7] 23.20 57.48 51.37 36.47 34.57 24.56 19.97 59.55 53.13 36.60 34.87 23.45
LANA [70] 23.18 52.97 48.31 33.86 32.86 22.77 18.83 57.20 51.72 36.45 32.95 22.85
BEVBert [9] − 56.40 51.78 36.37 34.71 24.44 − 57.26 52.81 36.41 32.06 22.09

VER [10] 23.03 61.09 55.98 39.66 33.71 23.70 24.74 62.22 56.82 38.76 33.88 23.19
Ours 22.38±0.14 61.98±0.21 56.37±0.19 37.64±0.24 37.65±0.16 27.01±0.20 20.14±0.11 60.12±0.23 55.90±0.20 38.77±0.26 35.68±0.17 25.50±0.18

weight of 0.20. Finetuning is performed for 25k iterations with a batch size of 8 and a learning rate
of 1e-5. The best checkpoint is chosen based on performance of val unseen split.

Testing. At each navigable viewpoint, our agent constructs a SGM from panoramic observations
and extends it into a 3D Value Map for reliable action prediction. This process terminates once the
agent reaches the target location or decides to execute the [STOP] action. (See details in Appendix.)

Runtime Analysis. The main overhead arises from constructing the 3D Value Map, particularly
semantic attribute extraction in SGM and uncertainty estimation. For training, we mitigate this
cost through offline pretraining. During inference, RGB-D observations are resized to 224 × 224,
and SAM2 [55] can be flexibly replaced by lightweight variants to trade off segmentation quality
against runtime efficiency. Once the 3D Value Map is established, action prediction incurs negligible
additional cost compared to existing VLN agents [6]. (See more details in Appendix.)

Reproducibility. Our model is implemented in PyTorch. To reveal full details of our method, our
codes will be released. (See more details in Appendix.)

Use of Large Language Models We did not use any large language models in this work.

4 EXPERIMENT

4.1 EXPERIMENTAL SETUP

Datasets. We evaluate our agent on three benchmarks, each posing distinct challenges for VLN.
All datasets are built upon the Matterport3D simulator [67], and are split into train, val-seen,
val-unseen, and test sets according to scenes. REVERIE [20] provides 21,702 high-level
instructions paired with 4,140 remote target objects. The agent must navigate to the described region
and precisely ground the referred object. R2R [1] contains 7,189 shortest-path trajectories from
90 indoor scenes with 22K instructions, where the agent is required to follow detailed step-by-step
directions. RxR [19] offers 126K multilingual instructions (i.e., English, Hindi, Telugu) over 16,522
trajectories, requiring the agent to cope with long-horizon navigation across diverse languages.
Evaluation Metrics. We comprehensively evaluate agents using standard metrics [6] across dif-
ferent benchmarks. For R2R [1], we report Success Rate (SR), Trajectory Length (TL), Navigation
Error (NE), Oracle Success Rate (OSR), and Success weighted by Path Length (SPL). For RxR [19],
we additionally adopt Normalized Dynamic Time Warping (nDTW) and Success weighted nDTW
(SDTW) to assess trajectory fidelity and path alignment. For REVERIE [20], evaluation further
considers Remote Grounding Success (RGS) and RGS weighted by Path Length (RGSPL), which
measure whether the agent successfully localizes the target object at the correct location.

4.2 QUANTITATIVE COMPARISON RESULT

Our results are averaged over five runs on three datasets, with standard deviations reported.

Performance on REVERIE [20]. Table 1 reports the results on REVERIE, which evaluates the
agent’s ability to ground remote target objects given high-level instructions. On the val unseen
split, our agent outperforms the best reported results (i.e., BEVBert [9]) by a significant margin
in terms of RGS (37.65% vs 34.71%) and RGSPL (27.01% vs 24.44%). These improvements of
3.94% in RGS and 3.31% in RGSPL clearly demonstrate the effectiveness of our 3D Value Map for
accurate navigation and precise object grounding.
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(a) (b)
Figure 3: Qualitative results on R2R [1]. (a) Under the instruction “straight towards the windows”,
VER [10] misinterprets the layout and stops early, whereas our agent correctly follows the path and
reaches the landmark. (b) Our agent bypasses the obstacle and enters the designated region, while
VER halts at the “table” without completing the task. See §4.3 for more details.

4

21

1

23

4

Walk down the red-carpeted staircase, continue straight down the hallway, and stop at the room with the large table.

33

Figure 4: A representative visual result on R2R [1]. At each step, we show the constructed SGM,
the rendered observations, and the aggregated uncertainty map. While SGM captures the geometry
and semantic layout, the uncertainty emphasizes ambiguous regions such as reflective surfaces and
repetitive structures, offering complementary cues for reliable grounding. See §4.3 for more details.

Table 2: Quantitative results on R2R [1] val unseen.
‘−’: unavailable statistics. See §4.2 for more details.

R2R [1]
val unseen test unseenMethod

TL↓ NE↓ SR↑ SPL↑ TL↓ NE↓ SR↑ SPL↑
Seq2Seq [1] 8.39 7.81 22 − 8.13 7.85 20 18
HAMT [63] 11.46 2.29 66 61 12.27 3.93 65 60
HOP [69] 12.27 3.80 64 57 12.68 3.83 64 59
DUET [6] 13.94 3.31 72 60 14.73 3.65 69 59

DUET-Imagine [31] 14.35 3.19 72 60 15.35 3.52 71 60
COSMO [34] − 3.15 73 61 − 3.43 71 58
LANA [70] 12.0 − 68 62 12.6 − 65 60
GridMM [7] 13.27 2.83 75 64 14.43 3.35 73 62
BEVBert [9] 14.55 2.81 75 64 − 3.13 73 62

VER [10] 14.83 2.80 76 65 15.23 2.74 76 66
Ours 14.79±0.12 2.12±0.15 78±0.13 66±0.17 14.68±0.14 3.17±0.06 76±0.21 66±0.29

Performance on R2R [1]. As shown in
Table 2, our agent consistently surpasses
recent state-of-the-art methods on R2R.
On the val unseen split, it achieves
an SR of 78% compared to 76% from
VER [10] and improves SPL from 65% to
66%, corresponding to gains of 2% in SR
and 1% in SPL. These results clearly high-
light the ability of our agent to follow de-
tailed instructions in unseen environments.

Table 3: Quantitative results on RxR [19] val
unseen. ‘−’: unavailable statistics. See §4.2.

Method NE↓ SR↑ nDTW↑ SDTW↑
LSTM [19] 10.9 22.8 38.9 18.2

EnvDrop+ [71] – 42.6 55.7 –
HAMT [63] – 56.5 63.1 48.3
EnvEdit [72] – 62.8 68.5 54.6
BEVBert [9] 4.6 64.1 63.9 52.6

Ours 4.2±0.08 65.2±0.22 65.6±0.19 53.5±0.17

Performance on RxR [19]. Table 3 presents
the results on RxR, which features longer paths
and multilingual instructions. Our agent attains
higher SR and nDTW (65.2% vs 64.1%, 65.6%
vs 63.9%) and comparable SDTW (53.5% vs
52.6%) on theval unseensplit. Such improve-
ments further demonstrate the benefit of the un-
certainty information in long-horizon navigation.

4.3 QUALITATIVE COMPARISON RESULT

Case Studies. We compare our agent with VER [10] on the R2R val unseen split. In Fig. 3(a),
with multiple visually similar “windows”, VER misgrounds the target and deviates early, while
our agent resolves the ambiguity and follows the correct landmarks. In Fig. 3(b), the instruction
requires bypassing the “table” and reaching “the corner near the couches”. VER collides with the
table and stops, whereas our agent detours safely and completes the instruction. These cases show
how uncertainty helps disambiguate confounding structures and encode traversability constraints.
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Observation SGM Rendered Obs. Geometric Unc. Semantic Unc. Appearance Unc.

Figure 5: Visualization of diverse perceptual forms. From left to right: current observation, SGM,
rendered observation, geometric uncertainty map, semantic uncertainty map, appearance uncertainty
map. Brighter colors indicate higher uncertainty. See §4.3 for more details.

Moreover, Fig. 4 presents a step-wise visualization of the agent’s trajectory. At each step, we show
the constructed SGM, the rendered observations, and the aggregated uncertainty map (summing ge-
ometric, semantic, and appearance components). SGM captures the geometry and semantic layout,
while the uncertainty highlights visually ambiguous regions such as reflective surfaces, chandeliers,
and repetitive structures. These complementary views demonstrate how our agent grounds the in-
struction throughout navigation and show that uncertainty provides additional information.

Visualization. Fig. 5 illustrates our diverse perceptual forms. i) SGM preserves detailed geometric
structures while maintaining high-fidelity rendering of the scene. ii) Geometric uncertainty reveals
structural reliability, particularly highlighting uncertain boundaries and irregular surfaces. iii) Se-
mantic uncertainty exposes ambiguity in object- and region-level interpretations, reflecting unsta-
ble semantic cues. iv) Appearance uncertainty highlights regions where rendered observations are
highly sensitive to visual variations, e.g., texture complexity, occlusions, or lighting variations.

4.4 DIAGNOSTIC EXPERIMENT

For thorough examination, we conduct a series of ablative studies on the val unseen split of
R2R [1] and REVERIE [20].

Key Component Analysis. We first study the efficacy of the core components of our framework, i.e.,
SGM (§3.1) and 3D Value Map (3DVM, §3.3). In Table 4, row #1 gives the performance of our base
agent DUET [6]. For row #2, the scores are obtained by using SGM as the 3D scene representation
without uncertainty values. In contrast, row #3 leverages only the uncertainty information (i.e.,

Table 4: Ablation studies on val unseen split of
R2R [1] and REVERIE [20]. See §4.4 for more details.

Components R2R [1] REVERIE [20]# SGM 3DVM SR↑ SPL↑ SR↑ RGS↑ RGSPL↑
1 – – 72.22 60.41 46.98 32.15 23.03
2 ✓ – 76.21 64.57 50.20 35.48 25.64
3 – ✓ 74.20 62.89 49.12 34.02 24.71
4 ✓ ✓ 78.32 66.47 53.37 37.65 27.01

Ug , Us, Ua) as the 3D scene representa-
tion, without the raw Gaussian parameters.
Row #4 reports the scores of our full frame-
work. i) Row #1 vs #2: SGM leads to no-
table performance improvements against the
baseline (e.g., 32.15% → 35.48% RGS on
REVERIE). This demonstrates that the agent
benefits from the geometric structure and semantic cues within SGM, achieving stronger navigation
performance. ii) Row #1 vs #3: the uncertainty information boosts the performance of the baseline
(e.g., 72.22%→ 74.20% SR on R2R), which indicates that perceptual uncertainty inherent in nav-
igation encodes informative cues that assist navigation decisions. iii) Row #2 vs #3: Explicit 3D
structure with contextual awareness provides a stronger foundation for navigation than uncertainty
alone (e.g., 35.48% vs 34.02% RGS on REVERIE). iv) Row #1 vs #4: Combining all contributions
results in the largest gain over baseline, which confirms the effectiveness of our overall design.

Table 5: Effectiveness of τe and τα on val unseen splits of
R2R [1] and REVERIE [20]. N |g| are Gaussian count within SGM.

Pruning R2R [1] REVERIE [20]#
τe τα

N |g| ↓ FPS↑ SR↑ SPL↑ SR↑ RGS↑ RGSPL↑
1 0.00 0.000 50,000 11.2 77.30 63.26 52.00 35.00 26.50
2 0.01 0.002 45,000 13.1 77.87 64.80 52.70 35.30 27.00
3 0.015 0.005 42,000 15.5 78.32 66.47 53.37 37.65 27.01
4 0.02 0.010 35,000 18.7 74.80 61.68 46.50 32.30 24.80

Analysis on SGM (§3.1). We in-
vestigate how the scale of SGM
(i.e., the number of Gaussians) af-
fects navigation performance. To
control SGM scale, we apply prun-
ing thresholds τe and τα to fil-
ter out Gaussians with small scale
(∥ei∥2 < τe) or low opacity (αi < τα), as these typically represent noise or irrelevant background
clutter. Table 5 shows that, i) Slightly removing low-contribution Gaussians improves action accu-
racy (Row #2). ii) Moderate additional pruning yields clear rendering speedups while maintaining
competitive accuracy (Row #3). iii) Aggressive removal markedly degrades performance (Row #4).
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Table 6: Effectiveness of Ug , Us, Ua on val unseen
of R2R [1] and REVERIE [20]. See §4.4 for more details.

Uncertainty R2R [1] REVERIE [20]#
Ug Us Ua SR↑ SPL↑ SR↑ RGS↑ RGSPL↑

1 – – – 76.21 64.57 50.20 35.48 25.64
2 ✓ ✓ – 77.05 65.12 51.82 36.96 26.11
3 – – ✓ 76.86 65.31 50.94 35.68 26.02
4 ✓ ✓ ✓ 78.32 66.47 53.37 37.65 27.01

Analysis on 3D Value Map (§3.3). In Ta-
ble 6, we investigate the contribution of dif-
ferent uncertainty types in our 3D Value Map.
Row #1 utilizes SGM as the 3D scene repre-
sentation. i) Row #1 vs (#2 or #3): Consistent
performance gains appear when incorporat-
ing any form of perceptual uncertainty, con-
firming that such signals provide useful guidance for navigation. ii) Row #2 vs #3: Geometric and
semantic uncertainty contribute richer navigational cues than appearance uncertainty, as the agent
benefits more from recognizing uncertain spatial structure or semantic interpretation than from sen-
sitivity in visual rendering. iii) Configuration with all uncertainties achieves the best performance,
highlighting their complementary roles.

5 CONCLUSION

This work presents a framework for Vision-Language Navigation that explicitly models geometric,
semantic, and appearance uncertainty on top of a Semantic Gaussian Map. By integrating these
uncertainties into a unified 3D Value Map, our agent grounds affordances and constraints into its
perceptual space and achieves more reliable decision-making. Experiments across R2R, RxR, and
REVERIE demonstrate consistent improvements over strong baselines, while qualitative analyses
further validate the effectiveness of our uncertainty-aware design.
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SUMMARY OF THE APPENDIX

This appendix contains additional details for the ICLR 2026 submission, titled Uncertainty-Aware
Gaussian Map for Vision-Language Navigation. The appendix is organized as follows:

• §A summarizes the notations used throughout the framework.
• §B presents the pseudo-code implementation.
• §C reports additional model details.
• §D gives more runtime analysis.
• §E covers additional experiments.
• §F offers a discussion of our uncertainties and failure cases.
• §G provides a discussion of the limitations and future, societal impact, terms of use, pri-

vacy, and license, and use of large language models.
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A LIST OF SYMBOLS.

Table 7 concisely lists the symbols, excluding unnecessary subscripts for clarity.
Notation Description Index

X Natural language instructions §3
It RGB images at step t §3.1; Eq. (2)&(3)&(4)&(13)
Dt Depth images at step t §3.1; Eq. (2)&(3)&(6)&(13)
Ot Multi-view RGB-D observations at step t §3.1
Pt Sparse point cloud from observations §3.1; Eq. (1)
At Predicted action at step t §3
µi Position (mean) of Gaussian primitive i §3.1
Σi Covariance matrix of Gaussian primitive i §3.1
αi Opacity of Gaussian primitive i §3.1; Eq. (2)&(3)&(4)
ci Color (spherical harmonics) of Gaussian primitive i §3.1; Eq. (2)
si Semantic property of Gaussian primitive i §3.1; Eq. (3)&(7)
Ei Scale matrix of Gaussian primitive i §3.1
Ri Rotation matrix of Gaussian primitive i §3.1
ri Unit quaternion for rotation of Gaussian primitive i §3.1
gi Gaussian primitive i representation §3.1; Eq. (2)&(3)&(4)
Î Rendered RGB image §3.1; Eq. (2)&(8)&(13)
D̂ Rendered depth map §3.1; Eq. (3)&(13)
F̂σ Rendered semantic feature §3.1; Eq. (3)&(13)
χµ

i Perturbation for position of Gaussian i §3.2; Eq. (4)
χe

i Perturbation for scale of Gaussian i §3.2; Eq. (4)
χs

i Perturbation for semantic of Gaussian i §3.2; Eq. (7)
qϕ(χ) Variational distribution for perturbations §3.2; Eq. (5)

qϕµ
i
(χµ

i ) Variational distribution for position perturbation of Gaussian i §3.2; Eq. (6)
qϕe

i
(χe

i ) Variational distribution for scale perturbation of Gaussian i §3.2; Eq. (6)
Ug
i Geometric uncertainty of Gaussian i §3.2; Eq. (6)

Us
i Semantic uncertainty of Gaussian i §3.2; Eq. (7)

Ua
i Appearance uncertainty of Gaussian i §3.2; Eq. (9)

X Instruction embedding §3.3; Eq. (11)&(12)
F gi Projected feature of Gaussian i §3.3; Eq. (11)
F g Aggregated Gaussian representation §3.3; Eq. (11)
p Candidate node probabilities §3.3; Eq. (11)
p̃ Action probabilities after mapping §3.3; Eq. (12)

Lrgb RGB rendering loss §3.4; Eq. (13)
Ldepth Depth rendering loss §3.4; Eq. (13)
Lsem Semantic rendering loss §3.4; Eq. (13)
† Subscript t denotes the navigation step.

Table 7: Notation and Description of Key Symbols.
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B PSEUDO CODE

The pseudo-code of our framework is given in Algorithm 1. Our code will be released.

Algorithm 1 Pseudo-code for the test mode of our approach in a PyTorch-like style

# I, D, K, E: RGB, depth, intrinsic and extrinsic
# X, A: instruction embedding and action space
# L: Loss function, e.g., L1 Loss
# traj, env: navigation trajectory and navigation environment

def GET SGM(obs):
I, D, K, E = obs
#=========== initialize pseudo-lidar point (Eq.1) ===========#
init_pt_cld = GET_PT_CLD(I, D, K, E)
#============ initialize Gaussian primitives ================#
G = INIT_G(init_pt_cld)
G.semantic = GET_SEM(I)
#=========== updating Gaussian primitives (Eqs.2,3) =========#
for i in range(15):
I_r, D_r, S_r = RENDER(G, camera)
loss = L(I, I_r) + L(D, D_r) + L(S, S_r)
loss.backward()

return G

def GET UNCERTAINTY SCORE(G):
#============ perturb scale and position (Eq.4) =============#
mu_perturb = SAMPLE_GAUSSIAN(0, delta)
s_perturb = SAMPLE_UNIFORM(-eta*G.s, eta*G.s)
#========== compute variational distribution (Eq.5) =========#
q_phi_mu = VARIATIONAL_INFERENCE(G.mu + mu_perturb, G)
q_phi_s = VARIATIONAL_INFERENCE(G.s + s_perturb, G)
#=========== compute geometric uncertainty (Eq.6) ===========#
U_g = NORM(STD(q_phi_mu)) + NORM(STD(q_phi_s))

#============== perturb semantic attributes =================#
sigma_perturb = SAMPLE_GAUSSIAN(0, epsilon)
#============ compute variational distribution ==============#
q_phi_sigma = VARIATIONAL_INFERENCE(G.sigma + sigma_perturb, G)
#=========== compute semantic uncertainty (Eq.7) ============#
U_s = NORM(STD(q_phi_sigma))

#=========== compute fisher information (Eq.8) ==============#
I_hat = RENDER(G)
grad_I = GRADIENT(I_hat, G)
F_info = MATMUL(grad_I, TRANSPOSE(grad_I))
#=========== compute appearance uncertainty (Eq.9) ==========#
U_a = LOG(DET(F_info))
return U_g, U_s, U_a

def GET ACTION SCORE(G, X, topo_memory):
#=============== action score (Eqs.11,12) ===================#
F_g = GET_Gaussian_Representation(G)
P_g = MLT([F_g, X]))
V = topo_memory.candidate()
P = NN[P_g, V]
return P

def navigate(env, X):
obs = env.reset()
topo_memory = INIT_TOPOLOGICAL_MEMORY(obs)
traj = []
for t in range(MAX_STEPS):
#============== update Gaussian primitives ================#
G_SGM = GET SGM(obs)
#============ integrate Gaussian into memory ==============#
topo_memory.update(G_SGM)
#=============== compute uncertainty score ================#
U_g, U_s, U_a = GET UNCERTAINTY SCORE(G_SGM)
#=============== construct 3D Value Map ===================#
G_3DVM = EXTEND_SGM(G_SGM, U_g, U_s, U_a)
#================ compute 3D action scores ================#
P_3D = GET ACTION SCORE(G_3DVM, X, topo_memory)
#========== compute 2D action scores (Eqs.B1,B2) ==========#
P_2D = GET_2D_ACTION_SCORE(I, topo_memory)
#==================== decision making =====================#
action = ARGMAX(SUM(P_3D, P_2D), A)
traj.append(action)
#============= update topological memory ==================#
topo_memory.update_path(obs, action)

return traj

NN: nearest neighbor search; MLT: multi-layer transformer; [, ]: concatenation.
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C MODEL DETAILS

Our approach is built upon the 2D observation–based baseline DUET [6], and the proposed 3D Value
Map serves as an additional decision branch on top of it. In this part, we complement the details by
introducing: i) 2D Action Score and ii) Navigation Losses.

C.1 2D ACTION SCORE

Besides the 3D Value Map branch, we retain the 2D perception pathway inherited from DUET [6],
which leverages 2D panoramic observations to guide navigation. The panoramic views and detected
objects are first encoded by a multi-layer transformer (MLT) into 2D visual embeddings F 2D ∈
R768. These features are then concatenated with the instruction embedding X ∈ R768, and passed
through another transformer head FMLT to yield 2D action scores:

p2D = Softmax(FMLT([F 2D,X])) ∈ [0, 1]|V|, (14)

where [, ] denotes concatenation and |V| is the number of candidate viewpoints. Next, we apply a
nearest-neighbor function N to aggregate p2D across neighboring nodes V in topological memory:

ˆp2D = N (p2D,V) ∈ [0, 1]|V|. (15)

This operation merges scores from spatially adjacent nodes and outputs a unified value for each
candidate, thereby aligning the predictions with the action space A.

C.2 NAVIGATION LOSSES

Following standard protocol [6, 10], our training follows a two-stage paradigm: pretraining with
auxiliary objectives to enhance multimodal representations, and fine-tuning with behavior cloning
and pseudo-expert guidance to refine navigation policy.

In the pretraining stage, three objectives are used depending on the benchmark. For R2R [1] and
RxR [19], we include Masked Language Modeling (MLM) and Single-step Action Prediction (SAP)
tasks. For REVERIE [20], we further incorporate Object Grounding (OG) to support precise local-
ization of target objects. The corresponding losses are formulated as:

LMLM = − log p(wi|X\i,R), (16)

LSAP =

T∑
t=1

− log p(a∗
t |X ,R<t), (17)

LOG = − log p(o∗|X ,R), (18)

where X is the instruction sequence, wi a randomly masked token, and X\i its remaining context.
R denotes the trajectory, with R<t indicating the path prefix. The expert action at step t is a∗t , and
o∗ represents the target object.

During fine-tuning, we adopt DAgger [6, 66], which alternates between agent rollouts and pseudo-
expert corrections. The pseudo-expert leverages the partially constructed topological memory to
generate shortest-path guidance, allowing the agent to recover from suboptimal actions and gradu-
ally improve its policy in unseen environments.
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D RUNTIME ANALYSIS

Table 8: Runtime Analysis on R2R [1] val unseen. Our feature time is decomposed into SGM,
variational inference (VI), and Fisher Information (FI) estimation. Wall-clock Time measures per-
step latency, Mem. is peak GPU memory usage, and FLOPs measure computational complexity

Wall-clock Time (s) ↓ FLOPs (G) ↓ R2RMethod SGM VI FI Feature Action Total Mem. (GB) ↓ Feature Action Total SR ↑ SPL ↑
BEVBert [9] – – – 2.13 2.41 4.54 4.73 15.71 25.66 41.37 75 64

DUET [6] – – – 0.42 0.89 1.31 3.13 2.71 18.68 21.39 72 60
Ours (MobileSAM) 0.62 0.11 0.19 0.92 1.71 2.63 3.45 3.82 20.53 24.35 76 65

Ours 1.47 0.11 0.19 1.77 1.71 3.48 3.84 4.36 20.53 24.89 78 66

D.1 RUNTIME ANALYSIS ON THE OVERALL DESIGN

Table 8 reports the runtime decomposition in terms of wall-clock time, memory usage, and FLOPs
across different components on R2R [1] val unseen split in inference. Compared to DUET [6],
our agent achieves substantial performance gains (+6% SR) with only modest increases in runtime
(+1.35s), memory (+0.71GB) and FLOPs (+2.96G), highlighting the efficiency of our design.

D.2 RUNTIME ANALYSIS ON SGM

As shown in Table. 8, the majority of overhead arises from constructing SGM, dominated by se-
mantic attribute extraction with SAM2 [55] (1.47s). Owing to the flexibility of our framework,
SAM2 can be seamlessly replaced with lightweight variants (e.g., MobileSAM [73]), enabling flex-
ible trade-offs between segmentation quality and runtime efficiency (e.g., 78% → 76% SR with
1.47s→0.62s). This flexibility allows our agent to adapt to different deployment scenarios.

D.3 RUNTIME ANALYSIS ON VARIATIONAL INFERENCE

Table 9: Runtime Analysis of Variational Inference (VI) on R2R [1] val unseen.

Perturbed Parameters Inference Time (s) ↓ SR ↑ SPL ↑
None (w/o VI) – 72 60

Position + Scale 0.08 77 65
Semantic Only 0.07 76 64

All (Pos.+Scale+Sem.) 0.11 78 66

As illustrated in Table. 8, VI introduces only minimal cost (0.11s), since it perturbs Gaussian param-
eters with lightweight noise and updates variational distributions. In addition, to further assess the
efficiency of VI, we measure per-step inference time and performance on R2R [1] val unseen
split in Table 9. We can observe that perturbing only spatial parameters (i.e., position and scale) or
only semantic attributes incurs negligible overhead (0.08s and 0.07s, respectively). When applied
jointly, VI maintains a similarly low cost (0.11s) while yielding the best navigation performance.

D.4 RUNTIME ANALYSIS ON FISHER INFORMATION ESTIMATION

Fisher Information (FI) estimation emerges as a lightweight component in our framework, requiring
only 0.19s per step (Table 8). This efficiency stems from approximating FI as the outer product of
first-order gradients, which circumvents the costly computation of the full Hessian. Furthermore,
we adopt a block-diagonal approximation at the Gaussian level, isolating sensitivity within each
primitive and further reducing complexity.
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E ADDITIONAL EXPERIMENTS

This section presents supplementary experiments, including hyperparameter sensitivity analysis and
statistical significance tests.

E.1 HYPERPARAMETER EXPERIMENTS

Table 10: Sensitivity Analysis of uncertainty-related hyperparameters on R2R val unseen split. (a) δ and
(b) η regulate geometric uncertainty, while (c) ε governs semantic uncertainty.

(a) Sensitivity to δ

δ SR↑ SPL↑
0.0015 78.27 66.41
0.002 78.29 66.44

0.0025 78.32 66.47
0.003 78.30 66.46

0.0035 78.28 66.48
0.005 78.25 66.40

(b) Sensitivity to η

η SR↑ SPL↑
0.05 78.30 66.45
0.1 78.32 66.47

0.15 78.30 66.44
0.2 78.28 66.41

(c) Sensitivity to ε

ε SR↑ SPL↑
0.0015 78.28 66.42
0.002 78.30 66.44

0.0025 78.32 66.47
0.003 78.29 66.45

0.0035 78.27 66.43
0.005 78.25 66.39

We evaluate the sensitivity of the three uncertainty–related hyperparameters on R2R val unseen
split: δ and η, which regulate geometric uncertainty, and ε, which governs semantic uncertainty. The
default settings used in our agent are δ= 0.0025, η= 0.1, and ε= 0.0025. As shown in Table 10, the
agent maintains similar performance when varying δ within 0.0015–0.005, η within 0.05–0.2, and ε
within 0.0015–0.005, demonstrating that our uncertainty estimation is stable over a broad range of
parameter values.

E.2 STATISTICAL SIGNIFICANCE TESTS

Table 11: Statistical Significance Tests on R2R val unseen split. We report the mean ± std, confidence
intervals (CI), and paired t-test p-values over 5 runs.

SR↑ SPL↑Agent mean±std CI p-value mean±std CI p-value
DUET [6] 72.22 ± 0.21 [72.08, 72.36] 3.42× 10−12 60.41 ± 0.27 [60.27, 60.56] 6.60× 10−15

BEVBert [9] 75.82 ± 0.25 [75.70, 75.95] 8.91× 10−11 64.14 ± 0.22 [64.01, 64.28] 7.30× 10−10

VER [10] 76.37 ± 0.18 [76.27, 76.47] 1.58× 10−10 65.07 ± 0.21 [64.91, 65.23] 2.90× 10−13

Ours 78.32 ± 0.13 [78.25, 78.39] – 66.47 ± 0.17 [66.39, 66.54] –

To assess whether the performance improvements are statistically meaningful beyond random vari-
ation, we conduct significance tests on R2R val unseen split over 5 runs. For each agent, we re-
port the mean and standard deviation, the confidence interval (CI), and paired t-test p-values against
ours. As shown in Table 11, the improvements of our agent over DUET [6], GridMM [7], and
VER [10] are statistically significant (all p < 0.05 for both SR and SPL), confirming that the gains
are not attributable to stochastic variance.
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F UNCERTAINTY DISCUSSION AND FAILURE CASE

In this section, we provide an extended discussion of our uncertainty formulation, present additional
empirical analyses, and summarize representative failure cases.

F.1 DISCUSSION OF OUR UNCERTAINTY

Table 12: Robustness to observation noise on R2R val unseen split. We evaluate an epistemic only
variant (geometric + semantic), an aleatoric only variant (appearance), and our agent under increasing levels of
Gaussian noise in RGB observations.

Noise Level Epistemic Only SR ↑ Aleatoric Only SR ↑ Ours SR ↑
0% 77.05 76.86 78.32

10% 76.78 76.80 78.09
20% 76.53 76.77 78.12
30% 75.93 76.81 77.98

In deep learning, uncertainty is typically categorized into two types: epistemic and aleatoric [74–
76]. Epistemic uncertainty arises from a lack of knowledge or limited evidence in the model,
whereas aleatoric uncertainty denotes irreducible randomness or inherent variability in the data that
cannot be reduced by collecting more samples. In embodied navigation [77], epistemic uncertainty
is typically associated with insufficient or unreliable perceptual evidence (e.g., missing views or out-
of-distribution observations), often leading to ambiguous target grounding around visually similar
landmarks [78]. Aleatoric uncertainty captures irreducible ambiguity caused by partial observability,
occlusions, clutter, or sensor noise, which makes traversability inherently uncertain [78, 79].

Under this taxonomy, our design is as follows. i) We interpret geometric and semantic uncertainty
as epistemic uncertainty. These two arise from missing or ambiguous perceptual evidence, such as
sparsely observed regions or visually similar landmarks. Because they can, in principle, be reduced
by acquiring more views, they align with the notion of epistemic uncertainty. ii) We interpret appear-
ance uncertainty as aleatoric uncertainty. It reflects the sensitivity of rendered observations to small
local perturbations. This variability is intrinsic to the rendering or measurement process and cannot
be eliminated even if additional scene cues are available, which aligns with aleatoric uncertainty.

In addition, we examine whether these components behave consistently with the above interpreta-
tions. We compare three variants on R2R val unseen split: an epistemic only variant that uses
geometric and semantic uncertainty, an aleatoric only variant that uses appearance uncertainty, and
our agent. We gradually inject 10%, 20%, and 30% Gaussian noise into RGB observations while
keeping all other settings fixed. As shown in Table 12, two trends align with the intended distinction.
i) The epistemic only variant degrades as noise increases, reflecting its dependence on the sufficiency
and reliability of perceptual evidence. ii) The aleatoric only variant remains stable across noise lev-
els, consistent with uncertainty that models inherent observation variability. Moreover, our agent
remains robust under all noise levels and achieves the best overall performance.

F.2 ANALYSIS OF APPEARANCE UNCERTAINTY

Figure 6: Ground Truth vs Rendered Observations. The renderings closely match the ground
truth, supporting the Fisher-based appearance uncertainty proxy.

We provide visual comparisons between the rendered observations and the ground truth. Fig. 6
illustrates that the renderings closely match the ground truth, indicating that the residual term in
the Hessian decomposition is negligible. Consequently, the Fisher Information serves as a reliable
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proxy for appearance uncertainty and yields a faithful sensitivity signal, thereby corroborating the
soundness of our design.

F.3 EFFECTIVENESS OF UNCERTAINTY INFORMATION

Table 13: Effectiveness of Uncertainty Information on R2R val unseen split. The uncertainty infor-
mation encoded in our 3D Value Map is rendered into a 2D panoramic uncertainty map and provided as an
additional observation to support decision-making in existing agents.

Agent SR ↑ SPL ↑
DUET [6] 72.22 60.41

DUET + 2D uncertainty map 73.52 61.43
BEVBert [9] 75.82 64.14

BEVBert + 2D uncertainty map 76.91 65.77
VER [10] 76.37 65.07

VER + 2D uncertainty map 77.45 65.94

To further verify that the estimated uncertainty information is beneficial for VLN, we apply our un-
certainty cues to other agents. Since these agents adopt other forms of scene representation rather
than 3DGS [80], we render the uncertainty encoded in our 3D Value Map into a 2D panoramic un-
certainty map and provide it as an additional observation to DUET [6], BEVBert [9], and VER [10].

As shown in Table 13, this 2D uncertainty map consistently improves navigation performance across
all three agents on R2R [1] val unseen split. For example, DUET improves from 72.22% to
73.52% SR, while BEVBert and VER obtain similar gains of more than 1% in SR together with
corresponding improvements in SPL. These results demonstrate that our uncertainty cues provide
useful guidance for improving navigation decisions.

F.4 FAILURE CASES

(a) (b)
Figure 7: Failure Cases. (a) Our agent stops once “the sofa” comes into view, as the current
observation already provides sufficient evidence of the target, creating confusion about whether
further steps are required. (b) Our agent halts at the doorway instead of reaching “the gomoku
board” near the bed, since the board lies inside the room and cannot be observed from the entrance,
leaving the agent uncertain and leading to premature termination.

To illustrate the challenges our agent may still face, we present two representative failure cases. As
shown in Fig. 7(a), although the instruction requires stopping at the sofa, the agent terminates as
soon as “the sofa” enters its observation. This because the current view already provides sufficient
evidence of the target, leaving the agent confused about whether perceiving “the sofa” is equivalent
to reaching the intended stopping point. In addition, in Fig. 7(b), although the instruction requires
“stopping near the gomoku board by the bed”, the agent halts at the doorway without entering the
room. This because “the board” is not visible from its current viewpoint, leaving the agent uncertain
about whether further exploration is necessary.
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Table 14: Quantitative Analysis of uncertainty scaling on R2R val unseen split. We scale the estimated
uncertainty values by factors in {1.0, 0.8, 0.6, 0.4, 0.2, 0} and evaluate the agent in simple and complex scenes
to analyze the influence of uncertainty on navigation performance.

Uncertainty Scale Simple Scenes SR ↑ Complex Scenes SR ↑
1.0 (ours) 10/10 10/10

0.8 10/10 9/10
0.6 10/10 7/10
0.4 10/10 7/10
0.2 10/10 5/10

0 (No uncertainty) 10/10 2/10

In addition, we further provide a quantitative analysis to examine how uncertainty affects navigation
performance under different levels of perceptual ambiguity. Specifically, we select 20 representa-
tive scenes from the R2R val unseen split: 10 simple scenes (e.g., open spaces, few obstacles,
clear landmarks) and 10 complex scenes (e.g., narrow spaces, occlusions, visually similar struc-
tures). For each episode, we run the agent while scaling the three uncertainty values by a factor in
{1.0, 0.8, 0.6, 0.4, 0.2, 0}.

As shown in Table 14, performance in simple scenes remains consistently high across all scaling
factors, indicating that these environments contain minimal perceptual ambiguity and rely little on
uncertainty cues. In contrast, navigation performance in complex scenes drops progressively as
the uncertainty values are suppressed. Removing the uncertainty information entirely reduces the
success rate from 10/10 to 2/10, demonstrating that uncertainty cues play a critical role in guiding
reliable navigation under challenging visual conditions.
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G DISCUSSION

G.1 LIMITATION AND FUTURE WORK

This work has several limitations that also highlight directions for future exploration. i) Simula-
tor Constraints. Our framework is trained and evaluated in the static Matterport3D simulator [67],
which omits real-world challenges such as moving objects, sensor noise, or actuation errors. Ex-
tending to dynamic and noisy environments will be crucial for deployment. ii) Task Scope. We focus
on indoor VLN tasks (i.e., R2R [1], RxR [19], REVERIE [20]). Applications to broader navigation
domains, such as aerial VLN [81] or outdoor scenarios [82], remain unexplored. iii) Environmental
Coverage. Our approach is primarily validated in structured indoor layouts. Future studies should
examine its robustness in more cluttered, unstructured, or cross-domain environments. iv) Predic-
tive or Active Perception. Our framework currently estimates perceptual uncertainty based solely
on the available viewpoint, without actively acquiring additional evidence. Incorporating predictive
view synthesis, such as world-model based future observation forecasting [16], or integrating active
perception mechanisms [83] may allow the agent to select more informative viewpoints and thereby
mitigate perceptual ambiguity. Exploring such predictive and action-guided perception strategies
represents a promising direction for future research.

G.2 TOWARD REAL-WORLD DEPLOYMENT

Although our experiments are conducted in simulation, transferring the proposed framework to real
robots is an important direction. We outline several practical considerations and discuss how our
design can be extended to address them.

Sensor noise and uncertainty degradation. To assess robustness to imperfect sensing, we inject
10–30% Gaussian noise into RGB observations and re-evaluate the agent on R2R val unseen
split in Table. 12. The performance remains stable under these perturbations, suggesting that the
uncertainty estimates remain stable under moderate sensor noise.

Dynamic objects and time-varying geometry. Real environments often contain moving objects
and non-static geometry. Our Semantic Gaussian Map can be coupled with dynamic 3D Gaussian
Splatting pipelines [84, 85], which continuously update Gaussians as the scene changes. In such a
setup, both the scene representation and its associated uncertainties are updated online, enabling the
agent to react to newly introduced ambiguity.

Actuation errors and control dynamics. Actuation errors affect the executed robot pose rather
than the uncertainty estimation itself. For real-world deployment, our 3D Value Map can be in-
tegrated with standard closed-loop control and localization modules (e.g., visual odometry [86] or
SLAM [80]), so that pose uncertainty and perceptual uncertainty are jointly considered when plan-
ning reliable trajectories.

G.3 SOCIAL IMPACT

This work introduces an uncertainty-aware framework for Vision–Language Navigation. By ex-
plicitly modeling geometric, semantic, and appearance uncertainties, the agent learns to interpret
environments not only in terms of structure and semantics but also in terms of reliability. This
design strengthens decision-making and improves navigation performance across multiple bench-
marks. Beyond quantitative gains, the framework highlights the importance of uncertainty modeling
for embodied AI, suggesting that safer, more interpretable, and reliability-aware navigation systems
can be developed for broader real-world applications. We hope that this perspective will inspire
future research on integrating uncertainty into embodied reasoning and planning.

G.4 TERMS OF USE, PRIVACY, AND LICENSE

Matterport3D [67], R2R [1], RxR [19], and REVERIE [20] are available for non-commercial re-
search purposes.
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