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ABSTRACT

We point out that a number of well-known PAC-Bayesian-style and information-
theoretic generalization bounds for randomized learning algorithms can be derived
under a common framework starting from a fundamental information exponential
inequality. We also obtain new bounds for data-dependent priors and unbounded
loss functions. Optimizing these bounds naturally gives rise to a method called
Information Complexity Minimization for which we discuss two practical examples
for learning with neural networks, namely Entropy- and PAC-Bayes- SGD.

1 INTRODUCTION

A fundamental observation in statistical learning theory is that information compression and learning
are intrinsically related in the sense that both entail identifying statistical regularities and patterns
in the data. This relation has been formalized over the years in various ways, e.g., via sample
compression schemes (Littlestone & Warmuth, 1986; Moran & Yehudayoff, 2016), Occam’s razor
(Blumer et al., 1987) and minimum description length arguments (Li et al., 2003; Blum & Langford,
2003), and more recently via different notions of information stability (Russo & Zou, 2016; Xu
& Raginsky, 2017; Jiao et al., 2017; Bassily et al., 2018; Bu et al., 2019; Steinke & Zakynthinou,
2020a;b). Information stability quantifies the sensitivity of a learning algorithm to local perturbations
of its input, i.e., the training data, and draws on a rich tradition of earlier work on algorithmic
(Bousquet & Elisseeff, 2002; Shalev-Shwartz et al., 2010; Bassily et al., 2016) and distributional
(Dwork et al., 2015; Rogers et al., 2016; Feldman & Steinke, 2018) stability in adaptive data analysis.

On the other hand, an important approach to data-dependent generalization bounds is PAC-Bayes,
originally due to McAllester (1999a;b; 2013). While PAC-Bayes and information stability have
evolved independently of each other, a principal objective of this note is to present them under a
unified framework. We show that the information exponential inequality (IEI) due to Zhang (2006a)
gives a general recipe for constructing bounds of both flavors. Besides recovering several important
bounds such as the mutual information-bound due to Xu & Raginsky (2017) and the classical
PAC-Bayesian bounds due to Catoni (2007) and McAllester (2013), we also obtain new bounds for
data-dependent priors and unbounded loss functions. Optimizing these bounds gives rise to variants
of the Gibbs algorithm, for which we discuss two examples for learning with neural networks, namely,
Entropy-SGD (Chaudhari et al., 2017) and PAC-Bayes-SGD (Dziugaite & Roy, 2017). We also show
a PAC-Bayes bound motivated by an Occam’s factor argument, which can be interpreted in relation
to flat minima (Hochreiter & Schmidhuber, 1997).

Three key ideas guide our discussion, namely, (1) the lesser the information revealed by an algorithm
about its input, the better the generalization, (2) data-dependent priors entail tighter generalization
bounds, and (3) optimizing such bounds is a natural recipe for designing new learning algorithms.

2 THE INFORMATION EXPONENTIAL INEQUALITY AND APPLICATIONS

We consider the standard apparatus of statistical learning theory (Shalev-Shwartz & Ben-David, 2014).
We have an example domain Z = X × Y of the instances and labels, a hypothesis spaceW , a fixed
loss function ` :W×Z → [0,∞), and a training sample S, which is an n-tuple (Z1, . . . , Zn) of i.i.d.
random elements of Z drawn according to some unknown distribution µ. A learning algorithm is a
Markov kernel PW |S that maps input training samples S to conditional distributions of hypotheses W
inW . For given n, this defines a joint distribution PSW = PSPW |S , PS = µ⊗n, and a corresponding
marginal distribution PW . The true risk of a hypothesis w ∈ W on µ is Lµ(w) := Eµ[`(w,Z)], and
its empirical risk on the training sample S is LS(w) := 1

n

∑n
i=1 `(w,Zi). Our goal is to control the

generalization error, g(W,S) := Lµ(W )− LS(W ), either in expectation or with high probability.
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For controlling the generalization error in expectation, we can rewrite the true risk of a given
hypothesis w as Lµ(w) = ES′∼µ⊗n [LS′(w)], where S′ = (Z ′1, . . . , Z

′
n) is an i.i.d. sample. Then

the expected generalization error can be written as a difference of two expectations of the same
loss function, ESW [g(W,S)] = EPS⊗PW [LS(W )]− EPSW [LS(W )], where the second expectation
is taken w.r.t. the joint distribution of the training sample and the output hypothesis, while the
first expectation is taken w.r.t. the product of the two marginal distributions. Hence the expected
generalization error reflects the dependence of the output W on the input S. This dependence can
also be measured by their mutual information as has been shown in recent works (Xu & Raginsky,
2017; Jiao et al., 2017; Bassily et al., 2018). We refer to such bounds as mutual information-based
generalization bounds.

Alternatively, we may wish to control the generalization error of the learning algorithm PW |S with
high probability over the training sample S. The expected generalization error over hypotheses
chosen from the distribution P (posterior) output by the learning algorithm, i.e., EP [g(W,S)], can
be upper-bounded with high probability under PS by the KL divergence between P and an arbitrary
reference distribution Q (prior), that is selected before the draw of the training sample S. For any Q,
these bounds hold uniformly for all P , and are called PAC-Bayesian bounds (McAllester, 1999a;b;
2013; Maurer, 2004; Zhang, 2006a; Catoni, 2007; Alquier et al., 2016; Germain et al., 2009; 2016;
London, 2017; Thiemann et al., 2017; Grünwald & Mehta, 2020; Rivasplata et al., 2020), where PAC
stands for Probably Approximately Correct. Bounds of this type are useful when we have a fixed
dataset s ∈ Zn and a new hypothesis is sampled from P every time the algorithm is used. Choosing
the posterior to minimize a PAC-Bayesian bound leads to the well-known Gibbs algorithm (Zhang,
2006a; Xu & Raginsky, 2017; Alquier et al., 2016; Kuzborskij et al., 2019). On the other hand, for
a fixed posterior P , ES [D(P‖Q)] is minimized by the oracle prior, Q? = ES [PW |S(·|S)]. Note
ES [D(P‖Q?)] is just the mutual information I(S;W ), which is the key quantity controlling the
expected generalization error in (Xu & Raginsky, 2017; Jiao et al., 2017; Bassily et al., 2018).

For any β > 0, we define the annealed expectation, Mβ(w) = −β−1 lnEµ[e−β`(w,Z)], which acts
as a surrogate for Lµ(w). We writeM(W) to denote the family of probability measures over a set
W . The following fundamental inequality is due to Tong Zhang:
Lemma 1 (Information exponential inequality (IEI), Zhang 2006a). For any prior Q ∈M(W), any
real-valued loss function ` onW ×Z , and any posterior distribution P � Q overW that depends
on an i.i.d. training sample S, we have ES exp

{
nβEP [Mβ(W )− LS(W )]−D(P‖Q)

}
≤ 1.

The IEI implies bounds both in probability and in expectation for the quantity
nβEP [Mβ(W )− LS(W )]−D(P‖Q), and is the key tool for showing the following result:
Theorem 2. Let µ be a distribution over Z , and let S be an i.i.d. training sample from µ. Let
Q ∈M(W) be a prior distribution that does not depend on S, and let ` be a real-valued loss function
onW ×Z . Suppose that there exist a convex function ψ : R≥0 → R satisfying ψ(0) = ψ′(0) = 0,
such that supw∈W [Lµ(w)−Mβ(w)] ≤ ψ(β)

β , ∀β > 0. Then, for any β > 0, and δ ∈ (0, 1], with
probability of at least 1− δ over the choice of S ∼ µ⊗n, for all distributions P � Q overW (even
such that depend on S), we have

EP [g(W,S)] ≤ 1

nβ

(
D(P‖Q) + ln

1

δ

)
+
ψ(β)

β
. (1)

Moreover, we have the following bound in expectation:

ESW [g(W,S)] ≤ ψ∗−1

(
D(P‖Q|PS)

n

)
, (2)

where ψ∗−1 is the inverse of the Fenchel-Legendre dual of ψ.

The proof of Theorem 2 is given in Appendix A.2. Under the oracle prior Q? = ES [PW |S ],
ES [D(P‖Q?)] = I(S;W ). If `(w,Z) is σ-sub-Gaussian under µ for all w ∈ W , then we can take
ψ(β) = β2σ2/2 and ψ∗−1(y) =

√
2σ2y (Boucheron et al., 2013, §2.3), in which case we recover

the bound in expectation due to Xu & Raginsky (2017):
Corollary 3. If `(w,Z) is σ-sub-Gaussian under µ for all w ∈ W , then ESW [g(W,S)] ≤√

2σ2I(S;W )/n.

Corollary 3 shows that an algorithm that reveals a small amount of information about its input
generalizes well. This observation, for instance, forms the basis for the Gibbs algorithm, which can
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be thought of as “stabilizing” the empirical risk minimization (ERM) algorithm by controlling the
input-output mutual information I(S;W ) (Xu & Raginsky, 2017). We discuss extensions of this idea
in Section 3. In Appendix A.3, we highlight a functional characterization of the mutual information
in relation to the “single-draw” bound due to Bassily et al. (2018). In Appendix A.4, we show how
several well-known PAC-Bayesian inequalities can be derived starting from the IEI. These include,
for instance, the following classical bound due to Catoni:

Corollary 4 (Catoni 2007, Theorem 1.2.6). For any {0, 1}-valued loss `, any distribution µ, prior
Q ∈ M(W), any real β > 0, and any δ ∈ (0, 1], with probability of at least 1− δ over S ∼ µ⊗n,
we have for all P � Q overW:

EP [Lµ(W )] ≤ Φ−1
β

{
EP [LS(W )] +

1

nβ

[
D(P‖Q) + ln

1

δ

]}
, where Φ−1

β (x) = 1−e−βx
1−e−β , x ∈ R.

Other bounds include, for example, the “Linear PAC-Bayes bound” due to McAllester (2013, Theorem
2) and the “PAC-Bayes-KL inequality” (Seeger, 2002; Maurer, 2004) for [0, 1]-valued loss functions,
as well as the bounds for sub-Gaussian and sub-gamma loss functions due to Germain et al. (2016).

Differentially private data-dependent priors. A PAC-Bayesian bound such as (1) stipulates that
the prior Q be chosen before the draw of the training sample S. Q may, however, depend on the data
generating distribution µ (Lever et al., 2013). To have a good control over the KL term in (1), it is
desirable that Q be “aligned” with the data-dependent posterior P . One way to achieve this goal is
to choose Q based on S in a differentially private fashion so that Q is stable to local perturbations
in S (Dziugaite & Roy, 2018b). We can then treat Q “as if” it is independent of S. The next result
formalizes this argument and gives a PAC-Bayesian-style bound that is valid for data-dependent
priors and unbounded loss functions.

Proposition 5. Let K(S,W) denote the set of Markov kernels from S toW . Let µ be a distribution
over Z , and let S be an i.i.d. training sample from µ. Let Q0 ∈ K(S,W) be an (ε, 0)-differentially
private algorithm and let ` be a real-valued loss function onW ×Z . Let β > 0, and let δ ∈ (0, 1].
Then with probability of at least 1− δ over the choice of S ∼ µ⊗n, for all P ∈M(W),

EP [Mβ(W )] ≤ EP [LS(W )] +
1

nβ

(
D(P‖Q0(S)) + ln

2

δ
+
nε2

2
+ ε

√
n

2
ln

4

δ

)
.

The proof of Proposition 5 is given in Appendix A.5. Proposition 5 is valid for any loss function and
is similar in spirit to the traditional PAC-Bayesian bounds in (Dziugaite & Roy, 2018b, Theorem 4.2),
and (Rivasplata et al., 2020, Eq. 7), which, however, either apply only when the loss is bounded in
[0, 1], or entails approximating an exponential moment involving the true risk.

3 INFORMATION COMPLEXITY MINIMIZATION

Given a prior distribution, choosing a posterior to minimize a PAC-Bayesian bound naturally gives
rise to a method called Information Complexity Minimization (ICM) (Zhang, 2006a;b). Concretely,
for a given prior Q and hypothesis set G ⊆ M(W), define the Optimal Information Complexity
(OIC) at a given β > 0 as

OICβG := inf
P∈G

{
EP [LS(W )] + (nβ)

−1
D(P‖Q)

}
. (3)

When G =M(W), we recover the Gibbs algorithm, in which case the OIC evaluates to the (extended)
stochastic complexity, − 1

β lnEQ[e−βLS(W )] (Rissanen, 1989; Yamanishi, 1998). The latter in turn
coincides with the log-Bayesian marginal likelihood for β = 1 and the log loss (Zhang, 2006a;b;
Barron & Cover, 1991). We briefly discuss two examples of ICM for learning with neural networks.

PAC-Bayes-SGD. PAC-Bayes-SGD is an approach to computing nonvacuous generalization bounds
for overparameterized neural network classifiers trained with stochastic gradient descent (SGD)
(Dziugaite & Roy, 2017; Langford & Caruana, 2002; Hinton & van Camp, 1993). These bounds are
obtained by retraining the network using an objective derived from a PAC-Bayes bound, starting
from the solution found by SGD (or in fact any other procedure) for the training loss LS(w) w.r.t. w.
We show how Catoni’s bound in Corollary 4 can be used to derive a PAC-Bayes-SGD objective.

Consider a binary classification setting with examples domainZ = X ×{0, 1} and loss ` : Rk×Z →
{0, 1}. Each w ∈ W corresponds to a classifier fw : X → {0, 1} that can be interpreted as a
deterministic neural network with parameters in Rk. For trainable parameters wP ∈ Rk, γ ∈ Rk+,
λ ∈ R+, let G be the set of all Gaussian posteriors of the form P = N (wP ,diag(γ)) and let
Q = N (w0, λIk) be a prior centered at a non-trainable random initialization, w0 ∈ Rk. We

3



Published as a workshop paper at ICLR 2021 neural compression workshop

can use a convex surrogate of the 0-1 loss, and the reparameterization trick w = wP + ν � √γ,
ν ∼ N (0, Ik) (Kingma & Welling, 2014; Blundell et al., 2015) to compute an unbiased estimate of the
gradient of the PAC-Bayes bound in Corollary 4 w.r.t. the parameters wP , γ, λ and β. Computing the
expectation EP [LS(fW )] is difficult in practice. Instead, we use a Monte Carlo estimate L̂S(fW ) =
1
m

∑m
i=1 LS(fWi

), where Wi
i.i.d.∼ P . Then, for any δ, δ′ ∈ (0, 1), fixed α > 1, c ∈ (0, 1), b ∈ N, and

m,n ∈ N, with probability of at least 1− δ− δ′ over a draw of S ∼ µ⊗n and W ∼ (P )⊗m, we have

EP [Lµ(fW )] ≤ inf
P∈G,β>1,λ∈(0,c)

Φ−1
β

{
L̂S(fW ) +

α

nβ
D(P‖Q) +R(λ, β; δ, δ′)

}
, (4)

where R = 2α
nβ ln

[
lnα2βn

lnα

]
+ α

nβ ln
[
π2b2

6δ

(
ln c

λ

)2]
+
√

1
2m ln 2

δ′ accounts for the cost of optimizing
the parameters β, λ, and using the Monte Carlo estimate of the empirical risk. For large n, m, R is
negligible, and the optimization is dominated by the IC term, L̂S(fW ) + α(nβ)

−1
D(P‖Q).

Entropy-SGD. A related approach is Entropy-SGD (Chaudhari et al., 2017), which instead di-
rectly minimizes the stochastic complexity, − 1

β lnEQe−βLS(W ). This entails optimizing the
prior Q, when a PAC-Bayesian bound such as (1) stipulates that the prior be fixed before the
draw of the training sample S. A way out is to sample Q in a differentially private fash-
ion, and this forms the basis of the Entropy-SGLD algorithm (Dziugaite & Roy, 2018a). For
Q = N

(
w, (βγ)−1Ik

)
, the stochastic complexity can be equivalently written as (up to constant

terms) − 1
β ln

∫
w′∈Rk e

−β
[
LS(w′)+

γ
2 ‖w−w

′‖2
]
dw′, which can be interpreted as a measure of flatness

of the loss landscape that measures the log-volume of low-loss parameter configurations around w.
More generally, from the perspective of ICM, both Entropy- and PAC-Bayes- SGD can be viewed as
optimization schemes that search for flat minima solutions (Hochreiter & Schmidhuber, 1997).

PAC-Bayes and Occam’s factor. Lemma 6 gives the form of the optimal posterior under a quadratic
approximation of the loss around a local minimizer:
Lemma 6. Consider a quadratic approximation of the training loss around a local minimizer
wP , L̃S(w) = 1

2 (w − wP )>H(w − wP ), a fixed prior Q = N (wQ, λ
−1Ik), and a posterior

distribution of the form P = N (wP ,ΣP ). Then the solution to the convex optimization problem
minΣP EP [L̃S(W )] + (nβ)

−1
D(P‖Q), is given by Σ?P = H−1

λ , where Hλ := (nβH + λIk). Here
we assume λ > 0 is sufficiently large so that Hλ is positive definite.

We can use a posterior of the form P = N (wP , H
−1
λ ) to get the following PAC-Bayesian-style

bound that incorporates second-order curvature information of the training loss:
Proposition 7. Let {λi}ki=1 be the eigenvalues of Hλ and suppose that λi ≥ λ > 0 for all i. Let
Q = N (wQ, λ

−1Ik) be a prior, and let P = N (wP , H
−1
λ ). Then with probability of at least 1− δ

over a draw of the sample S, we have

EP [Mβ(W )] ≤ EP [LS(W )] +
1

nβ
ln

1

δ
+

1

nβ

(λ
2
‖wQ − wP ‖2 +

1

2

k∑
i=1

ln
λi
λ

)
. (5)

The proof of Proposition 7 is given in Appendix A.6. Notably, the log-ratio term 1
2

∑k
i=1 ln λi

λ =

− ln
√

det λ
Hλ

in (5) is the negative logarithm of the Occam factor (MacKay, 1992; Smith & Le,
2018). The log-Occam factor is the differential entropy of the Gaussian posterior with a scaled
covariance λ(Hλ)−1, and can be interpreted as the amount of information we gain about the model’s
parameters after seeing the training data. From the perspective of ICM, minimizing the right hand
side of (5) w.r.t. the posterior leads to solutions with higher entropy and hence wider minima.

4 DISCUSSION
We presented a unified treatment of PAC-Bayesian and information-theoretic generalization bounds,
and obtained a few new results for data-dependent priors and unbounded losses. The bounds we
studied are along the notion that bounded information (between the training data and the output
hypothesis) implies learning. On the other hand, Bassily et al. (2018) and Nachum & Yehudayoff
(2019) showed that learning does not imply bounded information. In particular, the information
revealed by a learning algorithm about its input can be unbounded even for hypothesis classes of VC
dimension 1. Livni & Moran (2020) showed a result in a similar vein for the PAC-Bayesian framework.
Identifying the common structural properties of these negative results in the information-theoretic
and PAC-Bayesian frameworks is an important avenue for further investigation.
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A APPENDIX

A.1 TECHNICAL LEMMAS

Proposition 8 collects some well-known facts about the cumulant generating function ΛX(β) =
lnE[eβX ] of a random variable X for β > 0; see, e.g., (Boucheron et al., 2013, §2), and (Zhang,
2006a).
Proposition 8 (Facts about cumulant generating function).

1. ΛX(β) is convex in β.

2. 1
βΛX(β) is an increasing function of β.

3. ΛX−E[X](0) = Λ′X−E[X](0) = 0.

4. For real constants a, b, ΛaX+b(β) = ΛX(aβ) + b.

5. ΛX(β) ≤ βE[X] + β2

2 Var(X) +O(β3), where Var(X) = E
[
(X − E[X])2

]
.

6. If X ∈ [0, 1], then 1
βΛX(β) ≤ 1

β ln
(
1− (1− eβ)E[X]

)
, with equality when X ∈ {0, 1} is

Bernoulli.

7. X is σ-sub-Gaussian if ΛX−E[X](β) ≤ β2σ2

2 .

8. X is (σ, c)-sub-gamma if ΛX−E[X](β) ≤ β2σ2

2(1−c) for all β ∈ (0, 1
c ).

Recall that the annealed expectation is Mβ(w) = −β−1 lnEµ[e−β`(w,Z)] = −β−1Λ−`(w,Z)(β). By
Proposition 8 item 1) and Jensen’s inequality, we have Mβ(w) ≤ Lµ(w). For general loss functions,
Proposition 8 item 5) is useful for getting bounds in the opposite direction. By items 4), 7) and 8) of
Proposition 8, if for all w ∈ W , `(w,Z) is σ-sub-Gaussian, resp., (σ, c)-sub-gamma under µ, then
we have for all w ∈ W and β > 0, Lµ(w) ≤Mβ(w) + β

2σ
2, resp., Lµ(w) ≤Mβ(w) + β

2(1−c)σ
2.

We will need the following variational characterization of the KL divergence:
Lemma 9 (Donsker-Varadhan, Boucheron et al. 2013, Corollary 4.15). Let P, Q be probability
measures onW , and letF denote the set of measurable functions f :W → R such that EQ[ef(W )] <
∞. If D(P‖Q) <∞, then for every f ∈ F , we have

D(P‖Q) = sup
f∈F

{
EP [f(W )]− lnEQ[ef(W )]

}
,

where the supremum is attained when f = ln dP
dQ .

We note the following characterization of the inverse of the Fenchel-Legendre dual of a smooth
convex function:
Lemma 10 (Boucheron et al. 2013, Lemma 2.4). Let ψ be a convex and continuously differentiable
function defined on the interval [0, b), where 0 < b ≤ ∞. Assume that ψ(0) = ψ′(0) = 0. Then,
the Legendre dual of ψ, defined as ψ∗(t) := supβ∈[0,b){βt − ψ(β)}, is a nonnegative convex and
nondecreasing function on [0,∞) with ψ∗(0) = 0. Moreover, for every y ≥ 0, the set {t ≥ 0 :
ψ∗(t) > y} is non-empty and the generalized inverse of ψ∗ defined by ψ∗−1(y) = inf{t ≥ 0 :

ψ∗(t) > y} can also be written as ψ∗−1(y) = infβ∈(0,b)
y+ψ(β)

β .

We will need the following property of a Gibbs distribution:
Lemma 11 (Zhang 2006a, Proposition 3.1). For any real-valued measurable function f on W ,
any real β > 0, and any P, Q ∈ M(W) such that D(P‖Q) < ∞, we have β−1D(P‖P ∗) =
EP [f(W )] + β−1D(P‖Q) + β−1 lnEQ[e−βf(W )], where P ∗ is the Gibbs distribution P ∗(dw) :=

e−βf(w)

EQ[e−βf(W ′)]
Q(dw). Consequently,

inf
P∈M(W)

{
EP f(W ) + β−1D(P‖Q)

}
= −β−1 lnEQ[e−βf(W )].
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Finally, we recall the golden formula: For all Q ∈M(W) such that D(PW ‖Q) <∞, we have
I(S;W ) = D(PW |S‖Q|PS)−D(PW ‖Q), (6)

where D(PW |S‖Q|PS) =
∫
Zn D(PW |S=s‖Q)µ⊗n(ds).

By the golden formula (6), under the oracle prior Q? = ES [PW |S ], ES [D(P‖Q?)] = I(S;W ).

All information-theoretic quantities are expressed in nats, unless specified otherwise.

A.2 OMITTED DETAILS IN SECTION 2

We include a proof of Lemma 1 since we will use the arguments.

Proof of Lemma 1. Applying the Donsker-Varadhan Lemma 9 to the function,
f(w) = nβ(Mβ(w)− LS(w)), (7)

we obtain,
nβEP [Mβ(W )− LS(W )]−D(P‖Q) ≤ lnEQ[enβ(Mβ(W )−LS(W ))]. (8)

Exponentiating both sides of (8) and taking expectations w.r.t. S ∼ µ⊗n, we have
ES exp

{
nβEP [Mβ(W )− LS(W )]−D(P‖Q)

}
≤ ESEQ[enβ(Mβ(W )−LS(W ))]. (9)

Since Zi
i.i.d.∼ µ, for any w ∈ W and β > 0, we have e−nβMβ(w) = ES∼µ⊗n

[
e−nβLS(w)

]
. This

observation and Fubini’s theorem implies that the right hand side of (9) is equal to one. This proves
the IEI.

Proof of Theorem 2. LettingR(S) := nβEP [Mβ(W )−LS(W )]−D(P‖Q), by Lemma 1, we have
ES [eR(S)] ≤ 1. By Markov’s inequality,

Pr
S

(
R(S) > ln

1

δ

)
= Pr

S

(
eR(S) >

1

δ

)
≤ ES [eR(S)]δ ≤ δ.

Therefore, with probability of at least 1− δ over the choice of S ∼ µ⊗n, we have for all P � Q,

EP [Mβ(W )] ≤ EP [LS(W )] +
1

nβ

(
D(P‖Q) + ln

1

δ

)
. (10)

By assumption,

sup
w∈W

[Lµ(w)−Mβ(w)] ≤ ψ(β)

β
, ∀β > 0, (11)

when (1) follows.

For the bound in expectation, note that by Jensen’s inequality, eES [R(S)] ≤ ES [eR(S)] ≤ 1, which
implies ES [R(S)] ≤ 0, when we have

ESW [Mβ(W )] ≤ ESW [LS(W )] +
1

nβ
D(P‖Q|PS). (12)

Using (11), and rearranging and optimizing, we have

ESW [g(W,S)] ≤ inf
β>0

1
nD(P‖Q|PS) + ψ(β)

β

= ψ∗−1

(
D(P‖Q|PS)

n

)
,

where the second equality follows from Lemma 10.

We can also optimize β in (1) at a small cost using the union bound:
Proposition 12. Consider the setting in Theorem 2. If `(w,Z) is σ-sub-Gaussian under µ for all
w ∈ W , then for any constants α > 1 and v > 0, and any δ ∈ (0, 1], for all β ∈ (0, v], with
probability of at least 1− δ, we have

EP [g(W,S)] ≤ α

nβ

(
D(P‖Q) + ln

logα
√
n+K

δ

)
+
βσ2

2
,

where K = max{logα
(
vσ√
2α

)
, 0}+ e.

The proof follows that of van Erven (2014, Lemma 8), extending it to sub-Gaussian losses.
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Proof. For 0 < u < v, and i = 0, . . . , dlogα
v
ue − 1, for all i let βi = uαi be selected before the

draw of the training sample. Then for every β ∈ [u, v], there is a βi such that βi ≤ β ≤ αβi.
We can extend (10) by applying a union bound over the βi’s, so that for all P with probability of at
least 1− δ over the draw of S, the following holds simultaneously for all βi:

EP [Mβi(W )] ≤ EP [LS(W )] +
α

nβi

(
D(P‖Q) + ln

dlogα
v
ue

δ

)
. (13)

By Proposition 8(2), for any w ∈ W , Mβ(w) is a nonincreasing of β. Thus for any β ∈ [u, v]
and βi such that βi ≤ β ≤ αβi, Mβ(w) ≤ Mβi(w) and 1

βi
≤ α

β . Moreover, since `(w,Z) is

σ-sub-Gaussian under µ by assumption, we have for all w ∈ W and β > 0, Lµ(w) ≤Mβ(w) + β
2σ

2.
Hence, with probability of at least 1− δ we have,

EP [Lµ(W )] ≤ EP [LS(W )] +
α

nβ

(
D(P‖Q) + ln

dlogα
v
ue

δ

)
+
βσ2

2
. (14)

Letting J = D(P‖Q) + ln logα
√
n+K
δ , we find that the value for β that optimizes the right hand

side of the bound in the statement of the proposition is bounded from below by
√

2α
nσ2 . Letting

u = 1√
n

min
{√

2α
σ2 , v

}
and plugging it in (14) completes the proof.

Remark 13 (Related work). A variation of the IEI for the special case of the 0-1 loss appears in
the monograph by Catoni (Catoni, 2007, Eq. 1.2), and has been rediscovered more recently for the
sub-Gaussian loss in (Hellström & Durisi, 2020b;a). The statements of (Hellström & Durisi, 2020b,
Corollary 3, Eq. 20) and (Hellström & Durisi, 2020a, Corollary 2, Eq. 26) which are analogues of
our Proposition 12 are incorrect as they assume that β can be optimized “for free,” when in fact we
have to pay a union bound price for optimizing β, which is selected before the draw of the training
sample. We also note two related works that focus exclusively on unifying either PAC-Bayesian and
Occam’s razor-based bounds for the 0-1 loss (Blum & Langford, 2003), or information-theoretic
bounds for the sub-Gaussian loss (Hafez-Kolahi et al., 2020).

A.3 THE STRONG FUNCTIONAL REPRESENTATION LEMMA AND SINGLE-DRAW BOUNDS

In this section, we highlight a functional characterization of the mutual information in relation to the
“single-draw” bound due to Bassily et al. (2018).

A randomized learning algorithm PW |S can be viewed as a noisy channel that maps the input sample
S to conditional distributions of hypotheses W inW . Consider a communication task where Alice
and Bob share a common random string R, possibly of unbounded length, generated in advance.
Alice observes a sample s ∈ Zn drawn according to PS and communicates a prefix-free message
M to Bob via a noiseless channel such that Bob can output a hypothesis w ∈ W that is distributed
according to PW |S=s. Harsha et al. (2009) showed that the minimum expected description length of
M (in bits) needed to accomplish this task is roughly equal to the input-output mutual information
I(S;W ). Variations on this theme have appeared in a learning-theoretic setting (Blum & Langford,
2003), and by way of the bits-back argument due to Hinton & van Camp (1993); see, e.g., Havasi et al.
(2019). More generally, we note the following functional characterization of the mutual information:
Theorem 14 (Strong functional representation lemma (SFRL), Li & El Gamal 2018). For any pair
of jointly distributed random variables (S,W ) with I(S;W ) <∞, there exists a random variable R
independent of S such that W can be represented as a deterministic function of S and R, and

I(S;W ) ≤ H(W |R) ≤ I(S;W ) + log(I(S;W ) + 1) + 4.

The SFRL implies the existence of a random variable R ⊥⊥ S such that H(W |R) ≈ I(S;W ).

Consider the case for the {0, 1}-valued loss. If the algorithm PW |S is deterministic, then we have
I := I(S;W ) = H(W )−H(W |S) = H(W ). By Markov’s inequality, with probability of at least
1 − δ, we have PW (w) ≥ e−I/δ. LetW0 ⊆ W be the set of hypotheses so that PW (w) ≥ e−I/δ.
The size ofW0 is at most eI/δ since 1 = Pr(W) ≥ Pr(W0) =

∑
w∈W0

PW (w) ≥ |W0|e−I/δ. By
the Chernoff-Hoeffding bound, for every w inW ,

Pr
S

(
|g(w, S)| > ε

)
≤ 2e−2nε2 ∀ε > 0.
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Applying the union bound over allw ∈ W0, the probability of error for the algorithm is 2|W0|e−2nε2+
δ, where the second summand is for the case where the algorithm outputs a function outsideW0.
Hence, for every w ∈ W0, the empirical risk is close to the true risk for n = Ω( I

δε2 ) with probability
of at least 1− δ.

By the SFRL, any randomized algorithm can be simulated by randomly sampling a deterministic
algorithm from some distribution R before observing the input S. These algorithms have the property
that on average (over R), H(W |R) ≈ I(S;W ). Using the argument for the deterministic case and
integrating over R, we can bound the probability of error for the randomized case as

Pr
S,W

(
|g(W,S)| > ε

)
= O

(
I(S;W )

nε2

)
. (15)

An analogous bound for the sub-Gaussian loss appears in (Xu & Raginsky, 2017, Theorem 3).

A.4 RECOVERING CLASSICAL PAC-BAYESIAN BOUNDS

By Proposition 8 item 6), for a {0, 1}-valued loss, we have
Mβ(w) = −β−1 ln

(
1− (1− e−β)Lµ(w)

)
=: Φβ(Lµ(w)).

Φβ is an increasing one-to-one mapping of the unit interval onto itself, and is convex for β > 0

(Catoni, 2007). The inverse of Φβ is given by Φ−1
β (x) = 1−e−βx

1−e−β , and we recover Catoni’s PAC-
Bayesian bound in Corollary 4.

Starting from Catoni’s bound in Corollary 4, using 1 ≤ β(1− e−β)
−1 ≤ (1− β

2 )
−1

, we have

EP [Lµ(W )] ≤ Φ−1
β

{
EP [LS(W )] +

1

nβ

[
D(P‖Q) + ln

1

δ

]}
≤ β

1− e−β

[
EP [LS(W )] +

1

nβ

(
D(P‖Q) + ln

1

δ

)]
(16)

≤ 1

1− β
2

[
EP [LS(W )] +

1

nβ

(
D(P‖Q) + ln

1

δ

)]
. (17)

(16) and (17) recover, resp., the bounds due to Catoni (2007, Theorem 1.2.1) and McAllester (2013,
Theorem 2), where for the latter we additionally require that β < 2.

We now show how inequality (10) relates to other well-known PAC-Bayesian inequalities such as
the “PAC-Bayes-KL-inequality” (Seeger, 2002; Maurer, 2004). Applying the Donsker-Varadhan
lemma to the function f(w) = nβ(Lµ(w) − LS(w)), which involves the true risk Lµ(w) instead
of the annealed expectation Mβ(w) (see 7), and following the same steps as in the proof of (10) in
Theorem 2, we arrive at the following PAC-Bayesian bound:

Pr
S∼µ⊗n

(
EP [Lµ(W )] ≤ EP [LS(W )] +

1

nβ

[
D(P‖Q) + ln

1

δ

+ lnEQES′∼µ⊗n enβ
(
Lµ(W )−LS′ (W )

)])
≥ 1− δ.

(18)
For an explicit comparison of (18) with (10), we write the latter as

Pr
S∼µ⊗n

(
EP [Mβ(W )] ≤ EP [LS(W )] +

1

nβ

[
D(P‖Q) + ln

1

δ

+ lnEQES′∼µ⊗n enβ
(
Mβ(W )−LS′ (W )

)
︸ ︷︷ ︸

=0

])
≥ 1− δ,

(19)
where the last term in the right hand side of the bound in (19) vanishes since

e−nβMβ(w) = ES′∼µ⊗n
[
e−nβLS′ (w)

]
for any w ∈ W and β > 0. In contrast, the term lnEQES′∼µ⊗n enβ(Lµ(W )−LS′ (W )) involving the
true risk in (18) is, in general, positive.
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Specializing to the case of a {0, 1}-valued loss, fix β = 1, and let ∆ : [0, 1] × [0, 1] →
R be a convex function. Applying the Donsker-Varadhan lemma to the function, f(w) =
n∆(LS(w), Lµ(w)), following the same steps as in the proof of (10) in Theorem 2, and by noting
that ∆(EP [LS(W )],EP [Lµ(W )])) ≤ EP [∆(LS(W ), Lµ(W ))], we arrive at the following PAC-
Bayesian bound (see, e.g., Maurer (2004, Lemma 3), Germain et al. (2009, Theorem 2.1), Rivasplata
et al. (2020, Eq. 4)):

Pr
S∼µ⊗n

(
∆(EP [LS(W )],EP [Lµ(W )])) ≤ 1

n

[
D(P‖Q) + ln

1

δ

+ lnEQES′∼µ⊗n en∆(LS′ (W ),Lµ(W ))
])
≥ 1− δ.

(20)

For x, y ∈ [0, 1], the binary KL divergence is kl(y‖x) = y ln y
x + (1− y) ln 1−y

1−x . The PAC-Bayes-
KL-inequality comes about by upper-bounding the log-exponential-moment term involving the true
risk in the right hand side of the bound in (20): For ∆(y, x) = kl(y‖x), Maurer (2004) showed that
for n ≥ 8, EQES′ [en∆(LS′ (W ),Lµ(W ))] ≤ 2

√
n, when we have

Pr
S∼µ⊗n

(
kl(EP [LS(W )],EP [Lµ(W )]) ≤ 1

n

[
D(P‖Q) + ln

2
√
n

δ

])
≥ 1− δ. (21)

Letting ∆(y, x) = 2(y − x)2 leads to the bound in (McAllester, 1999b), while letting ∆(y, x) =
(y − x)2/(2x) leads to that in (Thiemann et al., 2017).

Fixing β = 1 in (1), we recover (Germain et al., 2016, Corollary 5):
Corollary 15. Consider the setting in Theorem 2. If the loss ` is (σ, c)-sub-gamma with c < 1, then
with probability of at least 1− δ over the choice of S ∼ µ⊗n, for all distributions P � Q overW ,
EP [g(W,S)] ≤ 1

n (D(P‖Q) + ln(1/δ)) + σ2

2(1−c) .

The condition c < 1 guarantees that β = 1 ∈ (0, 1
c ) when the sub-gamma condition in Proposition 8

8) is satisfied. In the limit c→ 0+, a sub-gamma loss reduces to the sub-Gaussian loss (Boucheron
et al., 2013, §2.4), and we recover (Germain et al., 2016, Corollary 4).

A.5 PROOF OF PROPOSITION 5

For the proof of Proposition 5, the key quantity of interest is the approximate max-information
between the input S and the data-dependent prior. We note the following definitions.

For α ≥ 0, the α-approximate max-divergence is defined as

Dα
∞(P‖Q) = ln sup

O⊆X :P (O)>α

P (O)− α
Q(O)

.

The max-divergence D∞(P‖Q) is defined as Dα
∞(P‖Q) for α = 0. For a pair of variables (X,Y )

with joint law PXY and marginals PX and PY , the α-approximate max-information between X and
Y is defined as

Iα∞(X;Y ) = Dα
∞(PXY ‖PX ⊗ PY ).

The max-information I∞(X;Y ) is defined to be Iα∞(X;Y ) for α = 0. I∞(X;Y ) is an upper bound
on the ordinary mutual information I(X;Y ) (Dwork et al., 2015).
Definition 16 (Differential Privacy, Dwork & Roth 2014). For any ε ≥ 0 and δ ∈ [0, 1], a learning
algorithm PW |S is said to be (ε, δ)-differentially private if for all pairs of datasets s, s′ ∈ Zn that
differ in a single element, Dδ

∞(PW |S=s‖PW |S=s′) ≤ ε. The case δ = 0 is called pure differential
privacy.

Definition 17 (Max-Information of an algorithm, Dwork et al. 2015). We say that an algorithm PW |S
has α-approximate max-information of k, denoted as Iα∞,µ(PW |S , n) ≤ k, if for every distribution µ
over Z , we have Iα∞(S;W ) ≤ k when S ∼ µ⊗n.

It follows from the definition of α-approximate max-information that if an algorithm PW |S has
bounded approximate max-information, then we can control the probability of “bad events” that may
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arise as a result of the dependence of the output W on the input S (Dwork et al., 2015). Let S′ ⊥⊥W
be an independent sample with the same distribution as S. If for some α ≥ 0, Iα∞(S;W ) ≤ k, then
for any event O ⊆ Zn ×W , we have

Pr((S,W ) ∈ O) ≤ ek · Pr((S′,W ) ∈ O) + α. (22)
Pure differential privacy implies a bound on the approximate max-information:

Theorem 18 (Pure differential privacy and α-approximate max-information, Dwork et al. 2015,
Theorem 20). If PW |S is an (ε, 0)-differentially private algorithm, then I∞,µ(PW |S , n) ≤ εn, and
for any α > 0, Iα∞,µ(PW |S , n) ≤ nε2/2 + ε

√
n ln(2/α)/2.

Remark 19. The result above is extended to (ε, δ)-differential privacy in (Rogers et al., 2016,
Theorem 3.1): If PW |S is an (ε, δ)-differentially private algorithm for ε ∈ (0, 1/2] and δ ∈ (0, ε),
then for α = O(n

√
δ/ε), Iα∞,µ(A, n) = O(nε2 + n

√
δ/ε).

The proof of Proposition 5 follows closely that of (Dziugaite & Roy, 2018b, Theorem 4.2).

Proof of Proposition 5. For every Q ∈M(W), let

F (Q) =

{
S′ ∈ Zn : ∃P ∈M(W), EP [Mβ(W )] ≥ EP [LS′(W )] +

1

nβ

(
D(P‖Q) + ln

1

δ′

)}
.

By (10), we have PrS′∼µ⊗n
(
S′ ∈ F (Q)

)
≤ δ′. From (22), we have

Pr
S∼µ⊗n

(
S ∈ F (Q0(S))

)
≤ eI

α
∞,µ(Q0,n) · Pr

(S,S′)∼µ⊗2n

(
S′ ∈ F (Q0(S))

)
+ α ≤ eI

α
∞,µ(Q0,n) · δ′ + α.

Letting δ := eI
α
∞,µ(Q0,n) · δ′ + α, for α ∈ (0, δ) we have,

Pr
S∼µ⊗n

(
∃P ∈M(W), EP [Mβ(W )] ≥ EP [LS(W )]

+
1

nβ

(
D(P‖Q0(S)) + ln

1

δ − α
+ Iα∞,µ(Q0, n)

))
≤ δ.

The proof is complete by supplanting Iα∞,µ(Q0, n) with the bound in Theorem 18, and choosing
α = δ

2 .

By Remark 19, Proposition 5 can be extended to (ε, δ)-differentially private priors.

We can also bound the expected generalization error:

Proposition 20. Consider the setting in Theorem 2. Let Q0 ∈ K(S,W) be an (ε, 0)-differentially
private algorithm. Then with probability of at least 1− δ over a draw of the sample S, for all P , we
have

EP [g(W,S)] ≤ 1

nβ

(
D(P‖Q0(S)) + ln

2

δ
+
nε2

2
+ ε

√
n

2
ln

4

δ

)
+
ψ(β)

β
. (23)

The main advantage of the max-information formulation in Propositions 5 and 20 is that we can
get high probability guarantees at the cost of a O(nε2 + ε

√
n ln 1/δ) correction term. This cost is

compensated for by a lower KL complexity since the prior is more “aligned” with the data-dependent
posterior than when chosen independently of the data. As is well-known (Dwork et al., 2015; Feldman
& Steinke, 2018), a small mutual information between the data and the prior will not ensure that bad
events will happen with low probability.

A.6 PROOFS FOR SECTION 3

When G =M(W), applying Lemma 11 to f(w) = nLS(w), and writing β for nβ, we recover the
Gibbs algorithm, P ?, in which case OICβG in (3) evaluates to the (extended) stochastic complexity,
− 1
β lnEQ[e−βLS(W )].

We show how to optimize the bound in Corollary 4 w.r.t. the parameters β and λ.
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Proof of (4). First, note that the bound in Corollary 4 holds uniformly for all β > 1 at an additional
cost arising from a union bound argument (Catoni, 2007, Theorem 1.2.7): For α > 1,

EP [Lµ(fW )] ≤ inf
β>1

Φ−1
β

{
EP [LS(fW )] +

α

nβ

[
D(P‖Q) + ln

1

δ
+ 2 ln

( lnα2βn

lnα

)]}
. (24)

Second, we select λ before the draw of the training sample from a finite grid of possible values:
Following (Langford & Caruana, 2002; Dziugaite & Roy, 2017), let λ = ce−j/b for some j ∈ N and
fixed b ∈ N, c ∈ (0, 1), where b and c control, resp., the resolution and size of the grid. If (24) holds
for each j ∈ N with probability of at least 1− 6δ

π2j2 , then by the union bound, it holds for all j ∈ N
simultaneously with probability of at least 1− δ, since

∑∞
j=1

6
π2j2 = 1. Solving for j in terms of λ,

we have

EP [Lµ(fW )] ≤ inf
β>1, λ∈(0,c)

Φ−1
β

{
EP [LS(fW )]

+
α

nβ

[
D(P‖Q) + ln

(
π2b2

6δ

(
ln
c

λ

)2
)

+ 2 ln
( lnα2βn

lnα

)]}
.

Finally, we account for the cost of using a Monte Carlo estimate of the empirical risk, L̂S(fW ) =
1
m

∑m
i=1 LS(fWi), where Wi

i.i.d.∼ P . By an application of the Chernoff bound (Langford & Caruana,
2002, Theorem 2.5) and Pinsker’s inequality, for any δ′ ∈ (0, 1), we have with probability of at least

1− δ′, EP [LS(fW )] ≤ L̂S(fW ) +
√

1
2m ln 2

δ′ .

By another application of the union bound, Corollary 4 finally takes the form: For any δ, δ′ ∈ (0, 1),
fixed α > 1, c ∈ (0, 1), b ∈ N, and m,n ∈ N, with probability of at least 1− δ − δ′ over a draw of
S ∼ µ⊗n and W ∼ (P )⊗m,

EP [Lµ(fW )] ≤ inf
P∈G,β>1,λ∈(0,c)

Φ−1
β

{
L̂S(fW ) +

α

nβ
D(P‖Q) +R(λ, β; δ, δ′)

}
,

where R(λ, β; δ, δ′) = 2α
nβ ln

[
lnα2βn

lnα

]
+ α

nβ ln
[
π2b2

6δ

(
ln c

λ

)2]
+
√

1
2m ln 2

δ′ .

Proof of Lemma 6. Letting θ = w − wP , and P ′ = P − wP , note that θ>Hθ = Tr(θ>Hθ) =
Tr(Hθθ>). Hence

EP ′ [ 1
2θ
>Hθ] = EP ′ [ 1

2 Tr(Hθθ>)] = 1
2 Tr(HEP ′ [θθ>]) = 1

2 Tr(HΣP ).

For Q ∼ N (wQ,ΣQ) and P ∼ N (wP ,ΣP ), we have

EP ′ [ 1
2θ
>Hθ] + (nβ)

−1
D(P‖Q)

= 1
2 Tr(HΣP ) + (nβ)

−1
D(P‖Q)

=
Tr(HΣP )

2
+

(nβ)
−1

2

(
ln

det ΣQ
det ΣP

+ Tr
(

Σ−1
Q ΣP

)
− k + (wQ − wP )

>
Σ−1
Q (wQ − wP )

)
.

The derivative of the RHS w.r.t. ΣP is 1
2

[
H − (nβ)

−1
Σ−1
P + (nβ)

−1
Σ−1
Q

]>
, where we have used

the fact that ∇A Tr(AB) = B>, and∇A ln det(A) = (A−1)>. Setting the derivative to zero and
ΣQ = λ−1Ik yields the result.

Proof of Proposition 7. The proof follows from (10), and the fact that for Q = N (wQ, λ
−1Ik),

P = N (wP , H
−1
λ ) such that λi ≥ λ > 0 for all i, we have

D(P‖Q) =
1

2

(
λ‖wQ − wP ‖2 +

k∑
i=1

ln
λi
λ

+

k∑
i=1

(
λ

λi
− 1

))
≤ 1

2

(
λ‖wQ − wP ‖2 +

k∑
i=1

ln
λi
λ

)
.
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