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ABSTRACT

(Stochastic) bilevel optimization is a frequently encountered problem in machine
learning with a wide range of applications such as meta-learning, hyper-parameter
optimization, and reinforcement learning. Most of the existing studies on this
problem only focused on analyzing the convergence or improving the conver-
gence rate, while little effort has been devoted to understanding its generalization
behaviors. In this paper, we conduct a thorough analysis on the generalization
of first-order (gradient-based) methods for the bilevel optimization problem. We
first establish a fundamental connection between algorithmic stability and gener-
alization gap in different forms and give a high probability generalization bound
which improves the previous best one from O(

√
n) to O(log n), where n is the

sample size. We then provide the first stability bounds for the general case where
both inner and outer level parameters are subject to continuous update, while ex-
isting work allows only the outer level parameter to be updated. Our analysis can
be applied in various standard settings such as strongly-convex-strongly-convex
(SC-SC), convex-convex (C-C), and nonconvex-nonconvex (NC-NC). Our analy-
sis for the NC-NC setting can also be extended to a particular nonconvex-strongly-
convex (NC-SC) setting that is commonly encountered in practice. Finally, we
corroborate our theoretical analysis and demonstrate how iterations can affect the
generalization gap by experiments on meta-learning and hyper-parameter opti-
mization.

1 INTRODUCTION

(Stochastic) bilevel optimization is a widely confronted problem in machine learning with various
applications such as meta-learning (Finn et al., 2017; Bertinetto et al., 2018; Rajeswaran et al.,
2019), hyper-parameter optimization (Franceschi et al., 2018; Shaban et al., 2019; Baydin et al.,
2017; Bergstra et al., 2011; Luketina et al., 2016), reinforcement learning (Hong et al., 2020), and
few-shot learning (Koch et al., 2015; Santoro et al., 2016; Vinyals et al., 2016). The basic form of
this problem can be defined as follows

min
x∈Rd1

R(x) = F (x,y∗(x)) := Eξ [f (x,y∗(x); ξ)]

s.t. y∗(x) = arg min
y∈Rd2

{G(x,y) := Eζ[g(x,y; ζ)]} , (1)

where f : Rd1 × Rd2 → R and g : Rd1 × Rd2 → R are two continuously differentiable loss
functions with respect to x and y. Problem (1) has an optimization hierarchy of two levels, where
the outer-level objective function f depends on the minimizer of the inner-level objective function
g.

Due to its importance, the above bilevel optimization problem has received considerable attention
in recent years. A natural way to solve problem (1) is to apply alternating stochastic gradient up-
dates with approximating ∇yg(x,y) and ∇f(x,y), respectively. Briefly speaking, previous efforts
mainly examined two types of methods to perceive an approximate solution that is close to the op-
timum y∗(x). One is to utilize the single-timescale strategy (Chen et al., 2021; Guo et al., 2021;
Khanduri et al., 2021; Hu et al., 2022), where the updates for y and x are carried out simultane-
ously. The other one is to apply the two-timescale strategy (Ghadimi & Wang, 2018; Ji et al., 2021;

1



Under review as a conference paper at ICLR 2023

REFERENCE
STABILITY BOUNDS IN VARIOUS SETTINGS

SC-SC C-C NC-NC NC-SC
SSGD (THIS WORK) O(1/m1) O(κ1

K/2/m1) O(Kκ2/m1) O(Kκ3/m1)

TSGD (THIS WORK) O((κ4)
K/m1) O((κ4)

K/m1) O(T 1−κ5Kκ5/m1) O(T 1−κ6Kκ6/m1)

Table 1: Summary of main results. κi: a constant for all i above; T : inner iterations; K: outer iterations; m1: size of outer dataset. SSGD
and TSGD stand for Algorithm 1 and Algorithm 2, the single-timescale and two-timescale methods, via stochastic gradient descent.

Hong et al., 2020; Pedregosa, 2016), where the update of y is repeated multiple times to achieve a
more accurate approximation before conducting the update of x.

While there is a long list of work on bilevel optimization, most of the existing work only focuses
on either analyzing its convergence behaviors (Ghadimi & Wang, 2018; Hong et al., 2020; Ji et al.,
2021) or improving its convergence rate, based on the convexity and the smoothness properties of
f(·, ·) and/or g(·, ·) (Liu et al., 2020; Li et al., 2020). Contrarily, only little effort is devoted to
understanding the generalization behavior of the problem. To the best of our knowledge, there is
only one recent work on the generalization analysis for bilevel problems (Bao et al., 2021), which
presents the first expected uniform stability bound. However, there are still several undesirable issues
in this work: (1) Their result is only for the uniform stability (which could be deduced from argument
stability with certain conditions, see Definition 4 for details), leaving the analysis of other stronger
definitions of algorithmic stability open; (2) Additionally, the UD algorithm allows the outer level
parameters to be updated continuously but needs to reinitialize the inner level parameters before
each iteration in the inner loop, which is not commonly used in practice due to their inefficiency
(see line 4 in Algorithm 3). (3) The proof of Theorem 2 in their work is unclear to show whether
the update of outer level parameters is argument dependent on the inner level parameters, where
may exist some gap in the analysis of UD algorithm (see Appendix E for detailed discussions).
(4)Their experiments take only hyper-parameter optimization into consideration and neglect other
applications in the bilevel optimization instances.

To address all the aforementioned issues, we give in this paper a thorough analysis on the general-
ization behaviors of first-order (gradient-based) methods for general bilevel optimization problem.
We employ the recent advances of algorithmic stability to investigate the generalization behaviors
in different settings. Specifically, our main contributions can be summarized as follows:

• Firstly, we establish a fundamental connection between generalization gap and different
notations of algorithmic stability (argument stability and uniform stability) for any ran-
domized bilevel optimization algorithms in both expectation and high probability forms.
Specifically, we show that the high probability form of the generalization gap bound can be
improved from O(

√
n) to O(log n) compared with the result in Bao et al. (2021).

• Next, we present the stability bounds for gradient-based methods with either single-
timescale or two-timescale update strategy under different standard settings. To the best
of our knowledge, this work provides the first stability bounds for the two-timescale (dou-
ble loop) algorithms, which allows the accumulation of the sub-sampled gradients in the
inner level. In detail, we consider the settings of strongly-convex-strongly-convex (SC-SC),
convex-convex (C-C), and nonconvex-nonconvex (NC-NC), and further extend our analy-
sis to a particular nonconvex-strongly-convex (NC-SC) setting that is widely appeared in
practice. Table 1 is the summary of our main results.

• Thirdly, we provide the first generalization bounds for the case where both the outer and
inner level parameters are subject to continuous (iterative) changes. Compared to the pre-
vious work (Bao et al., 2021), our work does not need the reinitialization step before each
iteration in the inner level and hence our algorithm can carry over the last updated inner
level parameters, which is more general and practical.

• Finally, we conduct empirical studies to corroborate our theories via meta-learning and
hyperparameter optimization, which are two applications of bilevel optimization.

Due to space limitations, all the proofs and additional experiments are included in Appendix.
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1.1 RELATED WORK

Research at the interface between generalization and the bilevel problem can be roughly classified
into two categories. The first one includes all the research on bilevel optimization. In recent decades,
extensive studies have been done on this topic, which suggests that bilevel optimization has a wide
range of applications in machine learning such as hyper-parameter optimization (Franceschi et al.,
2018; Lorraine & Duvenaud, 2018; Okuno et al., 2021), meta learning (Bertinetto et al., 2018;
Rajeswaran et al., 2019; Soh et al., 2020) and reinforcement learning (Yang et al., 2018; Tschiatschek
et al., 2019). Most of the existing work studies the problem from an optimization perspective. For
example, Ghadimi & Wang (2018); Ji et al. (2021) provide the convergence rate analysis based on the
nonconvex-strongly-convex assumption for the two functions f(·, ·) and g(·, ·). (Grazzi et al., 2020)
considers the iteration complexity for hypergradient computation. (Liu et al., 2020; Li et al., 2020)
present an asymptotic analysis for the convex-strongly-convex setting. Perhaps the most related one
to ours from the generalization standpoint (i.e., the expectation of population risk and empirical
risk) is Bao et al. (2021), while there may exist some gap in the analysis of UD algorithm. In this
work, we employ a novel approach to examine the stability bounds of bilevel optimization problems.
Firstly, our work analyzes the generalization behavior by observing how different settings can have
an impact on the stability bounds directly. Secondly, our work adopts a stronger version of stability
called argument stability, which can imply the previously used uniform stability if the function is
sufficiently smooth. Furthermore, our work does not need to reinitialize the inner-level parameters
and allows them to carry over their last updated parameters at each time updating the inner level.
This indicates that y in the inner level is updated iteratively and depends on the current parameter
of x, which is more common and efficient in practice.

The second category includes all the work on stability analysis. There is a long list of research on
stability and generalization (Bousquet & Elisseeff, 2002; Mukherjee et al., 2006; Shalev-Shwartz
et al., 2010). Bousquet & Elisseeff (2002) first introduces the notion of uniform stability and estab-
lishes the first framework of stability analysis. Hardt et al. (2016) later extends the stability analysis
to iterative algorithms based on stochastic gradient methods for the vanilla stochastic optimization.
After that, there are subsequent studies on generalization analysis for various problems via algorith-
mic stability, such as minmax problems (Lei et al., 2021; Farnia & Ozdaglar, 2021; Zhang et al.,
2021) and pairwise learning (Yang et al., 2021; Lei et al., 2020; Xue et al., 2021; Huai et al., 2020).
However, it is notable that due to the additional stochastic function in the constraint in the bilevel
optimization, all the previous techniques and results cannot be applied to our problem. Although the
generalization analysis of minmax optimization is somewhat similar to ours, it involves only one ob-
jective function f and a single level in algorithms for typical minmax optimization problems, while
in the bilevel optimization algorithms there is an inner level and an outer level, which is considerably
more challenging.

2 PRELIMINARIES

2.1 DEFINITIONS AND ASSUMPTIONS

In the following, we give some necessary definitions and assumptions that are widely used in bilevel
optimization (Ghadimi & Wang, 2018; Ji et al., 2021; Khanduri et al., 2021) and generalization
analysis (Hardt et al., 2016; Lei et al., 2021).
Definition 1 (Joint Lipschitz Continuity). A function f(x,y) is jointly L-Lipschitz over
Rd1 × Rd2 , if for all x ∈ Rd1 ,y ∈ Rd2 , the following holds, |f(x,y) − f(x′,y′)| ≤
L
√
∥x− x′∥22 + ∥y − y′∥22.

Definition 2 (Smoothness). A function f is l-smooth over a set S if for all u,w ∈ S the following
is true, ∥∇f(u)−∇f(w)∥ ≤ l∥u− w∥.
Definition 3 (Strong Convexity). A function f is µ-strongly-convex over a set S, if for all u,w ∈ S,
the following holds, f(u) + ⟨∇f(u), w − u⟩+ µ

2 ∥w − u∥2 ≤ f(w).
Assumption 1 (Inner-level Function Assumption). We assume the inner stochastic function g(x,y)
in (1) satisfies the following:
(i) g(x,y) is jointly Lg-Lipschitz for any x ∈ Rd1 and y ∈ Rd2 .
(ii) g(x,y) is continuously differentiable and lg-smooth for any (x,y) ∈ Rd1 × Rd2 .
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Assumption 2 (Outer-level Function Assumption). We assume the outer stochastic function f(x,y)
in (1) satisfies the following:
(iii) f(x,y) is jointly Lf -Lipschitz for any x ∈ Rd1 and y ∈ Rd2 .
(iv) f(x,y) is continuously differentiable and lf -smooth for any (x,y) ∈ Rd1 × Rd2 .

2.2 PROBLEM FORMULATION

Given two distributions D1 and D2, in the (stochastic) optimization problem we aim to find the
minimizer of Problem (1). However, since the distributions are often unknown, in practice we only
have two finite-size datasets Dm1 = {ξi | i = 1, ...,m1} ∼ Dm1

1 and Dm2 = {ζi | i = 1, ...,m2} ∼
Dm2

2 , where each ξi and ζi are i.i.d. sampled from D1 and D2, respectively. Based on these datasets,
we will design some (randomized) algorithm A with output A(Dm1 , Dm2) = (x,y) ∈ Rd1 ×Rd2 .
Our goal is to investigate the generalization behavior of such output. Note that although there are
two stochastic functions in the bilevel optimization problem, we only care about the generalization
of the outer-level one since it is the one that we prefer to minimize.

Below we define the generalization gap to measure the generalization behavior. Given distribu-
tion D1 and a finite data Dm1

∼ Dm1
1 , the population risk function R(x,y,D1) of x, y on D1

is defined as R(x,y,D1) := Eξ∼D1
[f (x,y(x); ξ)], and its empirical risk function on Dm1

is
Rs(x,y, Dm1

) = 1
m1

∑m1

i=1 [f (x,y(x); ξi)]. Moreover, for a fixed hyperparameter x ∈ Rd1

and y(x) ∈ Rd2 ( note that y(x) might be dependent on x), we define the difference between
the population risk and the empirical risk over (x,y(x)) as the bilevel generalization gap of
(x,y(x)): Es[R(x,y) − Rs(x,y)], where Es denotes the expectation of Dm1

∼ Dm1
1 . When

there is no ambiguity, we simplify thereafter the notations as follows: R(x,y,D1) = R(x,y) and
Rs(x,y, Dm1) = Rs(x,y). Our goal is thus to analyze the bilevel generalization gap of the output
of algorithm A(Dm1 , Dm2) based on Dm1 and Dm2 . Since the generalized error depends on the
algorithm itself, in the following we will introduce the algorithms to be considered in this paper.

Most of the existing algorithms adopt the following idea: first approximate y∗ on Dm2
for a given

parameter x in the inner level and then seek the hyperparameter x∗(Dm1
, Dm2

) with corresponding
hypothesis y∗(x∗(Dm1

, Dm2
), Dm2

) by the below estimation:

x̂(Dm1 , Dm2) ≈ argmin
x

Rs(x, ŷ(x, Dm2), Dm1),

where ŷ(x, Dm2) ≈ argmin
y

Gs(x,y, Dm2),
(2)

where Gs(x,y, Dm2
) is the empirical risk of G(x,y) over Dm2

, i.e., G(x,y, Dm2
) =

1
m2

∑m2

i=1 g (x,y(x); ζi). Most of the current gradient-based (first-order) algorithms for approxi-
mating (2) can be categorized into two classes: single-timescale methods and two-timescale meth-
ods. The single-timescale method performs the updates for y and x simultaneously via stochastic
gradient descent (SGD), while the two-timescale method updates y multiple times before updating
x (via stochastic gradient descent). As there are numerous approaches for both classes (see Related
Work section for details), in this paper we will analyze the generalization behaviors for the most
classical and standard one in each class, i.e., single-timescale SGD (SSGD; Algorithm 1) and two-
timescale SGD (TSGD; Algorithm 2). There is a long list of work (Chen et al., 2021), (Ghadimi &
Wang, 2018; Ji et al., 2021) based on either SSGD or TSGD.

3 GENERALIZATION AND STABILITY FOR BILEVEL OPTIMIZATION

Algorithmic stability is one of the classical approaches to analyzing the generalization bound for
algorithms. Roughly speaking, the algorithmic stability of (randomized) algorithm A measures how
the output of algorithm A changes if we change one data sample in the input dataset. While there
are various notions of stability, most of the existing work on analyzing the stability of stochastic op-
timization, pairwise learning and minimax optimization focuses on the uniform-stability (Bousquet
& Elisseeff, 2002) and the argument-stability (Liu et al., 2017; Lei & Ying, 2020). Thus, we also
adopt these two notions of stability for the bilevel optimization problem. Briefly speaking, uniform-
stability focuses on the resulting change in population risk function, while the argument-stability
considers the resulting change in arguments, i.e., the output of the algorithm.
Definition 4 (Algorithmic Stability). Let A : Dm1

1 ×D
m2
2 7→ Rd1×Rd2 be a randomized algorithm.
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Algorithm 1 Single-timescale SGD (SSGD)

1: Input: number of iterations K, step sizes αx,
αy , initialization x0,y0, Datasets Dm1

and
Dm2

2: Output: xK , yK

3: for k = 0 to K − 1 do
4: Uniformly sample i ∈ [m2], j ∈ [m1]
5: yk+1 = yk − αy∇yg(xk,yk(xk); ζi)
6: xk+1 = xk − αx∇f(xk,yk(xk); ξj)
7: end for
8: return xK and yK

Algorithm 2 Two-timescale SGD (TSGD)

1: Input: number of iterations K, step sizes αx,
αy , initialization x0,y0

2: Output: xK , yK

3: for k = 0 to K − 1 do
4: y0

k ← yT
k−1

5: for t = 0 to T − 1 do
6: Uniformly sample i ∈ [m2]
7: yt+1

k = yt
k − αy∇yg(xk,y

t
k(xk); ζi)

8: end for
9: Uniformly sample j ∈ [m1]

10: xk+1 = xk − αx∇f(xk,y
T
k (xk); ξj)

11: end for
12: return xK , yT

K

(a) A is β-uniformly-stable if for all datasets Dm1
, D′

m1
∼ Dm1

1 and Dm2
∼ Dm2

2 such that
Dm1

and D′
m1

differ in at most one sample, we have the following for any ξ ∼ D1:

EA[|f(A(Dm1 , Dm2), ξ)− f(A(D′
m1

, Dm2), ξ)|] ≤ β.

A is β-uniformly-stable with probability at least 1 − δ if we have the following for any
ξ ∼ D1 with probability at least 1− δ:∣∣f(A(Dm1

, Dm2
), ξ)− f(A(D′

m1
, Dm2

), ξ)
∣∣ ≤ β.

(b) A is β-argument-stable in expectation if for all datasets Dm1
, D′

m1
∼ Dm1

1 and Dm2
∼

Dm2
2 such that Dm1

and D′
m1

differ in at most one sample, we have:

EA[∥A(Dm1 , Dm2)−A(D′
m1

, Dm2)∥2] ≤ β.

Note that the definition of uniform stability in expectation is the same as the definition in (Bao
et al., 2021). Thus, our other definitions can be considered as extensions of the previous stability
for bilevel optimization. In the following, we present Theorem 1 as our first result, which shows a
crucial relationship between generalization gap and algorithmic stability for an algorithm A.
Theorem 1. Let A : ξm1 × ζm2 7→ Rd1 × Rd2 be a randomized BO algorithm.

(a) If A is β-uniform-stable in expectation, then the following holds for Dm1 ∼ Dm1
1 , Dm2 ∼

Dm2
2 :

EA,Dm1
[R(A(Dm1

, Dm2
))−Rs(A(Dm1

, Dm2
))] ≤ β.

(b) If A is β-argument-stable in expectation and Assumption 2 holds, then the following holds
for Dm1

∼ Dm1
1 , Dm2

∼ Dm2
2 :

EA,Dm1
[R(A(Dm1 , Dm2))−Rs(A(Dm1 , Dm2))] ≤ Lfβ.

(c) Assume that |f(x,y; ξ)| ≤ M for some M ≥ 0. If A is β-uniform-stable almost surely,
then for Dm1 ∼ Dm1

1 , Dm2 ∼ Dm2
2 , the following holds with probability 1− δ:

|R(A(Dm1
, Dm2

))−Rs(A(Dm1
, Dm2

))|

≤ 2β + e

(
4M
√
m1

√
log

e

δ
+ 12
√
2β⌈log2 m1⌉

√
log

e

δ

)
where e is the base of the natural logarithms.

Remark 1. The above theorem suggests that the generalization gap can be controlled by several
notions of algorithmic stability. Part (a) and Part (b) show that the expectation of generalization gap
can be bounded by uniform stability and argument stability with the Lipschitz constant, respectively;
Part (c) indicates that the generalization gap for the algorithm is no more than O(β log(m1) +
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1/
√
m1) with probability 1 − δ. Compared with the existing work (Bao et al., 2021), Theorem

1 considers argument stability additionally, which is a stronger notion of stability than uniform
stability (since uniform stability can be deduced from argument stability with the condition that the
function is sufficiently smooth). Moreover, we use the McDiarmid’s inequality and the equivalence
of tails and moments for the random variable with a mixture of sub-gaussian and sub-exponential
tails (Lemma 1 in Bousquet et al. (2020)), which provide a significantly improved high probability
bound in Part (c) (i.e., improving from O(β√m1) in Bao et al. (2021) to O(β logm1)).

4 STABILITY ANALYSIS FOR BILEVEL OPTIMIZATION ALGORITHMS

Motivated by Theorem 1, we can see that to analyze the generalization behaviors for any algorithm,
it is sufficient to analyze its stability. As mentioned in the previous Section 2.2, we will consider the
stability of SSGD and TSGD. For simplicity we let SC-SC denote the case where f and g both are
strongly convex functions. C-C, NC-NC, and NC-SC are also denoted in a similar manner with ”C”
representing convex function and ”NC” representing nonconvex function.

4.1 STABILITY BOUNDS FOR SINGLE-TIMESCALE SGD

As we can see from Algorithm 1, SSGD updates y and x simultaneously. In the following we
develop stability bounds for this algorithm in different settings.
Theorem 2. Suppose that Assumptions 1 and 2 hold and Algorithm A is SSGD with K iterations:

(a) Assume that Problem (1) is SC-SC with strongly convexity parameters µf and µg . Let
αx = αy (see Lemma 9 for details) be the step sizes. Denote l = max{lf , lg}. Then, A is
β-argument-stable in expectation, where

β ≤ O
((

L2
f + L2

g

) 1
2
(
m1

(
µf + µg − (αxl)

2/2 + 0.25
))−1

)
.

(b) Assume that Problem (1) is C-C. Let αx, αy be the step sizes. Then, A is β-argument-stable
in expectation, where

β ≤ O
(
m−1

1

√
(αxLf )

2
+ (αyLg)

2
(
2 + 2max

{
(αxlf )

2
, (αylg)

2
})K/2

)
.

(c) Assume that Problem (1) is NC-NC. Let the step sizes satisfy max {αx, αy} ≤ c/k for some
constant c ≥ 0 and l = max {lf , lg}. Then, A is β-argument-stable in expectation, where

β ≤ O
(
(m1cl)

−1
(
2cLf

√
l2f + l2g

) 1
cl+1

·K
cl

cl+1

)
,

where lf , lg and Lf , Lg are smoothness constants and Lipschitz constants for f , g, respectively.
Remark 2. Note that the above stability bounds are independent of the specific form of the objective
function f(·, ·) and the exact form of the sample distribution D1, which are more reliant on the
properties of the loss functions and sample size m1, and the stability bounds in the C-C and NC-NC
cases are related to the number of iterations additionally. Specifically, Part(a) establishes a stability
bound of O(1/m1) in the SC-SC setting and Part(b) considers a C-C case with a stability bound
O(κK/2

1 /m1) related to the number of iterations and the data size, where κ1 is a constant. The
NC-NC case is discussed in Part(c) which provides a stability bound ofO(K

cl
cl+1 /m1), where c is a

constant to control the step size and l is the larger smoothness number of lf and lg . The conclusions
here match the existing results in minmax problems (Lei et al., 2021; Farnia & Ozdaglar, 2021).

4.2 STABILITY BOUNDS FOR TWO-TIMESCALE SGD

Compared with the above SSGD, Two-timescale SGD (TSGD; Algorithm 2) always achieves more
accurate approximate solutions by updating y multiple times before updating x. In this section,
we extend our analysis from SSGD to TSGD. Particularly, compared with the results in Bao et al.
(2021), we provide stability bounds in Theorem 3 for the case where the inner level parameter
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(y) is updated iteratively (i.e., consistency). We further explore in Theorem 4 a particular NC-SC
setting, which is commonly appeared in bilevel optimization applications such as meta learning and
hyperparameter optimization.
Theorem 3. Suppose that Assumptions 1 and 2 hold and |g(·, ·)| ≤ 1. Let A be the TSGD algorithm
with K outer-iterations and T inner-iterations. Then we have

(a) Assume that Problem (1) is SC-SC. Let l = max{lf , 1+(αylg)
2

(1−αylg)αy
} and α = αx = αy ≤

min{1/lg, 1/(µf + µg)} be the step sizes. Then, A is β-argument-stable in expectation,
where

β ≤ O

(
m1

−1

√
L2
fα

2
x +

( 2T

αy(2− αylg)

)2
(1 + αl)

K

)
.

(b) Assume that Problem (1) is C-C. Let αl = max{αxlf ,
1+(αylg)

2

1−αylg
} and αx, αy ≤ 1

lg
be the

step sizes. Then, A is β-argument-stable in expectation, where

β ≤ O

(
m−1

1

√
L2
fα

2
x +

( 2T

αy(2− αylg)

)2
(1 + αl)

K

)
.

(c) Assume that Problem (1) is NC-NC. Let the step sizes satisfy max {αx, αy} ≤ c/k for some
constant c ≥ 0 and l = max {lf , lg}. Then, A is β-argument-stable in expectation, where

β ≤ O
(
(m1Tcl)

−1
(
2cLf

√
l2f + T 2l2g

) 1
Tcl+1

·K
Tcl

Tcl+1

)
.

Remark 3. Compared with the previous results for SSGD, the stability bounds of TSGD depend
on the number of iterations in the outer level loop, the number of iterations in the inner level loop,
and the data size in the outer level loop. If the step sizes are sufficiently small, we can see that the
bounds in Theorem 3 are asymptotically the same as the bounds of SSGD in Theorem 2. Thus,
Theorem 3 can be considered as a generalization of the previous one. The dependence on T also
reveals our novelty compared with the existing work of stability analysis for other problems, such
as simple SGD and minmax problems. To the best of our knowledge, this work provides the first
stability bounds for the two-timescale (double loop) algorithms, which allows the accumulation of
the sub-sampled gradients in the inner level.
Remark 4. Comparing our results with the ones in (Bao et al., 2021), we have the following ob-
servations. 1) They only established the uniform stability bound for the Unrolled Differentiation
algorithm 3, where the algorithm is reinitialized at each time entering the inner level loop, indicat-
ing that it takes into account the changes to only one parameter in the outer level loop, while our
algorithm considers the update for both parameters. 2) Its proof needs to assume that the update of y
in the inner level after the reinitialization will not be affected by the value specified for x. However,
this assumption is quite uncommon and is probably the reason that they do not need to make any
assumption on the inner level objective function (see Appendix E in details). In contrast, our work
allows the inner level parameters to be updated consistently (i.e., carrying over the value in the last
update), instead of being reinitialized at each time entering the inner level loop. Specifically, we
allow yTk to be employed at the beginning of the (k+1)-th outer level iteration, rather than y0. This
enables us to obtain different stability bounds for different inner level objective functions from a
novel perspective.

In the following, we extend our analysis to a particular NC-SC setting that is frequently encountered
in real-world applications and optimization analysis.
Theorem 4. Suppose that Assumptions 1 and 2 hold, 0 ≤ f(·, ·) ≤ 1 and Problem (1) is NC-SC. Let
A be the TSGD Algorithm with K outer-iterations and T inner-iterations with max {αx, αy} ≤ c/k
for constant c ≥ 0. Denote l = max {lf , lg}. Then, A is β-uniform-stable in expectation, where

β ≤ O


(
2cLf

√
l2f + l2gT

2
) 1

c(Tl+l−µg)+1 ·K
c(Tl+l−µg)

c(Tl+l−µg)+1 (T l + l − µg + 2/c)

m1(T l + l − µg)

 .
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Remark 5. Compared with our previous analysis, we now sketch the technique differences in
our analysis. We consider the bound of the term (δx,k, δy,k)

T = (∥xk − x′
k∥, ∥yk − y′

k∥)T ,

while we employ δk =
√
∥xk − x′

k∥
2
2
+ ∥yk − yk

′∥22 in the previous analysis, where (xk,yk),
(x′

k,y
′
k) are the outputs of TSGD after k iterations for Dm1

and D′
m1

respectively with Dm1

and D′
m1

differing in one sample. In the NC-SC setting, we show that (δx,k+1, δy,k+1)
T ≤

((1 + αxl)δx,k, (1 + αxT l)δy,k)
T (≤ means the entry-wise inequality), which means our term can

be controlled. Then, we take the expectation of it to derive our uniform stability bound. To achieve
the generalization gap over continuously changing parameters, it is imperative to take into account
the growth of (δx,k, δy,k) instead of δx,k in (Bao et al., 2021). Appendix C.3 provides more details.

Thus, based on our previous results, we now provide the first generalization bounds in the NC-NC
setting for both SSGD and TSGD.
Corollary 5. Assume that the problem is NC-NC, |f(·, ·; ξ)| ≤ 1 for all ξ, and Assumptions 1
and 2 hold. Denote l = max{lf , lg} with max{αx, αy} ≤ c/k for constant c ≥ 0. Then, the
generalization gap of SSGD 1 with K iterations is bounded by O(K

cl
cl+1 /m1).

Corollary 6. Assume that the problem is NC-NC, |f(·, ·; ξ)| ≤ 1 for all ξ, and Assumptions 1 and 2
hold. Let l = max{lf , lg} with max{αx, αy} ≤ c/k. Then, the generalization gap of TSGD 2 with
K outer iterations and T inner iterations is bounded by O(T

1
Tcl+1K1− 1

Tcl+1 /(m1)).

Remark 6. By Theorem [1, 2, 3], we can derive the above corollaries on generalization gap from
stability bounds. Corollary 5 and Corollary 6 show that extremely high number of iterations (K for
SSGD and K,T for TSGD) will drastically reduce the stability of these algorithms and increase the
generalization gap, which will make these algorithms increase the risk of overfitting. We will also
verify it in the following experiments.

5 EXPERIMENTS

In this section, we empirically validate our previous theoretical results on real world datasets. Two
experiments, including meta-learning and hyperparameter optimization, are conducted via Algo-
rithm 2 TSGD (note that when T = 1, TSGD is just SSGD). Due to the space limitation, we just
present the meta learning experiment here, leaving the hyperparameter optimization experiment and
other details in the Appendix D.

5.1 META LEARNING

Consider the few-shot meta-learning problem with M tasks {Ti, i = 1, ...,M} sampled from distri-
bution PT . We aim to learn a model that can rapidly adapt to different tasks. Firstly, the embedding
model ϕ is shared by all tasks to learn embedded features. Secondly, the task-specific parameter wi

is to adapt the shared embedding to its own sub-problem. Thus, the overall problem of meta-learning
can be formulated as follow:

min
ϕ
LD (ϕ, w̄∗) = Eξ∈Dte

i ,Ti
[L (ϕ,w∗

i ; ξ)] , (3a)

s.t. w̄∗ = argmin
w̄

[
LDtr(ϕ, w̄) = ETi

[
LDtr

i
(ϕ,wi)

]]
. (3b)

where Dtr
i and Dte

i are the training and testing datasets for task Ti. Each wi is computed from
one or more gradient descent updates from w̄ on the corresponding task (rapid adaptation), i.e.,
wi = w̄ − α∇w̄LDtr

(ϕ,wi). In the inner level, the base learner optimizes the series of wi for each
tasks (Equation 3b). In the outer level, the meta-learner optimizes the embedding model ϕ using the
minimizers w∗

i learned from the inner level and computes the loss from the testing dataset (Equation
3a).

Settings and Implementation We evaluate the behavior of the 5-way-1-shot task on the Omnilot
dataset (Lake et al., 2015), i.e., it aims to classify 5 unseen classes from only 1 labeled sample. It
contains 1623 different handwritten characters from 50 different alphabets. The image is in greyscale
with a size 28 × 28. We follow similar settings in Ji et al. (2021). A five-layer fully-connected
network is constructed, where the task-specific parameter wi corresponds to the last layer of the
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(a) Meta-training Loss
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(c) Generalization Gap

Figure 1: Results of meta learning with various values of T and K

network and the shared embedding model ϕ corresponds to all preceding layers. Thus, we train the
two sets of layers separately in the outer and inner level of optimization. We build our model and
establish our training using the software library learn2learn (Arnold et al., 2020). We follow the
official train-validation-test partition and train ϕ, wi using the training set. The size of each layer in
the network is 784 → 256 → 128 → 64 → 64 → 5. We set the number of tasks for training and
testing set to 2000 and the batch size of tasks to 32. The learning rate of ϕ and wi are 0.002 and
0.01, respectively. Results are evaluated based on the average of 5 trial runs with different random
seeds.

Results Evaluation Figure 1 presents the learning curves on training set, testing set and the gener-
alization gap with different values of inner iterations T and outer iterations K. Generalization gap
is estimated by the difference between training and testing loss. On one hand, it can be seen that
the model easily overfits on the testing set as K increases drastically (Figure 1b) and the effect of
T is very limited. On the other hand, with an appropriate value of K, smaller T (i.e) will result
in underfitting on the testing loss (T = 1 in the Figure 1c causes highest generalization gap due to
the underfitting training process). The trend of generalization gap in terms of K and T indicates
that large values of iteration numbers will increase the risk of overfitting, which matches with our
analysis in Theorem 4 that the stability of TSGD 2 will decrease drastically.

6 CONCLUSION

We give a thorough analysis on the generalization of first-order (gradient-based) methods for the
bilevel optimization framework. In particular, we establish a quantitative connection between gen-
eralization and algorithmic stability and provide the first generalization bounds of the continuous
updates for inner parameters and outer parameters in multiple settings. Our experiments suggest
that inappropriate iterations will cause underfitting and overfitting easily. The tendency of general-
ization gap also validates our theoretical results.

From the discussion in previous sections, we only discussed the first-order method, while there
exist a number of estimating second-order and momentum-based approaches to solve the bilevel
optimization problem. Dealing with the approximation of hypergradient in generalization analysis
is another direction for future work.
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A COMPARISON BETWEEN UD AND TSGD

Algorithm 3 Unrolled differentiation (UD)

1: Input: number of iterations K, step sizes αx,
αy , initialization x0,y0

2: Output: xK , yK

3: for k = 0 to K − 1 do
4: y0

k ← y0

5: for t = 0 to T − 1 do
6: yt+1

k = yt
k−αy∇yg(xk,y

t
k(xk);Dm2)

7: end for
8: xk+1 = xk − αx∇f(xk,y

T
k (xk);Dm1

)
9: end for

10: return xK , yT
K

Algorithm 4 Two-timescale SGD (TSGD)

Input: number of iterations K, step sizes αx,
αy , initialization x0,y0, Datasets: Dm1

, Dm2

Output: xK , yK

for k = 0 to K − 1 do
y0
k ← yT

k−1
for t = 0 to T − 1 do

yt+1
k = yt

k−αy∇yg(xk,y
t
k(xk);Dm2

)
end for
xk+1 = xk − αx∇f(xk,y

T
k (xk);Dm1

)
end for
return xK , yT

K

B PROOF OF PRELIMINARIES

B.1 THE PROOF OF THEOREM 1

Proof of Part (a). Since ξ and ξi are drawn from the same distribution, we know
EA[R(A(Dm1

, Dm2
),D1)−Rs(A(Dm1

, Dm2
), Dm1

)]
= EA,ξi∈Dm1

,ξ∼D1
[f(A(Dm1

, Dm2
), ξ)− f(A(Dm1

, Dm2
), ξi)]

= EA,ξi∈Dm1 ,ξ∼D1
[f(A(ξ, ξ2, .., ξi−1, ξi+1, ...ξm1

, Dm2
), ξi)− f(A(Dm1

, Dm2
), ξi)]

= EA,ξi∈Dm1 ,ξ∼D1
[f(A(D′

m1
, Dm2

), ξi)− f(A(Dm1
, Dm2

), ξi)] ≤ β,

where D′
m1

and Dm1
differ in at most one sample ξi.

Proof of Part (b). Similarly, we have
EA[f(A(Dm1

, Dm2
),D1)− f(A(Dm1

, Dm2
), Dm1

)]
= EA,ξiDm1

,ξ∼D1
[f(A(Dm1

, Dm2
), ξ)− f(A(Dm1

, Dm2
), ξi)]

= EA,ξi∈Dm1 ,ξ∼D1
[f(A(ξ, ξ2, .., ξi−1, ξi+1, ...ξm1

, Dm2
), ξi)− f(A(Dm1

, Dm2
), ξi)]

= EA,ξi∈Dm1 ,ξ∼D1
[f(A(D′

m1
, Dm2

), ξi)− f(A(Dm1
, Dm2

), ξi)]

≤ EA,ξi∈Dm1 ,ξ∼D1
[Lf∥A(D′

m1
, Dm2

)−A(Dm1
, Dm2

)∥ ≤ Lfβ.

To prove high probability bounds, we need the following lemma on the concentration behavior on
the summation of weakly dependent random variables.
Lemma 7 (Bousquet et al. 2020). Let Z = (Z1, . . . , Zn) be a vector of independent random vari-
ables with each taking values in Z , and g1, . . . , gn be some functions gi : Zn → R such that the
following holds for any i ∈ [n] :

• |E [gi(Z) | Zi]| ≤M a.s.,

• E
[
gi(Z) | Z[n]\{i}

]
= 0 a.s.,

• gi has a bounded difference β with respect to all variables except for the i-th variable.

Then, for any p ≥ 2, ∥∥∥∥∥
n∑

i=1

gi(Z)

∥∥∥∥∥
p

≤ 12
√
2pnβ ⌈log2 n⌉+ 4M

√
pn,
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where the Lp-norm of a random variable Z is denoted by ∥Z∥p := (E[|Z|p])1/p, p ≥ 1.

Next, we state the following well-known relationship between tail bounds and moment bounds.

Lemma 8 (Bousquet et al. 2020; Vershynin 2018). Let a, b ∈ R+. Let Z be a random variable with
∥Z∥p ≤

√
pa+ pb and p ≥ 2. Then, for any δ ∈ (0, 1), we have, with probability at least 1− δ

|Z| ≤ e
(
a

√
log(

e

δ
) + b log(

e

δ
)
)
.

Proof of Part (c). In order to make use of Lemma 7 to obtain the generalization bounds, we will
introduce:

hi = Eξ′i∼D1
[Eξi∼D1 [f(A(Di

m1
, Dm2 ; ξ))]− f(A(Di

m1
, Dm2 ; ξi)],

where Di
m1

= {ξ1, ξ2, ..., ξi−1, ξ
′
i, ξi+1, ..., ξm1

}, and ξ′i obeys identical distribution of ξi.

Hence, we have:

|R(A(Dm1
, Dm2

);D1)−Rs(A(Dm1
, Dm2

);Dm1
)|

=
1

m1

∣∣∣ m1∑
i=1

(Eξ∼D1f(A(Dm1 , Dm2); ξ)− f(A(Dm1 , Dm2); ξi))
∣∣∣

≤ 1

m1

∣∣∣ m1∑
i=1

(
Eξ∼D1f(A(Dm1 , Dm2); ξ)− Eξ∼D1,ξ′i∼D1

f(A(Di
m1

, Dm2); ξ)
) ∣∣∣

+

∣∣∣∣∣ 1

m1

m1∑
i=1

Eξ′i∼D1
Eξ∼D1

[
f(A(Di

m1
, Dm2

); ξ)
]
− f(A(Di

m1
, Dm2

); ξi)

∣∣∣∣∣
+

1

m1

∣∣∣∣∣
m1∑
i=1

(
Eξ′i∼D1

f(A(Di
m1

, Dm2
); ξi)− f(A(Dm1

, Dm2
); ξi)

)∣∣∣∣∣ .
It then follows from the definition of uniform stability that

|R(A(Dm1 , Dm2);D1)−Rs(A(Dm1 , Dm2);Dm1)|

≤2β +

∣∣∣∣∣ 1

m1

m1∑
i=1

Eξ′i∼D1
Eξ∼D1

[
f(A(Di

m1
, Dm2

); ξ)
]
− f(A(Di

m1
, Dm2

; ξi))

∣∣∣∣∣
=2β +

1

m1

∣∣∣∣∣
m1∑
i=1

hi

∣∣∣∣∣ .
Notice that all conditions of 7 hold. Thus, the following outcome can be derived for any p ≥ 2:∥∥∥∥∥

m1∑
i=1

hi(ξ)

∥∥∥∥∥
p

≤ 12
√
2pm1β ⌈log2 m1⌉+ 4M

√
pm1.

Combining Lemma 7 and Lemma 8 with hi defined above, we have the following inequality with
probability 1− δ: ∣∣∣∣∣

m1∑
i=1

hi(ξ)

∣∣∣∣∣ ≤ e
( 4M
√
m1

√
log

e

δ
+ 12

√
2β ⌈log2 m1⌉

√
log

e

δ

)
.

The deviation bound now follows immediately:

|R(A(Dm1
, Dm2

);D1)−Rs(A(Dm1
, Dm2

);Dm1
)|

≤ 2β + e
( 4M
√
m1

√
log

e

δ
+ 12

√
2β ⌈log2 m1⌉

√
log

e

δ

)
.

The proof is completed.
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C MAIN PROOF

C.1 APPROXIMATE EXPANSIVITY OF UPDATE RULES

With step size αx and αy , the update rules for single-timescale can be presented:

Gs

([
x
y

])
:=

[
x− αx∇f(x,y)
y − αy∇yg(x,y)

]
.

Definition 5 (expansivity). An update rule is η-expansive if for every x, x′ ∈ Rd1 , y, y′ ∈ Rd2 :

∥G(x,y)−G (x′,y′)∥2 ≤ η

√
∥x− x′∥22 + ∥y − y′∥22.

Lemma 9. Suppose that Assumptions 1 and 2 hold for Problem (1). Then:

1. If f and g are non-convex functions, then Gs is (1+max{lfαx, lgαy})-expansive with step
size αx, αy .

2. If f and g are convex functions, then Gs is (
√

2 + 2max{(lfαx)2, (lgαy)2})-expansive
with step size αx, αy .

3. If f and g are strongly-convex with µf and µg respectively, then Gs is√
2 (1− 2αx (µf + µg) + αx

2l2)-expansive with step size:

(uf + µg)−
√

(uf + µg)
2 − 0.5l2

l2
≤ αx = αy

≤ min

 1

µf + µg
,
(uf + µg) +

√
(uf + µg)

2 − 0.5l2

l2

 .

Proof. In Case 1 with the NC-NC objectives and the smoothness of objectives on Assumptions 1
and 2, we have∥∥∥∥Gs

([
x
y

])
−Gs

([
x′

y′

])∥∥∥∥ =

∥∥∥∥[ x− x′ − αx (∇f(x,y)−∇f (x′,y′))
y − y′ + αy (∇yg(x,y)−∇yg (x

′,y′))

]∥∥∥∥
≤
∥∥∥∥[ x− x′

y − y′

]∥∥∥∥+ ∥∥∥∥[ αx (∇f(x,y)−∇f (x′,y′))
αy (∇yg(x,y)−∇yg (x

′,y′))

]∥∥∥∥
≤ (1 + max{lfαx, lgαy})

∥∥∥∥[ x− x′

y − y′

]∥∥∥∥ .
In case 2, with the monotonicity of the convex objective’s gradient, we have:

⟨x− x′, αx (∇f(x,y)−∇f (x′,y))⟩ ≥ 0

⟨y − y′, αy (∇yg(x
′,y)−∇yg (x

′,y′))⟩ ≥ 0.

Thus, the stated result then follows:∥∥∥∥Gs

([
x
y

])
−Gs

([
x′

y

])∥∥∥∥2 =

∥∥∥∥[ x− x′

y − y

]∥∥∥∥2 − 2

[
x− x′

y − y

]T [
αx (∇f(x,y)−∇f (x′,y))

αy (∇yg(x,y)−∇yg (x
′,y)) ]

]
+

∥∥∥∥[ αx (∇f(x,y)−∇f (x′,y))
αy (∇yg(x,y)−∇yg (x

′,y))

]∥∥∥∥2
≤ max{(lfαx)

2, (lgαy)
2}
∥∥∥∥[ x− x′

y − y

]∥∥∥∥2 + ∥x− x′∥2 .

(4)
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and∥∥∥∥Gs

([
x′

y

])
−Gs

([
x′

y′

])∥∥∥∥2 =

∥∥∥∥[ x′ − x′

y − y′

]∥∥∥∥2 − 2

[
x′ − x′

y − y′

]T [
αx (∇f(x′,y′)−∇f (x′,y))

αy (∇yg(x
′,y′)−∇yg (x

′,y)) ]

]
+

∥∥∥∥[ αx (∇f(x′,y)−∇f (x′,y′))
αy (∇yg(x

′,y)−∇yg (x
′,y′))

]∥∥∥∥2
≤ max{(lfαx)

2, (lgαy)
2}
∥∥∥∥[ x′ − x′

y − y′

]∥∥∥∥2 + ∥y − y′∥2 .

(5)
Combining the above equations 6, 7 and inequality (

∑k
i=1 ak)

2 ≤ k
∑k

i=1 a
2
k, we can derive the

expansive of update rule Gs under convexity condition:∥∥∥∥Gs

([
x
y

])
−Gs

([
x′

y′

])∥∥∥∥2 ≤ (2 + 2max{(lfαx)
2, (lgαy)

2})
∥∥∥∥[ x− x′

y − y′

]∥∥∥∥2 .
If f and g are strongly-convex, then, f̃(x,y) = f(x,y)− µf

2 (∥x∥2+∥y∥2) and g̃(x,y) = g(x,y)−
µg

2 (∥x∥2 + ∥y∥2) will be convex. With the above conclusions, we can derive the following:∥∥∥∥GT

([
x
y

])
−Gs

([
x′

y

])∥∥∥∥2
=

∥∥∥∥[ x− x′

y − y

]∥∥∥∥2 − 2αx

[
x− x′

y − y

]T [
(∇f(x,y)−∇f (x′,y))
(∇yg(x,y)−∇yg (x

′,y))

]
+ αx

2

∥∥∥∥[ (∇f(x,y)−∇f (x′,y))
(∇yg(x,y)−∇yg (x

′,y))

]∥∥∥∥2
= (1− (αxµf + αxµg))

2

∥∥∥∥[ x− x′

y − y

]∥∥∥∥2 + αx
2

∥∥∥∥[ (∇f̃(x,y)−∇f̃ (x′,y))
(∇yg̃(x,y)−∇yg̃ (x

′,y))

]∥∥∥∥2
− 2 (1− αxµf − αxµg)αx

[
x− x′

y − y

]T [ (
∇f̃(x,y)−∇f̃ (x′,y)

)
(∇yg̃(x,y)−∇yg̃ (x

′,y))

]
≤
(
1− 2αx (µf + µg) + αx

2l2
)
∥x− x′∥2 .

The penultimate inequality arises from the smoothness of f̃ , g̃, which is based on our assumption
for simplicity that l = max{lf , lg}, and the details will be revealed as follows:

l2
∥∥∥∥[ x− x′

y − y

]∥∥∥∥2 ≥ ∥∥∥∥[ ∇f(x,y)−∇f (x′,y)
∇yg(x,y)−∇yg (x

′,y)

]∥∥∥∥2
=

∥∥∥∥∥
[ (
∇f̃(x,y)−∇f̃ (x′,y)

)
(∇yg̃(x,y)−∇yg̃ (x

′,y))

]∥∥∥∥∥
2

+ (µf + µg)
2

∥∥∥∥[ x− x′

y − y

]∥∥∥∥2
+ 2 (µf + µg)

[
x− x′

y − y

]T [ (
∇f̃(x,y)−∇f̃ (x′,y)

)
(∇yg̃(x,y)−∇yg̃ (x

′,y))

]

≥

∥∥∥∥∥
[ (
∇f̃(x,y)−∇f̃ (x′,y)

)
(∇yg̃(x,y)−∇yg̃ (x

′,y))

]∥∥∥∥∥
2

+ (µf + µg)
2

∥∥∥∥[ x− x′

y − y

]∥∥∥∥2 .
Similar to the convex case, we can have:∥∥∥∥GT

([
x
y

])
−Gs

([
x′

y′

])∥∥∥∥2 ≤ 2
(
1− 2αx (µf + µg) + αx

2l2
) ∥∥∥∥[ x− x′

y − y′

]∥∥∥∥2 .
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C.2 SINGLE TIMESCALE

We first introduce the following lemma before providing the proof of the Theorem.

Lemma 10 (Hardt et al. (2016)). Consider two sequences of updates G1
s, ..., G

K
s and

(G1
s)

′, ..., (GK
s )′ with initial points x0 = x′

0, y0 = y′
0. Define δk =

√
∥xk − x′

k∥
2
+ ∥yk − y′

k∥
2.

Then, we have:

δk+1 ≤


ηδk if Gk

s = (Gk
s)

′ is η-expansive

min(η, 1)δk + 2σ if sup

∥∥∥∥[ x

y

]
−G

([
x

y

])∥∥∥∥ ≤ σ

Gk
s is η expansive

Proof. The first part of the inequality is obvious from the definition of expansivity and the assump-
tion of Gk

s = (Gk
s)

′. For the second bound, note that:

δk+1 =

∥∥∥∥Gs

([
xk

yk

])
−G′

s

([
x′
k

y′
k

])∥∥∥∥
≤
∥∥∥∥Gs

([
xk

yk

])
−
[

xk

yk

]
+

[
x′
k

y′
k

]
−G′

s

([
x′
k

y′
k

])∥∥∥∥+ ∥∥∥∥[ xk − x′
k

yk − y′
k

]∥∥∥∥
≤ δk +

∥∥∥∥Gs

([
xk

yk

])
−
[

xk

yk

]∥∥∥∥+ ∥∥∥∥G′
s

([
x′
k

y′
k

])
−
[

x′
k

y′
k

]∥∥∥∥
≤ δk + 2σ.

Also, δk+1 can be further expressed as:

δk+1 =

∥∥∥∥Gs

([
xk

yk

])
−G′

s

([
x′
k

y′
k

])∥∥∥∥
≤
∥∥∥∥Gs

([
xk

yk

])
−Gs

([
x′
k

y′
k

])
+Gs

([
x′
k

y′
k

])
−G′

s

([
x′
k

y′
k

])∥∥∥∥
≤
∥∥∥∥Gs

([
xk

yk

])
−Gs

([
x′
k

y′
k

])∥∥∥∥+ ∥∥∥∥[ x′
k

y′
k

]
−Gs

([
x′
k

y′
k

])∥∥∥∥+ ∥∥∥∥[ x′
k

y′
k

]
−G′

s

([
x′
k

yk′

])∥∥∥∥
≤ ηδk + 2σ.

Combining the above completes the proof of the Lemma 10.

Now, we are ready to prove Theorem 2:

Proof of Part(a). Suppose that Dm1
and D′

m1
are two neighboring sets differing only in one sample.

Consider the updates G1
s, ..., G

K
s and (G1

s)
′, ..., (GK

s )′. We can observe that the example chosen by
the algorithm is the same in Dm1

, D′
m1

at step k with probability 1−1/m1 and different with proba-
bility 1/m1. In the former case, we have identical update rules, while

√
1− 2αx (µf + µg) + α2

xl
2-
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expansive can be employed in the latter through lemma 10.

E [δk+1] ≤
(
1− 1

m1

)(
2
(
1− 2αx (µf + µg) + α2

xl
2
))1/2 E [δk] +

1

m1
E [δk] +

1

m1
2
√
(αxLf )2 + (αxLg)2

≤
(
2
(
1− 2αx (µf + µg) + α2

xl
2
))1/2 E [δk] +

2

m1

√
(αxLf )

2
+ (αxLg)

2

≤
2
√

(αxLf )
2
+ (αxLg)

2

m1

k∑
i=0

(
2
(
1− 2αx (µy + µg) + α2

xl
2
))i/2

≤
2
√

(αxLf )
2
+ (αxLg)

2

m1

∞∑
i=0

(
2
(
1− 2αx (µf + µg) + α2

xl
2
))i/2

(1) ≤
2
√

(αxLf )
2
+ (αxLg)

2

m1

∞∑
i=0

(
1− 2αx (µf + µg) + α2

xl
2 + 0.5

)i
=

√
(αxLf )2 + (αxLg)2

m1

(
αx (µf + µg)− α2

xl
2

2 + 0.25
)

=

√
L2
f + L2

g

m1 (µf + µg − (αxl)2/2 + 0.25)
.

Here (1) comes from the mean equality
√
ab ≤ (a + b)/2 for any a, b ≥ 0 and the assumption of

(uf+µg)−
√

(uf+µg)
2−0.5l2

l2 ≤ αx ≤
(uf+µg)+

√
(uf+µg)

2−0.5l2

l2 , which finishes the proof.

Proof of Part(b). The proof of Part(b) is analogous to the above, thus we use the same notations for
this part.

E [δk+1] ≤
(
1− 1

m1

)(
2 + 2max

{
l2fα

2
x, l

2
yα

2
y

})1/2 E [δk] +
1

m1
E [δk] +

2

m1

√
L2
fα

2
x + L2

gα
2
y

=
(
2 + 2max

{
l2fα

2
x, l

2
gα

2
y

})1/2 E [δk] +
2
√
L2
fα

2
x + L2

gα
2
y

m1

E [δk] ≤
2
√
L2
fα

2
x + L2

gα
2
y

m1
·

(
2 + 2max

{
l2fα

2
x, l

2
gα

2
y

}) k+1
2 − 1√

2 + 2max
{
l2fα

2
x, l

2
gα

2
y

}
− 1

E [δk] ≤ O


√
L2
fα

2
x + L2

gα
2
y

(
2 + 2max

{
l2fα

2
x, l

2
gα

2
y

}) k+1
2

m1

 .

To prove stability in the NC-NC case, we introduce the following lemma:

Lemma 11 (Hardt et al. (2016)). Assume that f(x,y; ξ) is Lf -Lipschitz continuous and 0 ≤
f(x,y; ξ) ≤ 1. Let Dm1

and D′
m1

be two datasets differing in only one sample. Denote
(xK ,yK) and (x′

K ,y′
K) as the output of K steps of SSGD (single-timescale algorithm) on Dm1

and D′
m1

, respectively. Then, the following holds for every k ∈ {0, 1, ...,K}, where δk =√
∥xk − x′

k∥
2
+ ∥yk − y′

k∥
2:

E [|f (xk,yk; ξ)− f (x′
k,y

′
k; ξ)|] ≤

k0
m1

+ LfE [δk | δk0 = 0] .
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Proof of Part(c). Applying Lemma 11, we get ready to prove the NC-NC case. Analogous to the
previous case, we have:

E [δk+1] ≤
(
1− 1

m1

)(
1 +

cl

k

)
E [δk] +

1

m

(
1 +

cl

k

)
E [δk] +

2c
√
l2f + l2g

k

=

(
1 +

cl

k

)
E [δk] +

2c
√
l2f + l2g

m1k
.

The following can be derived:

E [δK | δk0
= 0] ≤

K∑
k=k0+1

T∏
t=k+1

(
1 +

cl

t

) 2c
√
l2f + l2g

m1k

≤
K∑

k=k0+1

T∏
t=k+1

{
exp

(
cl

t

)} 2c
√
l2f + l2g

m1k

≤
K∑

k=k0+1

exp

(
K∑

t=k+1

cl

t

)
2c
√
l2f + l2g

m1k

≤
k∑

k=k0+1

exp(cl · log(K/k))
2c
√
l2f + l2g

m1k

≤
2c
√

l2f + l2g

m1

K∑
k=k0+1

k−cl−1

≤
2
√
l2f + l2g

m1l

(
K

k0

)cl

.

Hence, Lemma 11 indicates:

E [|f(x, y)− f (x′, y′)|] ≤ k0
m1

+
2Lf

√
l2f + l2g

m1l

(
K

k0

)cl

.

The right hand side is approximately minimized when

k0 =
(
2cLf

√
l2f + l2g

) 1
cl+1

·K
cl

cl+1 .

Therefore, we have

β ≤ O


(
2cLf

√
l2f + l2g

) 1
cl+1 ·K

cl
cl+1

m1cl


for argument stability.

C.3 TWO-TIMESCALE SGD (TSGD)

C.3.1 STANDARD SETTINGS

With step size αx and αy , the update rule for two-timescale can be presented as:

GT

([
xk

yk

])
:=

[
xk − αx∇f(xk,y

T
k )

yk − αy

∑T
t=1∇yg(xk,y

t
k)

]
.

Analogous to the single-timescale case, we first provide the expansivity of the update rules.

19



Under review as a conference paper at ICLR 2023

Lemma 12. Suppose that Assumptions 1 and 2 hold for Problem (1). Let αl =

max{αxlf ,
1+(αylg)

2

1−αylg
} for simplicity sake and assume αylg ≤ 1. Then:

1. If f and g are non-convex functions, GT is (1 + αlT )-expansive.

2. If f and g are convex functions, GT is (1 + αl)-expansive with step size αx, αy .

3. If f and g are strongly-convex with µf and µg respectively, GT is 1 + αl-expansive with
step size:

αx = αy ≤
1

µf + µg
.

Proof. In Case 1 with the NC-NC objectives by the triangle inequality, we have:∥∥∥∥GT

([
x
y

])
−GT

([
x′

y′

])∥∥∥∥ ≤ ∥∥∥∥GT

([
x
y

])
−GT

([
x′

y

])∥∥∥∥+∥∥∥∥GT

([
x′

y

])
−GT

([
x′

y′

])∥∥∥∥
The first item can be derived from:∥∥∥∥GT

([
x
y

])
−GT

([
x′

y

])∥∥∥∥ =

∥∥∥∥[ x− x′ − αx (∇f(x,y)−∇f (x′,y))

y − y + αy

∑T
y=1 (∇yg(x,y

t)−∇yg (x
′,yt))

]∥∥∥∥
≤ (1 + αyT lg) ∥x− x′∥

The second item can be derived from:∥∥∥∥GT

([
x′

y

])
−GT

([
x′

y′

])∥∥∥∥ =

∥∥∥∥∥
[

x′ − x′ − αx (∇f(x′,y)−∇f (x′,y′))

y − y′ +
∑T−1

t=0 αy

(
∇yg(x

′,yt)−∇yg
(
x′,yt′

)) ]∥∥∥∥∥
≤
∥∥∥∥[ x′ − x′

y − y′

]∥∥∥∥+
∥∥∥∥∥
[

αx (∇f(x′,y)−∇f (x′,y′))∑T−1
t=0 αy

(
∇yg(x

′,yt)−∇yg
(
x′,yt′

)) ]∥∥∥∥∥
From the Lipschitz continuous, we have:

T−1∑
t=0

αy

(
∇yg

(
x,yt

)
−∇yg

(
x,yt

))
≤

T−1∑
t=0

αylg
∥∥yt − yt

∥∥
Now we consider the t-th update:

αylg
∥∥yt − yt

∥∥ = αylg
∥∥yt−1 − αy∇yg

(
x′,yt−1

)
− yt−1 + αy∇yg

(
x′,yt−1

)∥∥
≤ αylg

∥∥∥yt−1 −
(
yt−1

)′∥∥∥+ (αylg)
2
∥∥∥yt−1 −

(
yt−1

)′∥∥∥
· · ·

≤ (αylg)
t
∥∥∥y0 −

(
y0
)′∥∥∥+ (αylg)

t+1
∥∥∥y0 −

(
y0
)′∥∥∥

According to the accumulation of the both side, we have:

T−1∑
t=0

αylg

∥∥∥yt −
(
yt
)′∥∥∥ ≤ αylg

∥∥∥y0 −
(
y0
)′∥∥∥ ∥ T−1∑

t=1

[
(αylg)

t
∥∥∥y0 −

(
y0
)′∥∥∥+ (αylg)

t+1
∥∥∥y0 −

(
y0
)′]∥∥∥

=

[
1− (αylg)

T

1− αylg
+

(αylg)
2 − (αylg)

T+1

1− αylg

]∥∥∥y0 −
(
y0
)′∥∥∥

=

[
1− (αylg)

T
+ (αylg)

2 − (αylg)
T+1

1− αylg

]∥∥∥y0 −
(
y0
)′∥∥∥

≤ 1 + (αylg)
2

1− αylg

∥∥y − (y)
′∥∥
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Let αl = max{αylg,
1+(αylg)

2

1−αylg
}, then:∥∥∥∥GT

([
x
y

])
−GT

([
x′

y′

])∥∥∥∥ ≤ (1 + Tαl)

∥∥∥∥[ x− x′

y − y′

]∥∥∥∥ .
In case 2, with the monotonicity of the convex objective’s gradient, we have:

⟨x− x′, αx (∇f(x,y)−∇f (x′,y))⟩ ≥ 0

⟨y − y′, αy (∇yg(x
′,y)−∇yg (x

′,y′))⟩ ≥ 0.

Thus, the stated result then follows:∥∥∥∥GT

([
x
y

])
−GT

([
x′

y

])∥∥∥∥2 =

∥∥∥∥[ x− x′

y − y

]∥∥∥∥2 − 2

[
x− x′

y − y

]T [ αx (∇f(x,y)−∇f (x′,y))∑T−1
t=0 αy

(
∇yg(x,y

t)−∇yg
(
x,yt′

)) ]

+

∥∥∥∥∥
[

αx (∇f(x,y)−∇f (x′,y))∑T−1
t=0 αy

(
∇yg(x,y

t)−∇yg
(
x,yt′

)) ]∥∥∥∥∥
2

≤ max

(lfαx)
2,

(
1 + (αylg)

2

1− αylg

)2

∥∥∥∥[ x− x′

y − y

]∥∥∥∥2 + ∥x− x′∥2 .

(6)
and the second decomposition can be obtained by the NC-NC case:∥∥∥∥GT

([
x′

y

])
−GT

([
x′

y′

])∥∥∥∥ ≤
(
1 + max{lfαx,

1 + (αylg)
2

1− αylg
}

)
∥y − y′∥ . (7)

let αl = max{αxlf ,
1+(αylg)

2

1−αylg
}. Combining the above equations 6, 7 and inequality

√
1 + (αl)2 ≤

(1 + αl)2, then we can derive the expansive of update rule GT under convexity condition:∥∥∥∥GT

([
x
y

])
−GT

([
x′

y′

])∥∥∥∥ ≤ (1 + αl)

∥∥∥∥[ x− x′

y − y′

]∥∥∥∥ .
If f and g are strongly-convex, then, f̃(x,y) = f(x,y)− µf

2 (∥x∥2+∥y∥2) and g̃(x,y) = g(x,y)−
µg

2 (∥x∥2 + ∥y∥2) will be convex. Let αx = αy = α and denote αl = max{αxlf ,
1+(αylg)

2

1−αylg
}, we

can derive the following with the conclusions from the convex case:∥∥∥∥GT

([
x
y

])
−GT

([
x′

y

])∥∥∥∥2
=

∥∥∥∥[ x− x′

y − y

]∥∥∥∥2 − 2αx

[
x− x′

y − y

]T [ (∇f(x,y)−∇f (x′,y))∑T−1
t=0

(
∇yg(x,y

t)−∇yg
(
x,yt′

)) ]

+ αx
2

∥∥∥∥∥
[

(∇f(x,y)−∇f (x′,y))∑T−1
t=0

(
∇yg(x,y

t)−∇yg
(
x,yt′

)) ]∥∥∥∥∥
2

= (1− (αxµf + αxµg))
2

∥∥∥∥[ x− x′

y − y

]∥∥∥∥2 + αx
2

∥∥∥∥∥
[

(∇f̃(x,y)−∇f̃ (x′,y))∑T−1
t=0

(
∇yg̃(x,y

t)−∇yg̃
(
x,yt′

)) ]∥∥∥∥∥
2

− 2 (1− αxµf − αxµg)αx

[
x− x′

y − y

]T  (
∇f̃(x,y)−∇f̃ (x′,y)

)
∑T−1

t=0

(
∇yg̃(x,y

t)−∇yg̃
(
x,yt′

)) 
≤
(
1− 2α (µf + µg) + α2l2

)
∥x− x′∥2 .
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The penultimate inequality arises from the smoothness of f̃ , g̃, which is based on our assumption
for simplicity that l = max{lf , 1+(αylg)

2

(1−αylg)αy
}, and the details will be revealed as follows:

l2
∥∥∥∥[ x− x′

y − y

]∥∥∥∥2 ≥
∥∥∥∥∥
[

∇f(x,y)−∇f (x′,y)∑T−1
t=0

(
∇yg(x,y

t)−∇yg
(
x,yt′

)) ]∥∥∥∥∥
2

=

∥∥∥∥∥∥
 (

∇f̃(x,y)−∇f̃ (x′,y)
)

∑T−1
t=0

(
∇yg̃(x,y

t)−∇yg̃
(
x,yt′

)) ∥∥∥∥∥∥
2

+ (µf + µg)
2

∥∥∥∥[ x− x′

y − y

]∥∥∥∥2

+ 2 (µf + µg)

[
x− x′

y − y

]T  (
∇f̃(x,y)−∇f̃ (x′,y)

)
∑T−1

t=0

(
∇yg̃(x,y

t)−∇yg̃
(
x,yt′

)) 
≥

∥∥∥∥∥∥
 (

∇f̃(x,y)−∇f̃ (x′,y)
)

∑T−1
t=0

(
∇yg̃(x,y

t)−∇yg̃
(
x,yt′

)) ∥∥∥∥∥∥
2

+ (µf + µg)
2

∥∥∥∥[ x− x′

y − y

]∥∥∥∥2 .
Similar to the convex case, we can have:∥∥∥∥Gs

([
x
y

])
−Gs

([
x′

y′

])∥∥∥∥ ≤ (1 + αl)

∥∥∥∥[ x− x′

y − y′

]∥∥∥∥ .

Proof. Because the main proof of Lemma 12 is similar to that of Lemma 9, we omit it.

Next, we give a bound for the update rule GT and prepare to prove Theorem 3.
Since g() is a lg-smooth function, we have:

g
(
x,yt+1

)
≤ g

(
x,yt

)
+
〈
∇g
(
x,yt

)
,yt+1 − yt

〉
+

lg
2

∥∥yt+1 − yt
∥∥2 .

≤ g
(
x,yt

)
−
〈
∇g
(
x,yt

)
, αy∇g

(
x,yt

)〉
+

lg
2

∥∥αy∇g
(
x,yt

)∥∥2
≤ g

(
x,yt

)
− αy

(
1− αylg

2

)∥∥∇g (x,yt
)∥∥2 .

The two sides are accumulated from t = 1 to t = T and we could derive the following by
Cauchy–Schwarz inequality:

T∑
t=1

∥∥∇g (x,yt
)∥∥2 ≤ g (x,y1)− g (x,yT )

αy (2− αylg)
⇒

(
T∑

i=1

∇g(x,yt)

)2

≤ T

T∑
i=1

∇g2(x,yt)

≤ T (g (x,y1)− g (x,yT ))

αy(2− αylg)
.

Hence, the bound of GT equals to

√
L2
fα

2
x +

(
T (g(x,y1)−g(x,yT ))

αy(2−αylg)

)2
. Now, we are ready to give the

proof of Theorem 3.

Proof of Part(a). Suppose that Dm1 and D′
m1

are two neighboring sets differing in only one sample.
Consider the updates G1

T , ..., G
K
T and (G1

T )
′, ..., (GK

T )′. We can observe that the example chosen
by algorithm is the same in Dm1

, D′
m1

at step k with probability 1 − 1/m1 and different with
probability 1/m1. Similarly to the previous single-timescale methods, in the former case, we have
identical update rules, while (1 + αl)-expansive can be employed in the latter through lemma 10.
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E [δk+1] ≤
(
1− 1

m1

)
(1 + αl)E [δk] +

1

m1
E [δk]

+
2

m1

√
L2
fα

2
x +

(
T (g (x,y1)− g (x,yT ))

αx(2− αxlg)

)2

= (1 + αl)E [δk] +
2

m1

√
L2
fα

2
x +

(
T (g (x,y1)− g (x,yT ))

αx(2− αxlg)

)2

E [δk] ≤
2

m1

√
L2
fα

2
x +

(
T (g (x,y1)− g (x,yT ))

αx(2− αxlg)

)2

· (1 + αl)
k − 1

1− 1 + α

E [δk] ≤ O


√
L2
fα

2
x + ( 2T

αy(2−αylg)
)2 (1 + αl)

k

m1

 .

The proof of Part(b) is the same as Part(a) and Part(c) are analogous to their counterparts in the
single-timescale case. Thus, we omit them here.

C.3.2 PARTICULAR SETTING

We introduce the following lemma as an extension of expansivity for the particular NC-SC setting.
Lemma 13. Consider Problem (1) in the NC-SC setting and assume that Assumptions 1 and 2
hold. Suppose that (x,y) and (x′,y′) are produced by Algorithm 2 with step size αx = αy . Let
αl = max{αxlf , αylg}. Then, we have the following expansivity equality:∥∥∥∥GT

([
x
y

])
−GT

([
x′

y′

])∥∥∥∥ ≤ [ 1 + αxlT 0
0 1− αxµg + αxlT

] [
∥ x− x′ ∥
∥ y − y′ ∥

]
.

Proof. By the triangle inequality, we have:∥∥∥∥GT

([
x
y

])
−GT

([
x′

y′

])∥∥∥∥ ≤ ∥∥∥∥GT

([
x
y

])
−GT

([
x′

y

])∥∥∥∥+∥∥∥∥GT

([
x′

y

])
−GT

([
x′

y′

])∥∥∥∥ .
The first item can be derived from:∥∥∥∥GT

([
x
y

])
−GT

([
x′

y

])∥∥∥∥ =

∥∥∥∥[ x− x′ − αx (∇f(x,y)−∇f (x′,y))

y − y + αy

∑T
y=1 (∇yg(x,y

t)−∇yg (x
′,yt))

]∥∥∥∥
≤ (1 + αT l) ∥x− x′∥ .

If g is strongly-convex, then g̃(x,y) = g(x,y) − µg

2 (∥x∥2 + ∥y∥2) will be convex. With the
monotonicity of g̃ gradient,, we can derive the following:∥∥∥∥GT

([
x′

y

])
−GT

([
x′

y′

])∥∥∥∥2
=

∥∥∥∥[ x′ − x′

y − y′

]∥∥∥∥2 − 2αx

[
x′ − x′

y − y′

]T [
(∇f(x′,y)−∇f (x′,y′))
(∇yg(x

′,y)−∇yg (x
′,y′))

]
+ αx

2

∥∥∥∥[ (∇f(x′,y)−∇f (x′,y′))
(∇yg(x

′,y)−∇yg (x
′,y′))

]∥∥∥∥2
= (1− αxµg)

2

∥∥∥∥[ x′ − x′

y − y′

]∥∥∥∥2 + αx
2

∥∥∥∥[ (∇f(x′,y)−∇f (x′,y′))
(∇yg̃(x

′,y)−∇yg̃ (x
′,y′))

]∥∥∥∥2
− 2 (1− αxµg)αx

[
x′ − x′

y − y′

]T [
(∇f(x′,y)−∇f (x′,y′))
(∇yg̃(x

′,y)−∇yg̃ (x
′,y′))

]
≤ ((1− αxµg)

2 + αx
2l2T 2)∥y − y′∥2.
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Hence, the second item can be derived
∥∥∥∥GT

([
x′

y

])
−GT

([
x′

y′

])∥∥∥∥ ≤ (1 − αxµg +

αxlT )∥y − y′∥.

Next, we consider the extension of the growth lemma:

Lemma 14. Consider two sequences of updates G1
T , ..., G

K
T and (G1

T )
′, ..., (GK

T )′ with initial points
x0 = x′

0, y0 = y′
0. Define δx,k = ∥xk−x′

k∥ and δy,k = ∥yk−y′
k∥. Suppose that Gk

T is η-expansive
and for every (xGk

T
,yGk

T
) := Gk

T (x,y), (x(Gk
T )′ ,y(Gk

T )′) := (Gk
T )

′(x,y) and

supx,y

∥∥∥xGk
T
− x

∥∥∥ ≤ σx, supx,y

∥∥∥yGk
T
− y

∥∥∥ ≤ σy,

supx,y

∥∥∥x(Gk
T )′ − x

∥∥∥ ≤ σx, supx,y

∥∥∥y(Gk
T )′ − y

∥∥∥ ≤ σy.

Then, we have [
δx,k+1

δy,k+1

]
≤ η

[
δx,k
δy,k

]
+ 2

[
σx

σy

]
.

Now, we are ready to give the proof of Theorem 4.

Proof.[
E [δx,k+1]
E [δy,k+1]

]
≤
(
1− 1

m1

)[
1 + cl

k 0
0 1 + c

k (T l − µg)

]
+

1

m1

([
1 + cl

k 0
0 1 + c

k (T l − µg)

] [
E [δx,k]
E [δy,k]

]
+

[
2clf
k

2clgT
k

])

≤
[

1 + cl
k 0

0 1 + c
k (T l − µg)

] [
E [δx,k]
E [δy,k]

]
+

[
2clf
m1k
2clgT
m1k

]

≤
[

E [δx,K ]
E [δy,K ]

]
≤ t

K∑
k=k0+1

{
K∏

t=k+1

[
1 + cl

k 0
0 1 + c

k (T l − µg)

]}[ 2clf
m1k
2clgT
m1k

]

≤
K∑

k=k0+1

 exp
(∑K

t=k+1
cl
k

)
0

0 exp
(∑K

t=k+1
c
k (T l − µg)

) [ 2clf
m1k
2clgT
m1k

]

≤
2c
√
l2f + T 2l2

m1

K∑
k=k0+1

exp
(∑k

t=k+1
c
k (T l + l − µg)

)
k

≤
2c
√

l2f + T 2l2gK
−c(Tl+l−µg)

m1

K∑
k=k0+1

k−c(Tl+l−µg)−1

≤
2
√
l2f + T 2l2g

m1 (T l + l − ug)
·
(
K

k0

)c·(Tl+l−µg)

.

According to Lemma 11, we have:

E [|f(x,y)− f (x′,y′)|] ≤ k0
m1

+
2Lf

√
l2f + T 2l2g

m1(T l + l − µg)

(
K

k0

)c(Tl+l−µg)

.

Let p = T l + l − µg . The right hand side is approximately minimized when

k0 =
(
2cLf

√
l2f + T 2l2g

) 1
cp+1

·K
cp

cp+1 .
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Therefore, we have

β ≤ O


(
2cLf

√
l2f + l2gT

2
) 1

cp+1 ·K
cp

cp+1 (p+ 2/c)

m1p

 .

C.4 THE PROOF OF COROLLARY

Proof of Corollary 5. Based on the proof of previous result in C.2, we have:

E [|f(x, y)− f (x′, y′)|] ≤ k0
m1

+
2Lf

√
l2f + l2g

m1l

(
K

k0

)cl

.

The right hand side is approximately minimized when

k0 =
(
2cLf

√
l2f + l2g

) 1
cl+1

·K
cl

cl+1 .

Therefore, we have

E [|f(x, y)− f (x′, y′)|] ≤ O


(
2cLf

√
l2f + l2g

) 1
cl+1 ·K

cl
cl+1 (l + 2/c)

m1l


= O(K

cl
cl+1 /m1).

Proof of Corollary 6. Based on the previous result, we have:

E [|f(x, y)− f (x′, y′)|] ≤ k0
m1

+
2Lf

√
l2f + T 2l2g

m1T l

(
K

k0

)Tcl

.

The right hand side is approximately minimized when

k0 =
(
2cLf

√
l2f + l2g

) 1
Tcl+1

·K
Tcl

Tcl+1 .

Therefore, we have

E [|f(x, y)− f (x′, y′)|] ≤ O


(
2cLf

√
l2f + T 2l2g

) 1
Tcl+1 ·K

Tcl
Tcl+1 (T l + c/2)

m1T l


= O

(
T

1
Tcl+1K1− 1

Tcl+1

m1

)
.
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D ADDITIONAL EXPERIMENT

D.1 META LEARNING

We also conduct other experiment with single timescale (Algorithm 1) on meta learning to validate
our theoretical findings. The model overfits with large value of K, which matches our theorem 2.
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Figure 2: Results of Meta Learning with single timescale optimization

An additional experiment on the MNIST dataset is conducted for Theorem 4, following the same
settings on Omnilot dataset. Both Figure 1c and Figure 3c validate the influence of K and T on the
generalization gap. When K is relatively small, T is dominant since the gap with T = 8 is higher
than that with T = 2, 4. When K is large, The effect of T fades and it contributes less to the trend
of the gap.

0 100 200 300 400 500 600
K

0.0

0.5

1.0

1.5

Cr
os

s E
nt

ro
py

 L
os

s

T=1
T=2
T=4
T=8

(a) Meta-training Loss

0 100 200 300 400 500 600
K

0.4

0.9

1.4

Cr
os

s E
nt

ro
py

 L
os

s

T=1
T=2
T=4
T=8

(b) Meta-testing Loss

0 100 200 300 400 500 600
K

0.1

0.4

Cr
os

s E
nt

ro
py

 L
os

s

T=1
T=2
T=4
T=8

(c) Generalization Gap

Figure 3: Results of Meta Learning with single timescale optimization

D.2 HYPERPARAMETER OPTIMIZATION

Hyperparameter optimization (HO) is also an instance of bilevel optimization that minimizes the
validation error of a model parameterized by w with respect to hyperparameter λ. Mathematically,
the objective function could be given by:

min
λ
LDval (λ) = Eξ∈Dval L (w∗; ξ) , (8a)

s.t. w∗ = argmin
w

Eξ∈Dtr
(L(w, λ; ξ) +Rw,λ) , (8b)

where Dtr and Dval are the training and validation sets and Rw,λ is the regularizer. In the inner
level, the procedure optimizes w using the training set (Equation 8b). In the outer level, it optimizes
λ using the validation set (Equation 8a).

Settings and Implementation We adopt the task of data hyper-cleaning. It aims to reweight data
samples with the noisy label. Therefore, the hyperparameter λ is the weight of each sample in the
training set. We follow a similar setting in Bao et al. (2021) on the MNIST dataset (LeCun, 1998),
which consists of greyscale hand-written digits with size 28 × 28. The model w corresponds to
the classification network and the hyperparameter λ corresponds to the weights of each individual
training sample. We establish the experiment using PyTorch (Paszke et al., 2019). The model w is
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a 2-layer fully connected network with size 784 → 256 → 10 for the 10 digit classification. The
hyperparameter λ is a weighting vector with length 2000 for all training samples. We randomly
sample 2000, 1000 and 1000 images for the training, validation and testing set. Training samples
are corrupted with the probability of 50%, i.e., roughly half samples are labeled with random and
wrong values, instead of the correct ones. We train w using the training set in the inner level and λ
using the validation set in the outer level. The batch size is 32 and the learning rate for w and λ are
0.01 and 10, respectively. Results are evaluated based on the average of 5 trial runs with different
random seeds.

Results Evaluation Figure 4 demonstrates the results of Algorithm 2 on the regularized HO problem
where the inner level function is often strongly-convex. It is clearly shown in Figure 4b that T = 8
causes the increase of testing loss and indicates that the risk of model overfitting increases as T
rises. Additionally, the generalization gap maintains a consistent relationship with both inner and
outer iterations, T and K respectively, which is corresponding to our Theorem 4.

0 1000 2000 3000 4000 5000
K

1.1

1.5

1.9

Cr
os

s E
nt

ro
py

 L
os

s

T=1
T=2
T=4
T=8

(a) Validation Loss

0 1000 2000 3000 4000 5000
K

1.1

1.3

1.5

Cr
os

s E
nt

ro
py

 L
os

s
T=1
T=2
T=4
T=8

(b) Testing Loss

0 1000 2000 3000 4000 5000
K

0.00

0.08

0.16

Cr
os

s E
nt

ro
py

 L
os

s

T=1
T=2
T=4
T=8

(c) Generalization Gap

Figure 4: Results of hyperparameter optimization with various values of T and K

We also conduct the experiment with smaller learning rate 0.001 and larger number of steps
{64, 128, 256} in the inner level. Compared to Figure 4, Figure 5 presents similar behavior in terms
of the effect of the value of K and T , while Figure 5c performs a higher variance caused by the
accumulation of inner level updates. Furthermore, we can show that performance on the test dataset
is comparable to performance with smaller inner iteration even when inner iteration T substantially
increases, suggesting the effectiveness of TSGD and validating our Theorem 4.
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Figure 5: Results of hyperparameter optimization with large values of T
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E EXISTING GAP IN THE ANALYSIS OF UD

The proofs in (Bao et al., 2021) make us suspect that θ(λ) is more or less treated as an argument
independent of λ, even though in the description θ(λ) is said to be dependent on λ.

In the proof of Theorem 2 (Appendix A.2 of (Bao et al., 2021), page 14), the following equations
are given,

ℓ
(
A
(
Str, Sval

)
, z
)
= ℓ

(
λt, θ̂

(
λt, S

tr
)
, z
)
= f

(
λt, θ̂

)
ℓ
(
A
(
Str, S′val) , z) = ℓ

(
λ′
t, θ̂
(
λ′
t, S

tr
)
, z
)
= f

(
λ′
t, θ̂
)
.

This implies that θ̂ (λt, S
tr) = θ̂ and θ̂ (λ′

t, S
tr) = θ̂, which seems to suggest that θ̂(λ) is indepen-

dent of λ which may conflict with the dependence on λ. Suppose (Bao et al., 2021) uses improper
notations here, but in their following proof, there is still something confusing:

To understand the issue better, let δt = ∥λt − λ′
t∥. Suppose that 0 ≤ t0 ≤ t. They have the

following inequality in the proof.

E
[∣∣∣f (λt, θ̂

)
− f

(
λ′
t, θ̂
)∣∣∣] =E

[∣∣∣f (λt, θ̂
)
− f

(
λ′
t, θ̂
)∣∣∣ · 1δt0=0

]
+E

[∣∣∣f (λt, θ̂
)
− f

(
λ′
t, θ̂
)∣∣∣ · 1δt0>0

]
≤LE

[
δt · 1δt0=0

]
+ P (δt0 > 0) s(ℓ).

The left hand side is to measure the expected difference of function f with arguments (λt, θ̂). The
first equation decomposes the left hand side according to the two possible cases of δt0 (i.e., δt0 = 0
or δt0 > 0). The first term of the inequality is derived from the Lipschitz continuous property of f .
However, to use the Lipschitz continuity of the multivariate function f with respect to θ̂, i.e.,

|f(λt, θ̂)− f(λ′
t, θ̂)| ≤ L∥λt − λ′

t∥,

θ̂ needs to be the same varible (i.e., they have the same value all the time) in both f(λt, θ̂) and
f(λ′

t, θ̂). However, from the UD algorithm in (Bao et al., 2021) it is clear that θ̂ will not always have
the same value in f(λt, θ̂) and f(λ′

t, θ̂) when λ changes.

Specifically, when t = t0, δt0 = 0, λt0 = λ′
t0 , we have θ̂t0+1

K (λt0 , S
tr) = θ̂′

t0+1

K (λ′
t0 , S

tr). Since
Sval and S′val are assumed to differ by at most one point, without loss of generality, we suppose
that SGD selects the different point at timestep ts. Then, we have

t = ts

λts(λts−1 , θ̂ts−1 , S
val) ̸= λ′

ts(λts−1 , θ̂ts−1 , S
′val)

δts ̸= 0

θ̂ts+1
K (λts , S

tr) ̸= θ̂′
ts+1

K (λ′
ts , S

tr).

This means that θ̂ts+1
K (λts , S

tr) ̸= θ̂′
ts+1

K (λ′
ts , S

tr) for all t ≥ ts, as the update of θ̂ and λ use the
value of θ̂ in the previous iteration. Thus, we cannot use the Lipschitz property to derive the first
term in the aforementioned inequality. That is why we think there may exist some gap in the analysis
of UD algorithms in (Bao et al., 2021).
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