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Abstract

Entity typing is the task of assigning seman-001
tic types to the entities that are mentioned in a002
text. In the case of fine-grained entity typing003
(FET), a large set of candidate type labels is004
considered. Since obtaining sufficient amounts005
of manual annotations is then prohibitively ex-006
pensive, FET models are typically trained using007
distant supervision. In this paper, we propose008
to improve on this process by pre-training an009
entity encoder such that embeddings of core-010
ferring entities are more similar to each other011
than to the embeddings of other entities. The012
main problem with this strategy, which helps013
to explain why it has not previously been con-014
sidered, is that predicted coreference links are015
often too noisy. We show that this problem can016
be addressed by using a simple trick: we only017
consider coreference links that are predicted018
by two different off-the-shelf systems. With019
this prudent use of coreference links, our pre-020
training strategy allows us to improve the state-021
of-the-art in benchmarks on fine-grained entity022
typing, as well as traditional entity extraction.023

1 Introduction024

Entity typing is a fundamental task in Natural Lan-025

guage Processing (NLP), with important applica-026

tions to entity linking (Onoe and Durrett, 2020) and027

relation extraction (Peng et al., 2020; Zhong and028

Chen, 2021), among others. In recent years, the029

main focus has been on fine-grained entity typing030

(Ling and Weld, 2012; Gillick et al., 2014), where031

around 100 different entity types are considered,032

or even ultra-fine entity typing (Choi et al., 2018),033

where around 10000 types are considered. A key034

challenge then consists in compiling enough train-035

ing data. This is particularly problematic because036

the distribution of entity types is highly skewed,037

with many types occurring only rarely in text. The038

main strategy thus far has been to create automat-039

ically labelled training sets. For instance, Ling040

and Weld (2012) relied on the fact that entity men- 041

tions in Wikipedia are linked to the article of the 042

corresponding entity, which is in turn linked to 043

Freebase (Bollacker et al., 2008). Entity mentions 044

in Wikipedia can thus be linked to their Freebase 045

types without any manual effort. However, these 046

distantly supervised training sets are still highly 047

skewed. Models trained on such datasets might 048

thus focus on learning to identify the most com- 049

mon entity types only, rather than on learning to 050

extract meaningful entity representations from text. 051

For this reason, we propose to first train a 052

general-purpose entity encoder, which maps entity 053

mentions to meaningful embeddings, independent 054

of a particular label set. We can then train an entity 055

type classifier in the usual way, using the embed- 056

dings from our encoder as input. Our approach 057

relies on a supervision signal that has thus far re- 058

mained largely unexplored for entity typing: coref- 059

erence chains. In particular, we use contrastive 060

learning to train an entity encoder which maps co- 061

referring entity mentions to similar vectors. While 062

conceptually straightforward, this training signal 063

forces the entity encoder to identify subtle cues in 064

the context of an entity mention, to characterise the 065

entity at a level which is sufficiently fine-grained 066

to distinguish it from other entities. Our strategy 067

only need access to an off-the-shelf coreference 068

resolution system. This means that we can train 069

the entity encoder on different genres of text and 070

generate as much training data as is needed. 071

Figure 1 illustrates the three main steps of our 072

approach. In the first step, an off-the-shelf corefer- 073

ence resolution system is applied to a large collec- 074

tion of stories. Second, we use contrastive learning 075

to train an entity encoder, which maps mentions 076

from the same coreference chain to similar vectors, 077

while mentions from different chains are mapped 078

to dissimilar vectors. In the third step, to learn a 079

fine-grained entity typing model, we simply train a 080

linear classifier in the resulting embedding space 081
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Figure 1: Illustration of our proposed strategy. In the first step, an off-the-shelf coreference resolution method is
used to identify coreference chains in stories. In the second step, we use contrastive learning to train an encoder
which maps mentions from the same coreference chain to similar vectors. In the third step, we use standard training
data to learn a linear classifier for each considered entity type.

for each considered entity type.082

An important challenge in implementing the pro-083

posed strategy is that coreference resolution sys-084

tems are still far from perfect. Whenever two men-085

tions are erroneously assumed to be referring to086

the same entity, the entity encoder is trained on a087

noisy signal, which has a detrimental impact on the088

overall performance of the method. In our exper-089

iments, we found that the success of our strategy090

indeed strongly depends on the quality of the coref-091

erence resolution system that is used. In fact, our092

best results are obtained by using two different sys-093

tems, and only keeping coreference links that are094

predicted by both. When adopting this strategy, our095

model outperforms the current state-of-the-art in096

three entity typing benchmarks.097

2 Related Work098

Entity Typing The standard approach to entity099

typing is to use a fine-tuned Language Model (LM)100

of the BERT family (Devlin et al., 2019) to obtain101

embeddings of entity mentions (Zhong and Chen,102

2021; Ye et al., 2022) and then train a standard103

classifier on top of these embeddings. Some al-104

ternative strategies have also been explored. For105

instance, Li et al. (2022a) cast the problem of en-106

tity typing as a natural language inference (NLI)107

problem. The main drawback is that each type has108

to be separately tested by the NLI model, which109

is inefficient for fine-grained entity typing. Large110

Language Models (LLMs) are similarly impractical111

to use in most application settings. Even when dis- 112

regarding efficiency concerns, the impact of LLMs 113

on the task of entity typing has thus far been limited 114

(Han et al., 2023). The most successful approaches 115

use a form of multi-task fine-tuning to adapt LLMs 116

to information extraction tasks, but they still fail to 117

consistently outperform BERT (Wang et al., 2023). 118

Fine-grained Entity Typing Most work on fine- 119

grained entity typing uses distant supervision of 120

some kind. As already mentioned in the introduc- 121

tion, one strategy is to rely on Wikipedia links 122

in combination with an external knowledge base 123

(Ling and Weld, 2012). A common problem with 124

distantly supervised datasets is that they can be 125

noisy: the fact that an entity has a particular type 126

does not necessarily imply that this information 127

is expressed in a given sentence mentioning that 128

entity. To address this issue, several authors have 129

proposed strategies for denoising distantly super- 130

vised datasets for entity typing (Ren et al., 2016; 131

Onoe and Durrett, 2019; Pan et al., 2022). A simi- 132

lar issue may occur in our setting as well, since two 133

sentences referring to the same entity may focus on 134

different aspects. For instance, we may have one 135

sentence referring to Ben Affleck as an actor and 136

another referring to him as a director. Using such 137

sentence pairs would confuse the model, since the 138

embedding of an entity mention should capture the 139

semantic type which is expressed in the correspond- 140

ing sentence context. However, since we only con- 141

sider co-referring entity mentions that come from 142

2



the same story, we can expect such cases to be rare.143

Another possible source of noise comes from mis-144

takes that are made by the coreference resolution145

system. This effect will be analysed in Section 4.146

Pre-training Entity Encoders Previous work147

has already explored a number of pre-training148

strategies for learning entity representations. First,149

methods such as SpanBERT (Joshi et al., 2020)150

focus on learning better representations of text151

spans. Within this class of methods, strategies152

that rely on InfoNCE have also been considered153

(Wang et al., 2020). While our method also uses In-154

foNCE, the training signal is fundamentally differ-155

ent: the aforementioned methods focus on learning156

span representations, using tasks such as recon-157

structing the correct order of tokens in shuffled158

text spans. Such models have not proven superior159

to the standard BERT model for entity typing. In160

our experiments, we also found that modelling text161

spans is not essential for entity typing, as our best162

configuration simply uses the embedding of the163

head token of an entity span (see Section 4.2). An-164

other line of work, which includes models such as165

ERNIE (Zhang et al., 2019), KnowBERT (Peters166

et al., 2019), LUKE (Yamada et al., 2020), KE-167

PLER (Wang et al., 2021c) and K-Adapter (Wang168

et al., 2021a), improve LMs by modelling entities169

as separate tokens and leveraging information from170

knowledge graphs. The main focus of these models171

is to improve the amount of factual knowledge that172

is captured, rather than on learning the representa-173

tions of (possibly) previously unseen entities.174

Our approach also has some similarities with175

the matching-the-blanks model for relation extrac-176

tion (Baldini Soares et al., 2019). The idea of177

this model is to learn a label-independent relation178

encoder, similar to how we are learning a label-179

independent entity encoder. In their case, the super-180

vision signal comes from the idea that sentences181

mentioning the same pair of entities are likely to182

express the same relationship, hence the relation183

embeddings obtained from such sentences should184

be similar. Building on this approach, a number185

of authors have recently used InfoNCE to encode186

similar ideas (Han et al., 2021; Wan et al., 2022;187

Wang et al., 2022). Varkel and Globerson (2020)188

use a contrastive loss to pre-train a mention encoder189

for coreference resolution based on two heuristics:190

(i) if the same name appears multiple times in a191

document, the corresponding embeddings should192

be similar and (ii) the mention encoder should be193

able to reconstruct masked pronouns. The useful- 194

ness of contrastive learning for pre-training BERT 195

encoders has also been observed more generally, 196

for instance for learning sentence, phrase and word 197

embeddings (Gao et al., 2021; Liu et al., 2021a,b; 198

Wang et al., 2021b; Li et al., 2022b). 199

Leveraging Coreference Chains To the best of 200

our knowledge, the idea of pre-training an entity en- 201

coder based on coreference chains has not yet been 202

considered. However, a number of authors have 203

proposed multi-task learning frameworks in which 204

coreference resolution and entity typing are jointly 205

learned, along with other tasks such as relation and 206

event extraction (Luan et al., 2018; Wadden et al., 207

2019). Surprisingly, perhaps, such approaches have 208

failed to outperform simpler entity typing (and re- 209

lation extraction) models (Zhong and Chen, 2021). 210

3 Our Approach 211

In Section 3.1, we first discuss the basic entity typ- 212

ing model that we rely on in this paper. Section 3.2 213

subsequently describes our proposed pre-training 214

strategy based on coreference chains. 215

3.1 Entity Typing 216

Let us assume that we are given a sentence in which 217

some entity mentions are highlighted, e.g.: 218

[Alice] was unsure what was wrong with [the 219

patient in front of her]. 220

Our aim is to assign (possibly fine-grained) seman- 221

tic types to these entity mentions. For instance, 222

using the FIGER (Ling and Weld, 2012) taxonomy, 223

the first mention should be assigned the types Per- 224

son and Doctor, while the second mention should 225

be assigned Person. To make such predictions, a 226

given entity mention e in sentence s is first mapped 227

to an embedding Enc(s, e) ∈ Rn using an encoder. 228

For the experiments in our paper, this encoder takes 229

the form of a BERT-based language model (Devlin 230

et al., 2019). Specifically, we use the final-layer 231

embedding of the head word of the given entity 232

span as the representation of the mentioned entity. 233

For instance, for the second mention in the afore- 234

mentioned example, the patient in front of her, we 235

use the embedding of the head word, patient, as the 236

representation of the entity span. This is motivated 237

by the fact that the head word is most likely to 238

reflect the semantic type of the entity (Choi et al., 239
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2018). We find the head word using the SpaCy240

dependency parser1.241

We pre-train the entity encoder Enc based on242

coreference chains, as will be explained in Section243

3.2. For each entity type t, we learn a vector at ∈244

Rn and bias term bt ∈ R. The probability that the245

mention m should be assigned the type t is then246

estimated as:247

P (t|s, e) = σ(at · Enc(s, e) + bt) (1)248

with σ the sigmoid function. This entity type clas-249

sifier is trained using binary cross-entropy on a250

standard labelled training set. The encoder Enc is251

optionally also fine-tuned during this step. When252

using the classifier for entity typing, we assign all253

labels whose predicted probability is above 0.5.254

3.2 Pre-training the Entity Encoder255

To pre-train the entity encoder Enc, we start from256

a collection of stories (e.g. news stories). Using257

off-the-shelf coreference resolution systems, we258

identify mentions within each story that are likely259

to refer to the same entity. Let us write (s, e) to260

denote an entity mention e appearing in sentence261

s. Then we consider the following self-supervision262

signal: if (s1, e1) and (s2, e2) are co-referring men-263

tions, then the contextualised representations of e1264

and e2 should be similar. In particular, we use a265

contrastive loss to encode that the representations266

of the tokens appearing in e1 and e2 should be more267

similar to each other than to the tokens appearing268

in the mentions of other entities.269

Each mini-batch is constructed from a small set270

of stories {S1, ..., Sk}. Let us write Xi for the set271

of entity mentions (s, e) in story Si that belong to272

some coreference chain. To alleviate the impact of273

noisy coreference links, we adopt two strategies:274

• We only include coreference links that are pre-275

dicted by two separate coreference resolution276

systems. This reduces the number of spurious277

links that are considered.278

• As negative examples, we only consider entity279

mentions from different stories. This prevents280

us from using entity mentions that refer to the281

same entity, but were missed by the corefer-282

ence resolution system.283

Let us write Ti for the set of tokens of the mentions284

in Xi. For a given token t, we write Enc(t) for285

1https://spacy.io/api/dependencyparser

its contextualised representation. We write T = 286

T1 ∪ ... ∪ Tk and T−i = T \ Ti. For a given token 287

t, we write Ct for the set of tokens that are part of 288

the same coreference chain. The encoder is trained 289

using InfoNCE (van den Oord et al., 2018): 290

k∑
i=1

∑
t∈Ti

∑
t′∈Ct

log
exp

(
cos(Enc(t),Enc(t′))

τ

)
∑

t′′ exp
(
cos(Enc(t),Enc(t′′))

τ

)
(2)

291

where t′′ in the denominator ranges over T−i ∪ {t}. 292

The token pairs in the numerator correspond to 293

positive examples, i.e. tokens whose embeddings 294

should be similar, while the denominator ranges 295

over both positive and negative examples. The 296

temperature τ > 0 is a hyper-parameter, which 297

controls how hard the separation between positive 298

and negative examples should be. 299

Given a mention (s, e), the model can often infer 300

the semantic type of the entity based on the mention 301

span itself. To encourage the model to learn to 302

identify cues in the sentence context, we sometimes 303

mask the entity during training, following existing 304

work on relation extraction (Baldini Soares et al., 305

2019; Peng et al., 2020). Specifically, for each 306

input (s, e) ∈ X , with 15% probability we replace 307

the head of the entity span by the [MASK] token. 308

Note that, unlike previous work, we only mask the 309

head word of the phrase. 310

Finally, following Baldini Soares et al. (2019),
we also use the Masked Language Modelling ob-
jective during training, to prevent catastrophic for-
getting. Our overall loss thus becomes:

L = Lentity + LMLM

where Lentity is the loss function defined in (2) and 311

LMLM is the masked language modelling objective 312

from BERT (Devlin et al., 2019). 313

4 Experimental Analysis 314

In this section, we evaluate the performance of our 315

proposed strategy on (fine-grained) entity typing.2 316

Experimental Setup In all our experiments, we 317

initialise the entity encoder with a pre-trained lan- 318

guage model. We consider bert-base-uncased3, 319

2Our code and pre-trained entity encoder will be made
available upon acceptance.

3https://huggingface.co/docs/transformers/
model_doc/bert
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Dataset # Types Train Dev. Test

ACE 2005 7 26.5K 6.4K 5.5K
OntoNotes 89 3.4M 8K 2K
FIGER 113 2M 1K 0.5K

Table 1: Overview of the considered benchmarks, show-
ing the number of entity types, and the number of entity
mentions in the training, development and test sets.

albert-xxlarge-v14 and roberta-large5 for320

this purpose, as these are commonly used for entity321

typing. We use the Gigaword corpus6 as the collec-322

tion of stories. This corpus consists of around 4 mil-323

lion news stories from four different sources. We324

use two state-of-the-art coreference resolution sys-325

tems: the Explosion AI system Coreferee v1.3.17326

and the AllenNLP coreference model8. As ex-327

plained in Section 3.2, we only keep coreference328

links that are predicted by both of these systems.329

Once the encoder has been pre-trained, we train an330

entity type classifier on the standard training set for331

each benchmark. We report results for two differ-332

ent variants of this process: one where the entity333

encoder is fine-tuned while training the entity type334

classifiers and one where the encoder is frozen. We335

will refer to these variants as EnCore and EnCore-336

frozen respectively. We train all of the models for337

25 epochs with the AdamW optimizer (Loshchilov338

and Hutter, 2019) and save the checkpoint with the339

best result on the validation set. The temperature τ340

in the contrastive loss was set to 0.05.341

Benchmarks Our central hypothesis is that the342

proposed pre-training task makes it possible to343

learn finer-grained entity representations. As such,344

we focus on fine-grained entity typing as our main345

evaluation task. We use the OntoNotes (Gillick346

et al., 2014) and FIGER (Ling and Weld, 2012)347

benchmarks. OntoNotes is based on the news sto-348

ries from the OntoNotes 5.0 corpus9. We use the349

entity annotations that were introduced by Gillick350

et al. (2014), considering a total of 89 different351

entity types (i.e. 88 types + other). They also in-352

troduced a distantly supervised training set, con-353

sisting of 133K automatically labelled news stories.354

4https://huggingface.co/docs/transformers/
model_doc/albert

5https://huggingface.co/docs/transformers/
model_doc/roberta

6https://catalog.ldc.upenn.edu/LDC2003T05
7https://github.com/explosion/coreferee
8https://demo.allennlp.org/

coreference-resolution
9https://catalog.ldc.upenn.edu/LDC2013T19

FIGER considers a total of 113 types (i.e. 112 types 355

+ other). The test set consists of sentences from 356

a student newspaper from the University of Wash- 357

ington, two local newspapers, and two specialised 358

magazines (on photography and veterinary). Along 359

with this test set, they also provided automatically 360

labelled Wikipedia articles for training. For fine- 361

grained entity typing, we report the results in terms 362

of macro and micro-averaged F1, following the 363

convention for these benchmarks. 364

We also experiment on standard entity typing, 365

using the ACE 2005 corpus10, which covers the fol- 366

lowing text genres: broadcast conversation, broad- 367

cast news, newsgroups, telephone conversations 368

and weblogs. It differentiates between 7 entity 369

types. For this benchmark, the entity spans are not 370

provided. We thus need to identify entity mentions 371

in addition to predicting the corresponding types. 372

We treat the problem of identifying entity span as 373

a sequence labelling problem. We follow the strat- 374

egy from Hohenecker et al. (2020), but start from 375

our pre-trained entity encoder rather than a stan- 376

dard LM. We summarise this strategy in Appendix 377

A. We use the standard training/development/test 378

splits that were introduced by Li and Ji (2014). Fol- 379

lowing standard practice, we report the results in 380

terms of micro-averaged F1. We take individual 381

sentences as input. Existing work on this bench- 382

mark jointly evaluates span detection and entity 383

typing, i.e. a prediction is only correct if both the 384

span and the predicted type are correct. We will 385

refer to this as the strict evaluation setting, follow- 386

ing Bekoulis et al. (2018). We also consider the 387

lenient setting from, where a prediction is scored 388

as correct as soon as the type is correct and the 389

predicted span overlaps with the gold span. 390

Table 1 summarises the main characteristics of 391

the considered datasets. 392

Baselines We report results for a number of sim- 393

plified variants of our main model. First, we con- 394

sider a variant which uses the same strategy for 395

training the entity type classifier as our full model, 396

but without pre-training the entity encoder on the 397

Gigagword corpus. This variant is referred to as 398

the base model. Second, we investigate a setup 399

in which the entity encoder is pre-trained on Gi- 400

gaword, but only using the masked language mod- 401

elling (MLM) objective. This setting, which we 402

refer to as MLM-only, allows us to analyse to what 403

extent improvements over the base model are due 404

10https://catalog.ldc.upenn.edu/LDC2006T06
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to the continued training of the language model.405

For reference, we also compare our models with406

the published results of state-of-the-art models. For407

fine-grained entity typing, we consider the follow-408

ing baselines: DSAM (Hu et al., 2021) is an LSTM-409

based model, which we include as a competitive410

baseline; Box4Types (Onoe et al., 2021) uses hy-411

perboxes to represent mentions and types, to take412

advantage of the hierarchical structure of the label413

space; PICOT (Zuo et al., 2022) uses a contrastive414

learning strategy based on the given type hierarchy;415

Relational Inductive Bias (RIB) (Li et al., 2021)416

uses a graph neural network to model correlations417

between the different labels. Entity mentions are418

encoded using a transformer layer on top of pre-419

trained ELMo (Peters et al., 2018) embeddings;420

LITE (Li et al., 2022a) assigns entity types by fine-421

tuning a pre-trained Natural Language Inference422

model; SEPREM (Xu et al., 2021) improves on423

the standard RoBERTa model by exploiting syn-424

tax during both pre-training and fine-tuning, and425

then using a standard entity typing model on top of426

their pre-trained model; MLMET (Dai et al., 2021)427

extends the standard distantly supervised training428

data, using the BERT masked language model for429

generating weak labels; DenoiseFET (Pan et al.,430

2022) uses a denoising strategy to improve the qual-431

ity of the standard distantly supervised training set,432

and furthermore exploits prior knowledge about the433

labels, which is extracted from the parameters of434

the decoder of the pre-trained BERT model; PKL435

(Li et al., 2023) improves on DenoiseFET by incor-436

porating pre-trained label embeddings.437

For ACE 2005, we consider the following base-438

lines: DyGIE++ (Wadden et al., 2019) uses multi-439

task learning to jointly train their system for coref-440

erence resolution, entity typing, relation extrac-441

tion and event extraction; TableSeq (Wang and Lu,442

2020) jointly trains a sequence encoder for entity443

extraction and a table encoder for relation extrac-444

tion; UniRe (Wang et al., 2021d) also uses a table445

based representation, which is shared for entity446

and relation extraction; PURE (Zhong and Chen,447

2021) uses BERT-based models to get contextu-448

alised representations of mention spans, which are449

fed through a feedforward network to predict en-450

tity types; PL-Marker (Ye et al., 2022) builds on451

PURE by introducing a novel span representation.452

4.1 Results453

Table 2 summarises the results for fine-grained en-454

tity typing. As can be seen, EnCore outperforms455

the base and MLM-only models by a large mar- 456

gin, which clearly shows the effectiveness of the 457

proposed pre-training task. Remarkably, EnCore- 458

frozen performs only slightly worse. The best 459

results are obtained with roberta-large. Our 460

model furthermore outperforms the baselines on 461

both OntoNotes and FIGER, except that RIB 462

achieves a slightly higher micro-averaged F1 on 463

FIGER. It should be noted that several of the base- 464

lines introduce techniques that are orthogonal to 465

our contribution in this paper, e.g. denoising the 466

distantly supervised training sets (DenoiseFET), 467

incorporating prior knowledge about the type la- 468

bels (PKL) and exploiting label correlations (RIB), 469

which would likely bring further benefits when 470

combined with our pre-training strategy. 471

Table 3 summarises the results for standard en- 472

tity typing (ACE 2005). We can again see that En- 473

Core consistently outperforms the MLM-baseline, 474

which in turn consistently outperforms the base 475

model. Comparing the different encoders, the 476

best results for our full model are obtained with 477

albert-xxlarge-v1, which is consistent with 478

what was found in previous work (Zhong and Chen, 479

2021; Ye et al., 2022). Finally, we can see that our 480

full model outperforms all baselines. 481

4.2 Analysis 482

We now analyse the performance of our method 483

in more detail. For this analysis, we will focus on 484

ACE 2005 under the lenient setting and OntoNotes. 485

Throughout this section, unless mentioned other- 486

wise, we use bert-base-uncased for the encoder. 487

Encoding Entity Spans We represent entities 488

using the embedding of the head word. In Table 489

4 we compare this approach with the following 490

alternatives: 491

MASK We replace the entity mention by a single 492

MASK token and use the final-layer encoding 493

of this token as the embedding of the entity. 494

Prompt Given a mention (s, e), we append the 495

phrase “The type of e is [MASK].” The final- 496

layer encoding of the MASK-token is then 497

used as the mention embedding. 498

Masked triple This strategy is similar to Prompt 499

but instead of appending a sentence, we ap- 500

pend the phrase “<e, hasType, [MASK]>”. 501

Special tokens: full span We add the special to- 502

kens <m> and </m> around the entire entity 503
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Model LM OntoNotes FIGER

macro micro macro micro

DSAM LSTM 83.1 78.2 83.3 81.5
Box4Types BL 77.3 70.9 79.4 75.0
PICOT BL 78.7 72.1 84.7 79.6
RIB ELMo 84.5 79.2 87.7 84.4
LITE RL 86.4 80.9 86.7 83.3
SEPREM RL - - 86.1 82.1
MLMET BBc 85.4 80.4 - -
DenoiseFET BB 87.2 81.4 86.2 82.8
DenoiseFET RL 87.6 81.8 86.7 83.0
PKL BB 87.7 81.9 86.8 82.9
PKL RL 87.9 82.3 87.1 83.1

BB 76.9 72.9 78.6 76.1
Base model ALB 77.9 74.8 80.2 77.4

RL 82.8 80.1 82.3 79.5

BB 81.6 78.7 80.2 77.9
MLM-only ALB 82.7 79.8 81.5 79.6

RL 85.4 81.4 85.8 82.1

BB 87.3 80.6 87.1 82.2
EnCore-frozen ALB 87.9 81.9 87.7 82.9

RL 88.3 82.7 87.8 83.6

BB 87.6 81.9 87.3 82.9
EnCore ALB 88.7 82.9 87.9 83.8

RL 88.9 83.4 88.4 84.1

Table 2: Results for fine-grained entity typing, in terms
of macro-F1 and micro-F1 (%). BB stands for bert-base-
uncased, BBc stands for bert-base-cased, BL stands for
bert-large-uncased, ALB stands for albert-xxlarge
and RL stands for roberta-large DenoiseFET results
are taken from (Li et al., 2023); all other baseline results
are taken from the original papers.

span. We take the final-layer encoding of the504

<m> token as the embedding of the entity.505

Special tokens: head In this variant, we add the506

special tokens <m> and </m> around the507

head word of the entity span.508

Head word This is the method adopted in our509

main experiments. In this case, we simply510

use the embedding of the head word of the511

entity mention, without using special tokens.512

In all cases, we use the entity typing model that513

was described in 3.1. Note that we do not consider514

ACE 2005 for this analysis, as the entity spans have515

to be predicted by the model for this dataset, which516

means that aforementioned alternatives cannot be517

used. For this analysis, we train the entity encoder518

on the training data of the considered benchmark,519

without using our coreference based pre-training520

strategy. The results in Table 4 show that using the521

embedding of the head word clearly outperforms522

the considered alternatives. Another interesting ob-523

Strict Lenient

BB ALB RL BB ALB RL

DyGIE++⋄ 88.6 - - - - -
UniRe⋄ 88.8 90.2 - - - -
PURE⋄ 90.1 90.9 - - - -
PL-Marker⋄ 89.8 91.1 - - - -

PURE 88.7 89.7 - - - -
TableSeq - 89.4 88.9 - - -

Base model 86.8 87.1 86.9 90.3 90.8 90.6
MLM-only 87.1 87.8 87.5 90.7 91.2 90.9
EnCore-frozen 89.9 90.5 90.1 91.8 92.3 92.0
EnCore 90.8 91.9 91.0 92.4 93.1 92.6

Table 3: Results for entity typing on ACE 2005, in
terms of micro-F1 (%). BB stands for bert-base-uncased,
ALB stands for albert-xxlarge and RL stands for
roberta-large. Configurations with ⋄ rely on cross-
sentence context and are thus not directly comparable
with our method.

Strategy OntoNotes

macro micro

MASK 70.7 66.8
Prompt 72.1 68.7
Masked triple 72.8 69.4
Special tokens: full span 75.2 70.8
Special tokens: head 76.1 71.3

Head word 76.9 72.9

Table 4: Comparison of different strategies for encoding
entity spans (using bert-base-uncased).

servation is that encapsulating the head of the entity 524

mention performs slightly better than encapsulat- 525

ing the entire entity span, whereas it is the latter 526

variant that is normally used in the literature. It is 527

also notable, and somewhat surprising, that Masked 528

triple outperforms Prompt. 529

Pre-training Strategies In Table 5 we compare 530

four strategies for pre-training the entity encoder 531

based on coreference chains. In particular, we anal- 532

yse the effect of two aspects: 533

• When training our model, the negative exam- 534

ples for the contrastive loss (Section 3.2) are 535

always selected from other stories. Here we 536

analyse the impact of choosing these negative 537

examples from the same story instead. 538

• During training, in 15% of the cases, we mask 539

the head of the entity span. Here we consider 540

two other possibilities: (i) never masking the 541

entity span and (ii) masking the entire span. 542
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Neg. samples Masking ACE05 OntoNotes

micro macro micro

Same story None 83.9 82.1 74.9
Same story Entire span 84.7 82.9 75.3
Different stories Entire span 88.8 86.2 78.9

Different stories Head 91.8 87.3 80.6

Table 5: Comparison of different strategies for pre-
training the entity encoder (using bert-base-uncased).

Coreference Systems ACE05 OntoNotes

micro macro micro

Explosion AI 86.4 83.4 79.4
AllenNLP 90.7 86.8 80.1
Explosion AI + AllenNLP 91.8 87.3 80.6

Table 6: Comparison of different coreference resolution
strategies (using bert-base-uncased).

Choosing the negative examples from the same543

story has a number of implications. First, it may544

mean that false negatives are included (i.e. corefer-545

ence links that were missed by the system). Second,546

it means that the overall number of negative exam-547

ples becomes smaller, since they have to come from548

a single story. However, these downsides may be549

offset by the fact that negative examples from the550

same story may be harder to discriminate from the551

positive examples, since the story context is the552

same, and using harder negatives is typically ben-553

eficial for contrastive learning. For this analysis554

we use EnCore-frozen. As can be seen in Table 5,555

choosing negative examples from the same story556

overall has a clearly detrimental impact. We also557

find that masking is important, where masking only558

the head of the entity span leads to the best results.559

This masking strategy has not yet been used in the560

literature, to the best of our knowledge.561

Coreference Resolution In Table 6 we analyse562

the importance of using only high-quality corefer-563

ence links. In particular, we compare three con-564

figurations: (i) using all links predicted by the Ex-565

plosion AI system; (ii) using all links predicted566

by the AllenNLP system; and (iii) using only the567

links that are predicted by both systems. For this568

analysis, we use EnCore-frozen. As can be seen,569

the AllenNLP system overall performs better than570

the Explosion AI system. However, the best results571

are obtained by combining both systems.572

Model One Label Two Labels Three labels

macro micro macro micro macro micro

MLM-only 79.8 75.6 53.0 50.9 39.1 38.4
EnCore 82.7 78.7 59.8 58.5 44.6 43.6

Table 7: Comparison of the MLM-only and EnCore
models (using roberta-large) on partitions of the
OntoNotes test set.

Performance on Fine and Coarse Labels In 573

Table 7 we compare our full model with the 574

MLM-only variant on different partitions of the 575

OntoNotes test set. We specifically examine 576

how EnCore compares to MLM-only on i) sam- 577

ples with a single label (5.3K), ii) samples 578

with two labels (3.0K), and iii) samples with 579

three labels (0.6K). Examples with one label 580

only require the model to identify the top-level 581

entity type (e.g. /organisation), whereas ex- 582

amples with two labels require making finer- 583

grained distinctions (e.g. /organisation and 584

/organisation/company), and examples with 585

three labels involve a further refinement (e.g. 586

/organisation, /organisation/company and 587

/organization/company/broadcast). As can 588

be seen, EnCore outperforms MLM-only in all 589

cases, but the difference is smallest in the one-label 590

case. This supports the idea that our pre-training 591

technique is particularly useful for learning finer- 592

grained entity types. A more detailed breakdown 593

of the results, which is provided in the appendix, 594

shows that EnCore consistenly outperforms MLM- 595

only on all labels, both for OntoNotes and FIGER. 596

5 Conclusion 597

We have proposed a strategy which uses corefer- 598

ence chains to pre-train an entity encoder. Our 599

strategy relies on the natural idea that coreferring 600

entity mentions should be represented using similar 601

vectors. Using a contrastive loss for implementing 602

this intuition, we found that the resulting encoders 603

are highly suitable for (fine-grained) entity typing. 604

In our analysis, we found that restricting our strat- 605

egy to high-quality coreference links was important 606

for its success. We also found that focusing on the 607

head of the entity span, rather than the span itself, 608

was beneficial, both when it comes to representing 609

the entity span and when it comes to masking enti- 610

ties during training (where only masking the head 611

was found to be most helpful). 612
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6 Limitations613

Our model is pre-trained on individual sentences.614

This means that during testing, we cannot exploit615

cross-sentence context. Prior work has found such616

cross-sentence context to be helpful for bench-617

marks such as ACE2005, so it would be of interest618

to extend our model along these lines. Furthermore,619

we have not yet applied our model to ultra-fine en-620

tity typing, as this task requires us to cope with621

labels for which we have no, or only very few train-622

ing examples. This would require combining our623

entity encoder with entity typing models that can624

exploit label embeddings, such as UNIST (Huang625

et al., 2022), which we have left as an avenue for626

future work.627
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typing. In Proceedings of the 29th International Con-949
ference on Computational Linguistics, pages 2405–950
2417, Gyeongju, Republic of Korea. International951
Committee on Computational Linguistics.952

A Entity Span Detection953

We treat the problem of entity span detection as a954

sequence labelling problem, following the strategy955

from Hohenecker et al. (2020). Specifically, each956

token in the input sentence is then labelled with an957

appropriate tag, which could either be one of the958

entity types from the considered dataset or a tag959

which denotes that the token does not belong to any960

entity span. To assign these tags, we again use the961

encoder that was pre-trained on coreference chains.962

However, rather than looking only at the head word963

of a given entity span, we now consider the embed-964

ding of every token in the sentence. Specifically,965

we train a linear classifier to predict the correct tag966

from the contextualised representation of each to-967

ken, while optionally also fine-tuning the encoder.968

Since most tokens do not belong to any entity span,969

the training data will inevitably be highly imbal-970

anced. For this reason, during training, we ignore971

the majority of tokens that are outside of any en-972

tity span. Specifically, following Hohenecker et al.973

(2020), we only consider such tokens when they974

are immediately preceding or succeeding an entity975

span.976

B Additional Analysis977

Prediction confidence In Table 8, we compare978

the confidence of the EnCore and MLM-only mod-979

els for the gold label predictions. We observe that980

in the first example, (1), EnCore more confidently981

predicts the label for delegation as /organization982

than MLM-only, which places delegation in the983

more generic label class /other with lower confi-984

dence. In the second and third case, we observe985

that EnCore is more certain to label the currency986

terms dollars and RMB with the second-level la-987

bel /other/currency than with the more general first988

level label /other, whereas MLM-only assigns a989

very low confidence to /other/currency. A similar990

pattern can also be observed in the last example.991

We have observed the same trend throughout the992

test set: EnCore consistently makes more confi-993

dent predictions than MLM-only. This is especially994

evident for the second- and third-level labels.995

Breakdown by Label A closer examination of996

the model outputs in Figure 2 reveals that EnCore997

consistently beats the MLM-only model across all 998

entity types. The OntoNotes test set, for example, 999

contains 1130 /person gold labels. MLM-only pre- 1000

dicts only 67.96% of these accurately, compared to 1001

85.49% for EnCore. As an example of a label at 1002

the second level, there are 74 /person/artist gold 1003

labels in the test set; the MLM-only model cor- 1004

rectly predicts 21.62% of these, whereas EnCore 1005

correctly predicts 35.14%. At the third level, there 1006

are 58 /person/artist/author gold labels. The MLM- 1007

only model predicts only 13.79% of them correctly, 1008

while EnCore predicts 25.86% correctly. These pat- 1009

terns are consistently seen over the whole label set. 1010

This is also true for the FIGER test set, as shown 1011

in Figure 3. 1012
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Sentence Gold label MLM-only EnCore

(1) At the beginning of 1993 , six cities such as Zhuhai , Foshan , etc. also organized a delegation to
advertise in the US and Canada for students studying abroad.

/organization 0.26 0.60
/other 0.54 0.15

(2) Last year , its foreign exchange income was up to more than 2.1 billion US dollars, and in the first
half of this year exports again had new growth.

/other 0.63 0.97
/other/currency 0.04 0.98

(3) In 1997 , this plant made over 4,400 tons of Mao - tai ; with sales income exceeding 500 million
yuan RMB , and profit and taxes reaching 370 million RMB , both being the best levels in history.

/other 0.31 0.94
/other/currency 0.02 0.96

(4) In the near future , the Russian Tumen River Region Negotiation Conference will also be held in
Vladivostok.

/location 0.25 0.98
/location/city 0.07 0.73

Table 8: Comparison of the confidence of the MLM-only and EnCore models (with roberta-large) on sample
cases from the OntoNotes test set. The words in bold in the input sentences are the entity spans’ head word. The
MLM-only and EnCore columns indicate the confidence of the MLM-only and EnCore models, respectively.

Figure 2: Comparison of the percentage of correct predictions per gold label by the MLM-only and EnCore models
(with roberta-large) on the OntoNotes test set. The instances of a label that are accurately predicted are expressed
as a percentage of the total number of occurrences of the corresponding gold label.
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Figure 3: Comparison of the percentage of correct predictions per gold label by the MLM-only and EnCore models
(with roberta-large) on the FIGER test set. The instances of a label that are accurately predicted are expressed as
a percentage of the total number of occurrences of the corresponding gold label.
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