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Abstract001

Compared to width-wise pruning, depth-002
wise pruning can significantly accelerate003
inference in resource-constrained scenarios.004
However, treating the entire Transformer005
layer as the minimum pruning unit may006
degrade model performance by indiscrimi-007
nately discarding the entire information of008
the layer. This paper reveals the “Patch-009
like” feature relationship between layers010
in large language models by analyzing the011
correlation of the outputs of different lay-012
ers in the reproducing kernel Hilbert space.013
Building on this observation, we propose a014
sliding layer merging method that dynami-015
cally selects and fuses consecutive layers016
from top to bottom according to a pre-017
defined similarity threshold, thereby simpli-018
fying the model structure while maintain-019
ing its performance. Extensive experiments020
on LLMs with various architectures and021
different parameter scales show that our022
method outperforms existing pruning tech-023
niques in both zero-shot inference perfor-024
mance and retraining recovery quality after025
pruning. In particular, in the experiment026
with 35% pruning on the Vicuna-7B model,027
our method achieved a 1.654% improvement028
in average performance on zero-shot tasks029
compared to the existing method. More-030
over, we further reveal the potential of com-031
bining depth pruning with width pruning032
to enhance the pruning effect.033

1 Introduction034

Large language models (LLMs) have attracted035

widespread attention in deep learning, owing to036

their exceptional performance and broad appli-037

cation potential (Touvron et al., 2023; Chowd-038

hery et al., 2023; Wang et al., 2025). However,039

in pursuit of better performance, the size of040

LLMs has grown increasingly larger, posing sig-041

nificant technical and resource challenges for042

practical deployment and application. Given043

that not all parameters in the large parameter 044

space of the model contribute equally to the 045

output, pruning methods are effective for reduc- 046

ing redundancy and addressing model size chal- 047

lenges (Ma et al., 2023; Sun et al., 2024a; Kim 048

et al., 2024; Men et al., 2024; Song et al., 2024). 049

The width-wise approach reduces the network 050

width by pruning coupled structures, such as 051

attention heads and their associated weight con- 052

nections, while preserving the number of layers 053

(Ma et al., 2023; An et al., 2024; Sun et al., 054

2024b). In contrast, the depth-wise approach 055

reduces the network depth by completely re- 056

moving certain layers (Kim et al., 2024; Men 057

et al., 2024; Song et al., 2024). Although the 058

depth-wise pruning method can significantly 059

accelerate inference in resource-constrained sce- 060

narios that require running LLMs with limited 061

batch sizes, it remains underexplored in terms 062

of analyzing the correlations between Trans- 063

former layers at different depths. Moreover, 064

arbitrary removing specific layers may degrade 065

the performance of the pruned model. 066

We first focus on the question: what is 067

the correlation between the features extracted 068

by different layers in LLMs? To capture the 069

subtle distinctions between features in high- 070

dimensional space, we assess the correlations 071

between the outputs of different layers of the 072

model within a reproducing kernel Hilbert 073

space and normalize the evaluation metric to 074

ensure isotropic scaling invariance, an approach 075

inspired by (Raghu et al., 2021). We conduct 076

observational experiments across multiple mod- 077

els and datasets, and the results reveal a high 078

degree of similarity in the representations of 079

certain consecutive Transformer layers in large 080

language models, exhibiting a clear “patch-like” 081

structure. This observation provides new in- 082

sights for model compression, suggesting that 083

when feature representations across layers are 084
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highly similar, parameter sharing or layer merg-085

ing can be considered to reduce both computa-086

tional load and memory usage.087

Building on the aforementioned observation,088

we propose a novel compression method - Slid-089

ing Layer Merging (SLM). This method dynam-090

ically selects the base layer and its adjacent091

layers with similar representations for merging,092

starting from the deepest layers and moving093

progressively towards the shallower layers, uti-094

lizing a sliding window mechanism. For the095

layers to be merged, we calculate the parameter096

differences between them and the base layer,097

incorporating these differences into the base098

layer’s parameters, thereby merging multiple099

layers into one. The sliding window mecha-100

nism selects adjacent layers of the base layer101

for merging by comparing the similarity be-102

tween the outputs of the pruned model and the103

original model. When the similarity exceeds104

a predefined threshold, the window expands105

towards the shallower layers; when the similar-106

ity falls below the threshold, the layers to be107

merged are combined, and the window slides108

to update the base layer’s index. Once the109

iterative merging is completed, a fast recovery110

phase is performed, utilizing limited data to111

post-train the pruned model.112

Extensive experiments, encompassing zero-113

shot performance comparisons with baseline114

methods as well as evaluations of inference115

speed and throughput, demonstrate that the116

proposed Sliding Layer Merging method consis-117

tently outperforms existing approaches in both118

model accuracy and computational efficiency.119

Moreover, we introduce an innovative fusion of120

width-wise and depth-wise pruning techniques,121

which further enhances the model compress122

performance.123

The contributions of this study are summa-124

rized as:125

• We analyze the inter-layer correlations in126

LLMs within a reproducing kernel Hilbert127

space, observing an interesting “Patch-128

Like” correlation distribution, which pro-129

vides valuable insights for the design of130

model compression strategies.131

• We propose the Sliding Layer Merging132

method, which dynamically merges lay-133

ers with strong representational similarity134

in LLMs. This method can be seamlessly 135

applied to various LLM architectures. 136

• We conduct extensive experiments across 137

multiple LLM architectures of varying 138

scales, demonstrating that our method 139

outperforms existing depth-wise pruning 140

methods in zero-shot performance, both 141

in retraining-free scenarios and in scenar- 142

ios where pruning is followed by retrain- 143

ing to restore quality. Specifically, when 144

pruning the Vicuna-7B model by 35%, our 145

method achieved superior average perfor- 146

mance across multiple datasets, outper- 147

forming method LLM-Pruner by 1.654%. 148

2 Related Work 149

Large language models’ multi-layer Trans- 150

former architecture often contains substantial 151

redundancy, motivating research on width-wise 152

and depth-wise pruning to reduce this redun- 153

dancy and improve model efficiency. 154

Width-wise pruning reduces the network 155

width by pruning coupled structures. For exam- 156

ple, Voita et al. (2019) and Michel et al. (2019) 157

introduced pruning and attention head shar- 158

ing techniques to reduce redundant attention 159

heads, thereby decreasing both computational 160

complexity and parameter requirements. Nova 161

et al. (2023) and Santacroce et al. (2023) opti- 162

mized the feedforward network by reducing the 163

dimension of the FFN hidden layer, thereby 164

reducing the memory footprint and computa- 165

tional complexity. More complex hybrid op- 166

timization methods have also been explored 167

(Lagunas et al., 2021; Kwon et al., 2022; Kurtić 168

et al., 2024). 169

Depth-wise pruning directly removes the 170

entire least important layer and can signifi- 171

cantly accelerate inference. Shortened-LLM 172

(Kim et al., 2024) selected Taylor+ and PPL 173

indicators as the importance measure of the 174

Transformer layer, and deleted the unimpor- 175

tant Transformer layer to reduce the consump- 176

tion of computing resources and improve the 177

inference speed. The layer-skipping strategy 178

(Schuster et al., 2022; Del Corro et al., 2023; 179

Raposo et al., 2024) further reduces computa- 180

tional burden and boosts inference efficiency 181

by dynamically selecting which layers to skip 182

during execution. Additionally, Song et al. 183

(2024) and Tang et al. (2024) investigated 184
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depth pruning methods, which reduce model185

depth by eliminating redundant layers, optimiz-186

ing both computational overhead and model187

performance while retaining essential layers.188

3 Motivation189

3.1 CKA vector similarity190

Center Kernel Alignment (CKA) is a metric191

used to compare the internal representations192

of neural networks. Its main advantages are its193

invariance to orthogonal transformations (e.g.194

changes in neuron arrangement) and its robust-195

ness to isotropic scaling achieved through a196

normalization term (Raghu et al., 2021). These197

properties make CKA particularly suitable for198

studying the underlying relationships between199

different Transformer layers within large lan-200

guage models. Our calculation procedure for201

CKA is outlined as follows:202

• Step1: Calculate the Gram matrix of two203

representation matrices to measure the204

similarity of representations.205

K = XXT , L = Y Y T , K, L ∈ Rn×n, (1)206

where X ∈ Rn×p and Y ∈ Rn×q denote207

the outputs of the two Transformer layers208

for which CKA is to be computed, n is209

the number of samples, and p and q rep-210

resent the dimensionalities of X and Y ,211

respectively.212

• Step2: Centralize the Gram matrix to213

eliminate the potential impact of sample214

distribution deviation.215

K̃ = HKH, L̃ = HLH, (2)216

where H = In− 1/n1n1T
n is the centraliza-217

tion matrix, In is the n×n identity matrix,218

and 1n is an all-ones vector of length n.219

• Step3: Calculate the normalized alignment220

between the central Gram matrices K and221

L to get CKA.222

CKA(K, L) = ⟨K̃, L̃⟩F
∥K̃∥F ∥L̃∥F

, (3)223

where ⟨·, ·⟩F denotes the Frobenius inner224

product and ∥·∥F represents the Frobenius225

norm.226

The final CKA value is between 0 and 1. The227

closer the value is to 1, the more similar the228

two representation matrices are.229

3.2 Representation Structure between 230

LLM Transformer Layers 231

We begin our investigation by leveraging the 232

CKA metric to examine the internal repre- 233

sentation structures of various models, with 234

a particular focus on two key questions: What 235

are the internal relationships between different 236

Transformer layers in large language models 237

(LLMs)? And is there redundancy among these 238

layers? To explore these questions, we present 239

inter-layer CKA similarity heatmaps for several 240

LLMs, including LLaMA2-7B, Vicuna-7B-v1.3, 241

Vicuna-13B-v1.3, and Meta-LLaMA3-8B, as 242

shown in Fig.1. Analysis of these heatmaps 243

revealed several key findings: 244

a) vicuna-7b-v1.3 b) vicuna-13b-v1.3

c) Llama-2-7b-hf d) Meta-Llama-3-8B

Figure 1: CKA (Center Kernel Alignment) metric
between pairs of Transformer layers in LLMs.

• Redundancy of intermediate layers: 245

When performing CKA measurements 246

across different model architectures, we 247

observed strong inter-layer correlations be- 248

tween adjacent intermediate layers, which 249

appear as bright patches on the heatmaps, 250

forming “patch-like” structures. This re- 251

sult implies that these layers have high 252

functional redundancy and provide space 253

for compression. 254

• Inter-layer correlation differences: 255

We found that the first two and final layers 256

of the model exhibited lower CKA correla- 257

tions than other layers. This suggests that 258

the representations of some layers may be 259

relatively independent, weakly function- 260

ally related to other layers, and may not 261

be suitable for large-scale compression. In 262
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subsequent studies, we “protect” these lay-263

ers by not compressing them to avoid un-264

necessary damage to model performance.265

4 Method266

4.1 Overview267

Based on the aformentioned CKA analysis, we268

propose a Sliding Layer Merging method to269

prune large language models (LLMs), which dy-270

namically compresses Transformer layers from271

top to bottom while preserving task-critical272

representations. In the following, we first de-273

scribe the algorithm workflow (Sec.4.2), fol-274

lowed by detailed explanations of its two core275

components: parameter merging (Sec.4.3) and276

adaptive similarity thresholding (Sec.4.4).277

4.2 Sliding layer merging algorithm278

As shown in Algorithm 1, our method performs279

iterative merging of adjacent layers within a280

sliding window via three steps: (1) model ini-281

tialization, (2) dynamic window updating, and282

(3) termination condition evaluation.283

Algorithm 1 Iterative Layer Compression Al-
gorithm
Input: Original model M
Parameters: Layer range [L, H]; Similarity
threshold T ; Few-shot calibration samples D
Output: Pruned model M∗

1: M∗ ←M
2: h_lay ← H
3: l_lay ← h_lay − 1
4: while l_lay ≥ L do
5: Mtmp ← Merge(M∗, h_lay, l_lay)
6: s← Cal_Sim(M, Mtmp)
7: if s > T then
8: l_lay ← l_lay − 1
9: else

10: M∗ ←Mtmp

11: h_lay ← l_lay
12: end if
13: end while
14: return M∗

Model initialization. We initialize the tar-284

get compressed model M∗ as a copy of the285

original model M , with a predefined compres-286

sion range [L, H], where H and L denote the287

highest and lowest layers to be compressed, re-288

spectively. To preserve critical functionality,289

we exclude the top layers from compression 290

based on CKA analysis, which reveals their dis- 291

tinct role due to lower inter-layer correlation. 292

This protection mechanism prevents excessive 293

degradation while enabling aggressive compres- 294

sion of redundant lower layers. 295

L H

L H①

②

L H③

:   low_lay / base_lay :   high_lay :   layes to be merge

𝜃ℎ

…

𝜃l+1

𝜃l

𝜃l + 𝜃𝑙+1 − 𝜃1
+⋯+ (𝜃ℎ − 𝜃1)

Similarity > Threshold

Similarity < Threshold

Few shot

Cosine similarity

a) Iterative update b) Layer merge c) Similarity calculate

Figure 2: The framework of our sliding layer merg-
ing method.

Dynamic window updating. Our method 296

employs a dynamic sliding window (initialized 297

with layer H as upper bound and H−1 as lower 298

bound) to determine merging ranges. Each it- 299

eration proceeds as follows: First, we merge 300

layers within the window to create Mtmp and 301

compute its cosine similarity with the original 302

model M using last hidden states from few-shot 303

calibration data. When the similarity exceeds 304

threshold T (indicating minimal performance 305

impact), we expand the merging range by mov- 306

ing the lower bound down one layer. Con- 307

versely, when the similarity falls below thresh- 308

old T (suggesting significant performance im- 309

pact), we stop window expanding, update the 310

compressed model M∗ = Mtmp, and reset the 311

upper bound to the current lower bound be- 312

fore proceeding to the next merging round (see 313

Fig.2 (a)). This adaptive process systemati- 314

cally balances compression efficiency with per- 315

formance preservation through representation- 316

aware thresholding, terminating when further 317

merging would violate the similarity constraint 318

to maintain model integrity. 319

Termination condition evaluation. The 320

dynamic window updating process continues 321

until the lowest level L is processed. Ultimately, 322

the pruned model M∗ output by the algorithm 323

reduces redundant computing and storage re- 324

quirements by retaining the merged represen- 325

tation of key layers. 326

4.3 Parameter merging strategy 327

We adopt a layer merging strategy based on 328

inter-layer differences (as shown in Fig.2 (b)), 329

which progressively integrates redundant in- 330
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formation while preserving core functionality.331

Specifically, given layers {Li, Li+1, ..., Lj} with332

parameters {θi, θi+1, ..., θj} within the sliding333

window, our Merge function computes the334

merged parameters θ∗ as:335

θ∗
i = θi + (θi+1 − θi) + · · ·+ (θj − θi)336

= θi +
j−i∑
k=1

(θi+k − θi), (4)337

This formulation offers two key advantages:338

(1) the base layer θi maintains fundamental339

model capabilities, while (2) the difference340

terms (θi+k − θi) incorporate complementary341

features from other layers. The strategy effec-342

tively captures inter-layer correlations while343

remaining adaptable to various model compres-344

sion requirements.345

4.4 Adaptive similarity thresholding346

The dynamic window updating process of our347

method relies on the iteratively evaluation by348

comparing the cosine similarity of final states349

between the original model M and compressed350

model Mtmp against predetermined thresholds351

(see Fig.2 (c)). Through systematic ablation352

(Section 5.6), we observe that lower thresh-353

olds enable more aggressive compression but354

degrade performance, while higher thresholds355

better preserve model behavior at the cost of356

reduced compression efficiency. To ensure op-357

timal performance at each target compression358

ratio, we select the highest achievable thresh-359

old for each target ratio, ensuring maximal360

performance preservation under the given com-361

pression constraints.362

4.5 Performance Recovery with363

Low-rank Approximation364

We use the low-rank approximation technique,365

LoRA(Hu et al., 2021), to fine-tune the pruned366

model and recover its performance. This is367

a common practice in many pruning methods368

(Ma et al., 2023; Kim et al., 2024), and we369

provide a brief introduction to ensure the self-370

contained aspect of our work in Appendix A.3.371

5 Experiments372

5.1 Experimental setup373

Foundation LLMs. We conducte experi-374

ments on existing popular open-source lan-375

guage models, including LLaMA2-{7B, 13B}376

(Touvron et al., 2023), LLaMA3-{8B} and 377

Vicuna-{7B, 13B}-v1.3 (Chiang et al., 2023). 378

Baselines. The proposed method is com- 379

pared with several previous works, categorized 380

by their pruning strategy. For width prun- 381

ing, we compare with LLM-Pruner (Ma et al., 382

2023), FLAP (An et al., 2024), and Wanda- 383

sp (An et al., 2024), a structured variant of 384

Wanda (Sun et al., 2024b). For depth prun- 385

ing, we examine SLEB (Song et al., 2024) and 386

Shortened-LLM (Kim et al., 2024). Following 387

the experimental setup of the existing baseline 388

method, Shortened-LLM, we assess all meth- 389

ods under two target pruning levels: 20% and 390

35%. If the product of the total number of 391

transformer blocks and target sparsity is not 392

an integer, we round up to determine the num- 393

ber of blocks to remove. 394

Benchmarks. Following Touvron et al. 395

(2023), we measure model performance on 396

seven commonsense reasoning datasets (i.e., 397

BoolQ (Clark et al., 2019), PIQA (Bisk et al., 398

2020), HellaSwag (Zellers et al., 2019), Wino- 399

Grande (Sakaguchi et al., 2021), ARCeasy 400

(Clark et al., 2018), ARC-challenge (Clark 401

et al., 2018), and OpenbookQA (Mihaylov 402

et al., 2018)) using the lm-evaluation-harness 403

package (Gao et al., 2024). 404

Implementation Details. We implement 405

our method in PyTorch (Paszke et al., 2019) 406

using the HuggingFace Transformers library 407

(Wolf et al., 2020). Following Ma et al. (2023), 408

we randomly select 10 samples from BookCor- 409

pus (Zhu, 2015) to calculate the model similar- 410

ity in the iterative pruning process. We also 411

use this calibration dataset for baselines to en- 412

sure a fair comparison. In LoRA retraining, we 413

use 50K samples of refined Alpaca (Taori et al., 414

2023) for instruction tuning. All experiments 415

covered in this article were performed on an 416

NVIDIA A100 GPU with 80GB memory. 417

5.2 Zero-shot Tasks 418

Tab.1 shows the zero-shot performance of dif- 419

ferent pruning methods on the LLaMA2-7B 420

model, Vicuna-7B-v1.3 model and LLaMA3-8B 421

model. Our method consistently outperforms 422

existing techniques in both width and depth 423

pruning. Specifically, under the 20% pruning 424

rate of the LLaMA2-7B model, our method 425

achieves a 2.676% higher accuracy than the 426

best-performing LLM-Pruner method; under 427
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BoolQ PIQA HellaSwag WinoGrande ARC-easy ARC-challenge OpenbookQA AVE
LLaMA2-7B(Original) 77.706 78.074 76.021 69.140 76.305 46.331 44.200 66.825

20%Pruned

width
Wanda-sp 62.600 76.440 70.660 63.770 69.610 42.150 40.000 60.747

FLAP 72.050 73.390 64.690 64.720 62.250 32.510 36.800 58.059
LLM-Pruner 63.731 77.476 67.128 61.878 65.783 38.481 40.400 59.268

depth
SLEB 62.875 73.939 63.951 59.747 63.468 35.154 38.000 56.733

Shortened-LLM 61.560 76.061 67.994 58.800 68.813 37.884 38.000 58.445
Ours 69.450 73.667 70.484 67.088 69.108 41.212 42.600 61.944

35%Pruned

width
Wanda-sp 59.790 68.820 53.140 54.060 52.270 31.570 32.800 50.350

FLAP 66.970 67.850 52.100 61.480 49.490 28.070 32.400 51.194
LLM-Pruner 45.260 74.760 60.290 59.350 57.280 32.420 37.200 52.366

depth
SLEB 54.801 67.410 46.545 53.197 48.527 29.010 33.000 47.499

Shortened-LLM 62.171 71.926 54.800 51.776 59.259 30.887 35.400 52.317
Ours 63.119 65.452 56.503 58.879 52.020 31.911 35.200 51.869

Vicuna-7B-v1.3(Original) 78.104 77.312 73.939 69.376 74.327 44.454 43.800 65.902

20%Pruned

width
Wanda-sp 63.270 73.780 68.620 63.930 67.210 38.820 37.200 58.976

FLAP 73.520 74.810 68.760 66.460 69.110 38.990 40.000 61.664
LLM-Pruner 67.645 76.115 66.660 63.931 65.446 36.604 40.400 59.543

depth
SLEB 46.758 51.850 26.170 51.223 25.505 28.840 24.800 36.449

Shortened-LLM 72.355 74.701 67.576 64.562 70.034 38.225 38.600 60.865
Ours 77.431 74.755 69.040 68.745 69.318 38.908 40.200 62.628

35%Pruned

width
Wanda-sp 50.760 60.450 43.060 55.960 43.520 26.190 28.000 43.991

FLAP 57.860 69.640 59.120 63.300 57.830 35.670 36.000 54.203
LLM-Pruner 63.976 73.069 59.560 58.564 56.524 32.679 37.800 54.596

depth
SLEB 37.829 53.264 25.921 49.961 25.926 29.096 25.800 35.399

Shortened-LLM 64.281 70.783 56.722 57.380 59.596 31.485 34.000 53.464
Ours 69.235 70.294 60.705 62.273 60.227 33.618 37.400 56.250

LLaMA3-8B(Original) 81.101 79.489 79.167 73.402 80.093 53.242 44.800 70.185

20%Pruned

width
FLAP 37.830 52.180 26.360 49.960 26.810 24.830 26.000 34.853

LLM-Pruner 74.037 79.489 74.268 70.324 74.285 46.587 42.600 65.941

depth
SLEB 62.171 73.286 64.748 63.062 64.562 37.713 37.000 57.506

Shortened-LLM 66.208 78.074 72.695 62.747 75.295 44.795 43.400 63.316
Ours 76.789 77.639 73.770 71.744 76.599 50.939 41.200 66.954

35%Pruned

width
FLAP 37.830 52.340 26.050 47.990 24.790 24.830 25.200 34.147

LLM-Pruner 64.465 74.048 61.800 59.353 64.646 34.386 37.200 56.557

depth
SLEB 59.755 64.635 45.061 51.539 47.306 27.133 27.600 46.147

Shortened-LLM 63.180 72.851 62.985 58.090 66.877 37.116 37.000 56.871
Ours 67.554 73.830 61.472 62.747 64.352 36.007 37.600 57.652

Table 1: Performance comparison of pruning methods across multiple baselines at 20% and 35% pruning
rates. We compare our method with width pruning approaches (Wanda-sp, FLAP, LLM-Pruner) and
depth pruning approaches (SLEB, Shortened-LLM) on LLaMA2-7B, Vicuna-7B, and LLaMA3-8B models.
Note that Wanda-sp does not produce results for the LLaMA3-8B model due to incompatibility.

the 35% pruning rate of the Vicuna-7B model,428

the average accuracy of our method is 1.654%429

higher than that of existing methods. These re-430

sults show that our proposed method can effec-431

tively reduce model size and complexity while432

more fully maintaining model performance.433

To verify the broad applicability of our434

method, we also provide relevant experimental435

results on larger models (such as LLaMA2-13B436

and Vicuna-13B-v1.3) in Appendix B.4.437

5.3 Latency and Throughput438

We follow Sheng et al. (2023) to evaluate the439

LLM inference speedup achieved by our prun-440

ing methods. Given a batch size M and an441

output sequence length L, the latency T rep-442

resents the time required to handle the given443

prompts and produce ML output tokens. The444

Latency(sec) Throughout(tokens/s) GPU_Memory nparam
LLaMA-2-7B(Original) 2.729 46.905 13020.25 6.7B

20%Pruned

width
Wanda-sp 4.628 27.663 10676 5.5B
FLAP 4.045 31.656 10707.25 5.4B
LLM-Pruner 5.655 22.635 10951.5 5.5B

depth
SLEB 2.529 50.622 10682.45 5.5B
Shortened-LLM 2.585 49.542 10682.45 5.5B
Ours 2.339 54.758 10682.45 5.5B

35%Pruned

width
Wanda-sp 4.619 27.726 8901 4.5B
FLAP 4.127 31.051 8855.95 4.5B
LLM-Pruner 5.630 22.736 9043.9 4.5B

depth
SLEB 1.938 66.048 8725.9 4.5B
Shortened-LLM 2.084 61.433 8725.85 4.5B
Ours 1.889 67.770 8725.9 4.5B

Table 2: Inference efficiency of pruned models.
(Measured with 12 input tokens, 128 output to-
kens, and a batch size of 1.)

throughput is computed as ML/T . We report 445

the average results from 20 runs after the initial 446

10 warm-up batches. Tab.2 present throughput 447

and latency results for LLaMA-2-7B. 448

Experimental results show that depth prun- 449
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ing generally outperforms width pruning in450

reasoning efficiency. Specifically, at pruning451

ratio of 20% and 35%, depth pruning methods452

(SLEB, Shortened-LLM and Ours) outperform453

width pruning methods (Wanda-sp, FLAP, and454

LLM-Pruner) in both latency and throughout455

metrics. This suggests that reducing the depth456

of the model can more effectively enhance infer-457

ence speed and throughout. At the same time,458

depth pruning methods maintain relatively sta-459

ble GPU memory usage while ensuring efficient460

inference. Therefore, from the perspective of461

inference efficiency, depth pruning is a more462

effective pruning strategy.463

5.4 Integration of width-wise pruning464

and depth-wise pruning465

We observed in Tab.1 that in the 35% pruning466

scenario of the LLaMA2-7B model, the width-467

wise LLM-Pruner method performs slightly bet-468

ter than our depth-wise method. This may be469

due to the fact that under specific pruning470

ratios and model structures, width pruning471

can also exhibit advantages, and depth prun-472

ing does not necessarily always outperform it.473

This naturally raises the question: Can the474

intergration of width-wise pruning and depth-475

wise pruning leverage the strengths of both476

methods to further improve pruning results?477

Specifically, using LLaMA2-7B model as an478

example, we divide the pruning process into479

depth-wise pruning and width-wise pruning. In480

the first stage, we compress the model based481

on Transformer layers by our proposed method.482

In the second stage, we use the LLM-Pruner483

method to remove non-essential coupled struc-484

tures from the model obtained in the first stage.485

As a result, the pruned model achieves a prun-486

ing rate of 35% relative to the original model.487

For the sake of pruning convenience, we se-488

lected the following depth pruning rates: 0%489

(LLM-Pruner), 18%, 36%, 53%, 71%, 91%, and490

100% (ours). The performance evaluation re-491

sults are shown in Fig.3.492

The results show that the combined depth-493

wise and width-wise pruning strategy achieves494

better performance at the same pruning rate495

compared to using either method alone. Specif-496

ically, models with depth pruning rates of 18%,497

36%, 53%, 71% and 91% consistently surpass498

the models with depth pruning rates of 0% and499

100%. Notably, the models with depth pruning500

0 20 40 60 80 100
Depth Ratio (%)

45.0

47.5

50.0

52.5

55.0

57.5

60.0

62.5

65.0

Ze
ro

-s
ho

t t
as

k 
ac

c

Performance Comparison Across Depth Ratios

Winogrande
HellaSwag
ARC Easy
AVE

Figure 3: Performance of the integrated method on
LLaMA2-7B. The horizontal axis shows the depth
pruning ratio, and the vertical axis indicates zero-
shot task performance. Results for Winogrande,
HellaSwag, and ARC Easy are plotted as dotted
lines, with the solid line showing the average per-
formance across seven tasks.
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Figure 4: Performance with/without LoRA retrain-
ing. The blue column represents the model perfor-
mance before lora fine-tuning, and the orange col-
umn represents performance after lora fine-tuning.

rates of 36% and 53% rank first and second in 501

terms of performance, respectively. This shows 502

that the integrated methods can combine the 503

advantages of depth-wise pruning and width- 504

wise pruning methods to achieve better model 505

performance than when using depth-wise prun- 506

ing or width-wise pruning alone, while mitigat- 507

ing the throughput and inference speed issues 508

associated with width-wise pruning methods. 509

We also performed the same experiments on 510

the Vicuna-13B-v1.3 model, and the results 511

can be found in Appendix B.2. 512

5.5 The impact of LoRA retraining 513

We evaluate the impact of LoRA retrain- 514

ing on three pruning methods requiring fine- 515

tuning (LLM-Pruner, Shortened-LLM, and 516

ours). Fig.4 shows the performance of the 517
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LLaMA2-7B model and Vicuna-7B model at518

20% and 35% pruning rate.519

The results show that before LoRA fine-520

tuning, the performance of our method was521

significantly better than that of LLM-Pruner522

and Shortened-LLM, with performance indi-523

cators at the best level whether under both524

20% and 35% pruning ratio. After further em-525

ploying LoRA fine-tuning, the performance of526

our method is significantly improved and still527

maintains the lead in most cases. Specifically,528

under the 20% pruning ratio of the LLaMA2-529

7B model, the performance improvement of530

the our method is particularly significant, from531

57.360% to 61.944%, an increase of 4.584%,532

far exceeding LLM-Pruner (by 2.031%) and533

Shortened-LLM (by 2.946%).534

5.6 The impact of Layer merging535

methods536

We evaluate three layer merging methods —537

direct layer deletion (“Delete”), replacing mul-538

tiple layers’ parameters with their average (“Av-539

erage”), and our method (“Ours”) — on the540

LLaMA2-7B model, analyzing their impact on541

pruned model performance using the HellaSwag542

dataset (without LoRA fine-tuning).543

We first analyzed the layer count after dif-544

ferent merging methods at varying similarity545

thresholds in Fig.5(a). As the threshold de-546

creases, the number of layers reduces, indicat-547

ing fewer redundant parameters. At the same548

threshold, our layer merging method achieves549

higher compression. For example, at a thresh-550

old of 0.75, our method retains only 23 layers,551

significantly fewer than “Delete” method (26552

layers) and “Average” method (29 layers), re-553

sulting in a more efficient model compression.554

In Fig.5(b), we compared the zero-shot accu-555

racy at various compression levels after differ-556

ent merging methods. The results show that,557

while “Average” degrades significantly under558

aggressive pruning, our method consistently559

outperforms both baselines, with the perfor-560

mance difference gradually expands as the num-561

ber of compression layers increases.562

5.7 The impact of Calibration data563

Tab.3 investigates the impact of calibration564

data selection on LLaMA2-7B model. The re-565

sults show that varying the choice and size of566

calibration data has minimal impact on the per-567
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Figure 5: The impact of layer merging methods
on LLaMA2-7B model. (a) Layer counts of the
pruned model under different similarity thresholds
through three layer merging methods (Delete, Av-
erage, Ours). (b) Zero-shot performance of the
pruned model on the HellaSwag dataset through
three layer merging methods.

HellaSwag OpenbookQA
C4 (num=10) 63.374 36.600

WikiText2 (num=10) 63.730 37.200
BookCorpus (num=10) 62.179 36.600
BookCorpus (num=20) 62.420 36.200

Table 3: The impact of calibration dataset on
LLaMA2-7B model.

formance of compressed models. This demon- 568

strates our method’s robustness to calibration 569

data selection, with negligible differences across 570

configurations. 571

6 Conclusion 572

By analyzing the correlation between the out- 573

puts of different layers in the reproducing 574

kernel Hilbert space, this paper reveals the 575

“patch-like” relational patterns between layers 576

in LLMs. Based on this insight, we propose a 577

depth-wise pruning method that dynamically 578

merges consecutive layers using a similarity 579

threshold, enabling rapid model compression 580

while effectively preserving performance. Ex- 581

perimental results show that our method signif- 582

icantly outperforms existing pruning methods 583

on both inference efficiency and zero-shot tasks. 584

Moreover, our method can be seamlessly inte- 585

grated with width pruning methods, leading to 586

pruning models that achieve enhanced perfor- 587

mance. We hope this study will inspire further 588

research into depth-wise pruning methods and 589

foster the development of a unified framework 590

that combines both depth-wise and width-wise 591

pruning strategies, ultimately contributing to 592

the efficient deployment of LLMs in resource- 593

constrained environments. 594
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Limitations595

While our sliding layer merging method demon-596

strates strong performance across various mod-597

els, datasets, and compression scales, several598

limitations remain.599

First, due to computational constraints, our600

experiments were limited to models up to 13B601

parameters. The scalability of our method to602

larger-scale models (e.g., 70B or beyond) re-603

quires further validation. Second, the similar-604

ity threshold for layer merging was selected605

empirically based on optimal compression-606

peformance trade-offs under fixed compression607

ratios. While effective, the heuristic may not608

generalize optimally across all scenarios. Fu-609

ture work could explore more sophisticated610

threshold selection methods, to further improve611

merging efficiency.612

Nevertheless, despite these limitations, our613

method consistently outperforms existing614

width-wise and depth-wise pruning methods615

across diverse evaluation settings, demonstrat-616

ing its robustness and practical effectiveness.617
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specific information of baseline methods are de-812

scribed below, where we use their official code813

for implementation. To ensure a fair compar-814

ison, we employ the same calibration dataset815

across all methods.816

Width-wise method. The width-wise817

pruning methods include Wanda-sp, FLAP and818

LLM-Pruner.819

Wanda-sp is a variant of Wanda (Sun et al.,820

2024b). The original metric of Wanda was821

based on the product of weight magnitudes822

and input activation norms, while Wanda-sp823

presented in (An et al., 2024) extends this in a824

struced way while using common dimensions825

among different modules.826

Model Pruned Ratio Metrics Structure Params

LLaMA2-7B / Vicuna-7B
0.2 WIFV AL-AM 5470556160
0.35 WIFV AL-AM 4485812224

LLaMA2-13B / Vicuna-13B
0.2 WIFV AL-AM 10479211520
0.35 WIFV AL-AM 8575800320

Table 4: Hyperparameter settings for Wanda-sp.

FLAP (An et al., 2024) is a new LLM827

retraining-free structured pruning framework828

that determines the recoverability of the fea-829

ture map after removing weight columns based830

on the fluctuation pruning index. It adaptively831

determines the compressed model structure832

using normalized importance scores and adds833

additional bias terms to the pruned feature834

maps to restore performance.835

Model Pruned Ratio Metrics Structure Params

LLaMA2-7B / Vicuna-7B
0.2 WIFV AL-AM 5444964352
0.35 WIFV AL-AM 4473626624

LLaMA2-13B / Vicuna-13B
0.2 WIFV AL-AM 10481551360
0.35 WIFV AL-AM 8578908160

Meta-LLaMA3
0.2 WIFV AL-AM 6721589248
0.35 WIFV AL-AM 5631029248

Table 5: Hyperparameter settings for FLAP.

LLM-Pruner (Ma et al., 2023) utilizes a836

Taylor-based importance metric to identify and837

remove attention heads from MHA and in-838

termediate neurons from FFN. The pruning839

process is conducted locally, selecting remov-840

able groups within each module while ensuring841

that the dimensions across the blocks remain842

consistent. Following the original approach,843

we preserve the first and last few blocks with-844

out pruning. Both their pruned models and845

ours are retrained using Low-Rank Adaptation846

(LoRA).847

Model Pruned Ratio
Block_mlp_layer_start /
BloCK_attention_layer_start

Block_mlp_layer_end /
Block_attention_layer_start

Params

LLaMA2-7B/Vicuna-7B
0.24 4 30 5512646656
0.43 4 30 4517122048

LLaMA2-13B/Vicuna-13B
0.24 4 38 10480911360
0.42 4 38 8557153280

LLaMA3-8B
0.24 4 30 6794588160
0.43 4 30 5651673088

Table 6: Hyperparameter settings for LLM-Pruner.

Depth-wise method. The depth-wise 848

pruning methods use the Transformer module 849

in LLM as the pruning unit. SLEB (Song et al., 850

2024) uses a logit-based approach to find un- 851

necessary blocks and updates the importance 852

score after removing each block. SLEB pursues 853

a no-retraining setting, but it cannot maintain 854

sufficient performance as the pruning rate in- 855

creases. Shortened-LLM (Kim et al., 2024) 856

uses the PPL standard to determine the im- 857

portance of the transformer layer, and deletes 858

unimportant transformer layers after sorting. 859

Shortened-LLM method uses lora to retrain to 860

restore the performance of the model. 861

Model Pruned Ratio Block Head FFN-D Params

LLaMA2-7B/Vicuna-7B
0.2 26 32 11008 5524115456
0.35 21 32 11008 4512198656

LLaMA2-13B/Vicuna-13B
0.2 32 40 13824 10478228480
0.35 26 40 13824 8575001600

LLaMA3-8B
0.2 26 32 14336 6721589248
0.35 21 32 14336 5631029248

Table 7: Hyperparameter settings for depth-wise
methods.

A.2 Selected Transformer Layers 862

We summarize the number and indices of trans- 863

former blocks selected for removal using our 864

method in Tab.8. The specified sets of Trans- 865

former layers are fused into a single layer, rep- 866

resented by the index of the first layer in the 867

set (e.g., [25, 26, 27, 28, 29, 30] are fused into 868

layer 25). 869

Model Threshold Num of layers Merged Layers

LLaMA2-7B
0.81 26 [[25, 26, 27, 28, 29, 30], [10, 11]]
0.68 21 [[22, 23, 24, 25, 26, 27, 28, 29, 30], [14, 15], [10, 11], [6, 7]]

Vicuna-7B
0.78 26 [[25, 26, 27, 28, 29, 30], [13, 14]]
0.57 21 [[21, 22, 23, 24, 25, 26, 27, 28, 29, 30], [13, 14], [10, 11]]

LLaMA3-8B
0.72 26 [[28, 29, 30], [25, 26, 27], [22, 23], [14, 15]]
0.51 21 [[25, 26, 27, 28, 29, 30], [21, 22], [19, 20], [14, 15, 16], [12, 13], [10, 11]]

LLaMA2-13B
0.8 32 [[30, 31, 32, 33, 34, 35, 36, 37, 38]]
0.72 26 [[26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38], [16, 17], [12, 13]]

Vicuna-13B
0.76 32 [[33, 34, 35, 36, 37, 38], [31, 32], [29, 30], [15, 16]]
0.65 26 [[31, 32, 33, 34, 35, 36, 37, 38], [29, 30], [27, 28], [9, 10, 11, 12, 13, 14]]

Table 8: Corresponding layer indices of the pruned
models under different threshold setting of our
depth-wise pruning method used in the main results
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A.3 LoRA Retraining870

We apply a LoRA adapter (Hu et al., 2021)871

to every projection weight matrix by following872

(Ma et al., 2023). We employ a LoRA rank of 8,873

a learning rate of 0.0001, and a batch size of 64874

over 2 epochs. The retraining costs are notably875

low, with the entire process being executed on876

a single NVIDIA A100 (80GB VRAM) GPU.877

For example, retraining a 20%-pruned model878

from 7B parameters takes about 2 hours and879

utilizes 22GB GPU memory. Here we provide a880

brief introducion of LoRA retraining to ensure881

the self-contained aspect of our work.882

Each learnable weight matrix (including883

both pruned and unpruned linear projections884

in LLMs) is represented by W . The up-885

date to W , denoted as △W , is factorized as886

△W = PQ ∈ Rd−×d+ , where P ∈ Rd−×d and887

Q ∈ Rd×d+ . Here, d−, d, and d+ correspond888

to the dimensions of the input, hidden, and889

output layers, respectively. The forward com-890

putation is then expressed as follows:891

f(x) = (W +△W )x+b = (WX +b)+(PQ)X,
(5)892

where b represents the bias in the dense layer.893

By training only the low-rank matrices P and894

Q, we considerably reduce both the compu-895

tational complexity and the dependence on896

large-scale training data. Furthermore, the897

additional parameters P and Q can be repa-898

rameterized as △W , thereby introducing no899

extra parameters in the final pruned model.900

B Supplementary Experiment901

Results902

B.1 Additional Results of Inference903

Efficiency904

Tab.9 shows the inference of our depth-905

wise pruning method in different LLMs906

(LLaMA2-7B, LLaMA2-13B, Vicuna-13B-v1.3,907

and LLaMA3-8B). As the pruning ratio in-908

creases, the latency of the model decreases, the909

throughput increases, and the GPU memory910

usage and number of parameters also decrease911

accordingly.912

B.2 Integration of Depth-wise Pruning913

and Width-wise Pruning914

We integrate our method with LLM-Pruner to915

further improve the pruning effect. In the first916

Latency(sec) Throughout(tokens/s) GPU_Memory nparam
LLaMA2-7B 2.729 46.905 13020.25 6738415616
20% Pruned 2.339 54.758 10682.45 5524115456
35% Pruned 1.889 67.770 8725.9 4512198656

LLaMA2-13B 3.635 35.210 25188.85 13015864320
20% Pruned 2.908 44.016 20274.25 10478228480
35% Pruned 2.380 53.793 16593.1 8575001600

Vicuna-7B-v1.3 2.865 44.681 13021.8 6738415616
20% Pruned 2.370 54.065 10682.45 5524115456
35% Pruned 2.000 64.087 8725.9 4512198656

Vicuna-13B-v1.3 3.593 35.623 25186.95 13015864320
20% Pruned 2.885 44.386 20274.25 10478228480
35% Pruned 2.395 53.461 16593.1 8575001600
LLaMA3-8B 3.150 40.640 15364 8030261248
20% Pruned 2.635 48.616 12862 6721589248
35% Pruned 2.218 57.795 10776 5631029248

Table 9: Inference efficiency of our pruned models.
(Measured with 12 input tokens, 128 output tokens,
and a batch size of 1 on a NVIDIA H100 GPU.)

Depth-wise(ours) Width-wise(LLM-Pruner)
Nparam AVE

Proportion Threshold Remove layers Proportion Pruner_ratio
0% 0 100% 0.43 4532772064 52.366
18% 0.96 2 82% 0.35 4502876160 54.372
36% 0.86 4 64% 0.3 4501803008 55.753
53% 0.81 6 47% 0.24 4486926336 55.188
71% 0.77 8 29% 0.16 4476604416 53.967
91% 0.7 10 9% 0.06 4530630656 52.780
100% 0.68 11 0% 4512198656 51.869

Table 10: Pruning proportions and corresponding
parameter settings of integrated method on the
LLaMA2-7B model.

stage, we apply our proposed pruning method, 917

based on the layer compression model. In the 918

second stage, we use the LLM-Pruner method 919

to remove unnecessary coupling structures from 920

the model obtained in the first stage. As a re- 921

sult, the pruned model achieved a pruning rate 922

of 35% relative to the original model. Tab.10 923

shows the pruning proportions and correspond- 924

ing parameter settings of depth-wise pruning 925

and width-wise pruning on the LLaMA2-7B 926

model using the integrated method. 927

We also tested our integrated method on the 928

Vicuna-13B model, and the experimental re- 929

sults are shown in Fig6. Tab.11 shows the prun- 930

ing proportions and corresponding parameter 931

settings of depth-wise pruning and width-wise 932

pruning. 933

Depth-wise(ours) Width-wise(LLM-Pruner)
Nparam AVE

Proportion Threshold Remove layers Proportion Pruner_ratio
0% 0 100% 0.42 8557153280 59.863
14% 0.94 2 86% 0.35 8606530560 61.236
28% 0.86 4 72% 0.3 8565928960 60.321
43% 0.8 6 57% 0.28 8606039040 60.455
57% 0.76 8 43% 0.24 8582722560 60.257
71% 0.7 10 29% 0.16 8551490560 61.203
100% 0.57 14 0% 8575001600 59.617

Table 11: Pruning proportions and corresponding
parameter settings of integrated method on the
Vicuna-13B model.
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Figure 6: Performance of the integrated method on
the Vicuna-13B model.

B.3 Three different layer merging934

methods935

For the l-th layer of an LLM, we denote all its936

parameters as θl. We considered three different937

layer merging methods to merge the param-938

eters of the subsequent m consecutive layers939

θl+1, θl+2, ..., θl+m into θl to form θ∗
l .940

• Remove: We directly ignore the parame-941

ters of the l + 1 to l + m layers, and only942

retain the parameters of the l-th layer (al-943

though in actual operation, we may still944

label the combined parameter set as θ∗
l ,945

but here θ∗
l actually only contains the pa-946

rameters of the original l-th layer).947

θ∗
l = θl (6)948

• Average: We calculate the average value949

of the parameters from layer l to l + m,950

and use this average value to form a new951

parameter set θ∗
l .952

θ∗
l =

∑l+m
i=l θi

m
(7)953

• Our method: We adopt a parameter954

merging strategy based on inter-layer dif-955

ferences, adding the differences between956

adjacent layer and base layer parameters957

to gradually integrate redundant informa-958

tion.959

θ∗
l = θl +

l+m∑
i=l+1

(θi − θl) (8)960

B.4 Zero-shot performance in larger961

scale962

Tab.14 presents the zero-shot performance of963

various downstream tasks with the proposed964

Threshold Num of layers Merged Layers
0.95 30 [[27, 28], [13, 14]]
0.9 30 [[27, 28, 29]]
0.85 29 [[29, 30], [27, 28], [24, 25]]
0.8 29 [[27, 28, 29, 30]]
0.75 26 [[26, 27, 28, 29, 30], [24, 25], [9, 10]]
0.7 24 [[24, 25, 26, 27, 28, 29, 30], [22, 23], [9, 10]]
0.65 22 [[22, 23, 24, 25, 26, 27, 28, 29, 30], [17, 18], [9, 10]]

Table 12: The layer index corresponding to the
pruned model obtained by the "delete" layer merg-
ing method under different threshold settings.

Threshold Num of layers Merged Layers
0.95 31 [[21, 22]]
0.9 31 [[28, 29]]
0.85 31 [[29, 30]]
0.8 30 [[29, 30], [23, 24]]
0.75 29 [[29, 30], [26, 27], [22, 23]]
0.7 28 [[29, 30], [27, 28], [23, 24], [10, 11]]
0.65 27 [[29, 30], [27, 28], [25, 26], [22, 23], [10, 11]]

Table 13: The layer index corresponding to the
pruned model obtained by the "average" layer merg-
ing method under different threshold settings.

method applied to the LLaMA2-13B model 965

and Vicuna-13B model. Our method shows 966

superior pruning capabilities. 967

B.5 Additional Results of Moderate 968

Pruning and LoRA Retraining 969

Tab.15-19 show the zero-shot results of several 970

pruning strategies that require retraining, in- 971

cluding LLM-Pruner, Shortened-LLM, and our 972

proposed method on different model. 973
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#Param & Method BoolQ PIQA HellaSwag WinoGrande ARC-easy ARC-challenge OpenbookQA AVE

LLaMA-2-13B(Original) 80.550 79.053 79.367 72.139 79.377 49.147 45.200 69.262
Wanda-sp 69.630 77.480 74.750 67.010 73.480 44.110 44.000 64.351

FLAP 72.780 74.650 69.070 68.350 70.830 40.610 40.000 62.327width
LLM-Pruner 71.315 79.162 74.836 67.324 73.485 43.771 41.600 64.499

SLEB 63.211 76.061 70.116 65.430 70.749 39.932 39.200 60.671
Shortened-LLM 68.318 76.279 75.204 71.113 74.790 46.672 42.400 64.968

20%Pruned

depth
Ours 64.006 77.421 76.369 71.665 76.557 48.549 43.800 65.481

Wanda-sp 59.020 55.110 33.580 52.800 29.840 24.910 28.600 40.551
FLAP 71.250 69.590 61.680 64.400 59.050 34.130 36.000 56.586width

LLM-Pruner 66.086 76.061 67.785 59.195 67.382 39.334 41.800 59.663
SLEB 62.385 70.620 58.415 55.643 62.500 36.689 33.800 54.293

Shortened-LLM 63.333 72.307 67.128 63.694 66.667 39.761 37.000 58.556

35%Pruned

depth
Ours 59.939 73.286 68.751 65.983 68.981 41.724 39.000 59.666

Vicuna-13B-v1.3(Original) 82.813 78.346 77.017 71.113 75.547 47.611 45.400 68.264
Wanda-sp 77.090 77.090 74.420 67.960 67.800 42.320 42.800 64.211

FLAP 81.100 76.770 73.720 68.350 71.510 42.490 41.000 64.991width
LLM-Pruner 74.526 78.346 72.426 69.219 69.739 40.529 43.200 63.998

SLEB 62.385 70.620 58.415 55.643 62.500 36.689 33.800 54.293
Shortened-LLM 75.535 77.476 73.571 68.272 72.180 44.198 43.200 64.919

20%Pruned

depth
Ours 81.040 76.442 74.846 70.324 71.801 44.625 41.800 65.840

Wanda-sp 61.650 71.220 63.960 61.400 57.490 35.320 37.000 55.434
FLAP 75.170 73.990 65.540 67.560 61.320 36.770 37.400 59.679width

LLM-Pruner 70.581 76.659 67.317 65.272 63.258 35.154 40.800 59.863
SLEB 37.829 51.034 25.503 50.908 26.221 27.218 27.400 35.159

Shortened-LLM 68.532 74.102 66.421 64.009 67.593 41.126 38.600 60.055

35%Pruned

depth
Ours 69.450 74.918 67.447 63.378 66.414 38.311 37.400 59.617

Table 14: Performance comparison of pruning methods across multiple baselines on LLaMA2-13B and
Vicuna-13B models.

20%Pruned BoolQ PIQA HellaSwag WinoGrande ARC-easy ARC-challenge OpenbookQA AVE

LLM_Pruner
wo_lora 53.761 76.659 66.132 61.168 64.857 37.884 40.200 57.237
w_lora 63.731 77.476 67.128 61.878 65.783 38.481 40.400 59.268

Shortened-LLM
wo_lora 60.489 73.776 63.364 57.459 64.015 33.191 36.200 55.499
w_lora 61.560 76.061 67.994 58.800 68.813 37.884 38.000 58.445

Ours
wo_lora 62.324 70.239 65.097 66.298 61.448 38.311 37.800 57.360
w_lora 69.450 73.667 70.484 67.088 69.108 41.212 42.600 61.944

35%Pruned BoolQ PIQA HellaSwag WinoGrande ARC-easy ARC-challenge OpenbookQA AVE

LLM_Pruner
wo_lora 50.703 69.695 51.275 52.960 49.495 31.399 36.000 48.790
w_lora 45.260 74.755 60.287 59.353 57.281 32.423 37.200 52.366

Shortened-LLM
wo_lora 61.101 67.791 45.987 52.960 48.485 27.218 32.800 48.049
w_lora 62.171 71.926 54.800 51.776 59.259 30.887 35.400 52.317

Ours
wo_lora 62.171 63.874 52.131 59.511 46.170 31.826 32.600 49.755
w_lora 63.119 65.452 56.503 58.879 52.020 31.911 35.200 51.869

Table 15: Performance with/without LoRA retraining on LLaMA2-7B.
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20%Pruned BoolQ PIQA HellaSwag WinoGrande ARC-easy ARC-challenge OpenbookQA AVE

LLM_Pruner
wo_lora 57.554 74.810 65.216 59.037 64.815 36.263 39.400 56.728
w_lora 67.645 76.115 66.660 63.931 65.446 36.604 40.400 59.543

Shortened-LLM
wo_lora 63.670 72.470 63.105 62.194 64.352 36.775 35.600 56.881
w_lora 72.355 74.701 67.576 64.562 70.034 38.225 38.600 60.865

Ours
wo_lora 63.394 72.742 66.152 66.219 66.919 39.078 40.600 59.301
w_lora 77.431 74.755 69.040 68.745 69.318 38.908 40.200 62.628

35%Pruned BoolQ PIQA HellaSwag WinoGrande ARC-easy ARC-challenge OpenbookQA AVE

LLM_Pruner
wo_lora 60.642 70.294 54.860 52.881 53.662 33.618 36.000 51.708
w_lora 63.976 73.069 59.560 58.564 56.524 32.679 37.800 54.596

Shortened-LLM
wo_lora 60.245 64.527 43.856 53.986 47.348 26.792 29.600 46.622
w_lora 64.281 70.783 56.722 57.380 59.596 31.485 34.000 53.464

Ours
wo_lora 62.202 66.431 53.834 61.484 52.946 33.532 33.400 51.976
w_lora 69.235 70.294 60.705 62.273 60.227 33.618 37.400 56.250

Table 16: Performance with/without LoRA retraining on Vicuna-7B-v1.3.

20%Pruned BoolQ PIQA HellaSwag WinoGrande ARC-easy ARC-challenge OpenbookQA AVE

LLM_Pruner
wo_lora 56.942 77.040 67.785 68.666 68.603 39.078 40.400 59.788
w_lora 74.037 79.489 74.268 70.324 74.285 46.587 42.600 65.941

Shortened-LLM
wo_lora 45.443 73.232 60.994 57.853 65.404 34.044 36.000 53.282
w_lora 66.208 78.074 72.695 62.747 75.295 44.795 43.400 63.316

Ours
wo_lora 38.073 71.980 61.800 69.613 66.035 41.809 38.400 55.387
w_lora 76.789 77.639 73.770 71.744 76.599 50.939 41.200 66.954

35%Pruned BoolQ PIQA HellaSwag WinoGrande ARC-easy ARC-challenge OpenbookQA AVE

LLM_Pruner
wo_lora 47.829 69.369 45.150 53.118 48.485 27.816 33.200 46.424
w_lora 64.465 74.048 61.800 59.353 64.646 34.386 37.200 56.557

Shortened-LLM
wo_lora 61.651 66.431 49.801 51.697 51.431 29.352 30.400 48.680
w_lora 63.180 72.851 62.985 58.090 66.877 37.116 37.000 56.871

Ours
wo_lora 40.428 62.350 40.291 55.485 39.394 28.242 28.200 42.056
w_lora 67.554 73.830 61.472 62.747 64.352 36.007 37.600 57.652

Table 17: Performance with/without LoRA retraining on LLaMA3-8B.

20%Pruned BoolQ PIQA HellaSwag WinoGrande ARC-easy ARC-challenge OpenbookQA AVE

LLM_Pruner
wo_lora 65.566 78.509 72.018 64.167 69.992 43.601 40.600 62.065
w_lora 71.315 79.162 74.836 67.324 73.485 43.771 41.600 64.499

Shortened-LLM
wo_lora 63.180 75.027 71.191 70.481 69.529 43.089 40.800 61.900
w_lora 68.318 76.279 75.204 71.113 74.790 46.672 42.400 64.968

Ours
wo_lora 38.318 72.361 67.726 70.797 64.815 39.676 42.800 56.642
w_lora 64.006 77.421 76.369 71.665 76.557 48.549 43.800 65.481

35%Pruned BoolQ PIQA HellaSwag WinoGrande ARC-easy ARC-challenge OpenbookQA AVE

LLM_Pruner
wo_lora 52.049 74.048 61.522 55.801 60.816 36.689 39.800 54.389
w_lora 66.086 76.061 67.785 59.195 67.382 39.334 41.800 59.663

Shortened-LLM
wo_lora 62.141 69.042 59.361 60.221 53.830 31.741 34.400 52.962
w_lora 63.333 72.307 67.128 63.694 66.667 39.761 37.000 58.556

Ours
wo_lora 40.489 67.900 56.234 63.694 51.347 33.532 36.400 49.942
w_lora 59.939 73.286 68.751 65.983 68.981 41.724 39.000 59.666

Table 18: Performance with/without LoRA retraining on LLaMA2-13B.
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20%Pruned BoolQ PIQA HellaSwag WinoGrande ARC-easy ARC-challenge OpenbookQA AVE

LLM_Pruner
wo_lora 74.006 77.040 71.679 64.799 66.498 39.078 41.800 62.129
w_lora 74.526 78.346 72.426 69.219 69.739 40.529 43.200 63.998

Shortened-LLM
wo_lora 66.239 74.918 70.056 66.456 68.476 43.857 39.600 61.372
w_lora 75.535 77.476 73.571 68.272 72.180 44.198 43.200 64.919

Ours
wo_lora 75.199 75.898 71.679 69.692 70.370 43.942 43.200 64.283
w_lora 81.040 76.442 74.846 70.324 71.801 44.625 41.800 65.840

35%Pruned BoolQ PIQA HellaSwag WinoGrande ARC-easy ARC-challenge OpenbookQA AVE

LLM_Pruner
wo_lora 63.609 73.449 63.683 58.800 52.778 34.471 38.200 54.999
w_lora 70.581 76.659 67.317 65.272 63.258 35.154 40.800 59.863

Shortened-LLM
wo_lora 42.385 69.532 57.897 60.063 60.017 37.372 34.800 51.724
w_lora 68.532 74.102 66.421 64.009 67.593 41.126 38.600 60.055

Ours
wo_lora 63.609 73.123 58.703 61.089 62.837 36.604 34.600 55.795
w_lora 69.450 74.918 67.447 63.378 66.414 38.311 37.400 59.617

Table 19: Performance with/without LoRA retraining on Vicuna-13B-v1.3.
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