
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

RECALKV: LOW-RANK KV CACHE COMPRESSION VIA
HEAD REORDERING AND OFFLINE CALIBRATION

Anonymous authors
Paper under double-blind review

ABSTRACT

Large language models (LLMs) have demonstrated remarkable performance, but
their long-context reasoning remains constrained by the excessive memory required
for the Key-Value (KV) cache. This makes KV cache compression a critical step
toward efficient long-context inference. Recent methods have explored low-rank
techniques to reduce the hidden size of the KV cache. However, they neglect
the distinct roles and varying importance of Keys and Values, leading to signif-
icant performance drops under high compression. To address this, we propose
ReCalKV, a post-training low-rank KV cache compression approach with tailored
strategies for Keys and Values. For Keys, we propose Head-wise Similarity–aware
Reordering (HSR), which clusters structurally similar heads into groups, enabling
more accurate low-rank approximation via grouped SVD. For Values, we propose
Offline Value Calibration (OVC), which efficiently calibrates the value projection
matrix using calibration data without training, ensuring an accurate representation
of contextual information. Extensive experiments show that ReCalKV consistently
outperforms existing low-rank compression methods, achieving high compression
ratios with minimal performance loss. We will release all the code and models.

1 INTRODUCTION

Large language models (LLMs) (Vaswani, 2017; Touvron et al., 2023a; Dubey et al., 2024) have
demonstrated outstanding performance across a wide range of tasks. To accelerate inference, modern
LLMs cache intermediate Key-Value (KV) states, avoiding redundant computation during autoregres-
sive decoding. However, as the input context length increases, the KV cache grows rapidly, leading to
substantial memory overhead and bandwidth pressure. In practice, the KV cache often becomes the
primary bottleneck for long-context inference. Consequently, compressing the KV cache becomes
essential for enabling efficient and scalable deployment of LLMs across real-world applications.

To reduce the size of the KV cache, recent works explore compression along multiple axes. Multi-
query attention (Shazeer, 2019) and grouped-query attention (Ainslie et al., 2023) reduce the number
of heads by sharing keys and values. Quantization methods (Zhao et al., 2023) lower KV cache’s
precision, with some (Liu et al., 2024c; Hooper et al., 2024) pushing KV representations down to
2 bits. Others (Zhang et al., 2023; Li et al., 2024; Xiao et al., 2023; Dong et al., 2024) reduce the
number of cached tokens by selecting only important ones, often based on attention scores. A few
methods (Chang et al., 2025; Liu et al., 2024b) further compress across layers by reusing KV states.
These methods reveal the multi-dimensional structure of KV cache compression.

Another line of work (Chang et al., 2024; Liu et al., 2024a; Lin et al., 2024) explores KV cache
compression from a different angle—by reducing the dimensionality of the hidden vector space of
Keys and Values themselves. For example, MLA (Liu et al., 2024a) reduces memory via low-rank
representations but requires training the model from scratch. Other approaches, such as EigenAtten-
tion (Saxena et al., 2024) and MastryohakaKV (Lin et al., 2024), compress KV entries via projection
into lower-dimensional subspaces. Although effective, their projection and reconstruction introduce
extra decoding overhead, limiting applicability in latency-sensitive scenarios. Palu (Chang et al.,
2024) and LoRC (Zhang et al., 2024) address this issue by directly applying Singular Value Decom-
position (SVD) to the KV projection layers, effectively compressing the hidden dimensions of the
KV cache. This approach substantially reduces the overhead of runtime projection and reconstruction.
However, both methods overlook the inherent asymmetry between Keys and Values in the attention
mechanism, and their performance degrades notably under high KV cache compression ratios.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

To better explore KV cache compression along the hidden dimension, we conduct detailed analyses
of the roles of Keys and Values in the attention mechanism. Our analyses reveal that: (i) Most modern
LLMs (Touvron et al., 2023a;b; Dubey et al., 2024) use positional encoding, typically RoPE (Su et al.,
2024), which is applied to Keys. As a result, low-rank compressed Keys must be fully reconstructed
during inference to enable positional encoding, which introduces additional computational overhead.
This makes it essential to consider both accuracy and computational cost when compressing Key
cache. (ii) We measure the Fisher information of the Key and Value projection layers. Our Fisher
information analysis reveals that the Value projection matrices carry significantly higher importance
than their Key counterparts, highlighting the crucial role of Value representations in the overall model
behavior. Therefore, minimizing accuracy degradation is critical when compressing the Value cache.

Based on our analyses, we develop distinct compression strategies for Keys and Values based on their
different roles and varying importance in the attention mechanism. For Keys, we propose Head-wise
Similarity–aware Reordering (HSR). It first reorders attention heads based on their representation
similarity, then groups similar heads together, and applies grouped SVD within each group. This
reduces the Key cache size with low reconstruction overhead. Grouping similar heads helps the SVD
better capture shared subspace structures, lowering approximation error and preserving accuracy. For
Values, we propose Offline Calibration Value (OVC). We first apply SVD to the Value projection
matrix and then calibrate the decomposed components with a small calibration dataset to preserve
Value accuracy. We also fuse the right factor of the SVD decomposition into the subsequent output
projection matrix, removing the need for explicit reconstruction during inference.

Extensive experiments demonstrate that ReCalKV consistently achieves SOTA performance across
multiple LLM families, clearly surpassing existing low-rank compression methods under various
evaluation settings. For example, on the LLaMA-2-7B model (Touvron et al., 2023b) evaluated on
six zero-shot QA datasets, ReCalKV achieves an average accuracy of 63.64% under a 50% KV cache
compression ratio, compared to 64.99% for the full-precision model—corresponding to only a 2%
relative drop. Notably, since ReCalKV is orthogonal to quantization techniques, it can be seamlessly
integrated with them to achieve even higher overall compression ratios.

Our key contributions can be summarized as follows:

• We propose ReCalKV, a novel post-training KV cache compression framework that reduces
memory overhead in long-context inference without requiring model retraining.

• We propose the Head-wise Similarity–aware Reordering (HSR) strategy for Key compres-
sion, which effectively reduces the Key cache size with limited reconstruction overhead.

• We propose an Offline Value Calibration (OVC) strategy for compressing the Value cache,
preserving accuracy without introducing additional inference overhead.

• Extensive experiments demonstrate that ReCalKV consistently outperforms prior low-
rank compression approaches. Furthermore, ReCalKV can be seamlessly combined with
quantization techniques to achieve even higher compression ratios.

2 RELATED WORK

SVD-Based LLM Compression. Singular Value Decomposition (SVD) has been widely adopted
for compressing LLMs by approximating weight matrices with low-rank factors. However, standard
SVD (Noach & Goldberg, 2020) has been observed to cause notable performance degradation in
practice. To address this, FWSVD (Hsu et al., 2022) incorporates Fisher information to guide
decomposition, while ASVD (Yuan et al., 2023) rescales weights to mitigate the impact of activation
outliers. SVD-LLM (Wang et al., 2024) establishes a direct connection between singular values
and compression loss, employing data whitening and selective truncation to minimize degradation.
AdaSVD (Li et al., 2025) further improves compression by introducing adaptive rank allocation and
compensation mechanisms. Unlike prior methods that target model weights, we apply SVD to the
key and value projections to compress the KV cache directly.

KV Cache Compression. To support long-context inference, various methods have been proposed
to compress the KV cache. Quantization-based approaches are widely adopted: Atom (Zhao et al.,
2023) performs per-token quantization, while WKVQuant (Yue et al., 2024) uses a two-level scheme
for better accuracy. KIVILiu et al. (2024c) and KVQuant (Hooper et al., 2024) combine per-token
and per-channel quantization, with KVQuant further leveraging non-uniform and sparse techniques

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

LK2 RK2W1W2W3W4

Key Projection

CKA Simularity

Reorder Group SVD

Value Projection

SVD

Calibration Data

LV RVWV
update

WO
Fuse

W3W1W4W2 W2W4W3W1 LK1 RK1

RV

WK

LV RV

Head-wise Similarity-aware Reordering

Offline Calibration Matrix Fusion

WO
~

Figure 1: Overview of the ReCalKV framework. The method consists of three key components:
Head-wise Similarity-aware Reordering (HSR) for compressing Keys via grouped SVD, and Offline
Value Calibration (OVC) for compressing Values without additional runtime overhead.

to handle outliers. In parallel, token eviction methods (Zhang et al., 2023; Li et al., 2024; Xiao et al.,
2023; Dong et al., 2024) reduce memory by discarding less relevant tokens or retrieving only subsets
during decoding. Beyond these strategies, several methods aim to reduce the hidden dimension of
KV representations. DeepSeek V2 (Liu et al., 2024a) uses MLA for built-in dimension reduction,
but requires training from scratch. MatryoshkaKV (Lin et al., 2024) and Eigen-Attention (Saxena
et al., 2024) project the KV cache into a low-rank space via additional projection matrices, at the cost
of increased computation. HeadKV (Fu et al., 2024) uses SVD to reduce the number of KV heads,
leading to improved efficiency. LoRC (Zhang et al., 2024) and Palu (Chang et al., 2024) directly apply
SVD to the KV projection matrices, reducing dimensionality with minimal architectural changes.
Our method is a post-training low-rank KV compression approach and is orthogonal to quantization
and token eviction, enabling easy integration for further compression gains.

3 METHODOLOGY

3.1 PRELIMINARY

Singular Value Decomposition. Singular Value Decomposition (Golub et al., 1987) is a classical
matrix factorization technique widely used for low-rank approximation. Given a matrix W ∈ Rm×n,
SVD factorizes it into three components: W = UΣV⊤, where U ∈ Rm×m and V ∈ Rn×n are
orthogonal matrices containing the left and right singular vectors, and Σ ∈ Rm×n is a diagonal
matrix with non-negative singular values. To obtain a low-rank approximation of a weight matrix
W ∈ Rm×n, we apply SVD and retain only the top r singular values and their associated singular
vectors. This results in an approximate factorization:

W ≈ LR, where L = UrΣ
1/2
r , R = Σ1/2

r V⊤
r . (1)

Here, Ur ∈ Rm×r and Vr ∈ Rn×r are the top-r singular vectors of W, and Σr ∈ Rr×r contains
the corresponding singular values. This yields two smaller matrices, L and R, from the low-rank
decomposition of W. Given an input x ∈ R1×m, we compute the intermediate representation
z = xL and store z ∈ R1×r in the KV cache instead of the full output. During attention, the output
is approximated by reconstructing xW ≈ zR. This approach reduces the KV cache size with a
compression ratio of r/n, while maintaining a close approximation of the original computation.

Centered Kernel Alignment Similarity. Centered Kernel Alignment (CKA) (Kornblith et al., 2019)
is a widely used metric for quantifying the similarity between two sets of representations. Given
two matrices X ∈ Rn×d1 and Y ∈ Rn×d2 , CKA is computed by first forming their Gram (kernel)
matrices GX = XX⊤ and GY = YY⊤. These kernel matrices are then centered as follows:

G̃X = HGXH, G̃Y = HGYH, (2)
where H = In − 1

n1n1
⊤
n is the centering matrix. The final CKA similarity is defined as:

CKA(X,Y) =
HSIC(X,Y)√

HSIC(X,X) · HSIC(Y,Y)
, (3)

where HSIC(X,Y) = Tr(G̃XG̃Y) denotes the Hilbert-Schmidt Independence Criterion (HSIC).
CKA ranges from 0 to 1, with higher values indicating greater similarity between the two matrices.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

3.2 HEAD-WISE SIMILARITY-AWARE REORDERING
CKA Similarity

Head Index

H
ea

d
In

de
x

CKA Similarity

Head Index

H
ea

d
In

de
x

Reorder

Figure 2: CKA similarity matrices before and after
head reordering.

Group-head Low-rank Decomposition. Fol-
lowing the grouped decomposition strategy pro-
posed in Palu (Chang et al., 2024), we organize
multiple attention heads into groups prior to per-
forming SVD. Given a Key projection matrix
W ∈ Rm×n, where n = h · dh corresponds
to h attention heads each of hidden dimension
dh, we divide W column-wise into h subma-
trices, each representing a single head. Then
we group every s heads into one group, result-
ing in g = h/s groups in total. For each group j, we construct a concatenated projection matrix
Wgj =

[
Wj,1, . . . ,Wj,s

]
, where each Wj,k ∈ Rm×dh is the projection matrix of the k-th head in

group j, and thus Wgj ∈ Rm×(s·dh). Instead of applying SVD to the entire projection matrix at once,
we apply low-rank approximation to the grouped matrix: Wgj ≈ LgjRgj , where Lgj ∈ Rd×rg and
Rgj ∈ Rrg×(dh·s). During inference, the latent representation shared across all heads in the group is
computed as: zgj = xLgj , and the projected outputs for individual heads are reconstructed via:

[yj,1, . . . ,yj,s] = zgjRgj . (4)
This grouped strategy provides a good trade-off between reconstruction overhead and approximation
fidelity, enabling efficient compression with minimal performance impact.

X W1W2W3W4

X1 X4X3X2

Input Output

X

Muti-Head Key Projection
Key (Cached)

LK2 RK2LK1 RK1

Low-Rank Key (Cached)

K1 K2 X3 X2X4X1

Recovery

X1 X4X3X2WK

Figure 3: Key decoding with HSR. Similar heads
are reordered and grouped before SVD, enabling
more accurate reconstruction.

CKA-based Head Similarity. A key question
in grouped SVD is how to assign attention heads
into groups so as to minimize the reconstruc-
tion error. Empirically, we observe that group-
ing heads with similar left singular subspaces
results in lower approximation error, as these
heads tend to share more common representa-
tional components and thus benefit from joint
compression. To quantify head similarity, we
adopt centered kernel alignment (CKA) (Ko-
rnblith et al., 2019), a robust and widely used
metric for comparing representation subspaces. We compute the pairwise CKA similarity between all
attention heads, yielding a symmetric similarity matrix S ∈ Rh×h, where h is the number of heads:

Si,j = CKA(Hi,Hj), ∀i, j ∈ 1, . . . , h. (5)
Head Reordering. Based on the similarity matrix S, we perform head grouping by prioritizing
pairs with high mutual similarity. Specifically, we adopt a greedy strategy that iteratively selects the
head pair with the highest CKA similarity and assigns them to the same group, subject to a fixed
group size constraint (e.g., 4 heads per group when h = 32). Remaining unassigned heads are then
added to existing groups with available capacity, ensuring that all heads are eventually grouped.
This head reordering process encourages heads with similar representational structure to share SVD
decompositions, effectively reducing approximation error during grouped compression. As shown
in Figure 2, we visualize the CKA similarity matrices before and after head reordering. It can be
observed that, after reordering, heads assigned to adjacent positions exhibit higher mutual similarity,
indicating that similar heads are more effectively grouped together. By aligning structurally coherent
heads within each group, we improve both the compactness and accuracy of the resulting low-rank
representation. To ensure decoding equivalence, we apply an inverse reordering to restore the original
head order (see Figure 3); related theoretical analysis is given in the supplementary file.
3.3 OFFLINE VALUE CALIBRATION

Offline Calibration. For Value cache compression, we directly perform SVD on the full Value
projection matrix Wv ∈ Rm×n, resulting in the decomposed matrices: Wv ≈ LvRv, where Lv ∈
Rm×r and Rv ∈ Rr×n represent the compressed components of the original Value projection matrix
Wv ∈ Rm×n. We then define the approximation error E introduced by the SVD decomposition as:

E = ||LvRvX−WvX||2F , (6)
where X denotes the calibration dataset. Based on our analysis of Fisher Information, we observe
that the Value projection matrix exhibits significantly higher Fisher Information compared to the
Key projection matrix. This indicates that the Value projection matrix plays a more critical role in

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

model performance. Therefore, we aim to minimize the approximation error E introduced during
the compression of the Value projection to preserve model accuracy as much as possible. Inspired
by Li et al. (2025), we observe that standard SVD decomposition does not always yield the lowest
approximation error. To this end, we perform offline calibration of the decomposed matrices Lv

and Rv using a small calibration dataset X, aiming to further reduce the compression-induced
approximation error. We first calibrate Lv by setting the derivative of the approximation error E with
respect to Lv to zero:

∂E
∂Lv

= 0 ⇒ Lv = WXX⊤R⊤
v (RvXX⊤Rv)

−1. (7)

Next, to improve the fidelity of the low-rank approximation, we calibrate the right factor Rv by
minimizing the approximation error. Specifically, we compute the gradient of the approximation error
E with respect to Rv and set it to zero, allowing us to solve for a more accurate Rv in closed form:

∂E
∂Rv

= 0 ⇒ Rv = ((Lv)
⊤Lv)

−1(Lv)
⊤W. (8)

This yields an optimal closed-form solution for Rv . Together, the calibrated Lv and Rv form a refined
low-rank approximation of the original Value projection matrix, effectively reducing compression-
induced error without incurring any additional inference-time computation. The derivation, closed-
form updates for Lv and Rv, implementation details, related theoretical analysis, and the impact of
different calibration datasets and dataset sizes are discussed in the supplementary material.

Algorithm 1 Pseudocode of ReCalKV

1: Inputs: ModelM, Calibration Data X , Target Compression Ratio T R
2: Output:M′: Model equipped with compressed KV cache
3: procedure RECALKV(M,X , T R)
4: F ← CALCULATE_FISHER_INFO(M,X)
5: R← ALLOCATE_COMPRESSION_RATIO(M, T R,F)
6: for each Key projection layerWk in modelM do
7: CKA ← CALCULATE_CKA_SIMILARITY(Wk)
8: W ′

k ← HEAD_REORDER(Wk, CKA)
9: Lk[],Rk[]← GROUP_SVD(W ′

k,R[Wk])
10: M′ ←UPDATE_LAYER(Lk[]&Rk[],Wk,M)
11: end for
12: for each Value projection layerWv in modelM do
13: Lv,Rv ← SVD(Wv,R[Wv])
14: L′

v,R
′
v ← OFFLINE_CALIBRATION(Wv,Lv,Rv,X)

15: W̃o ←MATRIX_FUSION(R′
v,Wo)

16: M′ ←UPDATE_LAYER(L′
v,Wv,M)

17: M′ ←UPDATE_LAYER(W ′
o,Wo,M)

18: end for
19: returnM′

20: end procedure

Matrix Fusion. After performing SVD and offline calibration on the Value projection matrix, we
further optimize the inference efficiency by eliminating unnecessary reconstruction steps. Specifically,
instead of computing the full Value cache and then applying the output projection matrix Wo, we
fuse Rv into Wo to avoid runtime reconstruction. We start from the standard attention output:

Output = Attention(Q,K, V)Wo = Attention(XWq, XWk, XWv)Wo. (9)
where X is the input sequence, Wq, Wk, and Wv are the projection matrices for query, key, and
value respectively, and Wo is the output projection matrix. For compressed Value cache, we store
X ′ = XLv as the low-rank representation. With Value compression, the attention output becomes:

Output = Attention(XWq, XWk, XLvRv)Wo. (10)

We then define a fused output projection matrix W̃o = RvWo, and compute the attention output as:

Output = Attention(XWq, XWk, XLv)W̃o. (11)
This design eliminates the need to explicitly reconstruct X ′Rv during inference. By merging the
computation into a single step, matrix fusion reduces both memory usage and computational overhead,

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

streamlining the runtime execution path. Moreover, since the fused matrix W̃o can be precomputed
entirely offline, it introduces no additional overhead to online inference, making this approach highly
suitable for latency-sensitive applications and deployment on resource-constrained hardware.

3.4 RECALKV WORKFLOW

The overall pipeline of ReCalKV is outlined in Algorithm 1. Given a pre-trained modelM, calibration
data X , and a target compression ratio R, ReCalKV applies differentiated compression strategies
to Key and Value projection layers. We first compute layer-wise Fisher Information scores using
the calibration data, following the strategy introduced in Palu (Chang et al., 2024), to estimate the
relative importance of each layer and guide compression ratio allocation. Based on this, we allocate
compression ratios to different layers accordingly. For Key projection layers, we first compute head-
wise CKA similarity, then reorder the heads to group the most similar ones together, and finally apply
grouped SVD for compression. For Value projection layers, we apply standard SVD followed by
offline calibration to adjust the low-rank factors. Then we fuse the right factor of the decomposition
with the output projection matrix Wo in the attention block. The modified matrices are then written
back into the model. The final output is a modified modelM′ that generates compressed KV caches.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETTINGS

Models. We evaluate our method on a range of widely adopted LLMs, including multiple generations
of the LLaMA family: LLaMA-7B (Touvron et al., 2023a), LLaMA-2-7B (Touvron et al., 2023b),
and LLaMA-2-13B-Chat (Touvron et al., 2023b). We also include instruction-tuned variants such as
Mistral-7B-Instruct-v0.2 (Jiang et al., 2023) and LongChat-7B-v1.5-32k (Li et al., 2023) to assess
performance under extended context settings. These models cover both base and chat/instruction-
following variants, ensuring a comprehensive evaluation across different architectures and use cases.
Notably, Mistral-7B-Instruct-v0.2 (Jiang et al., 2023) adopt Grouped Query Attention (GQA) (Ainslie
et al., 2023), while the others use standard Multi-Head Attention (MHA) (Vaswani, 2017). Additional
results on the more recent LLaMA-3.1 model are provided in the supplementary file.

Datasets and Evaluation. We assess the effectiveness of our method using both perplexity and
task-specific accuracy. For language modeling evaluation, we report perplexity on WikiText2 (Merity
et al., 2017), Penn Treebank (PTB)(Plotz & Roth, 2017), and a subset of the C4 corpus(Raffel
et al., 2020b). To evaluate reasoning and generalization capabilities, we measure zero-shot accuracy
on six QA benchmarks: ARC-c, ARC-e (Clark et al., 2018b), Hellaswag (Zellers et al., 2019b),
OBQA (Mihaylov et al., 2018), PIQA (Bisk et al., 2020), and Winogrande (Sakaguchi et al., 2020). In
addition, we adopt the LongBench benchmark (Bai et al., 2023) to evaluate long-context performance,
conducting experiments on eight diverse tasks that thoroughly evaluate long-context capability.

Baselines. We compare our method with Palu (Chang et al., 2024), a recent low-rank compression
approach for KV cache. Specifically, we adopt its G-LRD variant for evaluation. For fair comparison,
we adopt the same group-wise decomposition with a fixed group size of 4. Further comparisons with
ASVD (Yuan et al., 2023) and EigenAttention (Saxena et al., 2024) are included in the supplementary.

Implementation Details. All experiments are conducted using PyTorch (Paszke et al., 2019b) and
Huggingface Transformers (Paszke et al., 2019a) on a single NVIDIA A800 GPU with 80GB of
memory. Following the setup in SVD-LLM (Wang et al., 2024), we apply a whitening transformation
before performing SVD truncation. Specifically, we randomly select 256 samples from the WikiText-
2 dataset as calibration data and use them both for whitening in the SVD step and for the offline
calibration process in Value compression.

4.2 MAIN RESULTS

Perplexity Results. We evaluate the language modeling capability of ReCalKV on three stan-
dard datasets—WikiText2 (Merity et al., 2017), PTB (Plotz & Roth, 2017), and C4 (Raffel et al.,
2020a)—using perplexity as the metric. As shown in Table 1, ReCalKV achieves lower perplexity than
Palu (Chang et al., 2024) on most compression ratios and model families. On LLaMA-2-7B (Touvron
et al., 2023b), ReCalKV yields a perplexity of 5.83 on WikiText2 and 8.14 on C4 at 50% compression,
compared to 6.02 and 8.72 from Palu, respectively. Similar trends are observed on LLaMA-7B (Tou-
vron et al., 2023a) and Mistral-7B (Jiang et al., 2023). Notably, on PTB, ReCalKV significantly
outperforms Palu under aggressive compression. For instance, at 70% compression, the perplexity of

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Table 1: Zero-shot performance comparison between ReCalKV and Palu (Chang et al., 2024) under
50% to 70% compression ratios. Evaluation on three language modeling datasets (measured by
perplexity (↓)) and six zero-shot QA datasets (measured by both individual and average accuracy (↑)).

RATIO METHOD Wiki2↓ PTB↓ C4↓ OBQA Hella PIQA ARC-e ARC-c Wino Average↑
LLaMA-7B (Touvron et al., 2023a)

0% Original 5.68 41.15 7.34 44.40 76.18 78.67 75.25 44.80 70.01 64.89

50% Palu 6.27 48.39 8.85 41.6 73.46 76.71 72.35 40.53 68.75 62.23

ReCalKV 6.13 43.99 8.36 42.00 73.59 77.20 72.35 41.72 68.35 62.54

60% Palu 7.08 91.45 10.98 36.80 68.80 73.94 67.63 38.14 63.61 58.15

ReCalKV 6.63 56.49 9.44 39.80 71.51 75.95 71.09 40.10 64.17 60.44

70% Palu 8.42 211.33 14.46 34.60 61.06 71.00 61.53 33.70 59.51 53.57

ReCalKV 7.24 71.47 10.53 38.20 68.73 75.19 67.55 39.08 64.01 58.79
LLaMA-2-7B (Touvron et al., 2023b)

0% Original 5.47 37.91 7.26 44.20 76.01 78.07 76.35 46.25 69.06 64.99

50% Palu 6.02 40.89 8.72 43.80 73.34 76.17 72.98 42.24 67.32 62.64

ReCalKV 5.83 39.51 8.14 45.00 74.39 76.39 74.71 43.52 67.80 63.64

60% Palu 6.81 51.32 10.69 40.00 68.55 74.10 68.99 38.14 63.38 58.85

ReCalKV 6.21 65.73 8.95 41.40 72.36 76.17 72.73 41.13 68.03 61.97

70% Palu 8.62 83.19 15.01 34.20 59.30 68.82 57.87 31.66 61.01 52.14

ReCalKV 6.75 75.78 10.05 39.80 69.59 74.48 70.37 39.42 65.75 59.90
Mistral-7B-Instruct-v0.2 (Jiang et al., 2023)

0% Original 5.94 32.46 9.72 46.80 83.68 80.41 81.31 55.63 74.35 70.36

50% Palu 6.33 37.38 10.79 44.60 80.89 79.33 79.21 54.27 73.40 68.62

ReCalKV 6.30 38.12 10.73 44.40 81.06 80.20 80.05 54.86 73.56 69.02

60% Palu 7.07 49.45 12.93 42.80 75.30 77.26 74.07 50.00 70.72 65.03

ReCalKV 6.81 47.27 11.98 44.00 77.88 79.27 77.78 52.22 72.30 67.24

70% Palu 8.71 77.51 16.78 38.60 66.48 75.24 66.96 42.49 66.54 59.39

ReCalKV 8.08 70.96 14.98 39.00 71.08 76.82 72.14 46.25 67.72 62.17
LongChat-7B-v1.5-32k (Li et al., 2023)

0% Original 7.61 89.04 10.52 41.40 71.28 76.12 71.84 41.38 68.19 61.70

50% Palu 8.11 120.11 12.08 38.20 68.30 72.52 67.93 38.40 64.96 58.39

ReCalKV 7.89 95.51 11.48 41.80 69.66 73.78 69.61 38.91 65.59 59.89

60% Palu 9.15 168.94 14.42 37.80 64.76 69.70 60.14 34.64 61.09 54.68

ReCalKV 8.14 108.52 12.12 40.00 67.63 71.98 66.92 37.03 63.77 57.89

70% Palu 11.95 172.23 20.87 32.20 54.94 64.74 50.00 28.67 55.56 47.69

ReCalKV 9.01 109.38 13.63 35.20 63.18 68.55 58.84 33.53 59.12 53.07

Palu rises sharply to 211.33 on LLaMA-7B and 172.23 on LongChat-7B, while ReCalKV keeps it
much lower at 71.47 and 109.38, respectively. These results demonstrate that ReCalKV maintains
strong language modeling ability under high compression. Even at 70% compression, perplexity
remains moderate, suggesting better information retention than low-rank baselines.

Zero-shot Accuracy Results. In addition to perplexity, we evaluate ReCalKV on six zero-shot QA
datasets, including OBQA (Mihaylov et al., 2018), HellaSwag (Zellers et al., 2019a), PIQA (Bisk
et al., 2020), ARC-e (Clark et al., 2018a), ARC-c (Clark et al., 2018a), and Winogrande (Sakaguchi
et al., 2020). Across all model families and compression levels, ReCalKV demonstrates strong
resilience in accuracy. While both methods see a decline in performance as the compression ratio
increases, Palu (Chang et al., 2024) exhibits a significantly steeper drop. For instance, at 70%
compression on LLaMA-2-7B (Touvron et al., 2023b), Palu’s average accuracy drops to 52.14%,
whereas ReCalKV retains 59.90%. Similar robustness is observed on Mistral-7B (Jiang et al., 2023)
and LongChat-7B (Li et al., 2023), where ReCalKV consistently delivers higher or comparable
average accuracy under the same compression levels. These results highlight ReCalKV’s strong
capability to preserve task performance even under aggressive KV cache size reductions. Moreover,
its stability across diverse tasks highlights its practicality for efficient long-context inference.

Longbench Result. We further evaluate ReCalKV on LongBench (Bai et al., 2023), a benchmark
designed to test long-context understanding across diverse tasks. As shown in Table 2, ReCalKV
achieves higher average accuracy than Palu (Chang et al., 2024) across nearly all model scales

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Table 2: Evaluation results on LongBench (Bai et al., 2023), covering accuracy across 8 tasks and
the overall average, comparing ReCalKV and Palu (Chang et al., 2024) under 50%–70% KV cache
compression ratios.

RATIO METHOD Qasper QMSum MultiNews TREC TriviaQA SAMSum LCC RepoBench-P Average↑
LLaMA-2-7B (Touvron et al., 2023b)

0% Original 9.58 21.22 3.51 66.00 87.72 41.66 66.68 59.80 44.52

50% Palu 8.40 18.93 1.31 61.50 84.56 38.40 50.90 46.80 38.85

ReCalKV 8.39 18.89 1.37 58.50 84.75 39.41 58.29 54.61 40.53

60% Palu 5.10 16.51 2.13 55.50 59.84 33.13 29.62 33.56 29.42

ReCalKV 6.62 17.96 0.17 58.00 80.41 38.13 49.05 44.43 36.85

70% Palu 4.54 9.99 1.40 39.00 16.98 19.18 1.75 7.52 13.26

ReCalKV 3.28 15.41 0.12 53.00 66.24 32.61 34.11 32.15 29.62
LLaMA-2-13B-Chat (Touvron et al., 2023b)

0% Original 24.21 20.38 25.70 67.50 86.90 42.19 50.06 50.55 45.94

50% Palu 24.65 21.03 24.21 67.00 83.75 40.73 37.81 38.35 42.19

ReCalKV 19.30 20.47 24.32 68.00 83.82 40.96 29.72 36.41 40.38

60% Palu 17.65 20.27 21.76 65.00 79.25 36.49 34.04 29.91 38.05

ReCalKV 17.16 20.12 24.30 65.00 80.77 39.22 39.33 37.46 40.42

70% Palu 17.99 19.10 17.11 59.5 62.44 29.45 8.73 18.09 29.05

ReCalKV 16.47 20.22 22.18 62.50 76.87 35.50 30.79 26.51 36.38
Mistral-7B-Instruct-v0.2 (Jiang et al., 2023)

0% Original 32.51 24.29 26.96 71.00 86.23 42.95 55.89 54.12 49.24

50% Palu 31.16 23.76 25.82 69.50 83.12 39.15 42.01 45.18 44.96

ReCalKV 31.71 23.35 26.43 70.00 82.51 39.22 46.12 45.21 45.57

60% Palu 21.21 23.73 24.75 68.00 76.59 36.14 26.24 30.48 38.39

ReCalKV 24.98 24.26 25.32 71.00 75.53 37.42 34.28 36.79 41.19

70% Palu 6.59 21.35 17.84 61.00 44.73 28.06 15.05 21.87 27.06

ReCalKV 9.13 23.01 20.85 65.00 51.44 31.37 15.13 22.66 29.82
LongChat-7B-v1.5-32k (Li et al., 2023)

0% Original 29.32 22.81 26.61 66.50 83.99 40.83 53.02 56.94 47.50

50% Palu 21.77 21.93 23.65 64.00 76.68 39.46 38.49 43.57 41.19

ReCalKV 25.15 22.08 23.38 63.00 79.75 40.72 50.54 50.52 44.39

60% Palu 13.12 21.97 19.07 55.50 66.14 34.68 42.01 16.55 33.63

ReCalKV 20.99 21.13 22.68 59.00 76.12 38.78 40.45 40.91 40.01

70% Palu 6.27 19.05 14.47 37.50 36.75 21.95 2.09 5.45 17.94

ReCalKV 17.50 20.70 18.94 44.00 67.29 33.86 10.48 15.23 28.50

and compression ratios. The gap becomes especially pronounced at high compression levels (e.g.,
70%), where Palu suffers significant degradation while ReCalKV maintains competitive performance
across all benchmarks. This underscores ReCalKV’s robustness under memory constraints, enabling
accurate and reliable long-context inference even at aggressive compression levels.

4.3 ABLATION STUDY

To analyze the individual contributions of each component in ReCalKV, we conduct ablation studies
on LLaMA-2-7B (Touvron et al., 2023b) under a fixed 80% compression ratio. Table 3 reports
perplexity on WikiText-2 (Merity et al., 2017), PTB (Plotz & Roth, 2017), and C4 (Raffel et al.,
2020a), as well as accuracy on two downstream evaluation suites: the average accuracy over six
zero-shot QA datasets (zero-shot Avg. Acc) and the average accuracy across eight tasks from the
LongBench benchmark (Bai et al., 2023) (LongBench Avg. Acc).

Ablation on Head-wise Similarity-aware Reordering (HSR). By comparing the first and second
rows in Table 3, we observe that enabling HSR alone (without offline calibration) significantly
improves performance. For example, perplexity on WikiText-2 drops from 9.34 to 9.01, and Long-
Bench accuracy increases from 9.01% to 12.44%. These results suggest that the reordering strategy
in HSR effectively groups similar attention heads together before applying SVD, which reduces
approximation error during low-rank decomposition and leads to improved model performance.

Ablation on Offline Value Calibration (OVC). Comparing the first and third rows, we assess the
effect of offline calibration alone. Perplexity on WikiText-2 improves from 9.34 to 8.91, while
LongBench accuracy rises to 13.09%. This confirms that calibrating the SVD decomposition
of the Value projection matrix using a small held-out dataset effectively improves the quality of
approximation, thereby enhancing model performance and robustness across tasks.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Table 3: Ablation studies on LLaMA-2-7B are conducted at a fixed 80% compression ratio. Perplexity
is reported on WikiText-2, PTB, and C4, with our results in bold.

HSR OVC WikiText2↓ PTB↓ C4↓ zero-shot Avg. Acc↑ LongBench Avg. Acc↑
✗ ✗ 9.34 92.52 14.58 49.01 9.01
✓ ✗ 9.01 87.58 14.16 52.33 12.44
✗ ✓ 8.91 81.96 14.08 52.98 13.09
✓ ✓ 8.48 79.04 13.29 54.55 15.40

4.4 INTEGRATE WITH KV CACHE QUANTIZATION

Table 4: ReCalKV with KV cache quantization.
RATIO METHOD BIT WikiText-2↓ C4↓

0% Original 16 5.47 7.26

50%

Palu 4 6.04 8.75
Palu 3 6.15 8.92

ReCalKV 4 5.86 8.18
ReCalKV 3 5.96 8.34

60%

Palu 4 6.84 10.77
Palu 3 7.01 11.06

ReCalKV 4 6.24 9.01
ReCalKV 3 6.39 9.21

70%

Palu 4 8.71 15.17
Palu 3 9.04 15.75

ReCalKV 4 6.79 10.11
ReCalKV 3 7.01 10.41

To evaluate the compatibility of ReCalKV with
quantization, we combine it with 4-bit and 3-bit
per-token quantization under varying average
ranks to simulate different compression ratios.
We also apply a randomized Hadamard trans-
form before quantization, following Palu (Chang
et al., 2024), to improve robustness. As shown
in Table 4, ReCalKV consistently outperforms
Palu under the same bitwidth and compres-
sion settings. For instance, at 60% compres-
sion with 4-bit quantization, ReCalKV achieves
6.24 perplexity on WikiText2 (vs. 6.84 for
Palu); at 70% with 3-bit, it reduces C4 perplex-
ity from 15.75 to 10.41. These results high-
light the synergy between ReCalKV and quan-
tization for efficient KV cache compression.

4.5 INFERENCE EFFICIENCY

50% 60% 70%
KV Cache Compression Ratio

1.0

1.2

1.4

1.6

1.8

Sp
ee

du
p

Prompt Length
4096 tokens
16384 tokens
65536 tokens

Figure 4: Latency speedup of ReCalKV relative to
the baseline under various prompt lengths. Higher
compression leads to greater acceleration, espe-
cially for longer prompts.

To evaluate the practical runtime benefits of Re-
CalKV, we implement a custom fused attention
kernel using Triton that integrates our low-rank
compression for both Key and Value. For the
Key path, we incorporate Head-wise Similarity-
aware Reordering (HSR) as an online permuta-
tion step applied to each token during runtime.
For the Value path, we perform offline matrix
fusion to precompute and store a compact rep-
resentation. The kernel supports rotary position
embedding (RoPE) and is fully compatible with
causal attention. We benchmark the latency of
a single attention module on an NVIDIA A800
GPU across prompt lengths of 4K, 16K, and
65K, averaging over 100 runs per setting. As
shown in Figure 4, ReCalKV achieves increasing latency speedups with higher KV compression
and longer prompts, reaching up to 1.22×, 1.59×, and 1.80× improvements at 4K, 16K, and 65K
respectively, under 70% compression. This trend confirms that our fused attention kernel becomes
more effective as memory cost dominates, especially in long-context scenarios. These results validate
the scalability and deployment efficiency of ReCalKV under strict memory budgets.

5 CONCLUSION

In this work, we propose ReCalKV, a post-training KV cache compression framework tailored for
efficient long-context reasoning in LLMs. By exploiting the distinct characteristics of Keys and
Values in the attention mechanism, ReCalKV applies Head-wise Similarity-aware Reordering (HSR)
and grouped SVD to compress Keys, while employing Offline Value Calibration (OVC) to compress
Values. This design reduces hidden dimensions with minimal additional computation and preserves
model performance under high compression ratios. Experimental results demonstrate that ReCalKV
consistently outperforms existing low-rank compression methods, offering a practical and effective
solution for memory-efficient LLM serving. Moreover, it can be combined with quantization to
achieve higher compression with minimal performance loss. This work offers a promising direction
for scalable and efficient deployment of long-context LLMs.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

ETHICS STATEMENT

The research conducted in the paper conforms, in every respect, with the ICLR Code of Ethics.

REPRODUCIBILITY STATEMENT

We have provided implementation details in Section 4. We will also release all the code and models.

LLM USAGE STATEMENT

Large Language Models (LLMs) were used solely for polishing writing. They did not contribute to
the research content or scientific findings of this work.

REFERENCES

Joshua Ainslie, James Lee-Thorp, Michiel de Jong, Yury Zemlyanskiy, Federico Lebrón, and Sumit
Sanghai. Gqa: Training generalized multi-query transformer models from multi-head checkpoints.
arXiv preprint arXiv:2305.13245, 2023.

Yushi Bai, Xin Lv, Jiajie Zhang, Hongchang Lyu, Jiankai Tang, Zhidian Huang, Zhengxiao Du,
Xiao Liu, Aohan Zeng, Lei Hou, Yuxiao Dong, Jie Tang, and Juanzi Li. Longbench: A bilingual,
multitask benchmark for long context understanding. arXiv preprint arXiv:2308.14508, 2023.

Yonatan Bisk, Rowan Zellers, Jianfeng Gao, Yejin Choi, et al. Piqa: Reasoning about physical
commonsense in natural language. In AAAI, 2020.

Chi-Chih Chang, Wei-Cheng Lin, Chien-Yu Lin, Chong-Yan Chen, Yu-Fang Hu, Pei-Shuo Wang,
Ning-Chi Huang, Luis Ceze, and Kai-Chiang Wu. Palu: Compressing kv-cache with low-rank
projection. arXiv preprint arXiv:2407.21118, 2024.

Chi-Chih Chang, Chien-Yu Lin, Yash Akhauri, Wei-Cheng Lin, Kai-Chiang Wu, Luis Ceze, and
Mohamed S Abdelfattah. xkv: Cross-layer svd for kv-cache compression. arXiv preprint
arXiv:2503.18893, 2025.

Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot, Ashish Sabharwal, Carissa Schoenick, and
Oyvind Tafjord. Think you have solved question answering? try arc, the ai2 reasoning challenge.
arXiv:1803.05457v1, 2018a.

Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot, Ashish Sabharwal, Carissa Schoenick, and
Oyvind Tafjord. Think you have solved question answering? try arc, the ai2 reasoning challenge.
arXiv preprint arXiv:1803.05457, 2018b.

Harry Dong, Xinyu Yang, Zhenyu Zhang, Zhangyang Wang, Yuejie Chi, and Beidi Chen. Get more
with less: Synthesizing recurrence with kv cache compression for efficient llm inference. arXiv
preprint arXiv:2402.09398, 2024.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha
Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The llama 3 herd of models.
arXiv preprint arXiv:2407.21783, 2024.

Yu Fu, Zefan Cai, Abedelkadir Asi, Wayne Xiong, Yue Dong, and Wen Xiao. Not all heads matter:
A head-level kv cache compression method with integrated retrieval and reasoning. arXiv preprint
arXiv:2410.19258, 2024.

Gene H Golub, Alan Hoffman, and Gilbert W Stewart. A generalization of the eckart-young-mirsky
matrix approximation theorem. Linear Algebra and its applications, 1987.

Coleman Hooper, Sehoon Kim, Hiva Mohammadzadeh, Michael W Mahoney, Yakun Sophia Shao,
Kurt Keutzer, and Amir Gholami. Kvquant: Towards 10 million context length llm inference with
kv cache quantization. arXiv preprint arXiv:2401.18079, 2024.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Yen-Chang Hsu, Ting Hua, Sungen Chang, Qian Lou, Yilin Shen, and Hongxia Jin. Language model
compression with weighted low-rank factorization. In ICLR, 2022.

Albert Q. Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, Devendra Singh Chaplot,
Diego de las Casas, Florian Bressand, Gianna Lengyel, Guillaume Lample, Lucile Saulnier,
Lélio Renard Lavaud, Marie-Anne Lachaux, Pierre Stock, Teven Le Scao, Thibaut Lavril, Thomas
Wang, Timothée Lacroix, and William El Sayed. Mistral 7b. arXiv:2310.06825, 2023.

Simon Kornblith, Mohammad Norouzi, Honglak Lee, and Geoffrey Hinton. Similarity of neural
network representations revisited. In NeurIPS, 2019.

Dacheng Li, Rulin Shao, Anze Xie, Ying Sheng, Lianmin Zheng, Joseph Gonzalez, Ion Stoica,
Xuezhe Ma, and Hao Zhang. How long can context length of open-source llms truly promise? In
NeurIPS Workshop, 2023.

Yuhong Li, Yingbing Huang, Bowen Yang, Bharat Venkitesh, Acyr Locatelli, Hanchen Ye, Tianle Cai,
Patrick Lewis, and Deming Chen. Snapkv: Llm knows what you are looking for before generation.
In NeurIPS, 2024.

Zhiteng Li, Mingyuan Xia, Jingyuan Zhang, Zheng Hui, Linghe Kong, Yulun Zhang, and Xiaokang
Yang. Adasvd: Adaptive singular value decomposition for large language models. arXiv preprint
arXiv:2502.01403, 2025.

Bokai Lin, Zihao Zeng, Zipeng Xiao, Siqi Kou, Tianqi Hou, Xiaofeng Gao, Hao Zhang, and Zhijie
Deng. Matryoshkakv: Adaptive kv compression via trainable orthogonal projection. arXiv preprint
arXiv:2410.14731, 2024.

Aixin Liu, Bei Feng, Bin Wang, Bingxuan Wang, Bo Liu, Chenggang Zhao, Chengqi Dengr, Chong
Ruan, Damai Dai, Daya Guo, et al. Deepseek-v2: A strong, economical, and efficient mixture-of-
experts language model. arXiv preprint arXiv:2405.04434, 2024a.

Akide Liu, Jing Liu, Zizheng Pan, Yefei He, Reza Haffari, and Bohan Zhuang. Minicache: Kv cache
compression in depth dimension for large language models. In NeurIPS, 2024b.

Zirui Liu, Jiayi Yuan, Hongye Jin, Shaochen Zhong, Zhaozhuo Xu, Vladimir Braverman, Beidi
Chen, and Xia Hu. Kivi: A tuning-free asymmetric 2bit quantization for kv cache. arXiv preprint
arXiv:2402.02750, 2024c.

Stephen Merity, Caiming Xiong, James Bradbury, and Richard Socher. Pointer sentinel mixture
models. In ICLR, 2017.

Todor Mihaylov, Peter Clark, Tushar Khot, and Ashish Sabharwal. Can a suit of armor conduct
electricity? a new dataset for open book question answering. arXiv preprint arXiv:1809.02789,
2018.

Matan Ben Noach and Yoav Goldberg. Compressing pre-trained language models by matrix decom-
position. In AACL/IJCNLP, 2020.

A Paszke, S Gross, F Massa, A Lerer, JP Bradbury, G Chanan, T Killeen, Z Lin, N Gimelshein,
L Antiga, et al. An imperative style, high-performance deep learning library. In NeurIPS, 2019a.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An imperative style,
high-performance deep learning library. In NeurIPS, 2019b.

Tobias Plotz and Stefan Roth. Benchmarking denoising algorithms with real photographs. In CVPR,
2017.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi
Zhou, Wei Li, and Peter J Liu. Exploring the limits of transfer learning with a unified text-to-text
transformer. JMLR, 2020a.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi
Zhou, Wei Li, and Peter J Liu. Exploring the limits of transfer learning with a unified text-to-text
transformer. JMLR, 2020b.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Keisuke Sakaguchi, Ronan Le Bras, Chandra Bhagavatula, and Yejin Choi. Winogrande: An
adversarial winograd schema challenge at scale. In AAAI, 2020.

Utkarsh Saxena, Gobinda Saha, Sakshi Choudhary, and Kaushik Roy. Eigen attention: Attention in
low-rank space for kv cache compression. arXiv preprint arXiv:2408.05646, 2024.

Noam Shazeer. Fast transformer decoding: One write-head is all you need. arXiv preprint
arXiv:1911.02150, 2019.

Jianlin Su, Murtadha Ahmed, Yu Lu, Shengfeng Pan, Wen Bo, and Yunfeng Liu. Roformer: Enhanced
transformer with rotary position embedding. Neurocomputing, 568:127063, 2024.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, et al. Llama: Open and
efficient foundation language models. arXiv preprint arXiv:2302.13971, 2023a.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, and Others. Llama 2: Open foundation and fine-
tuned chat models. arXiv preprint arXiv:2307.09288, 2023b.

A Vaswani. Attention is all you need. In NeurIPS, 2017.

Xin Wang, Yu Zheng, Zhongwei Wan, and Mi Zhang. Svd-llm: Truncation-aware singular value
decomposition for large language model compression. arXiv preprint arXiv:2403.07378, 2024.

Guangxuan Xiao, Yuandong Tian, Beidi Chen, Song Han, and Mike Lewis. Efficient streaming
language models with attention sinks. In ICLR, 2023.

Zhihang Yuan, Yuzhang Shang, Yue Song, Qiang Wu, Yan Yan, and Guangyu Sun. Asvd: Activation-
aware singular value decomposition for compressing large language models. arXiv preprint
arXiv:2312.05821, 2023.

Yuxuan Yue, Zhihang Yuan, Haojie Duanmu, Sifan Zhou, Jianlong Wu, and Liqiang Nie. Wkvquant:
Quantizing weight and key/value cache for large language models gains more. arXiv preprint
arXiv:2402.12065, 2024.

Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali Farhadi, and Yejin Choi. Hellaswag: Can a machine
really finish your sentence? arXiv preprint arXiv:1905.07830, 2019a.

Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali Farhadi, and Yejin Choi. Hellaswag: Can a machine
really finish your sentence? In ACL, 2019b.

Rongzhi Zhang, Kuang Wang, Liyuan Liu, Shuohang Wang, Hao Cheng, Chao Zhang, and Yelong
Shen. Lorc: Low-rank compression for llms kv cache with a progressive compression strategy.
arXiv preprint arXiv:2410.03111, 2024.

Zhenyu Zhang, Ying Sheng, Tianyi Zhou, Tianlong Chen, Lianmin Zheng, Ruisi Cai, Zhao Song,
Yuandong Tian, Christopher Ré, Clark Barrett, et al. H2o: Heavy-hitter oracle for efficient
generative inference of large language models. In NeurIPS, 2023.

Yilong Zhao, Chien-Yu Lin, Kan Zhu, Zihao Ye, Lequn Chen, Size Zhenga, Luis Ceze, Arvind
Krishnamurthy, Tianqi Chen, and Baris Kasikci. Atom: Low-bit quantization for efficient and
accurate llm serving. arXiv preprint arXiv:2310.19102, 2023.

12

	Introduction
	Related work
	Methodology
	Preliminary
	Head-wise Similarity-aware Reordering
	Offline Value Calibration
	ReCalKV Workflow

	Experiments
	Experimental Settings
	Main Results
	Ablation study
	Integrate with KV Cache Quantization
	Inference Efficiency

	Conclusion

