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ABSTRACT

Large language models (LLMs) have demonstrated remarkable performance, but
their long-context reasoning remains constrained by the excessive memory required
for the Key-Value (KV) cache. This makes KV cache compression a critical step
toward efficient long-context inference. Recent methods have explored low-rank
techniques to reduce the hidden size of the KV cache. However, they neglect
the distinct roles and varying importance of Keys and Values, leading to signif-
icant performance drops under high compression. To address this, we propose
ReCalKV, a post-training low-rank KV cache compression approach with tailored
strategies for Keys and Values. For Keys, we propose Head-wise Similarity–aware
Reordering (HSR), which clusters structurally similar heads into groups, enabling
more accurate low-rank approximation via grouped SVD. For Values, we propose
Offline Value Calibration (OVC), which efficiently calibrates the value projection
matrix using calibration data without training, ensuring an accurate representation
of contextual information. Extensive experiments show that ReCalKV consistently
outperforms existing low-rank compression methods, achieving high compression
ratios with minimal performance loss. We will release all the code and models.

1 INTRODUCTION

Large language models (LLMs) (Vaswani, 2017; Touvron et al., 2023a; Dubey et al., 2024) have
demonstrated outstanding performance across a wide range of tasks. To accelerate inference, modern
LLMs cache intermediate Key-Value (KV) states, avoiding redundant computation during autoregres-
sive decoding. However, as the input context length increases, the KV cache grows rapidly, leading to
substantial memory overhead and bandwidth pressure. In practice, the KV cache often becomes the
primary bottleneck for long-context inference. Consequently, compressing the KV cache becomes
essential for enabling efficient and scalable deployment of LLMs across real-world applications.

To reduce the size of the KV cache, recent works explore compression along multiple axes. Multi-
query attention (Shazeer, 2019) and grouped-query attention (Ainslie et al., 2023) reduce the number
of heads by sharing keys and values. Quantization methods (Zhao et al., 2023) lower KV cache’s
precision, with some (Liu et al., 2024c; Hooper et al., 2024) pushing KV representations down to
2 bits. Others (Zhang et al., 2023; Li et al., 2024; Xiao et al., 2023; Dong et al., 2024) reduce the
number of cached tokens by selecting only important ones, often based on attention scores. A few
methods (Chang et al., 2025; Liu et al., 2024b) further compress across layers by reusing KV states.
These methods reveal the multi-dimensional structure of KV cache compression.

Another line of work (Chang et al., 2024; Liu et al., 2024a; Lin et al., 2024) explores KV cache
compression from a different angle—by reducing the dimensionality of the hidden vector space of
Keys and Values themselves. For example, MLA (Liu et al., 2024a) reduces memory via low-rank
representations but requires training the model from scratch. Other approaches, such as EigenAtten-
tion (Saxena et al., 2024) and MastryohakaKV (Lin et al., 2024), compress KV entries via projection
into lower-dimensional subspaces. Although effective, their projection and reconstruction introduce
extra decoding overhead, limiting applicability in latency-sensitive scenarios. Palu (Chang et al.,
2024) and LoRC (Zhang et al., 2024) address this issue by directly applying Singular Value Decom-
position (SVD) to the KV projection layers, effectively compressing the hidden dimensions of the
KV cache. This approach substantially reduces the overhead of runtime projection and reconstruction.
However, both methods overlook the inherent asymmetry between Keys and Values in the attention
mechanism, and their performance degrades notably under high KV cache compression ratios.
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To better explore KV cache compression along the hidden dimension, we conduct detailed analyses
of the roles of Keys and Values in the attention mechanism. Our analyses reveal that: (i) Most modern
LLMs (Touvron et al., 2023a;b; Dubey et al., 2024) use positional encoding, typically RoPE (Su et al.,
2024), which is applied to Keys. As a result, low-rank compressed Keys must be fully reconstructed
during inference to enable positional encoding, which introduces additional computational overhead.
This makes it essential to consider both accuracy and computational cost when compressing Key
cache. (ii) We measure the Fisher information of the Key and Value projection layers. Our Fisher
information analysis reveals that the Value projection matrices carry significantly higher importance
than their Key counterparts, highlighting the crucial role of Value representations in the overall model
behavior. Therefore, minimizing accuracy degradation is critical when compressing the Value cache.

Based on our analyses, we develop distinct compression strategies for Keys and Values based on their
different roles and varying importance in the attention mechanism. For Keys, we propose Head-wise
Similarity–aware Reordering (HSR). It first reorders attention heads based on their representation
similarity, then groups similar heads together, and applies grouped SVD within each group. This
reduces the Key cache size with low reconstruction overhead. Grouping similar heads helps the SVD
better capture shared subspace structures, lowering approximation error and preserving accuracy. For
Values, we propose Offline Calibration Value (OVC). We first apply SVD to the Value projection
matrix and then calibrate the decomposed components with a small calibration dataset to preserve
Value accuracy. We also fuse the right factor of the SVD decomposition into the subsequent output
projection matrix, removing the need for explicit reconstruction during inference.

Extensive experiments demonstrate that ReCalKV consistently achieves SOTA performance across
multiple LLM families, clearly surpassing existing low-rank compression methods under various
evaluation settings. For example, on the LLaMA-2-7B model (Touvron et al., 2023b) evaluated on
six zero-shot QA datasets, ReCalKV achieves an average accuracy of 63.64% under a 50% KV cache
compression ratio, compared to 64.99% for the full-precision model—corresponding to only a 2%
relative drop. Notably, since ReCalKV is orthogonal to quantization techniques, it can be seamlessly
integrated with them to achieve even higher overall compression ratios.

Our key contributions can be summarized as follows:

• We propose ReCalKV, a novel post-training KV cache compression framework that reduces
memory overhead in long-context inference without requiring model retraining.

• We propose the Head-wise Similarity–aware Reordering (HSR) strategy for Key compres-
sion, which effectively reduces the Key cache size with limited reconstruction overhead.

• We propose an Offline Value Calibration (OVC) strategy for compressing the Value cache,
preserving accuracy without introducing additional inference overhead.

• Extensive experiments demonstrate that ReCalKV consistently outperforms prior low-
rank compression approaches. Furthermore, ReCalKV can be seamlessly combined with
quantization techniques to achieve even higher compression ratios.

2 RELATED WORK

SVD-Based LLM Compression. Singular Value Decomposition (SVD) has been widely adopted
for compressing LLMs by approximating weight matrices with low-rank factors. However, standard
SVD (Noach & Goldberg, 2020) has been observed to cause notable performance degradation in
practice. To address this, FWSVD (Hsu et al., 2022) incorporates Fisher information to guide
decomposition, while ASVD (Yuan et al., 2023) rescales weights to mitigate the impact of activation
outliers. SVD-LLM (Wang et al., 2024) establishes a direct connection between singular values
and compression loss, employing data whitening and selective truncation to minimize degradation.
AdaSVD (Li et al., 2025) further improves compression by introducing adaptive rank allocation and
compensation mechanisms. Unlike prior methods that target model weights, we apply SVD to the
key and value projections to compress the KV cache directly.

KV Cache Compression. To support long-context inference, various methods have been proposed
to compress the KV cache. Quantization-based approaches are widely adopted: Atom (Zhao et al.,
2023) performs per-token quantization, while WKVQuant (Yue et al., 2024) uses a two-level scheme
for better accuracy. KIVILiu et al. (2024c) and KVQuant (Hooper et al., 2024) combine per-token
and per-channel quantization, with KVQuant further leveraging non-uniform and sparse techniques

2
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Figure 1: Overview of the ReCalKV framework. The method consists of three key components:
Head-wise Similarity-aware Reordering (HSR) for compressing Keys via grouped SVD, and Offline
Value Calibration (OVC) for compressing Values without additional runtime overhead.

to handle outliers. In parallel, token eviction methods (Zhang et al., 2023; Li et al., 2024; Xiao et al.,
2023; Dong et al., 2024) reduce memory by discarding less relevant tokens or retrieving only subsets
during decoding. Beyond these strategies, several methods aim to reduce the hidden dimension of
KV representations. DeepSeek V2 (Liu et al., 2024a) uses MLA for built-in dimension reduction,
but requires training from scratch. MatryoshkaKV (Lin et al., 2024) and Eigen-Attention (Saxena
et al., 2024) project the KV cache into a low-rank space via additional projection matrices, at the cost
of increased computation. HeadKV (Fu et al., 2024) uses SVD to reduce the number of KV heads,
leading to improved efficiency. LoRC (Zhang et al., 2024) and Palu (Chang et al., 2024) directly apply
SVD to the KV projection matrices, reducing dimensionality with minimal architectural changes.
Our method is a post-training low-rank KV compression approach and is orthogonal to quantization
and token eviction, enabling easy integration for further compression gains.

3 METHODOLOGY

3.1 PRELIMINARY

Singular Value Decomposition. Singular Value Decomposition (Golub et al., 1987) is a classical
matrix factorization technique widely used for low-rank approximation. Given a matrix W ∈ Rm×n,
SVD factorizes it into three components: W = UΣV⊤, where U ∈ Rm×m and V ∈ Rn×n are
orthogonal matrices containing the left and right singular vectors, and Σ ∈ Rm×n is a diagonal
matrix with non-negative singular values. To obtain a low-rank approximation of a weight matrix
W ∈ Rm×n, we apply SVD and retain only the top r singular values and their associated singular
vectors. This results in an approximate factorization:

W ≈ LR, where L = UrΣ
1/2
r , R = Σ1/2

r V⊤
r . (1)

Here, Ur ∈ Rm×r and Vr ∈ Rn×r are the top-r singular vectors of W, and Σr ∈ Rr×r contains
the corresponding singular values. This yields two smaller matrices, L and R, from the low-rank
decomposition of W. Given an input x ∈ R1×m, we compute the intermediate representation
z = xL and store z ∈ R1×r in the KV cache instead of the full output. During attention, the output
is approximated by reconstructing xW ≈ zR. This approach reduces the KV cache size with a
compression ratio of r/n, while maintaining a close approximation of the original computation.

Centered Kernel Alignment Similarity. Centered Kernel Alignment (CKA) (Kornblith et al., 2019)
is a widely used metric for quantifying the similarity between two sets of representations. Given
two matrices X ∈ Rn×d1 and Y ∈ Rn×d2 , CKA is computed by first forming their Gram (kernel)
matrices GX = XX⊤ and GY = YY⊤. These kernel matrices are then centered as follows:

G̃X = HGXH, G̃Y = HGYH, (2)
where H = In − 1

n1n1
⊤
n is the centering matrix. The final CKA similarity is defined as:

CKA(X,Y) =
HSIC(X,Y)√

HSIC(X,X) · HSIC(Y,Y)
, (3)

where HSIC(X,Y) = Tr(G̃XG̃Y) denotes the Hilbert-Schmidt Independence Criterion (HSIC).
CKA ranges from 0 to 1, with higher values indicating greater similarity between the two matrices.
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3.2 HEAD-WISE SIMILARITY-AWARE REORDERING
CKA Similarity

Head Index

H
ea

d 
In

de
x

CKA Similarity

Head Index

H
ea

d 
In

de
x

Reorder

Figure 2: CKA similarity matrices before and after
head reordering.

Group-head Low-rank Decomposition. Fol-
lowing the grouped decomposition strategy pro-
posed in Palu (Chang et al., 2024), we organize
multiple attention heads into groups prior to per-
forming SVD. Given a Key projection matrix
W ∈ Rm×n, where n = h · dh corresponds
to h attention heads each of hidden dimension
dh, we divide W column-wise into h subma-
trices, each representing a single head. Then
we group every s heads into one group, result-
ing in g = h/s groups in total. For each group j, we construct a concatenated projection matrix
Wgj =

[
Wj,1, . . . ,Wj,s

]
, where each Wj,k ∈ Rm×dh is the projection matrix of the k-th head in

group j, and thus Wgj ∈ Rm×(s·dh). Instead of applying SVD to the entire projection matrix at once,
we apply low-rank approximation to the grouped matrix: Wgj ≈ LgjRgj , where Lgj ∈ Rd×rg and
Rgj ∈ Rrg×(dh·s). During inference, the latent representation shared across all heads in the group is
computed as: zgj = xLgj , and the projected outputs for individual heads are reconstructed via:

[yj,1, . . . ,yj,s] = zgjRgj . (4)
This grouped strategy provides a good trade-off between reconstruction overhead and approximation
fidelity, enabling efficient compression with minimal performance impact.

X W1W2W3W4

X1 X4X3X2

Input Output

X

Muti-Head Key Projection
Key (Cached)

LK2 RK2LK1 RK1

Low-Rank Key (Cached)

K1 K2 X3 X2X4X1

Recovery

X1 X4X3X2WK

Figure 3: Key decoding with HSR. Similar heads
are reordered and grouped before SVD, enabling
more accurate reconstruction.

CKA-based Head Similarity. A key question
in grouped SVD is how to assign attention heads
into groups so as to minimize the reconstruc-
tion error. Empirically, we observe that group-
ing heads with similar left singular subspaces
results in lower approximation error, as these
heads tend to share more common representa-
tional components and thus benefit from joint
compression. To quantify head similarity, we
adopt centered kernel alignment (CKA) (Ko-
rnblith et al., 2019), a robust and widely used
metric for comparing representation subspaces. We compute the pairwise CKA similarity between all
attention heads, yielding a symmetric similarity matrix S ∈ Rh×h, where h is the number of heads:

Si,j = CKA(Hi,Hj), ∀i, j ∈ 1, . . . , h. (5)
Head Reordering. Based on the similarity matrix S, we perform head grouping by prioritizing
pairs with high mutual similarity. Specifically, we adopt a greedy strategy that iteratively selects the
head pair with the highest CKA similarity and assigns them to the same group, subject to a fixed
group size constraint (e.g., 4 heads per group when h = 32). Remaining unassigned heads are then
added to existing groups with available capacity, ensuring that all heads are eventually grouped.
This head reordering process encourages heads with similar representational structure to share SVD
decompositions, effectively reducing approximation error during grouped compression. As shown
in Figure 2, we visualize the CKA similarity matrices before and after head reordering. It can be
observed that, after reordering, heads assigned to adjacent positions exhibit higher mutual similarity,
indicating that similar heads are more effectively grouped together. By aligning structurally coherent
heads within each group, we improve both the compactness and accuracy of the resulting low-rank
representation. To ensure decoding equivalence, we apply an inverse reordering to restore the original
head order (see Figure 3); related theoretical analysis is given in the supplementary file.
3.3 OFFLINE VALUE CALIBRATION

Offline Calibration. For Value cache compression, we directly perform SVD on the full Value
projection matrix Wv ∈ Rm×n, resulting in the decomposed matrices: Wv ≈ LvRv, where Lv ∈
Rm×r and Rv ∈ Rr×n represent the compressed components of the original Value projection matrix
Wv ∈ Rm×n. We then define the approximation error E introduced by the SVD decomposition as:

E = ||LvRvX−WvX||2F , (6)
where X denotes the calibration dataset. Based on our analysis of Fisher Information, we observe
that the Value projection matrix exhibits significantly higher Fisher Information compared to the
Key projection matrix. This indicates that the Value projection matrix plays a more critical role in
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model performance. Therefore, we aim to minimize the approximation error E introduced during
the compression of the Value projection to preserve model accuracy as much as possible. Inspired
by Li et al. (2025), we observe that standard SVD decomposition does not always yield the lowest
approximation error. To this end, we perform offline calibration of the decomposed matrices Lv

and Rv using a small calibration dataset X, aiming to further reduce the compression-induced
approximation error. We first calibrate Lv by setting the derivative of the approximation error E with
respect to Lv to zero:

∂E
∂Lv

= 0 ⇒ Lv = WXX⊤R⊤
v (RvXX⊤Rv)

−1. (7)

Next, to improve the fidelity of the low-rank approximation, we calibrate the right factor Rv by
minimizing the approximation error. Specifically, we compute the gradient of the approximation error
E with respect to Rv and set it to zero, allowing us to solve for a more accurate Rv in closed form:

∂E
∂Rv

= 0 ⇒ Rv = ((Lv)
⊤Lv)

−1(Lv)
⊤W. (8)

This yields an optimal closed-form solution for Rv . Together, the calibrated Lv and Rv form a refined
low-rank approximation of the original Value projection matrix, effectively reducing compression-
induced error without incurring any additional inference-time computation. The derivation, closed-
form updates for Lv and Rv, implementation details, related theoretical analysis, and the impact of
different calibration datasets and dataset sizes are discussed in the supplementary material.

Algorithm 1 Pseudocode of ReCalKV

1: Inputs: ModelM, Calibration Data X , Target Compression Ratio T R
2: Output:M′: Model equipped with compressed KV cache
3: procedure RECALKV(M,X , T R)
4: F ← CALCULATE_FISHER_INFO(M,X )
5: R← ALLOCATE_COMPRESSION_RATIO(M, T R,F)
6: for each Key projection layerWk in modelM do
7: CKA ← CALCULATE_CKA_SIMILARITY(Wk)
8: W ′

k ← HEAD_REORDER(Wk, CKA)
9: Lk[],Rk[]← GROUP_SVD(W ′

k,R[Wk])
10: M′ ←UPDATE_LAYER(Lk[]&Rk[],Wk,M)
11: end for
12: for each Value projection layerWv in modelM do
13: Lv,Rv ← SVD(Wv,R[Wv])
14: L′

v,R
′
v ← OFFLINE_CALIBRATION(Wv,Lv,Rv,X )

15: W̃o ←MATRIX_FUSION(R′
v,Wo)

16: M′ ←UPDATE_LAYER(L′
v,Wv,M)

17: M′ ←UPDATE_LAYER(W ′
o,Wo,M)

18: end for
19: returnM′

20: end procedure

Matrix Fusion. After performing SVD and offline calibration on the Value projection matrix, we
further optimize the inference efficiency by eliminating unnecessary reconstruction steps. Specifically,
instead of computing the full Value cache and then applying the output projection matrix Wo, we
fuse Rv into Wo to avoid runtime reconstruction. We start from the standard attention output:

Output = Attention(Q,K, V )Wo = Attention(XWq, XWk, XWv)Wo. (9)
where X is the input sequence, Wq, Wk, and Wv are the projection matrices for query, key, and
value respectively, and Wo is the output projection matrix. For compressed Value cache, we store
X ′ = XLv as the low-rank representation. With Value compression, the attention output becomes:

Output = Attention(XWq, XWk, XLvRv)Wo. (10)

We then define a fused output projection matrix W̃o = RvWo, and compute the attention output as:

Output = Attention(XWq, XWk, XLv)W̃o. (11)
This design eliminates the need to explicitly reconstruct X ′Rv during inference. By merging the
computation into a single step, matrix fusion reduces both memory usage and computational overhead,
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streamlining the runtime execution path. Moreover, since the fused matrix W̃o can be precomputed
entirely offline, it introduces no additional overhead to online inference, making this approach highly
suitable for latency-sensitive applications and deployment on resource-constrained hardware.

3.4 RECALKV WORKFLOW

The overall pipeline of ReCalKV is outlined in Algorithm 1. Given a pre-trained modelM, calibration
data X , and a target compression ratio R, ReCalKV applies differentiated compression strategies
to Key and Value projection layers. We first compute layer-wise Fisher Information scores using
the calibration data, following the strategy introduced in Palu (Chang et al., 2024), to estimate the
relative importance of each layer and guide compression ratio allocation. Based on this, we allocate
compression ratios to different layers accordingly. For Key projection layers, we first compute head-
wise CKA similarity, then reorder the heads to group the most similar ones together, and finally apply
grouped SVD for compression. For Value projection layers, we apply standard SVD followed by
offline calibration to adjust the low-rank factors. Then we fuse the right factor of the decomposition
with the output projection matrix Wo in the attention block. The modified matrices are then written
back into the model. The final output is a modified modelM′ that generates compressed KV caches.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETTINGS

Models. We evaluate our method on a range of widely adopted LLMs, including multiple generations
of the LLaMA family: LLaMA-7B (Touvron et al., 2023a), LLaMA-2-7B (Touvron et al., 2023b),
and LLaMA-2-13B-Chat (Touvron et al., 2023b). We also include instruction-tuned variants such as
Mistral-7B-Instruct-v0.2 (Jiang et al., 2023) and LongChat-7B-v1.5-32k (Li et al., 2023) to assess
performance under extended context settings. These models cover both base and chat/instruction-
following variants, ensuring a comprehensive evaluation across different architectures and use cases.
Notably, Mistral-7B-Instruct-v0.2 (Jiang et al., 2023) adopt Grouped Query Attention (GQA) (Ainslie
et al., 2023), while the others use standard Multi-Head Attention (MHA) (Vaswani, 2017). Additional
results on the more recent LLaMA-3.1 model are provided in the supplementary file.

Datasets and Evaluation. We assess the effectiveness of our method using both perplexity and
task-specific accuracy. For language modeling evaluation, we report perplexity on WikiText2 (Merity
et al., 2017), Penn Treebank (PTB)(Plotz & Roth, 2017), and a subset of the C4 corpus(Raffel
et al., 2020b). To evaluate reasoning and generalization capabilities, we measure zero-shot accuracy
on six QA benchmarks: ARC-c, ARC-e (Clark et al., 2018b), Hellaswag (Zellers et al., 2019b),
OBQA (Mihaylov et al., 2018), PIQA (Bisk et al., 2020), and Winogrande (Sakaguchi et al., 2020). In
addition, we adopt the LongBench benchmark (Bai et al., 2023) to evaluate long-context performance,
conducting experiments on eight diverse tasks that thoroughly evaluate long-context capability.

Baselines. We compare our method with Palu (Chang et al., 2024), a recent low-rank compression
approach for KV cache. Specifically, we adopt its G-LRD variant for evaluation. For fair comparison,
we adopt the same group-wise decomposition with a fixed group size of 4. Further comparisons with
ASVD (Yuan et al., 2023) and EigenAttention (Saxena et al., 2024) are included in the supplementary.

Implementation Details. All experiments are conducted using PyTorch (Paszke et al., 2019b) and
Huggingface Transformers (Paszke et al., 2019a) on a single NVIDIA A800 GPU with 80GB of
memory. Following the setup in SVD-LLM (Wang et al., 2024), we apply a whitening transformation
before performing SVD truncation. Specifically, we randomly select 256 samples from the WikiText-
2 dataset as calibration data and use them both for whitening in the SVD step and for the offline
calibration process in Value compression.

4.2 MAIN RESULTS

Perplexity Results. We evaluate the language modeling capability of ReCalKV on three stan-
dard datasets—WikiText2 (Merity et al., 2017), PTB (Plotz & Roth, 2017), and C4 (Raffel et al.,
2020a)—using perplexity as the metric. As shown in Table 1, ReCalKV achieves lower perplexity than
Palu (Chang et al., 2024) on most compression ratios and model families. On LLaMA-2-7B (Touvron
et al., 2023b), ReCalKV yields a perplexity of 5.83 on WikiText2 and 8.14 on C4 at 50% compression,
compared to 6.02 and 8.72 from Palu, respectively. Similar trends are observed on LLaMA-7B (Tou-
vron et al., 2023a) and Mistral-7B (Jiang et al., 2023). Notably, on PTB, ReCalKV significantly
outperforms Palu under aggressive compression. For instance, at 70% compression, the perplexity of

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Table 1: Zero-shot performance comparison between ReCalKV and Palu (Chang et al., 2024) under
50% to 70% compression ratios. Evaluation on three language modeling datasets (measured by
perplexity (↓)) and six zero-shot QA datasets (measured by both individual and average accuracy (↑)).

RATIO METHOD Wiki2↓ PTB↓ C4↓ OBQA Hella PIQA ARC-e ARC-c Wino Average↑
LLaMA-7B (Touvron et al., 2023a)

0% Original 5.68 41.15 7.34 44.40 76.18 78.67 75.25 44.80 70.01 64.89

50% Palu 6.27 48.39 8.85 41.6 73.46 76.71 72.35 40.53 68.75 62.23

ReCalKV 6.13 43.99 8.36 42.00 73.59 77.20 72.35 41.72 68.35 62.54

60% Palu 7.08 91.45 10.98 36.80 68.80 73.94 67.63 38.14 63.61 58.15

ReCalKV 6.63 56.49 9.44 39.80 71.51 75.95 71.09 40.10 64.17 60.44

70% Palu 8.42 211.33 14.46 34.60 61.06 71.00 61.53 33.70 59.51 53.57

ReCalKV 7.24 71.47 10.53 38.20 68.73 75.19 67.55 39.08 64.01 58.79
LLaMA-2-7B (Touvron et al., 2023b)

0% Original 5.47 37.91 7.26 44.20 76.01 78.07 76.35 46.25 69.06 64.99

50% Palu 6.02 40.89 8.72 43.80 73.34 76.17 72.98 42.24 67.32 62.64

ReCalKV 5.83 39.51 8.14 45.00 74.39 76.39 74.71 43.52 67.80 63.64

60% Palu 6.81 51.32 10.69 40.00 68.55 74.10 68.99 38.14 63.38 58.85

ReCalKV 6.21 65.73 8.95 41.40 72.36 76.17 72.73 41.13 68.03 61.97

70% Palu 8.62 83.19 15.01 34.20 59.30 68.82 57.87 31.66 61.01 52.14

ReCalKV 6.75 75.78 10.05 39.80 69.59 74.48 70.37 39.42 65.75 59.90
Mistral-7B-Instruct-v0.2 (Jiang et al., 2023)

0% Original 5.94 32.46 9.72 46.80 83.68 80.41 81.31 55.63 74.35 70.36

50% Palu 6.33 37.38 10.79 44.60 80.89 79.33 79.21 54.27 73.40 68.62

ReCalKV 6.30 38.12 10.73 44.40 81.06 80.20 80.05 54.86 73.56 69.02

60% Palu 7.07 49.45 12.93 42.80 75.30 77.26 74.07 50.00 70.72 65.03

ReCalKV 6.81 47.27 11.98 44.00 77.88 79.27 77.78 52.22 72.30 67.24

70% Palu 8.71 77.51 16.78 38.60 66.48 75.24 66.96 42.49 66.54 59.39

ReCalKV 8.08 70.96 14.98 39.00 71.08 76.82 72.14 46.25 67.72 62.17
LongChat-7B-v1.5-32k (Li et al., 2023)

0% Original 7.61 89.04 10.52 41.40 71.28 76.12 71.84 41.38 68.19 61.70

50% Palu 8.11 120.11 12.08 38.20 68.30 72.52 67.93 38.40 64.96 58.39

ReCalKV 7.89 95.51 11.48 41.80 69.66 73.78 69.61 38.91 65.59 59.89

60% Palu 9.15 168.94 14.42 37.80 64.76 69.70 60.14 34.64 61.09 54.68

ReCalKV 8.14 108.52 12.12 40.00 67.63 71.98 66.92 37.03 63.77 57.89

70% Palu 11.95 172.23 20.87 32.20 54.94 64.74 50.00 28.67 55.56 47.69

ReCalKV 9.01 109.38 13.63 35.20 63.18 68.55 58.84 33.53 59.12 53.07

Palu rises sharply to 211.33 on LLaMA-7B and 172.23 on LongChat-7B, while ReCalKV keeps it
much lower at 71.47 and 109.38, respectively. These results demonstrate that ReCalKV maintains
strong language modeling ability under high compression. Even at 70% compression, perplexity
remains moderate, suggesting better information retention than low-rank baselines.

Zero-shot Accuracy Results. In addition to perplexity, we evaluate ReCalKV on six zero-shot QA
datasets, including OBQA (Mihaylov et al., 2018), HellaSwag (Zellers et al., 2019a), PIQA (Bisk
et al., 2020), ARC-e (Clark et al., 2018a), ARC-c (Clark et al., 2018a), and Winogrande (Sakaguchi
et al., 2020). Across all model families and compression levels, ReCalKV demonstrates strong
resilience in accuracy. While both methods see a decline in performance as the compression ratio
increases, Palu (Chang et al., 2024) exhibits a significantly steeper drop. For instance, at 70%
compression on LLaMA-2-7B (Touvron et al., 2023b), Palu’s average accuracy drops to 52.14%,
whereas ReCalKV retains 59.90%. Similar robustness is observed on Mistral-7B (Jiang et al., 2023)
and LongChat-7B (Li et al., 2023), where ReCalKV consistently delivers higher or comparable
average accuracy under the same compression levels. These results highlight ReCalKV’s strong
capability to preserve task performance even under aggressive KV cache size reductions. Moreover,
its stability across diverse tasks highlights its practicality for efficient long-context inference.

Longbench Result. We further evaluate ReCalKV on LongBench (Bai et al., 2023), a benchmark
designed to test long-context understanding across diverse tasks. As shown in Table 2, ReCalKV
achieves higher average accuracy than Palu (Chang et al., 2024) across nearly all model scales
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Table 2: Evaluation results on LongBench (Bai et al., 2023), covering accuracy across 8 tasks and
the overall average, comparing ReCalKV and Palu (Chang et al., 2024) under 50%–70% KV cache
compression ratios.

RATIO METHOD Qasper QMSum MultiNews TREC TriviaQA SAMSum LCC RepoBench-P Average↑
LLaMA-2-7B (Touvron et al., 2023b)

0% Original 9.58 21.22 3.51 66.00 87.72 41.66 66.68 59.80 44.52

50% Palu 8.40 18.93 1.31 61.50 84.56 38.40 50.90 46.80 38.85

ReCalKV 8.39 18.89 1.37 58.50 84.75 39.41 58.29 54.61 40.53

60% Palu 5.10 16.51 2.13 55.50 59.84 33.13 29.62 33.56 29.42

ReCalKV 6.62 17.96 0.17 58.00 80.41 38.13 49.05 44.43 36.85

70% Palu 4.54 9.99 1.40 39.00 16.98 19.18 1.75 7.52 13.26

ReCalKV 3.28 15.41 0.12 53.00 66.24 32.61 34.11 32.15 29.62
LLaMA-2-13B-Chat (Touvron et al., 2023b)

0% Original 24.21 20.38 25.70 67.50 86.90 42.19 50.06 50.55 45.94

50% Palu 24.65 21.03 24.21 67.00 83.75 40.73 37.81 38.35 42.19

ReCalKV 19.30 20.47 24.32 68.00 83.82 40.96 29.72 36.41 40.38

60% Palu 17.65 20.27 21.76 65.00 79.25 36.49 34.04 29.91 38.05

ReCalKV 17.16 20.12 24.30 65.00 80.77 39.22 39.33 37.46 40.42

70% Palu 17.99 19.10 17.11 59.5 62.44 29.45 8.73 18.09 29.05

ReCalKV 16.47 20.22 22.18 62.50 76.87 35.50 30.79 26.51 36.38
Mistral-7B-Instruct-v0.2 (Jiang et al., 2023)

0% Original 32.51 24.29 26.96 71.00 86.23 42.95 55.89 54.12 49.24

50% Palu 31.16 23.76 25.82 69.50 83.12 39.15 42.01 45.18 44.96

ReCalKV 31.71 23.35 26.43 70.00 82.51 39.22 46.12 45.21 45.57

60% Palu 21.21 23.73 24.75 68.00 76.59 36.14 26.24 30.48 38.39

ReCalKV 24.98 24.26 25.32 71.00 75.53 37.42 34.28 36.79 41.19

70% Palu 6.59 21.35 17.84 61.00 44.73 28.06 15.05 21.87 27.06

ReCalKV 9.13 23.01 20.85 65.00 51.44 31.37 15.13 22.66 29.82
LongChat-7B-v1.5-32k (Li et al., 2023)

0% Original 29.32 22.81 26.61 66.50 83.99 40.83 53.02 56.94 47.50

50% Palu 21.77 21.93 23.65 64.00 76.68 39.46 38.49 43.57 41.19

ReCalKV 25.15 22.08 23.38 63.00 79.75 40.72 50.54 50.52 44.39

60% Palu 13.12 21.97 19.07 55.50 66.14 34.68 42.01 16.55 33.63

ReCalKV 20.99 21.13 22.68 59.00 76.12 38.78 40.45 40.91 40.01

70% Palu 6.27 19.05 14.47 37.50 36.75 21.95 2.09 5.45 17.94

ReCalKV 17.50 20.70 18.94 44.00 67.29 33.86 10.48 15.23 28.50

and compression ratios. The gap becomes especially pronounced at high compression levels (e.g.,
70%), where Palu suffers significant degradation while ReCalKV maintains competitive performance
across all benchmarks. This underscores ReCalKV’s robustness under memory constraints, enabling
accurate and reliable long-context inference even at aggressive compression levels.

4.3 ABLATION STUDY

To analyze the individual contributions of each component in ReCalKV, we conduct ablation studies
on LLaMA-2-7B (Touvron et al., 2023b) under a fixed 80% compression ratio. Table 3 reports
perplexity on WikiText-2 (Merity et al., 2017), PTB (Plotz & Roth, 2017), and C4 (Raffel et al.,
2020a), as well as accuracy on two downstream evaluation suites: the average accuracy over six
zero-shot QA datasets (zero-shot Avg. Acc) and the average accuracy across eight tasks from the
LongBench benchmark (Bai et al., 2023) (LongBench Avg. Acc).

Ablation on Head-wise Similarity-aware Reordering (HSR). By comparing the first and second
rows in Table 3, we observe that enabling HSR alone (without offline calibration) significantly
improves performance. For example, perplexity on WikiText-2 drops from 9.34 to 9.01, and Long-
Bench accuracy increases from 9.01% to 12.44%. These results suggest that the reordering strategy
in HSR effectively groups similar attention heads together before applying SVD, which reduces
approximation error during low-rank decomposition and leads to improved model performance.

Ablation on Offline Value Calibration (OVC). Comparing the first and third rows, we assess the
effect of offline calibration alone. Perplexity on WikiText-2 improves from 9.34 to 8.91, while
LongBench accuracy rises to 13.09%. This confirms that calibrating the SVD decomposition
of the Value projection matrix using a small held-out dataset effectively improves the quality of
approximation, thereby enhancing model performance and robustness across tasks.
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Table 3: Ablation studies on LLaMA-2-7B are conducted at a fixed 80% compression ratio. Perplexity
is reported on WikiText-2, PTB, and C4, with our results in bold.

HSR OVC WikiText2↓ PTB↓ C4↓ zero-shot Avg. Acc↑ LongBench Avg. Acc↑
✗ ✗ 9.34 92.52 14.58 49.01 9.01
✓ ✗ 9.01 87.58 14.16 52.33 12.44
✗ ✓ 8.91 81.96 14.08 52.98 13.09
✓ ✓ 8.48 79.04 13.29 54.55 15.40

4.4 INTEGRATE WITH KV CACHE QUANTIZATION

Table 4: ReCalKV with KV cache quantization.
RATIO METHOD BIT WikiText-2↓ C4↓

0% Original 16 5.47 7.26

50%

Palu 4 6.04 8.75
Palu 3 6.15 8.92

ReCalKV 4 5.86 8.18
ReCalKV 3 5.96 8.34

60%

Palu 4 6.84 10.77
Palu 3 7.01 11.06

ReCalKV 4 6.24 9.01
ReCalKV 3 6.39 9.21

70%

Palu 4 8.71 15.17
Palu 3 9.04 15.75

ReCalKV 4 6.79 10.11
ReCalKV 3 7.01 10.41

To evaluate the compatibility of ReCalKV with
quantization, we combine it with 4-bit and 3-bit
per-token quantization under varying average
ranks to simulate different compression ratios.
We also apply a randomized Hadamard trans-
form before quantization, following Palu (Chang
et al., 2024), to improve robustness. As shown
in Table 4, ReCalKV consistently outperforms
Palu under the same bitwidth and compres-
sion settings. For instance, at 60% compres-
sion with 4-bit quantization, ReCalKV achieves
6.24 perplexity on WikiText2 (vs. 6.84 for
Palu); at 70% with 3-bit, it reduces C4 perplex-
ity from 15.75 to 10.41. These results high-
light the synergy between ReCalKV and quan-
tization for efficient KV cache compression.

4.5 INFERENCE EFFICIENCY

50% 60% 70%
KV Cache Compression Ratio

1.0

1.2

1.4

1.6

1.8

Sp
ee

du
p

Prompt Length
4096 tokens
16384 tokens
65536 tokens

Figure 4: Latency speedup of ReCalKV relative to
the baseline under various prompt lengths. Higher
compression leads to greater acceleration, espe-
cially for longer prompts.

To evaluate the practical runtime benefits of Re-
CalKV, we implement a custom fused attention
kernel using Triton that integrates our low-rank
compression for both Key and Value. For the
Key path, we incorporate Head-wise Similarity-
aware Reordering (HSR) as an online permuta-
tion step applied to each token during runtime.
For the Value path, we perform offline matrix
fusion to precompute and store a compact rep-
resentation. The kernel supports rotary position
embedding (RoPE) and is fully compatible with
causal attention. We benchmark the latency of
a single attention module on an NVIDIA A800
GPU across prompt lengths of 4K, 16K, and
65K, averaging over 100 runs per setting. As
shown in Figure 4, ReCalKV achieves increasing latency speedups with higher KV compression
and longer prompts, reaching up to 1.22×, 1.59×, and 1.80× improvements at 4K, 16K, and 65K
respectively, under 70% compression. This trend confirms that our fused attention kernel becomes
more effective as memory cost dominates, especially in long-context scenarios. These results validate
the scalability and deployment efficiency of ReCalKV under strict memory budgets.

5 CONCLUSION

In this work, we propose ReCalKV, a post-training KV cache compression framework tailored for
efficient long-context reasoning in LLMs. By exploiting the distinct characteristics of Keys and
Values in the attention mechanism, ReCalKV applies Head-wise Similarity-aware Reordering (HSR)
and grouped SVD to compress Keys, while employing Offline Value Calibration (OVC) to compress
Values. This design reduces hidden dimensions with minimal additional computation and preserves
model performance under high compression ratios. Experimental results demonstrate that ReCalKV
consistently outperforms existing low-rank compression methods, offering a practical and effective
solution for memory-efficient LLM serving. Moreover, it can be combined with quantization to
achieve higher compression with minimal performance loss. This work offers a promising direction
for scalable and efficient deployment of long-context LLMs.
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