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Abstract

Modern language models demonstrate a remarkable ability to capture lin-1

guistic meaning despite being trained solely through next-token prediction2

(NTP). We investigate how this conceptually simple training objective leads3

models to extract and encode latent semantic and grammatical concepts.4

Our analysis reveals that NTP optimization implicitly guides models to en-5

code concepts via singular value decomposition (SVD) factors of a centered6

data-sparsity matrix that captures next-word co-occurrence patterns. While7

the model never explicitly constructs this matrix, learned word and context8

embeddings effectively factor it to capture linguistic structure. We find that9

the most important SVD factors are learned first during training, motivating10

using spectral clustering of embeddings to identify human-interpretable se-11

mantics, including both classical k-means and a new orthant-based method12

directly motivated by our interpretation of concepts. Overall, our work13

bridges distributional semantics, neural collapse geometry, and neural net-14

work training dynamics, providing insights into how NTP’s implicit biases15

shape the emergence of meaning representations in language models.16

1 Introduction17

Next-token prediction (NTP) is conceptually simple: predict the next word given a preceding18

sequence (aka context). Yet it trains models with remarkable ability to capture meaning.19

A foundational step toward understanding how NTP leads to models acquiring semantic20

information is to first understand how explicit textual inputs—words and contexts—are21

represented in the models’ d-dimensional word and context vector representations (embed-22

dings). Zhao et al. (2024) recently proved that in well-trained models, the geometry of these23

learned representations is characterized by the factorization of a data-sparsity matrix S̃ whose24

entries encode whether a particular word follows a given context in the training corpus.25

While this characterization explains how models encode explicit training signals, it does not26

address the deeper question about semantic learning. Language conveys meaning through27

latent concepts that exist beyond explicit (context, word) pairs, leading us to investigate:28

How do NTP-trained models extract and encode these latent concepts? For instance, how do they29

capture semantic dichotomies like male/female, or grammatical categories like nouns and30

verbs? In other words, how does latent information shape the embedding geometry, and does31

this suggest ways to identify interpretable semantic structures in the embedding space? These32

questions are challenging because linguistic concepts are never explicitly given as inputs in33

the NTP objective. Yet, by analyzing the geometry of learned representations and its relation34

to the data-sparsity matrix, we show that latent linguistic structure emerges from the latter.35

Concretely, our contributions are summarized as follows. Please see also a statement on the36

scope in A.1.37

C1. Geometric emergence of latent concepts: We demonstrate that latent linguistic concepts38

learned by a large neural model through NTP emerge as principal components in the39

singular value decomposition of a centered data-sparsity matrix S̃ (defn. in Sec. 3.1, see Fig.40

1 row (A) for illustration). While S̃ is never explicitly formed during training, its structure41

naturally shapes the geometry of learned representations: concepts can be recovered as42

weighted combinations of word and context embeddings, where the weights are determined43

by the singular vectors of S̃. This extends the characterization of the unconstrained-features44

model (UFM) by Zhao et al. (2024), revealing how embeddings inherently organize around45

latent concept dimensions.46
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Figure 1: (A) Singular Representations. Semantic structure extracted via SVD of the centered data
matrix S̃ (rank = 6). Data is shown in Fig. 2C. (a) Left singular vectors U (word analyzer vectors):
the first direction separates “plants” (e.g., apple, tulip) from “animals” (e.g., dog, shark); the second
further separates mammals (e.g., dog, cat) from non-mammals (e.g., eagle, trout). (b) Right singular
vectors V (context analyzer vectors): the first direction separates plant-specific contexts (e.g., “uses
sunlight for food”) from animal ones (e.g., “hunts in groups”); the second splits mammalian traits
(e.g., “stays warm-blooded”) from aquatic ones (e.g., “lives in water”). (c) Singular values, ordered
by magnitude, indicate the relative importance of each semantic direction. (B) Combined Concepts.
Higher-order combinations of singular directions yield finer-grained semantic partitions. Combining
the first and second vectors gives distinction among plant, mammal and non-mammal. Including a
fourth separates animal subtypes such as canine, feline, bird, and fish. (C) Semantic Emergence Over
Time. Confusion matrices from a 2-layer transformer (embedding dim. = 128) trained on synthetic
structured data at steps 0, 20, 40, and 200. Semantic classes are distinct support sets and are annotated
in brackets (e.g., “Animals”) when applicable. Early in training (e.g., step 20), broad distinctions like
“Plant” vs. “Animal” emerge. Finer features (e.g., “Reproduces with pollen”, “Lives in water”) appear
later, reflecting a coarse-to-fine learning pattern: high-variance (large singular value) concepts are
acquired earlier, while specific, low-variance features emerge gradually.

C2. Rate of learning: Singular values of the data-sparsity matrix quantify the significance of47

their corresponding concepts. By recognizing a connection between UFM with square-loss48

and the closed-form training dynamics of two-layer neural networks with orthogonal inputs49

derived by Saxe et al. (2013), we show that concepts associated with larger singular values50

are learned faster during training.51

C3. Semantics1 as orthant-based clustering: Not all concepts have human-interpretable52

meaning. Guided by the insight that top concepts are learned first during training, we53

find that human-interpretable semantic information is captured through specific posi-54

tive/negative configurations (indicating how present/absent the specific concept is in that55

word or context) across a few top singular concept dimensions (see Fig. 2B for illustration).56

Identifying semantics through such sign configurations geometrically manifests as (spectral)57

clustering of word/context embeddings in orthant slices. Through experiments, we verify58

that this approach identifies distinct human-interpretable linguistic categories.59

C4. Connecting distributional semantics and neural collapse (NC) geometries: On the one60

hand, linking to classical distributional semantics approaches based on heuristic forms of61

matrix factorization of data co-occurrences, we find using model abstractions popularized in62

the NC literature that NTP implicitly favors SVD factorization of the centered data-sparsity63

matrix. On the other hand, we broaden the scope of NC geometries of embeddings to64

encompass geometries of latent semantics – making the connection explicit, we show the65

emergence of semantics even for the default one-hot data setting in the NC literature.66

1We broadly define “semantic” to encompass linguistic factors that humans consider when producing
text, including grammatical (e.g., tense), syntactic (e.g., verb), and semantic (e.g., sentiment) elements.
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(A) Embedding geometry (B) Orthant-based clustering (C) Training data

Figure 2: NTP-trained word embeddings naturally organize into semantic clusters. (C) Training
data (showing P⊤) consists of pairs using the template “The organism that [attribute] is [subject]”,
where attributes are rows and subjects are columns. (A) When trained with d > V > rank(S̃) = 6 and
visualized in 3D PCA projection, both words (dots) and contexts (triangular marks) cluster by semantic
category—animals (green/blue), and plants (red/orange). This demonstrates how semantic structure
emerges naturally from the underlying data sparsity pattern. (B) Visualization of orthant-based
clustering and hierarchical semantic structure in a 3D subspace of context-analyzer vectors. Selected
dimensions K = {k1, k2, k3} = 1, 2, 4 correspond to columns of U in Fig. 1 (A)(a). Colored blocks
represent different sign configurations: Green (p = 1): ck1

= −1 captures "animal" semantic. Blue (p =
2): [ck1

, ck2 ] = [−1,−1] refines to "mammal" semantic. Yellow (p = 3): [ck1
, ck2 , ck3 ] = [−1,−1,−1]

further specifies "feline" semantic. This nested structure illustrates how increasing the number of
active dimensions (p) yields progressively finer-grained semantic categories, where "mammal" is a
subset of "animal", and "feline" is more specific within "mammal". Contexts shown with same color
within each suborthant are example members according to Defn. 1.

2 Related Work67

We bring together, in the context of NTP-trained language models, the following two68

classical ideas: (1) semantic patterns emerge from linear relationships between vector69

representations of textual inputs, and (2) these learned representations form geometries tied70

to language statistics via count matrices.71

Semantics from Distributed Representations. The idea of extracting semantics from72

distributed representations, while rooted in earlier works Bengio et al. (2000), was popu-73

larized through word embedding research Mikolov et al. (2013a). Two classically popular74

approaches include: (i) constructing semantic axes from centroids of pole words An et al.75

(2018); Fast et al. (2016), evolving from lexicon-based sentiment analysis Taboada et al. (2011);76

Hu and Liu (2004), and (ii) investigating semantic patterns through “word analogies,” which77

reveal that semantic relationships manifest as linear directions in embedding space Mikolov78

et al. (2013c); Levy et al. (2015); Drozd et al. (2016); Ethayarajh et al. (2019); Allen and79

Hospedales (2019). In the context of modern LLMs, word analogies have been empirically80

observed Rezaee and Camacho-Collados (2022); Wijesiriwardene et al. (2024). However,81

recent focus has shifted to techniques for distilling interpretable semantics through dictio-82

nary learning or sparse autoencoders Cunningham et al. (2023); Bricken et al. (2023), further83

showing these can be used for model steering Turner et al. (2023); Li et al. (2024) (techniques84

that in fact trace back to early work with static word embeddings, e.g., Murphy et al. (2012);85

Faruqui et al. (2015); Arora et al. (2018); Zhang et al. (2019)). Alternative approaches include86

geometric studies showing how linguistic features cluster in embedding spaces Coenen87

et al. (2019); Hewitt and Liang (2019). Simultaneously, supervised methods such as linear88

probing have been employed to extract semantic and syntactic information from modern89

LLMs Alain and Bengio (2017); Hewitt and Manning (2019); Marks and Tegmark (2023),90

relying on the same principle of linear representation found in word analogies. Unlike91

these aforementioned works that empirically analyze trained models post-hoc, we focus on92

formalizing the mechanisms by which semantic structure emerges during NTP training. Our93

goal is not to introduce a state-of-the-art method for extracting semantics, but rather to understand,94

from an optimization viewpoint, how semantics emerge as a consequence of next-token prediction.95

While Park et al. (2023; 2024) have explored similar questions, here, rather than relying on a96

model for concept generation and its link to words/contexts, we directly analyze NTP.97

Geometry from Co-occurrence Statistics. Vector space representations emerge from two98

approaches: (i) traditional count-based models using co-occurrence matrices, and (ii)99

prediction-based models that optimize token prediction objectives like Skip-gram or NTP.100

Levy and Goldberg (2014); Pennington et al. (2014) demonstrate that these approaches101

3



Preprint

are fundamentally similar, as both probe underlying corpus co-occurrence statistics. Zhao102

et al. (2024) have extended this insight to causal NTP models with a key distinction: the103

co-occurrence matrix between contexts and words is inherently sparse, unlike the dense104

word-word co-occurrences in prior work. This distinction makes relevant recent advances in105

implicit regularization Ji and Telgarsky (2019); Ji et al. (2020) and neural collapse geometries106

Papyan et al. (2020b); Mixon et al. (2020); Fang et al. (2021), through which Zhao et al.107

(2024) analyze how word and context embeddings converge via an unconstrained features108

model, relating them to singular factors of the centered co-occurrence probability matrix’s109

support set (see Eq. (2)). We show that these singular factors encode rich semantic structure.110

While we argue that the natural language’s inherent multilabel nature is responsible for111

the emergence of rich semantics, making full circle to the neural-collapse literature, we112

show that the semantic interpretation applies to as simple a setting as one-hot imbalanced113

classification. Moreover, by connecting to the closed-form analysis of learning dynamics of114

linear neural networks by Saxe et al. (2013; 2019); Gidel et al. (2019), we show how singular115

values determine the learning order during training. More details on related works deferred116

to App. E. See also Remark 1.117

3 Background118

Notations. For any integer k, [k] := {1, . . . , k}. Matrices, vectors, and scalars are denoted by119

A, a, and a respectively. For matrix A, A[i, j] is its (i, j)-th entry, and for vector a, a[i] is its120

i-th entry. 1 is the all-ones vector and ⊗ is Kronecker product.121

3.1 NTP Objective as Sparse Soft-Label Classification122

Let vocabulary V = [V], where zt ∈ V are tokens/words within sequences z1:t = (z1, . . . , zt).123

NTP predicts a target token z := zt from context x := z1:t−1 using training data Tn :=124

{(xi, zi)}i∈[n], where xi ∈ V t−1 and zi ∈ V for each i ∈ [n], and the context length t − 1125

ranges from 0 to T− 1. For the prediction, a model with logits Whθ(x), where W ∈ RV×d126

is the decoding matrix and θ parameterizes (using either MLP, LSTM, Transformer (TF), or127

state-space models) the context-embedding map hθ : X → Rd, is trained to minimize the128

empirical cross-entropy (CE) loss. Following Zhao et al. (2024), we cast the NTP objective129

as classifying among m ≤ n unique contexts x̄j, j ∈ [m], each associated with a sparse130

label vector p̂j ∈ ∆V−1, j ∈ [m] in the probability simplex, representing the conditional131

distribution of next tokens. The sparsity of the conditional distributions is both a sampling132

artifact and inherent at the population level since not all tokens from the vocabulary are133

valid next-tokens of a given context in natural language data. We further let π̂j denote the134

empirical probability for context x̄j. With these, the NTP objective becomes135

L(W , θ) = ∑j∈[m]
π̂j · ℓ

(
Whθ(x̄j); p̂j

)
, (1)

where the loss ℓ penalizes deviations between the model’s logits Whθ(x̄j) for context j and136

its corresponding soft-label vector p̂j. Unless otherwise specified, we use the standard137

cross-entropy loss we set the loss ℓ to be the standard CE loss, i.e., CE
(
S(Whθ(x̄j)) || pj

)
,138

where S() denotes the softmax map of logits to the probability simplex.139

For later use, define the support matrix S ∈ {0, 1}V×m of the conditional probability matrix140

P = [p̂1, . . . , p̂m] ∈ RV×m. Formally, S[z, j] = 1 ⇔ P[z, j] > 0. For context j, we refer to141

tokens z for which S[z, j] = 1 as in-support tokens, and refer to all others as off-support.142

Central to our analysis is the centered support matrix143

S̃ := (IV −
1
V
1V1

⊤
V )S . (2)

For convenience, we refer to S̃ as the data-sparsity matrix, though note that unlike the144

support matrix S, its entries are not binary due to the centering operation:145

S̃[z, j] =
{

1− |Sj |/V if S[z, j] = 1 ,
−|Sj |/V if S[z, j] = 0 .
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3.2 Geometry of Words and Contexts146

Following Yang et al. (2017), we assume the model is sufficiently expressive to allow147

optimizing context embeddings in (1) freely, instead of abiding by their architecture-specific148

parameterization. Concretely, this modeling abstraction yields a simplified training objective149

minW ,H L(W H) +
λ

2
∥W∥2 +

λ

2
∥H∥2 , (NTP-UFM)

which jointly optimizes W ∈ RV×d and H := [h1, . . . , hm] ∈ Rd×m, where hj is the freely150

optimized embedding of context x̄j. Since the minimization is unconstrained for both151

variables, we follow Mixon et al. (2022); Wojtowytsch (2021); Fang et al. (2021) in referring152

to this as the unconstrained features model (UFM) for NTP training. We refer to W and H153

as the word and context embedding matrices.154

Eq. (NTP-UFM) includes ridge-regularization with weight λ > 0. Zhao et al. (2024) have155

analyzed the geometry of solutions to (NTP-UFM) when λ → 0. This limit (referred to156

in the literature as the regularization-path) serves as a proxy for the limiting behavior of157

gradient descent (GD) training as the number of iterations approaches infinity Ji et al. (2020).158

For large embedding dimensions d ≥ V, 2 as λ→ 0, Zhao et al. (2024) show the following:159

1. Logits Convergence: The logit matrix L = W H decomposes into two orthogonal160

components: one that grows unboundedly during training and another that remains finite.161

After normalization (required to characterize the convergence of diverging logits), only the162

unbounded component becomes dominant, denoted as Lmm. Crucially, Lmm depends only163

on the data support matrix S (see Zhao et al. (2024) for details).164

2. SVD factors of Lmm: Like logits, word and context embeddings grow unboundedly165

in magnitude, but converge in direction to Wmm = UΣ1/2R and Hmm = R⊤Σ1/2V⊤,166

respectively. Here, UΣV⊤ is the SVD of Lmm and R is a partial orthogonal matrix.167

3. Data-sparsity matrix as proxy: The matrix S̃ (see Eq. (2)) is a good proxy for Lmm. 3 Put168

together, the singular factors of S̃ play a crucial role in determining the geometry of word169

and context embeddings learnt by NTP training. Denote this SVD as170

S̃ := UΣV⊤, (3)

where U ∈ RV×r, V ∈ Rm×r with U⊤U = V⊤V = Ir , the singular values Σ =171

diag(σ1, . . . , σr) are ordered: σ1 ≥ σ2 ≥ . . . ≥ σr > 0 , and r ≤ V − 1 denotes the rank.172

4 Geometry of Concepts173

4.1 Motivating Questions174

While prior work explicitly describes the geometry of word and context embeddings, it175

leaves open two key questions: (i) What is the latent information that drives the word/context176

embeddings to this geometry? And, (ii) does the resulting geometry form structures (e.g. in the form177

of clusters) that lend themselves to human-interpretable semantics?178

To illustrate this, Fig. 2A shows a 3D projection of trained word and context embeddings179

on a simplified dataset for visualization. The conditional probability matrix P is shown on180

the right. The geometry reveals clear structure: animal-related words and contexts cluster181

on the left, plant-related ones on the right. This suggests the emergence of latent concept182

information—specifically, a positive/negative semantic distinction.183

From Sec. 3.2, we know word embeddings take the form W = U
√

ΣR, where U encodes184

the row-space of S̃ (Eq. (2)). Since rows of S̃ correspond to words, and words that appear185

in similar contexts (e.g., “the organism that grows roots is...” vs. “the organism that has186

green leaves is...”) have similar patterns, U may naturally encode semantic relationships.187

Its columns can be interpreted as a “concept basis”, where a word’s projection reflects its188

association with these latent concepts.189

2See Sec. A.2 for a discussion on this assumption.
3This is formally proven in symmetric cases and supported by extensive empirical evidence.
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4.2 Principal Components as Concepts190

We term each dimension k ∈ [r] resulting from the SVD of S̃ as a concept. Adopting191

terminology from Saxe et al. (2019), we call the columns uk ∈ RV and vk ∈ Rm of matrices192

U and V the “word analyzer vectors” and “context analyzer vectors,” respectively. These193

vectors represent the alignment of tokens and contexts with each concept: for word z and194

concept k, the sign of uk[z] indicates association (uk[z] > 0) or opposition (uk[z] < 0) to195

the concept, while its magnitude quantifies the strength of this relationship. 4 Words for196

which |uk[z]| is small are neutral to this concept. The same interpretation applies to context197

components vk[j], measuring each context’s alignment with the respective concept. Fig. 1(A)198

verifies the SVD of S̃ captures the dataset’s semantic information for the simplified5 dataset199

with syntax "The organism that [attribute] is [subject]" (see Fig. 2).200

To represent concepts in the embedding space and thus directly characterize their relation-201

ships with word and context embeddings, we define the d-dimensional “word-concept202

representations” ud
k and “context-concept representations” vd

k for k ∈ [r] as projections onto203

the respective spaces of words and contexts, that is (see also Sec. B for details), ud
k = W⊤uk204

and vd
k = Hvk. This ensures that words or contexts more closely aligned with a specific205

concept have embeddings closer to the concept’s representation. Similar to classical seman-206

tic axes formed by averaging relevant words, these representations are weighted averages207

where weights (uk) reflect concept relevance. Fig. 8 visualizes two most significant concept208

representations and their relationships with word/context embeddings. For background209

and related developments on matrix-based semantic representations and their connection210

to our framework, see Remark 1.211

4.3 Orthant-based Clustering in Singular Spaces212

Concepts extracted from S̃, represent significant components from data. However, as noted,213

for example, by Chersoni et al. (2021); Piantadosi et al. (2024), not all concepts individually214

correspond to linguistically interpretable factors. Instead, we posit that human-interpretable215

semantics can be identified by specific combinations of several concepts. Here, we formalize216

this hypothesis by relating it to an orthant-based clustering of word/context representations.217

Recall from Sec. 4.2 that the k-th word analyzer vector uk categorizes words z based218

on sign(uk[z]): words with large |uk[z]| exhibit strong correlation with concept k, with219

sign(uk[z]) indicating whether this correlation is positive/negative. We extend this catego-220

rization beyond single dimensions to multiple concept dimensions simultaneously.221

Let K = {k1, . . . , kp} denote a set of p ≤ r selected dimensions ki ∈ [r], i ∈ [p]. Given222

K, we define 2p possible signature configurations C = C(K) = [ck1 , . . . , ckp ] ∈ {±1}p,223

where cki
∈ {±1} indicates whether dimension ki contributes positively or negatively to the224

semantic category. Each signature configuration represents a potential semantic category,225

characterized by its member words and their degrees of association with the category.226

Definition 1. For C = [ck1 , . . . , ckp ] with sign configurations cki
∈ {±1} for dimensions ki ∈ [r]:227

• A word z is a member of C (denoted z ∈ C) if and only if sign(uki
[z]) = cki

for all ki, i ∈ [p].228

• The typicality of a member z ∈ C is defined as: Typicality(z; C) = ∑i∈[p]
∣∣uki

[z]
∣∣ .229

Analogous definitions hold for contexts.230

Geometrically, each configuration corresponds to a p-dimensional orthant (or orthant sheet)231

in the d-dimensional embedding space. Membership indicates which word/context embed-232

dings lie within this orthant, effectively creating an orthant-based clustering in the subspace233

spanned by the selected concept dimensions K. The typicality of a member measures the234

4Note that each word analyzer vector uk, k ∈ [r] has both positive and negative entries (corresponding
to association and opposition), because uk is orthogonal to 1V (which is in the nullspace of S̃).

5This design isolates semantic concept extraction by minimizing grammatical influences. These
simplifications are for visualization clarity only—the principles apply to complex datasets with
combined grammatical/semantic attributes and to full autoregressive training (see Secs. 5 and A.3).
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L1-norm (other choices are also possible) of its representation’s projection (the z-th row of U235

for words, j-th row of V for contexts) onto the selected concept dimensions. Fig. 2B and Sec.236

5 demonstrate that this orthant-based clustering reveals interpretable semantic categories,237

while also inducing a hierarchical structure, where the number of concept dimensions238

determines the semantic granularity: broad linguistic categories (e.g., verbs) require fewer239

dimensions, while more specific categories (e.g., past-tense verbs) need more dimensions240

for precise characterization. See also Sec. C and Fig. 9 in the appendix.241

4.4 Rate of Learning242

We show that the hierarchical structure of semantics discussed in Sec. 4.3 is reflected in243

their emergence over the course of training: broad distinctions are learned earlier than fine-244

grained features. We study this both in synthetic language and in a controlled imbalanced245

setting, and provide theoretical support via training dynamics under square loss.246

Spectral progression in natural language. We track the singular values of the logit matrix247

Lt = WtHt at training step t, where (Wt, Ht) evolve under the unconstrained objective248

(NTP-UFM). Figure 16 shows that singular values increase at different rates: those with249

larger final magnitudes begin diverging earlier. This suggests that concepts aligned with250

dominant singular directions of the data are acquired earlier. This trend is evident in251

natural language experiments. As shown in Figure 1(C), confusion matrices from a 2-252

layer transformer trained on structured synthetic language reveal that coarse categories253

(e.g., “Animals” vs. “Plants”) are learned in early epochs (step 20), while finer semantic254

distinctions (e.g., “Lives in water”, “Reproduces with pollen”) emerge later (step 40 onward).255

This coarse-to-fine learning order aligns with the ordering of singular values in the support256

matrix.257

Controlled validation via class imbalance. To isolate this effect and remove semantic258

confounds, we construct a step-imbalanced one-hot classification task where two majority259

classes appear in many contexts, while two minority classes occur only once. This setting260

allows us to directly manipulate the spectrum of the support matrix S̃. As shown in Figure 7,261

the model first predicts all tokens as the dominant majority class (Step 0), then separates262

the two majority classes (Step 13), begins identifying the minority classes (Step 30), and263

only later resolves confusion between them (Step 55). This progression follows the order264

of singular values, despite the absence of semantic structure, confirming that the model265

prioritizes directions with higher spectral mass. The imbalanced setting thus provides266

strong causal evidence for spectral bias in learning dynamics.267

Theoretical justification. To analyze this behavior formally, we consider the square loss268

version of (NTP-UFM). As discussed in Appendix D, this setting reduces to the well-studied269

linear training dynamics of Saxe et al. (2013), where each singular direction k exhibits a sharp270

transition in Lt at time Tk ∝ 1/σk, with σk the k-th singular value of S̃. Hence, directions271

aligned with larger singular values (i.e., broader or more frequent concepts) are learned272

earlier. Although this analysis is limited to square loss, we observe similar learning patterns273

under cross-entropy empirically. Extending this theory to CE loss remains an open question.274

5 Experiments275

5.1 Setup276

Datasets. We conduct experiments on both synthetic data and pretrained models. For277

our synthetic experiments, we constructed two datasets by subsampling from two distinct278

corpora: TinyStories Eldan and Li (2023) and WikiText-2 Merity et al. (2017). For both279

datasets, we fix the vocabulary size to V = 1, 000 and extract m = 10, 000 contexts, creating280

the "Simplified TinyStories/WikiText" datasets. We extracted the contexts by sampling281

frequent contexts of lengths 2-6 from the entire datasets. This variation in context-length282

emulates the autoregressive nature of training with sliding window, which yields rich283

data-sparsity patterns that in turn result in richer semantic information (compared to the284

last-token visuals in Sec. 4). See Sec. F.2 for details on OpenWebText data with GPT2285

embeddings.286

Concepts and semantics. Following Sec. 4, for the simplified datasets where it is compu-287

tationally feasible, we construct the V × m data-sparsity matrix S̃ and compute its SVD.288
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Past-tense verb Present-tense verb Preposition Proper names

Month Number Unit Preposition/Conjunction

Figure 3: Semantic clusters based on signature configurations of Sec. 4.3. Top: Simplified TinyStories
dataset showing Past-tense verbs, Present-tense verbs, Prepositions, and Proper names. Bottom:
Simplified Wikitext dataset showing Months, Numbers, Units, and Prepositions/Conjunctions. Each
configuration is shown in its title.

The left/right singular vectors serve as our word/context concepts. As per Sec. 4.3, we289

also consider signature-based concept combinations, which we examine for semantic in-290

terpretability as discussed in Visuals below. For completeness, we also experiment with291

k-means spectral clustering as an alternative way to derive interpretable semantics from292

top important concepts. For larger-scale experiments, where direct SVD of S̃ is infeasible,293

we work with the embeddings from pretrained models. In particular, for GPT-2 trained on294

OpenWebText, we analyze the spectral structure of its learned token embeddings (Sec. F.2).295

To test generality across architectures and objectives, we additionally evaluate orthant-based296

clustering on BERT (a masked language model) and Qwen-7B (a multilingual model with297

4096-dimensional embeddings). In these cases, we approximate concept axes via SVD on298

filtered subsets of embeddings. See Secs. F.4 and F.5 for experimental details.299

Visuals. To interpret the semantic information, we visualize the top 40 words/contexts300

associated with each concept. “Top” here is measured with respect to the typicality score in301

Defn. 1. For visualization, we use word clouds where size is proportional to its typicality302

score. We often use the pound sign (#) to indicate token start.303

5.2 Findings304

Individual concepts are not interpretable. We have seen in Sec. 4 that not all concepts305

individually correspond to linguistically interpretable factors. For completeness, we verify306

this conclusion for the Simplified TinyStories/WikiText datasets in Fig. 12 in the appendix.307

This observation is well-reported in the literature, e.g., Chersoni et al. (2021), and is also308

related to the recently popularized superposition hypothesis Elhage et al. (2022).309

Combining concepts with signature-configurations reveals semantics. We demonstrate310

that combining non-interpretable concepts can reveal human-interpretable semantic infor-311

mation. Here, we show this by implementing the idea of orthant-based clustering of Sec.312

4.3. Specifically, we combine p = 5 to 7 concepts in successive order starting from the most313

important one, i.e. K = {1, . . . , p}. Fig. 3 shows human-interpretable semantics identified314

by orthant-based clustering in Simplified TinyStories and WikiText-2 datasets. In Fig. 9, we315

show how orthant-based clustering progressively reveals hierarchical semantic structure316

as we combine more concept dimensions, illustrated through the example of verb forms317

organized by grammatical distinctions. Starting with a single dimension (K = {1}), the318

categories remain broad and difficult to interpret. However, as we incorporate additional319

dimensions, increasingly refined semantic categories emerge, ultimately distinguishing320

between different verb forms such as past/present tense, and present continuous forms.321

As a complementary method to orthant-based clustering, we also explore k-means spectral322

clustering over concept subspaces. This also reveals interpretable groupings such as past-323

tense verbs, proper names, and numerical tokens. For methodology and full results, see324

Appendix F.7.325

Relation of words and context semantics. Figure 2A shows that words and contexts sharing326

semantic categories (e.g., plant vs. animal) cluster closely in embedding space—a pattern327

that extends to richer datasets. To verify this, we apply orthant-based clustering to words328

and contexts using the same signature pattern across a subset of concept dimensions. In329
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Simplified TinyStories (Fig. 4), contexts with modals like “want/like/love/have to” align330

with clusters of infinitive verbs; intensifiers like “was so/very” correspond to descriptive331

adjectives. This duality reflects how contexts encode meaning both via their surface words332

and via the semantics of likely next tokens—a view naturally supported by the predictive333

nature of NTP.334

Figure 4: Context-word cluster pairs sharing identical sign patterns across top 5 concepts. Left and
right pair illustrates the “verb+to infinitive” and “was so/very + adj” structures, confirming semantic
alignment between contexts and their in-support words.
Semantics in pretrained models. Simplified datasets primarily reveal grammatical and335

syntactic structure due to limited size and context diversity—making them analytically336

tractable but semantically constrained. To test whether richer sparsity induces richer337

semantics, we analyze pretrained models.338

In GPT-2 (Fig. 5), orthant-based clustering recovers categories such as medical terms,339

emotional tone, entertainment, and political figures. In BERT (Fig. 17), we observe clusters340

reflecting numerical patterns (e.g., 3-digit numbers), action verbs, administrative phrases,341

and morphological forms. Applying the same method to Qwen-7B, a 4096-dimensional342

multilingual model, yields clusters like UI phrases, programming keywords, numeric tokens,343

and functional Chinese expressions. Qwen requires more concept directions (7–11 vs. 5–7344

for GPT-2) to isolate coherent groups (Table 1), suggesting a more distributed semantic345

encoding. These results suggest that spectral semantic structure generalizes across objectives346

and embedding scales.347

Positive Negative Chemical Medical

Coorperation Digital entertainment Cultural Societal

Figure 5: Semantics identified by orthant-based clustering on GPT2’s word embeddings.

6 Conclusion and Limitations348

While continuing to advance LLMs’ capabilities, understanding their inner workings is349

crucial. We study how NTP optimization guides the geometry of word and context repre-350

sentations to organize around latent semantic information. Without explicitly computing it,351

the model encodes such information in the SVD factors of an implicit data-sparsity matrix.352

As an early contribution in this direction, our analysis motivates several future directions:353

(1) While the assumption d ≥ V allows for rich geometric structures, a formal investigation354

is needed for the d < V case prevalent in practice (see Sec. A.2). (2) Our analysis assumes355

sufficient expressivity and training time, which may become increasingly relevant with356

improved compute or in data-limited regimes, but relaxing them or experimentally validat-357

ing their applicability in the spirit of our GPT-2 experiments (e.g., in the spirit of Wu and358

Papyan (2024)) is important. (3) Understanding how transformer architectures specifically359

fit into our analytical framework remains an open challenge. (4) Some conclusions rely on360

square loss and our work highlights a significant gap in understanding CE loss dynamics,361

even in simple bilinear models. (5) While our approach differs from concurrent efforts to362

explain semantic emergence in LLMs via probing or sparse-dictionary learning, future work363

could explore connections and potential applications to model improvement techniques.364
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Figure 6: Illustration of setup and terminology.

A Additional Discussions593

A.1 Positioning and Scope.594

This work adopts a first principles and bottom up approach to understanding how semantic595

structure emerges during next token prediction training. Rather than analyzing large596

language models directly, we focus on simplified and analytically tractable settings such597

as synthetic datasets and the unconstrained feature model. These abstractions allow us598

to isolate and study fundamental mechanisms with mathematical clarity. While they do599

not capture the full complexity of real models, they reveal core geometric and learning600

dynamics that are otherwise difficult to observe. As we later show, insights gained from601

this analysis extend qualitatively to more realistic settings, including pretrained GPT-2 and602

BERT embeddings, and can inform future empirical investigations.603

A.2 On the Assumption d ≥ V604

Our analysis has assumed the embedding dimension d is at least as large as the rank of the605

data-sparsity matrix (guaranteed when d ≥ V), allowing word and context embeddings606

to form geometric structures representing all concepts encoded in the matrix’s singular607

factors Zhao et al. (2024). As noted in Zhao et al. (2024), while this assumption differs608

from current practice in LLMs, the geometry of embeddings remains rich in this setting.609

Importantly, this assumption is less restrictive than requiring d > C in one-hot classification610

with C classes. There, due to collapse of embeddings from the same class, d > C effectively611

requires the dimension to exceed the number of training examples. In contrast, for NTP,612

the number of contexts m can be (and typically is) much larger than d, allowing for rich613

geometric arrangements of context embeddings in the lower-dimensional space and non-614

trivial emergence of concepts, which is confirmed throughout our case studies.615

That said, the current trend of modern language models typically employing d < V, raises616

the question: Which concepts are prioritized when the model cannot capture all of them?617

We hypothesize that during NTP training, models learn to represent the d most significant618

concepts, corresponding to the largest singular values of the data-sparsity matrix. While this619

requires a separate study that is beyond our current scope, our preliminary investigation620

using NTP-UFM with square-loss on a synthetic dataset supports this hypothesis. Fig. 18621

shows the learned logit matrix’s singular values converging to the d largest singular values622

of the data-sparsity matrix during training. Following Sec. 4.4, we used square loss rather623

than CE to ensure bounded singular values. While a rigorous analysis for d < V remains624

future work, since meaningful semantic categories emerge from combinations of concepts,625

even a reduced set of core concepts could enable rich semantic representations through the626

orthant clustering mechanism of Sec. 4.3.627
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A.3 Role of Autoregression628

We have shown that concepts emerge during NTP training as principal directions of S̃, a629

centered version of the support matrix S. Each column j of S corresponds to a context and630

can be viewed as a binary (multi-)label vector sj, where entries of 1 indicate tokens that631

appear as next-tokens for that context in the training data. While concepts are determined by632

the principal directions of this label matrix, this might seem limiting: contexts can relate not633

only through shared next-tokens but also through their intrinsic structure (e.g., overlapping634

constituent tokens).635

The autoregressive nature of training naturally captures these structural relationships636

as follows. As the model processes labels for progressively longer contexts, each con-637

text (z1, . . . , zt) contributes to concept formation both through its distribution over next-638

tokens zt+1 and through the labels of its shorter subsequences (z1, . . . , zt−1), (z1, . . . , zt−2),639

etc.—each representing distinct columns in S. This overlapping window structure produces640

fine-grained label information, creating rich sparsity patterns in S (and consequently in S̃)641

that yield nontrivial concepts with varying significance, as reflected in word and context642

embeddings.643

A.4 Relationship to Spectral Clustering644

The orthant-based clustering approach introduced in this work shares foundational similari-645

ties with spectral clustering while providing distinct advantages for linguistic interpretation.646

Both methods operate in reduced-dimensional spaces and leverage embedding geometry647

to identify meaningful clusters. First, while both approaches leverage singular factors, the648

orthant-based method provides a more direct link (in view of concept definition in Sec. 4)649

between NTP and the emergence of semantic structure by explicitly interpreting the sign650

patterns of SVD dimensions as semantic indicators.651

An interesting property of our method is its selective nature: while p dimensions generate652

2p potential orthants, only a subset contains semantically coherent word groupings. This653

selectivity reflects linguistic reality, where not all mathematical combinations yield mean-654

ingful semantic categories. In contrast, spectral clustering typically partitions the space655

completely, which may not always align with natural semantic boundaries in language.656

Finally, the orthant-based method offers semantic interpretation of membership and typi-657

cality, and dimensionality control through parameter p. This aligns with language model658

training dynamics, as the most important singular value components are learned first dur-659

ing training, making the resulting clusters reflective of the model’s knowledge acquisition660

process. To this respect, note that unlike orthant-based clustering producing a potential661

maximum of 2p clusters when selecting p top concepts, typical clustering algorithms such as662

vanilla k-means on principal components would result in p-clusters with the same number663

of selected concepts. Thus, when we evaluate spectral methods in our experiments, we664

choose k on the order of 2p for the value of p that we find orthant-based clustering reveals665

semantically informative orthants.666

A.5 Neural Collapse Meets Semantics667

The emergence of concepts with rich semantic meanings stems from the interplay of labels668

(encoded in S or its centered version S̃) across different contexts. Consider the minimal label669

richness case: each context has exactly one next-token, with contexts distributed equally670

across the vocabulary. Here, S can be rearranged as IV ⊗ 1⊤m/V , yielding trivial concepts671

where all singular directions contribute equally. This setting parallels standard balanced672

one-hot classification studied in neural collapse literature, where last-layer embeddings673

and weights form highly symmetric aligned structures Papyan et al. (2020a), reflecting the674

symmetric nature of S where labels induce no interesting conceptual structure.675

However, such balanced settings never occur in autoregressive NTP, which as discussed676

in Sec. A.3, produces rich label formations. In these richer settings, S induces a geometry677

of concepts that provides semantic interpretation to the embedding geometry studied in678
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the neural collapse literature. To illustrate this new perspective, we demonstrate that679

meaningful concepts emerge even in one-hot classification—the traditional focus of neural680

collapse literature—given minimal deviation from perfect balance. Specifically, consider681

STEP imbalances with ratio R: V/2 majority classes each have R > 1 times more samples682

than minority classes.683

Here, Thrampoulidis et al. (2022) shows the learned logit matrix converges to S̃, whose684

singular values exhibit a three-tier structure:685

σ1 = . . . = σV/2−1 =
√

R > σV/2 =
√
(R + 1)/2 > σV/2+1 = . . . = σV = 1. The left686

singular vectors matrix U takes a sparse block form:687

U =

 F −
√

1
V 1 0

0
√

1
V 1 F

 ∈ RV×(V−1) ,

where F ∈ RV/2×(V/2−1) is an orthonormal basis of the subspace orthogonal to 1V/2.6 The688

structure of U reveals three distinct types of concepts, corresponding to the three tiers of689

singular values: (1) First V/2− 1 columns (non-zero only for majority classes) represent690

distinctions among majority classes; (2) Middle column (singular value
√
(R + 1)/2) has691

opposite-signed entries for majority versus minority classes, encoding the majority-minority692

dichotomy; (3) Last V/2− 1 columns (non-zero only for minority classes) capture distinc-693

tions among minority classes. This hierarchical structure shows the network learns concepts694

in order: first majority class distinctions, then the majority-minority split, and finally minor-695

ity class differences. See Fig. 11 for a visualization of U and Fig. 7 for an experiment that696

confirms the above semantic interpretation of concepts (columns of U).697
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Step 13

maj 1 maj 2 min 1 min 2

Step 30

maj 1 maj 2 min 1 min 2

Step 55

maj 1 maj 2 min 1 min 2

Step 60

maj 1 maj 2 min 1 min 2

Predicted Class

Figure 7: Experimental illustration of the fact that important concepts are learned first. Confusion
matrix evolution during training of a 3-layer convolutional network on an imbalanced MNIST data.
The matrices show five snapshots at different training steps (0, 13, 30, 55, 65) for four classes: two
majority classes (Maj1, Maj2) with 100 samples each and two minority classes (Min1, Min2) with 10
samples each. Training progresses from left to right: initially classifying all data as Maj1 (Step 0),
then correctly identifying majority classes while misclassifying minority classes (Step 13), gradually
improving minority class recognition (Step 30), confusion between minority classes only (Step 55),
and finally achieving perfect classification by Step 60.

B From Sparsity Language Pattern to Concepts Geometry698

Recall the centered data-sparsity matrix S̃ and its SVD699

S̃ = UΣV⊤, where U ∈ RV×r, Σ ∈ Rr×r, V ∈ Rm×r and U⊤U = V⊤V = Ir ,

and the singular values Σ = diag(σ1, . . . , σr) are ordered:700

σ1 ≥ σ2 ≥ . . . ≥ σr > 0 .

6For concreteness, F can be constructed using the discrete cosine transform matrix, excluding the

constant column: F[i, j] =
√

4
V · cos

(
π(2i−1)j

V

)
for i ∈ [V/2], j ∈ [V/2− 1]
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Adopting terminology from Saxe et al. (2019), we interpret the columns uk ∈ RV , vk ∈701

Rm, k ∈ [r] of U, V as word and context analyzer vectors for concept k. For each word z ∈ V702

and each word-concept k ∈ [r], the component uk[z] represents how present or absent is a703

word z in context k. Respectively for contexts.704

Specifically, we think of column dimensions of U as semantic dimensions that capture705

semantic categories.706

Q: How do we define word-concept and context-concept representations, i.e. d-dimensional707

representations of word and context analyzer vectors for various concepts?708

Let W ∈ RV×d and H ∈ Rd×m be the representations of words and contexts. We then define709

word-concept representations ud
k and context-concept representations vd

k for k ∈ [r] as710

projections onto the spaces of word and context representations, respectively. Specifically,711

for projection matrices712

PW = W⊤(WW⊤)−†W and PH = H(H⊤H)−†H⊤ ,
let713

ud
k = PW W⊤uk

vd
k = PH Hvk .

Let’s now simplify these by using the known SVD representation of W and H. Using this714

representation (i.e. use W ←Wmm, H ← Hmm) we compute715

PW = RR⊤ = PH .
Thus,716

ud
k = RR⊤R

√
ΣU⊤uk = σkRek = W⊤uk (4a)

vd
k = σkRek = Hvk = ∑

j∈[m]

vk[j] · hj . (4b)

We conclude that the d-dimensional representations of word and context analyzer vectors717

are the same. This is intuitive since concepts are categories in a certain sense broader than718

words/contexts, where the latter can be thought of as realizations of the concept in the719

form of explicit constituents of natural language. We thus refer to ud
k = vd

k = Rek as the720

representation of concept k. See Fig. 8 for a visualization.721

Finally, observe from Eq. (4) that the k-th concept representation is given by a weighted722

average of word or context embeddings with weights taken by the resppective context723

analyzer vectors.724

Figure 8: Left: Context embeddings; Right: Word embeddings. In both plots, concept representations
(blue, green) are computed using Eq. (4). Projections onto these concept axes (vd

1 , vd
2 ) quantify semantic

relevance. The first concept (vd
1 , blue line) defines a spectrum from plant-related to animal-related

elements, with animals (“hunts in groups”, “dog”) projecting positively and plants (“uses sunlight
for food”, “apple”) projecting negatively along the same axis. The second concept (vd

2 , green line)
represents a continuum from non-mammalian to mammalian traits, with mammalian words and
features (“cat”, “stays warm-blooded”) having positive projections and non-mammalian ones (“trout”,
“has feathers”) having negative projections. Please note that the concepts are not orthogonal in the
plots because it is PCA projection to 2D space.
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Figure 9: Hierarchical semantic structure revealed by orthant-Based clustering on Simplified
TinyStories. Top: Hierarchical semantic structure emerges as we combine concepts. Each
row represents clusters formed by combining an increasing number of concept dimensions
(from 1 to 5), with each word cloud displaying the most typical words for a specific sign
configuration. Semantic categories become progressively more fine-grained moving down-
ward as additional concept dimensions refine the classifications. Bottom: Detailed view
of verb semantics. The combination of the first two concept dimensions (K = {1, 2} with
configuration CK = {+1,+1}) identifies verbs. Adding the third dimension further distin-
guishes between past tense (CK = {+1,+1,+1}) and present tense (CK = {+1,+1,−1}).
The present tense category is further refined by the fifth dimension to differentiate present
action verbs from present continuous (-ing) forms. This hierarchical organization mirrors
linguistic grammar structures and supports our hypothesis that language models learn
fundamental grammatical distinctions (verb vs. non-verb) before more specific ones (tense
and aspect distinctions).

C On the hierarchical structure of language725

As discussed in Sec. 4.3, language semantics exhibit a hierarchical structure, with more726

comprehensive semantics involving numerous concepts being inherently more detailed.727

Each concept’s significance is indicated by its associated singular values; higher values728

denote concepts critical for differentiating words or contexts. Moreover, as discussed in Sec.729

4.4, broader semantic categories are acquired more rapidly, indicating a sequential learning730

progression from general to more specific concepts. Fig. 9 below provides an illustration of731

this hierarchical structure.732
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D Connections to closed-form training dynamics Saxe et al. (2013)733

Consider the following square-loss NTP-UFM proxy:734

min
W ,H

{
m

∑
j=1
∥s̃j −Whj∥2 = ∥S̃−W H∥2

}
. (5)

which fits logits W H to the centered sparsity matrix S̃. For one-hot labels, this reduces735

to standard square-loss classification, which has shown competitive performance to CE736

minimization in various settings (Hui and Belkin (2020); Demirkaya et al. (2020)). However,737

in our soft-label setting, the choice of loss function requires more careful consideration.738

While one could follow Glove’s approach Pennington et al. (2014) by using log(P) instead739

of s̃, this creates issues with P’s zero entries. Since CE loss minimization leads W and H to740

factor s̃, we thus maintain s̃ as the target in (5).741

The neural-collapse literature has extensively studied Eq. (5) for one-hot s̃, primarily in742

the balanced case (e.g., Mixon et al. (2020); Han et al. (2021); Súkeník et al. (2023); Tirer743

and Bruna (2022); ?) but recently also for imbalanced data (e.g., Liu (2024); Hong and744

Ling (2023)). Most works focus on global minima of regularized UFM, with less attention745

to unregularized cases or training dynamics. While some landscape analyses provide746

partial answers about global convergence (e.g., ), they are limited to regularized cases and747

don’t characterize dynamics. Even for square loss, where Mixon et al. (2022); Han et al.748

(2021) study training dynamics—notably Han et al. (2021)’s analysis of the ’central path’749

in balanced one-hot cases—these results rely on approximations. Thus, a significant gap750

remains in understanding UFM training dynamics, even for simple balanced one-hot data751

with square loss.752

By interpreting the UFM with square loss in Eq. (5) as a two-layer linear network with753

orthogonal inputs, we identify an unexplored connection to Saxe et al. (2013); Gidel et al.754

(2019)’s analysis. They provide explicit characterization of gradient descent dynamics (with755

small initialization) for square-loss UFM. The key insight is rewriting (5) as ∑j∈[m] |s̃j −756

W Hej|2 with orthogonal inputs ej ∈ Rm. This enables direct application of their result,757

originally stated in Saxe et al. (2013) and formalized in Gidel et al. (2019). For completeness,758

we state this here in our setting and terminology as a corollary below.759

Proposition 1. Consider gradient flow (GF) dynamics for minimizing the square-loss NTP-UFM760

(5). Recall the SVD S̃ = UΣV⊤. Assume weight initialization761

W(0) = e−δUR⊤ and H(0) = e−δRV⊤

for some partial orthogonal matrix R ∈ Rd×r (R⊤R = Ir) and initialization scale e−δ. Then the762

iterates W(t), H(t) of GF are as follows:763

W(t) = U
√

Σ

√
A(t)R⊤ and H(t) = R

√
Σ

√
A(t)V⊤ (6)

for A(t) = diag(a1(t), . . . , ar(t)) with764

ai(t) =
1

1 + (σie2δ − 1)e−2σit
, i ∈ [r]. (7)

Moreover, the time-rescaled factors ai(δt) converge to a step function as δ→ ∞ (limit of vanishing765

initialization):766

ai(δt)→ 1
1 + σi

1[t = Ti] + 1[t > Ti], (8)

where Ti = 1/σi and 1[A] is the indicator function for event A. Thus, the i-th component is learned767

at time Ti inversely proportional to σi.768

Proof. After having set up the analogy of our setting to that of Saxe et al. (2013); Gidel et al.769

(2019), this is a direct application of (Gidel et al., 2019, Thm. 1). Specifically, this is made770
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Figure 10: (Top) Support matrix and SVD factors of centered support matrix for a synthetic
example. (Bottom) Training dynamics of GD minimization of NTP-UFM with square loss
(Eq. (5) for two initializations: (i) SVD: initialize W and H as per Thm. 1 for δ = 8. (ii)
Rand: intialize W and H random Gaussian scaled to match the norm of SVD initialization.
Dynamics with the two initialization are shown in red (SVD) and blue (Rand), respectively.
Qualitatively the behavior is similar. Left: Training loss and norms of paramteres. Middle-
Left: Convergence of word and context gram-matrices and of logits to the theory predicted
by Thm. 1. Middle-Right: Convergence of singular values of logit matrix to those of Σ (see
Thm. 1. Right: Projection of logits to subspace orthogonal to U and V ; Logits with Rand
initialization initially have non-zero projection but it becomes zero as training progresses.

possible in our setting by: (i) interpreting the UFM with square-loss in (5) as a two-layer771

linear network (ii) recognizing that the covariance of the inputs (which here are standard772

basis vectors ej, j ∈ Rm) is the identity matrix, hence the (almost) orthogonality assumption773

(see (Saxe et al., 2013) and (Gidel et al., 2019, Sec. 4.1)) holds.774

The result requires initializing word/context embeddings aligned with the SVD factors of775

the data-sparsity matrix. While this might appear as a strong assumption, Saxe et al. (2013;776

2019) conjectured and verified experimentally that the characterization remains qualitatively777

accurate under small random initialization. Our experiments with the data-sparsity matrix778

confirm this - Fig. 16 shows the singular values of the logit matrix during training closely779

follow the predicted exponential trend in Eq. (7). This reveals that dominant singular780

factors, corresponding to primary semantic concepts, are learned first. In the limit t→ ∞,781

the theorem shows convergence to:782

W(t)→W∞ := U
√

ΣR⊤ and H(t)→ H∞ := R
√

ΣV⊤, . (9)

This aligns with Zhao et al. (2024)’s regularization-path analysis of NTP-UFM with CE loss,783

where normalized quantities converge as λ→ 0 (recall Section 3.2):784

W(λ)→ U
√

ΣR⊤ and H(λ)→ R
√

ΣV⊤.

785

D.1 An example of controlling the rate of learning via reweighting786

Consider minimizing the following weighted version of (5):787

min
W ,H

∥∥∥(S̃−W H
)

Ω
∥∥∥2

, (10)
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where Ω = diag([ω1, . . . , ωm]) is a diagonal matrix of weights, one for each context. Here,788

we consider the STEP-imbalanced one-hot classification setting described in Sec. A.5.789

Concretely, let the support matrix be790

S =

[
IV/2 ⊗ 1⊤R 0V/2×V/2
0V/2×RV/2 IV/2

]
(11)

where R is the imbalance ratio and without loss of generality we assumed that the first791

V/2 classes are majorities and that minorities have 1 example (in our language: context)792

each. (Thus, the total number of examples is m = RV/2 + V/2 = (R + 1)V/2.) Recall that793

S̃ = (IV − 1
V1V1

⊤
V )S.794

Recall from Sec. A.5 that S̃ = UΣV⊤ where the singular values and the left singular vectors795

are explicitly given by:796

Σ = diag(
[√

R1V/2−1
√
(R + 1)/2 1V/2−1

]
), U =

 F −
√

1
V1 0

0
√

1
V1 F

 ∈ RV×(V−1) ,

with F ∈ RV/2×(V/2−1) an orthonormal basis of the subspace orthogonal to 1V/2. According797

to (Thrampoulidis et al., 2022, Lem. A.3) we also have798

V⊤ =

 F⊤ ⊗ 1⊤R 0
−
√

2
(R+1)V1

⊤
RV/2

√
2

(R+1)V1
⊤
V/2

0 F⊤

 ∈ R(V−1)×m .

We now set the weight matrix as follows:799

Ω := diag(
[√

1
R 1
⊤
RV/2 1⊤V/2

]
) . (12)

Direct calculation yields800

V⊤Ω =


√

1
R F⊤ ⊗ 1⊤R 0

−
√

2
R(R+1)V1

⊤
RV/2

√
2

(R+1)V1
⊤
V/2

0 F⊤


= diag(

[√
1
R1
⊤
V/2−1

√
2

R+1 1⊤V/2−1

]
)

 F⊤ ⊗ 1⊤R 0

−
√

1
RV1

⊤
RV/2

√
1
V1
⊤
V/2

0 F⊤


︸ ︷︷ ︸

=:Ṽ⊤

= Σ−1Ṽ⊤ .

(13)

where in the last equation, we recognized the diagonal matrix is equal to Σ−1 and called the801

other matrix Ṽ ∈ Rm×(V−1). Thus, the effective sparsity matrix S̃Ω =: S̃Ω is equal to802

S̃Ω = UΣV⊤Ω = UṼ⊤ .

It is now easy to check that Ṽ⊤Ṽ = IV−1. Thus, the display above is the SVD factorization803

of S̃Ω. Note that the singular values of this effective sparsity matrix are all equal, unlike the804

singular values Σ of the original data-sparsity matrix S̃. With this at hand, we can show805

analogous to Proposition 1 that the eigenvalues of W(t) and H(t) are now all learned at the806

same time T = 1. We also confirm this experimentally in Fig. 11.807

E Extended Discussion on Related Works808

Word embeddings and semantic analysis in neural probabilistic language models. The809

word2vec architecture Mikolov et al. (2013d;b) and its variants, notably GloVe Pennington810
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Figure 11: (Top) Support matrix and SVD factors of centered support matrix for a one-hot
STEP-imbalanced example. (Middle) Training dynamics of GD minimization of NTP-UFM
with square loss (Eq. (5); same setup and visualizations as Fig. 10. (Bottom) Training
dynamics of GD minimization of NTP-UFM with weighted square loss (Eq. (10)) with
weights as in Eq. (12). Note that thanks to the weighting all singular factors are now learned
simultaneuously.

et al. (2014), represent seminal early neural probabilistic language models. These simple811

log-bilinear models, trained on large text corpora, revolutionized word embedding learning.812

As noted in Zhao et al. (2024), NTP-UFM shares structural similarities with these early813

models, though in both their work and ours, it serves as a tractable abstraction rather814

than a practical architecture. Our approach differs by learning both context and word815

embeddings, following modern practice. The foundational work of Levy and Goldberg816

(2014) connected word2vec’s geometry to matrix factorization of the pointwise mutual in-817

formation (PMI) matrix—a specialized word co-occurrence matrix. Subsequent works Levy818

et al. (2015); Turney and Pantel (2010); Baroni and Lenci (2010) empirically demonstrated819

semantic interpretations of the PMI matrix’s singular factors and principal components.820

Building on Zhao et al. (2024), which formalizes a modern version of Levy and Goldberg821

(2014)’s results, our investigation of concepts differs from this classical literature in two822

key aspects: (a) We study the NTP setting where both context and word embeddings are823

learned, yielding concepts that relate to both words and contexts; (b) Our data-sparsity824

matrix differs fundamentally from classical PMI matrices: it is a centered version of the825

data support matrix (independent of specific next-token probabilities) and has different826

structural properties—being orthogonal and non-square, unlike the word2vec setting.827

Superposition and feature steering. Our work was partly motivated by recent compelling828

literature suggesting that embeddings can be decomposed into linear combinations of a829

finite set of semantic concepts Bricken et al. (2023); Yun et al. (2023); Park et al. (2023). These830

insights from mechanistic interpretability have led to practical applications in "feature steer-831

ing"—where model behavior can be controlled by manipulating concept representations832

23



Preprint

through addition or subtraction Durmus et al. (2024); Konen et al. (2024). Our analysis833

complements the mechanistic interpretability approach by providing a systematic frame-834

work for understanding how concepts emerge naturally as principal components from835

training data statistics. Exploring deeper connections between our theoretical framework836

and the mechanistic interpretability literature remains an intriguing direction for future837

work. For completeness, we note that Park et al. (2023; 2024) also investigate geometric prop-838

erties of concept directions, albeit through fundamentally different technical approaches,839

assumptions, and perspectives.840

Saxe et al.’s closed-form dynamics of two-layer linear network training. Our work841

draws inspiration from Saxe et al. (2019). Conceptually, Saxe et al. (2019) uses a two-layer842

linear neural network as a theoretical proxy to study the emergence of semantic knowledge843

in human cognition, providing mathematical justifications for phenomena observed in844

cognitive semantics literature. A key insight from their work is that even a simple two-845

layer linear network with orthogonal inputs can yield rich and meaningful conclusions846

about semantic learning. While two-layer neural networks represent perhaps the simplest847

instances of non-linear learning, their training dynamics generally remain analytically848

intractable. However, Saxe et al. (2013) (with aspects later formalized in Gidel et al. (2019))849

demonstrated that with square loss, orthogonal inputs, and sufficiently small initialization,850

these dynamics admit exact closed-form solutions. This mathematical characterization851

underlies their results on semantic information development through singular factors852

of the network’s input-output correlation matrix. We make a novel connection to this853

line of work: the UFM fits perfectly within the framework studied by Saxe et al. (2013;854

2019). Specifically, the UFM can be viewed as a linear two-layer network where the input855

dimension equals the number of input examples (in our case, the number of contexts m).856

This connection is valuable in two directions: First, the UFM—recently popularized through857

neural collapse literature (see below)—provides perhaps the most natural and practical858

setting satisfying Saxe et al.’s seemingly restrictive orthogonal input assumptions. Second,859

this connection allows us to leverage Saxe et al.’s earlier results in the evolving neural860

collapse literature. Despite these methodological similarities with Saxe et al. (2019), our861

work differs in motivation and interpretation. We focus specifically on NTP and how862

semantic and grammatical concepts emerge from natural language data, rather than general863

cognitive development. Additionally, we primarily focus on CE loss which is typically used864

in NTP training.865

Neural-collapse geometries. Our results contribute to the recent literature on the neural866

collapse (NC) phenomenon Papyan et al. (2020a). Originally observed in one-hot classi-867

fication training of DNNs, neural collapse describes two key properties of well-trained,868

sufficiently expressive DNNs: (1) NC: embeddings of examples from the same class collapse869

to their class mean, and (2) ETF-geometry: class-mean embeddings form a simplex equian-870

gular tight frame (ETF), being equinorm and maximally separated, with classifier weights871

exhibiting the same structure and aligning with their respective class-mean embeddings.872

This phenomenon, consistently observed across diverse datasets and architectures, has873

sparked extensive research interest, generating hundreds of publications a complete review874

of which is beyond our scope. Instead, we discuss below the most closely-related line of875

works. One fundamental direction, which forms the basis for many extensions, focuses876

on explaining NC’s emergence through the UFM. This model abstracts training as joint877

optimization of last-layer embeddings (unconstrained by architecture) and classifier weights878

Mixon et al. (2022); Fang et al. (2021). Multiple influential works have proven NC emergence879

by analyzing the UFM’s global optima (e.g., Zhu et al. (2021); Garrod and Keating (2024);880

Jiang et al. (2023)), with extensions to various loss functions beyond cross-entropy, including881

square loss Zhou et al. (2022a); Han et al. (2021); Tirer and Bruna (2022); Súkeník et al. (2023;882

2024) and supervised contrastive loss Graf et al. (2021); Zhou et al. (2022b); Kini et al.. Most883

early works maintained the original assumptions from Papyan et al. (2020a): balanced884

data (equal examples per class) and embedding dimension d exceeding the number of885

classes C. Recent work has explored d < C settings, though often requiring additional886

assumptions on the loss function Jiang et al. (2023); Liu et al. (2023). More substantial887

progress has emerged in the d > C regime with unbalanced data, where Thrampoulidis888

et al. (2022) provided a complete characterization for step-imbalanced data (where examples889
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are distributed equally within minority classes and equally within majority classes). They890

introduced the SELI (simplex-encoding labels interpolation) geometry, showing that logits891

interpolate a simplex-encoding matrix—a centered version of the one-hot encoding matrix.892

The embeddings and classifier vectors are then determined, up to rotation and scaling, by893

the singular vectors of this matrix. The SELI geometry emerges as a special case of the richer894

geometries characterized in the NTP setting by Zhao et al. (2024). Together with Li et al.895

(2023), these works stand alone in extending geometric characterization beyond one-hot896

encoding—to soft-label and multilabel settings respectively. Specifically, Zhao et al. (2024)897

analyzes the soft-label setting arising in NTP training on natural language, showing that898

word and context embeddings are determined by the singular factors of the data sparsity899

matrix. Our work deepens this understanding by revealing that these SVD factors encode900

conceptual meaning, thereby extending neural collapse geometry to capture not only the901

structure of embeddings but also the organization of latent concepts.902

Connections to Classical Co-occurrence-Based Semantics903

Remark 1. The idea that SVD factors of a co-occurrence-type matrix convey latent semantic informa-904

tion dates back at least to latent semantic analysis of word-document co-occurrence matrices Landauer905

(1997); Deerwester et al. (1990) and later to pointwise mutual information matrices of word-word906

co-occurrences Levy and Goldberg (2014); Levy et al. (2015). Beyond SVD factorization, researchers907

have explored alternative factorization techniques, such as non-negative matrix factorization Lee908

and Seung (1999); Ding et al. (2006) and sparse dictionary learning Murphy et al. (2012); Faruqui909

et al. (2015), and have applied them to various transformations of co-occurrence data, including910

modifications that address the sparsity of PMI matrices by eliminating negative entries (e.g., PPMI)911

or applying probability smoothing techniques Levy et al. (2015). Our key conceptual contribution is912

that we let the training dynamics NTP optimization determine both the matrix representation of the913

data and the factorization method used to encode latent semantics: the model naturally utilizes the914

centered support matrix S̃ and its SVD factorization. We validate through structured examples in915

this section and through experiments in Sec. 5, that the model’s emergent representational choices916

successfully encode linguistic components without explicit engineering of the representation space.917

F Additional Experiment Results918

F.1 Semantics for Individual Concept919

In this section we include the plots illustrating that individual concept do not contain920

interpretable semantics as discussed in sec 5

Figure 12: Word clouds of top words from individual concept dimensions across datasets,
illustrating their lack of human-interpretable semantics without combination. Shown: posi-
tive 2nd dimension (Simplified TinyStories), negative 6th dimension (Simplified TinyStories),
negative 2nd dimension (Simplified WikiText), positive 4th dimension (Simplified WikiText).

921

F.2 Experiment on the Semantics of Pretrained Context Embeddings922

To identify the semantics in context embeddings from pretrained transformers, we chose923

GPT-2 Radford et al. (2019) and extracted 50, 000 text sequences, each 11 tokens in length924

from GPT-2’s training corpus, the OpenWebText dataset. By segmenting these sequences925

into contexts of varying lengths (1-10 tokens), we generated 500, 000 contexts, which we926

designate as the "simplified OpenWebText" dataset.927
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Figure 13: orthant-based clustering on Pretrained word embedding, p = 4,
GPT2

To obtain concepts from pretrained models, instead of performing SVD on S̃ (which is com-928

putationally expensive to construct and factorize), we work directly with the embeddings929

of the pretrained model. For word concepts, we extract W from GPT-2’s decoder and take930

the matrix U of word concepts to be its left singular matrix. For context concepts, we form a931

d×m matrix H by concatenating the embeddings (last-MLP layer representations before the932

decoder) of GPT-2 for each context in our subset. This matrix corresponds to only a portion933

of the “true” embedding matrix for the entire dataset. To ensure the coupling between W934

and H that is inherent to the SVD of S̃ (which we don’t have direct access to), we compute935

the matrix V of context concepts as V = H⊤RΣ−1/2, where UΣ1/2R denotes the SVD of W936

that we already computed.937

We include the orthant-clustering result on GPT2’s pretrained word embedding with p =938

4, 5, 6. (Fig. 13, 14, 15)939

F.3 Rate of learning940

Fig. 16 shows the evolution of singular values during training for both squared loss and941

cross-entropy loss as described in Section 4.4.942

F.4 Extension to Masked Language Models943

While our primary analysis focuses on next-token prediction (NTP), the underlying princi-944

ples of our framework are also applicable to masked language modeling (MLM) objectives.945
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Figure 14: Semantics on Pretrained word embedding, p = 5, GPT2
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Figure 15: orthant-based clustering on Pretrained word embedding, p = 6,
GPT2

28



Preprint

100 101 102 103 104

Iteration

0

1

2

3

4

Si
ng

ul
ar

 V
al

ue
 M

ag
ni

tu
de

Evolution of Singular Values During Training with squared loss

S_1
S_2
S_3
S_4
S_5
S_6

100 101 102

Iteration

0

20

40

60

80

Si
ng

ul
ar

 V
al

ue
 M

ag
ni

tu
de

Evolution of Singular Values During Training with CE loss
S_1
S_2
S_3
S_4
S_5
S_6

Figure 16: Evolution of singular values of the logit matrix during training.
Both plots show that dominant concepts (corresponding to larger singular
values) are learned first. (Left) With squared loss, singular values converge to
those of the optimal solution, demonstrating learning saturation. (Right) With
CE loss, singular values grow unboundedly while maintaining their relative
ordering, reflecting the continuous growth of embedding norms characteristic
of CE training.

Both settings rely on context–token co-occurrence patterns, with the key difference being946

how contexts and targets are defined. In NTP, the context is a sequence of input tokens,947

and the label is the next token. In MLMs, the context is formed by masking tokens within948

a sequence, and the objective is to predict those masked tokens given their surrounding949

context.950

To explore this connection, we applied orthant-based clustering to token embeddings from951

a pretrained BERT model. As shown in Fig. 17, the method recovers a range of inter-952

pretable semantic categories, including numerical patterns (e.g., 3-digit numbers, historical953

years), functional word types (e.g., action verbs, administrative terms), and morphological954

structures (e.g., verb suffixes, name suffixes, given names).955

This example illustrates the broader applicability of our framework and opens up fur-956

ther questions on how co-occurrence structure affects semantic emergence under different957

training objectives.958

3-digit Number Historical Years Action Administration

Given Names Operations Name Suffixes Verb Suffixes

Figure 17: Semantics identified by orthant-based clustering on BERT’s word embeddings.
The sign configuration (e.g., Pos, Neg, Neg, Pos) indicates the directionality of the concept in
the top-p embedding axes. In BERT’s tokenizer, tokens prefixed with ## represent subword
units that appear within or at the end of a word.

F.5 Extension to Higher-Dimensional Embeddings959

To assess the applicability of our framework in large-scale settings, we extend our analysis960

to the Qwen-7B model, which features a 4096-dimensional embedding space. Despite the961

increased dimensionality, we find that orthant-based clustering on the learned embeddings962

continues to reveal semantically meaningful structure.963
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Given that Qwen’s tokenizer includes a large number of Chinese characters, many of which964

cannot be reliably visualized in our word cloud plots, we instead summarize representative965

semantic categories for selected orthant configurations in Table 1. These configurations966

correspond to sign patterns along the most significant concept directions (i.e., the top967

singular vectors) derived from the word embedding matrix W .968

The discovered clusters include interpretable groupings such as punctuation symbols,969

programming-related terms, popular acronyms, and functional Chinese words or prompt-970

like expressions commonly found in UI or news content. Interestingly, we observe that971

Qwen requires more concept directions to isolate some specific semantic categories (e.g.,972

grammatical function words) compared to smaller models like GPT-2 (5-7 concepts for973

GPT-2 vs. 7-11 concepts for Qwen). We hypothesize that this may be due to the higher974

embedding dimensionality and the broader linguistic coverage of Qwen.975

This result provides further evidence that the spectral geometry we study has the potential976

to generalize to more complex, multilingual, higher-dimensional language models.977

Table 1: Examples of semantic categories recovered from Qwen-7B using
orthant-based clustering on its 4096-dimensional word embeddings. Each row
corresponds to a specific sign configuration C = [ck1 , . . . , ckp ] along the top
singular concept directions.

F.6 d > V978

Fig. 18 shows the evolution of singular values for squared loss when the network’s embed-979

ding dimension is smaller than the vocabulary size, i.e., d < V, as described in Section A.2.980

981

F.7 Semantics from K-means Spectral Clustering on Simplified TinyStories and982

Wiki-Text983

k-means spectral clustering. As a complementary approach to our orthant-based clustering,984

we also investigate k-means spectral clustering. Specifically, we perform k-means clustering985

according to pairwise distances of analyzer vectors with their top p = log2(k) dimensions986

(corresponding to top-p most important concepts). Vanilla k-means spectral clustering987

selects k principal dimensions. The modification here is inspired by the orthant-based988
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Figure 18: evolution of the learned logit matrix’s singular values during
training for 3 = d < V, note that the 3 singular values are converging to the d
largest singular values

clustering for which p concepts correspond to 2p orthants. Fig. 19 shows semantic meaning989

in a subset of the recovered clusters with k = 32 and k = 64 for Simplified TinyStories and990

WikiText-2, respectively; see Sec. F.7 for full results. See also discussion in Sec. A.4.991
Past-tense verbs Proper names Numbers Conjunctions

Figure 19: k-means cluster with top-p = log2(k) dimensions of word-analyzer vectors. Left: 2 of
32-means clusters with K = {1, . . . , 5} on Simplified TinyStories representing Past-tense verbs and
Proper names; Right: 2 of 64-means cluster with K = {1, . . . , 6} on simplified WikiText, representing
Numbers and Conjunctions.
Please also see Fig. 20 and 21 for full result.992

F.8 More orthant-based clustering result on Simplified TinyStories and Wiki-Text993

We include some examples of orthant-based clustering results in Fig. 22 to 25. We selected994

p = 4, p = 5 for Simplified TinyStories and p = 5, p = 6 for Simplified WikiText because995

we observe the most human-interpretable concepts.996
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Figure 20: 32-means spectral clustering, p = 5, Simplified TinyStories

Figure 21: 64-means spectral clustering, p = 6, Simplified WikiText
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Figure 22: Orthant-based clustering, p = 4, Simplified TinyStories
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Figure 23: Orthant-based clustering, p = 5, Simplified TinyStories

34



Preprint

Figure 24: Orthant-based clustering, p = 5, Simplified Wiki-Text
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Figure 25: Orthant-based clustering, p = 6, Simplified Wiki-Text
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