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ABSTRACT

Language model (LM)-based embodied agents are increasingly deployed in real-
world settings. Yet, their adaptability remains limited in dynamic environments,
where constructing accurate and flexible world models is crucial for effective rea-
soning and decision-making. To address this challenge, we extend the Mixture-
of-Experts (MoE) paradigm to embodied agents. While conventional MoE ar-
chitectures modularize knowledge into expert components with pre-trained rout-
ing, they remain rigid once deployed, making them less effective for adapting
to unseen domains in dynamic environments. We therefore propose Test-time
Mixture of World Models (TMoW), a framework that enhances adaptability to
unseen and evolving domains. TMoW updates its routing function over world
models at test time, unlike conventional MoE where the function remains fixed,
enabling agents to recombine existing models and integrate new ones for contin-
ual adaptation. It achieves this through (i) multi-granular prototype-based routing,
which adapts mixtures across object- to scene-level similarities, (ii) test-time re-
finement that aligns unseen domain features with prototypes during inference, and
(iii) distilled mixture-based augmentation, which efficiently constructs new mod-
els from few-shot data and existing prototypes. We evaluate TMoW on Virtual-
Home, ALFWorld, and RLBench benchmarks, demonstrating strong performance
in both zero-shot adaptation and few-shot expansion scenarios, and showing that
it enables embodied agents to operate effectively in dynamic environments.

1 INTRODUCTION

Embodied agents powered by language models (LMs) are increasingly deployed in diverse environ-
ments such as households (Song et al., 2023; Ahn et al., 2022), factories (Kang et al., 2024; Zhang
et al., 2023), and virtual games (Zhao et al., 2024; Fan et al., 2022). However, their monolithic
architectures restrict adaptation, with capabilities frozen at training and domain knowledge buried
in billions of shared parameters. This is especially problematic for embodied agents in real-world
settings, where tasks and environments change constantly beyond training. In practice, this lack
of adaptability leaves retraining as the only option, which imposes significant computational and
data collection burdens and hinders real-world deployment. While in-context learning (Song et al.,
2023; Kim et al., 2025) attempts to address this through domain-specific prompting, it merely shifts
computational burden to inference with inflated context windows, highlighting the need for truly
modular architectures.

Mixture-of-Experts (MoE) (Jacobs et al., 1991) architectures provide structural modularity by se-
lectively activating expert modules per input, thereby supporting scalable inference and domain
specialization. Building on this property, recent work has applied MoE to domain adaptation in
LM-based agents through techniques such as meta-distillation (Zhong et al., 2022), vision-language
models (Iftee et al., 2024), and anomaly detection (Lei et al., 2024).

In this work, we investigate MoE architectures for LM-based embodied agents, aiming to support
rapid adaptation to unseen domains in dynamic environments. While MoE can flexibly activate
domain-specific experts, their routing functions, responsible for selecting appropriate expert mod-
ules for each input, remain fixed after training, making adaptation to novel domains possible only
through costly retraining. For embodied agents in temporally and spatially changing environments,
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Figure 1: Existing Mixture-of-Experts employs a fixed router after training, making adaptation to
unseen domains costly and requiring retraining (left). In contrast, Test-time Mixture of World
Models (TMoW) overcomes this through prototype-based routing and test-time training of the rout-
ing function to reflect new domain characteristics without demonstrations (right).

it is essential to overcome this rigidity by adaptively reconfiguring routing functions and extending
domain experts to meet these evolving conditions.

To address this need, we present a Test-time Mixture of World Models (TMoW) framework (Fig-
ure 1), which performs test-time training of a routing function without requiring demonstrations.
This test-time training approach enables rapid adaptation to environments with temporal and spatial
variations beyond the training distribution, facilitating continuous expansion of the model’s capa-
bilities. In the framework, world models act as internal simulators that allow the agent to predict
environmental dynamics, reason about future outcomes, and plan appropriate actions, where each
model corresponds to a distinct domain within the environment (Zhu et al., 2025; Janner et al., 2021).

TMoW employs a multi-granular prototype-based router that adapts world model mixtures by
comparing input observations with learned prototype representations across different levels of spa-
tial abstraction, ranging from local objects to global scenes. We adopt this hierarchical design in-
spired by LMs’ proven ability to build effective representations through layer-wise progression from
local tokens to global context (Van Aken et al., 2019). This router enables test-time prototype re-
finement to unseen domains by refining prototypes through weighted interpolation between existing
prototypes based on their similarity to the current environment. Furthermore, TMoW supports dis-
tilled mixture-based model augmentation for data-efficient creation of new world models. Unlike
test-time prototype refinement, this technique requires few-shot demonstrations and distills knowl-
edge from existing model mixtures to construct new models for unseen domains, thereby incremen-
tally expanding TMoW’s repertoire after deployment.

To evaluate TMoW, we conduct experiments on VirtualHome (Puig et al., 2018), ALFWorld (Shrid-
har et al., 2021), RLBench (James et al., 2020), and real-world robotic scenarios, demonstrating its
capability for rapid and scalable adaptation for evolving and expanding environments. Our frame-
work achieves a 27.21% improvement over SayCanPay (Hazra et al., 2024), state-of-the-art base-
lines in zero-shot adaptation, and a 25.66% gain in few-shot expansion scenarios when constructing
new world models.

Our contributions are as follows. (1) We propose the TMoW framework, a novel extension of MoE
that supports test-time reconfiguration of expert mixtures (i.e., test-time mixture), allowing embod-
ied agents to adapt to unseen domains without costly retraining. (2) We develop a multi-granular
prototype-based routing mechanism that realizes this test-time mixture capability, leveraging pro-
totype similarity across spatial levels ranging from local objects to global scenes. (3) We devise
a distilled mixture-based model augmentation strategy that expands TMoW’s adaptability by data-
efficiently constructing new world models. (4) We validate TMoW on diverse benchmarks and
real-world scenarios, demonstrating that it advances MoE-based adaptation and offers an effective
solution for embodied agents operating in evolving physical environments.
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2 RELATED WORK

LM-based embodied instruction following. Embodied instruction following requires agents to
ground language instructions in physical environments through sequential action execution, which in
turn necessitates robust world models capable of representing diverse environmental configurations.
Several approaches have been introduced. Code-driven policies (Singh et al., 2023; Liang et al.,
2023) generate executable programs from instructions, while reward-based methods (Yu et al., 2023;
Adeniji et al., 2023) learn value functions to guide action selection. Furthermore, LM-based reason-
ing has been combined with domain-specific models to assess environmental affordances (Ahn et al.,
2022; Hazra et al., 2024), and in-context learning approaches incorporate relevant demonstrations
directly into the agent’s decision-making process (Song et al., 2023). However, these existing ap-
proaches often struggle to generalize to new environments without significant retraining or increase
inference-time overhead. Our TMoW framework addresses these challenges by introducing test-
time adaptation directly into the MoE architecture, enabling efficient adjustment to unseen domains
without retraining.

Mixture-of-Experts. The Mixture-of-Experts (MoE) provides efficient model scaling by activat-
ing only a subset of experts, as shown in sparse MoE transformers like GShard (Lepikhin et al.,
2020) and Switch Transformer (Fedus et al., 2022). MoE has also been applied to various adapta-
tion settings including Meta-DMoE (Zhong et al., 2022) which uses meta-distillation from domain-
specific experts, and MoE-TTA (Iftee et al., 2024) which supports adaptation for vision-language
models. Yet, existing MoE architectures face limitations in knowledge expansion, as experts are
tightly coupled within a single training graph. Incorporating new domains typically requires end-
to-end retraining or costly knowledge distillation, thereby restricting modular extensibility. This
rigid design prevents modular growth, making it unsuitable for evolving physical environments with
diverse tasks and domains. Our approach addresses this through prototype-based routing, which
directly supports rapid integration of new world models and dynamic mixture adaptation, while also
facilitating knowledge expansion through few-shot model augmentation.

Test-time adaptation. Test-time adaptation has emerged as a critical capability for deploying
models in dynamic environments where training and test distributions may differ significantly. Meta-
learning approaches (Finn et al., 2017; Nichol et al., 2018) learn optimization procedures that en-
able rapid adaptation to new tasks with limited data. More recent studies have explored lightweight
methods. L-TTA (Shin & Kim, 2024) focuses on adapting only the stem layer using uncertainty
minimization, while training-free methods such as TDA (Karmanov et al., 2024) leverage key-value
caches to enable progressive adaptation without backpropagation. Our TMoW framework brings
test-time adaptation to LM-based embodied agents by supporting both dynamic adaptation and con-
tinual expansion of world model mixtures.

3 APPROACH

3.1 OVERALL FRAMEWORK

We present the TMoW framework, which enables agents to dynamically adapt world model mixtures
and continuously expand their knowledge in response to evolving environments. Similar to unified
world model approaches (Zhu et al., 2025; Janner et al., 2021), each world model in the framework
captures environment dynamics through a state transition function and policy.

As illustrated in Figure 2, TMoW integrates three core procedures into an MoE-based world model
structure. These procedures not only allow test-time reconfiguration of world model mixtures by
adjusting the mixture strategy itself, but also support efficient expansion through few-shot world
model construction. (i) Multi-granular prototype-based routing: At test time, the most relevant
world models are dynamically selected and composed based on multi-granular prototypes that cap-
ture domain semantics at varying levels of abstraction, from local object interactions to global scene
structures. A hierarchical message-passing network aggregates these multi-level features, enabling
the layer-wise world model mixture where each granularity level can draw knowledge from different
domain experts. This network works as a router across world models, allowing the framework to
leverage partial domain similarities, such as shared object knowledge across different domains.
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Figure 2: Overall framework of TMoW.

(ii) Test-time prototype refinement: When encountering unseen domains, the router adapts by re-
fining prototypes through weighted interpolation between existing prototypes based on similarity
to the current environment. Specifically, through similarity-based refinement during ongoing en-
vironment interactions, the router expands existing prototypes to absorb new domain traits, while
preserving core knowledge, thereby enabling efficient adaptation to unseen domains via dynamic re-
configuration of world model mixtures. (iii) Distilled mixture-based model augmentation: When
encountering environments that differ significantly from seen domains, a new world model can be
constructed by distilling knowledge from the mixture of existing world models based on few-shot
demonstrations. This strategy leverages the collective knowledge of existing models, enabling rapid
domain expansion while consolidating fragmented knowledge across diverse domains into a coher-
ent representation of the new domain. The newly distilled world model integrates seamlessly into
the framework, with its multi-granular prototype directly incorporated by the router for future mix-
ture decisions. As such, this augmentation supports long-term expansion by introducing new world
models, whereas test-time prototype refinement enables immediate adaptation by reconfiguring the
mixture weights of existing models.

3.2 MULTI-GRANULAR PROTOTYPE-BASED ROUTER

Datasets and world model. We assume access to a pre-trained base model M and demonstrations
{Dj}Nj=1 collected from domains {Dj}Nj=1. Following parameter-efficient MoE designs (Li et al.,
2024), we integrate domain-specific world models into M using lightweight adapters {mj}Nj=1 (e.g.,
LoRA (Hu et al., 2022)), which preserve the backbone parameters while enabling selective activation
of multiple world models within each layer. Each adapter mj captures the environmental dynamics
and policies of domain Dj by learning from its corresponding Dj . Once trained, they are combined
with the base model M to form a mixture of world models, denoted as M ⊕{mj}Nj=1. Each demon-
stration Dj = {(in, τ⃗n)}n contains instruction-trajectory pairs, where in ∈ I specifies the task, and
τ⃗n = {(ot, at, ot+1)}t represents the execution trajectory consisting of observations ot, ot+1 ∈ O
and actions at ∈ A.

Multi-granular prototype. We introduce multi-granular prototypes that capture environmental
semantics across multiple levels of abstraction through hierarchical graph representations. This
design exploits a key insight: while domains may differ globally, they often share common patterns
at specific granularities. For instance, object interactions in kitchens and offices follow similar
affordance patterns despite different houses. By maintaining representations from fine-grained node
features to coarse-grained structural patterns, our multi-granular prototypes enable the layer-wise
hierarchical model mixture, identifying which models share relevant patterns at each granularity.

To implement this multi-granular representation, we employ a graph processor that embeds ob-
servations into hierarchical structures, ensuring comparability at each granularity level. Given a
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mini-batch B sampled from demonstrations Dj , the prototype at each layer l for world model j is
computed as

p
(l)
j = E

(i,τ⃗)∈B
E

(o,·,·)∈τ⃗

[
f (l)(G(o), i)

]
(1)

where the graph processor f (l) transforms observation graphs G(o) conditioned on instruction i.
We use a Message Passing Neural Network (MPNN) (Gilmer et al., 2017) architecture, introduc-
ing a context-aware edge matrix Ẽ(l) that dynamically adjusts neighbor aggregation based on task
requirements.

Ẽ(l) = (A+ I)⊙R⊙ f
(l)
adj(H

(l−1), i) (2)
The adjustment function captures observation-context interactions through

f
(l)
adj = fgate

(
(QHQT

i )(KHKT
i )

T /
√
d
)

(3)

where queries QH ,Qi and keys KH ,Ki are obtained through separate layer-wise learned projec-
tions of H(l−1) and the embeddings of the instruction Φ(i) respectively, and d is the dimension of
queries and keys.

The prototype initially contains only local information but progressively gathers neighbor informa-
tion through layers, with instruction-based adjustment factors controlling this aggregation. This cre-
ates a natural progression from node-level features in early layers to graph-level patterns in deeper
layers, analogous to how LMs progress from token-level to paragraph-level reasoning.

Prototype-based router. To select which world models to activate and with what routing scores,
the router compares the embedding extracted from the current input data with the prototype of each
world model. The router receives an instruction i, and observation o as input and returns expert
routing scores (w(l)

1 , · · · , w(l)
N ) for each layer f (l) of the base model. Specifically, given input (i, o),

the routing score for expert j at lth layer is computed as

w
(l)
j = sim(E(l),p(l)

j ), E(l) = f (l)(G(o), i) (4)

where E(l) is a domain embedding produced by the lth layer of the graph processor’s MPNN, p(l)
j is

the prototype of world model j at layer l, and sim(·, ·) denotes cosine similarity. The score vector
(w̄

(l)
1 , · · · , w̄(l)

N ) at layer l is sparsified by retaining only the top-K entries and then normalized with
a softmax and scaling hyperparameter τ (τ > 0).

(w̄
(l)
1 , · · · , w̄(l)

N ) = softmax(topK((w
(l)
1 , · · · , w(l)

N )/τ)) (5)

Finally, the output at lth layer is calculated by combining the base model with the N adapters,
weighted by the normalized scores (w̄(l)

1 , · · · , w̄(l)
N ).

3.3 TEST-TIME PROTOTYPE REFINEMENT

We introduce test-time prototype refinement that dynamically adjusts prototype representations
through environment interactions, enabling adaptation to unseen domains without retraining. Our
refinement expands prototype space and densifies prototype allocation around frequently encoun-
tered features, exploiting previously underutilized knowledge within existing world models (Wang
et al., 2023).

Specifically, we obtain the refined prototype p̄
(l)
j from p

(l)
j using the environment interaction by

p̄
(l)
j = (1− α sim(E(l),p(l)

j ))p
(l)
j + α sim(E(l),p(l)

j )∆p
(l)
j ; ∆p

(l)
j =

∑N

k=1
r̄
(l)
j,kp

(l)
k (6)

where ∆p
(l)
j is a refinement term, E(l) is a domain embedding for the unseen domain from the envi-

ronment interaction, and α is a refinement rate. The refinement term is then obtained by computing
refinement weights r̄

(l)
j,k from prototype–prototype similarity, which are used to form the weighted

sum where the weights (r̄
(l)
j,1, · · · , r̄

(l)
j,N ) are obtained through similarity measurement and softmax

normalization with a scaling hyperparameter τr (τr > 0).

(r̄
(l)
j,1, · · · , r̄

(l)
j,N ) = softmax((r

(l)
j,1, · · · , r

(l)
j,N )/τr); r

(l)
j,k = sim(p

(l)
j ,p

(l)
k ) (7)
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(a) Seen domains
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(b) Unseen domains

Figure 3: Comparison of the routing score heatmap before (left) and after (right) test-time prototype
refinement for (a) seen and (b) unseen domains.

Figure 3 illustrates the comparison of routing scores before and after refinement. In the seen do-
main (Figure 3a), the heatmap showed minimal changes, though there is a slight tendency toward
utilizing more diverse world models. In the unseen domain (Figure 3b), this diversification is more
pronounced, facilitating the utilization of relatively diverse world models. The iterative prototype re-
finement enhances shared knowledge across world models by densifying prototype allocation around
frequently encountered domains. This expands the effective coverage of the prototype space while
constructing dense clusters in high-frequency regions, thereby enabling fine-grained routing strate-
gies that foster knowledge sharing across world models.

3.4 DISTILLED MIXTURE-BASED MODEL AUGMENTATION

We introduce a distillation-based model augmentation that enables rapid expansion to novel domains
by constructing new world models from mixtures of existing ones using few-shot demonstrations.
When encountering novel domains with fundamentally different characteristics, this approach con-
structs new world models by distilling knowledge from weighted mixtures of existing models, where
the router’s weights indicate which knowledge fragments are most relevant to the unseen domain.
Unlike test-time refinement, which adapts unseen domains solely by reconfiguring mixtures of exist-
ing models, this augmentation further extends the framework’s capacity by generating new models
that integrate seamlessly into the routing system. This seamless integration is enabled by prototype-
based routing, which allows newly created models to align with existing ones and immediately join
the routing process without structural changes.

Specifically, we leverage the router’s weighted mixture, where the weights indicate which frag-
ments of knowledge from models are most relevant to the unseen domain’s features. Given few-shot
demonstrations D′={(i′, τ⃗ ′)}, we construct a combined graph G′ from the trajectory and process it
through an f to obtain the layer-wise routing scores (w̄(l)

1 , · · · , w̄(l)
N ) for each layer l. We initialize

a new world model m′ as mixture of existing models, then fine-tune it on D′ before integration into
the mixture. Then, new world model m′ and its corresponding prototype p′(l) are computed as

m′(l) =

N∑
j=1

w̄
(l)
j m

(l)
j − η∇m′(l)

[
E

(·,τ⃗ ′)∈D′
LTF(M ⊕m′, τ⃗ ′)

]
; p′(l) = E

(i′,τ⃗ ′)∈D′

[
f (l)(G′, i′)

]
(8)

where η is learning rate, and the LTF is teacher-forcing training loss that supervises next action and
observation along the trajectory, similar to Janner et al. (2021).

4 EXPERIMENTS

Environments and datasets. We evaluate TMoW with embodied environments such as Virtu-
alHome (Puig et al., 2018), ALFWorld (Shridhar et al., 2021), and RLBench (James et al., 2020).
VirtualHome is a 3D virtual environment for simulating activities in a household, ALFWorld is an in-
door task simulation environment that aligns text and embodied robotic manipulation, and RLBench
is a robotic manipulation benchmark for tabletop tasks, which we adapted to support language-based
actions. In VirtualHome, 78 tasks (16 seen, 62 unseen) are paired with 20 distinct scenes (10 seen, 10
unseen) to form 445 demonstrations. In ALFWorld, following the CL-ALFRED benchmark (Kim
et al., 2024), 6 task categories (4 seen, 2 unseen) are paired with 4 scene categories (3 seen, 1 un-
seen) to form 1,304 demonstrations. In RLBench, 4 task categories (3 seen, 1 unseen) are paired
with 6 scene categories (4 seen, 2 unseen) to form 163 demonstrations from seen domain.
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Table 1: Zero-shot adaptation performance in VirtualHome, ALFWorld, and RLBench. Throughout
the following experiments, we report 95% confidence intervals computed across 5 random seeds.

Seen domains VirtualHome ALFWorld RLBench

Baselines SR (↑) PS (↓) SR (↑) PS (↓) SR (↑) PS (↓)

ZSP (Huang et al., 2022) 10.78%±1.50% 27.81±0.07 2.32%±0.19% 49.34±0.66 11.26%±1.59% 17.57±0.46
LLM+FT 61.37%±6.96% 17.98±1.71 51.78%±1.13% 13.22±1.37 65.53%±2.43% 11.04±0.19
LLM-Planner (Song et al., 2023) 50.98%±6.37% 17.85±0.51 11.67%±0.22% 37.19±0.25 35.21%±1.59% 14.77±0.08
FLARE (Kim et al., 2025) 54.69%±6.91% 19.93±0.12 21.22%±0.20% 34.40±1.44 53.05%±4.78% 14.77±0.84
SayCanPay (Hazra et al., 2024) 64.14%±6.17% 15.70±0.98 51.48%±1.72% 13.19±0.84 68.08%±2.93% 8.69±0.61
TMoW 83.61%±1.28% 11.07±0.53 72.05%±0.62% 6.94±0.21 71.89%±2.73% 6.30±0.16

Unseen domains VirtualHome ALFWorld RLBench

Baselines SR (↑) PS (↓) SR (↑) PS (↓) SR (↑) PS (↓)

ZSP (Huang et al., 2022) 7.32%±0.52% 28.22±0.04 2.08%±0.03% 49.68±0.32 10.42%±2.04% 18.73±0.31
LLM+FT 44.24%±6.02% 21.00±0.39 39.61%±0.47% 41.24±0.47 15.63%±3.54% 17.44±1.10
LLM-Planner (Song et al., 2023) 36.05%±0.23% 22.93±0.01 8.46%±0.49% 43.54±0.11 19.79%±4.08% 17.19±1.54
FLARE (Kim et al., 2025) 40.07%±1.02% 22.57±0.13 11.31%±0.45% 42.85±0.90 34.37%±1.80% 11.37±0.42
SayCanPay (Hazra et al., 2024) 49.53%±0.44% 18.55±0.01 42.04%±1.74% 40.64±0.43 38.54%±1.80% 10.76±0.49
TMoW 80.16%±1.45% 13.20±0.82 68.83%±1.15% 37.44±3.82 62.75%±2.65% 8.95±0.39

Table 2: Few-shot expansion performance in VirtualHome.

Unseen domains, VirtualHome 1-Shot 5-Shot Average

Baselines SR (↑) PS (↓) SR (↑) PS (↓) SR (↑) PS (↓)

LLM+FT 50.46%±0.44% 19.51±0.05 54.36%±7.18% 18.55±0.04 52.41%±3.81% 19.03±0.04
LLM-Planner (Song et al., 2023) 40.97%±6.02% 22.07±0.19 43.61%±0.92% 21.06±0.17 43.30%±3.33% 21.45±0.15
FLARE (Kim et al., 2025) 42.17%±0.37% 22.19±0.19 46.64%±7.02% 20.67±0.12 42.29%±3.47% 21.56±0.18
SayCanPay (Hazra et al., 2024) 54.98%±2.09% 17.77±0.04 58.88%±10.63% 16.92±0.22 56.93%±6.36% 17.35±0.13
TMoW 81.56%±1.69% 13.20±0.48 83.61%±1.33% 12.04±0.64 82.59%±1.49% 12.62±0.56

Evaluation Metrics. We adopt two evaluation metrics: Success Rate (SR) and Pending Steps
(PS). SR denotes the ratio of successfully completed tasks. PS stands for the average timestep taken
to complete tasks, akin to cost-effectiveness in (Hazra et al., 2024).

Baselines. For comparison, we use five baselines. ZSP (Huang et al., 2022) is a zero-shot approach
of using a pre-trained model to adapt to unknown domains without additional training. LLM+FT is
an LLM that is fine-tuned with domain-specific demonstrations to improve performance in new en-
vironments. LLM-Planner (Song et al., 2023) is a few-shot in-context learning method to generate
and refine high-level plans for new domains. SayCanPay (Hazra et al., 2024) is a state-of-the-art
model that integrates LLMs with a heuristic cost minimization method to generate cost-effective
plans. Lastly, FLARE (Kim et al., 2025) is a state-of-the-art embodied task planning model that
combines environmental perception with adaptive replanning to generate grounded task plans by
correcting predictions to align with environment features with few examples. We use Llama-3.2-
3B (AI@Meta, 2024) for ZSP, LLM-Planner, FLARE, and the Say model in SayCanPay, while
using trainable Llama-3.2-1B for LLM+FT, the Pay model in SayCanPay, and TMoW.

4.1 MAIN RESULTS

Zero-shot adaptation. We evaluate each method in zero-shot adaptation scenarios, where agents
must generalize across diverse seen and unseen domains, without access to any additional demon-
strations. Each domain represents a unique combination of task and scene.

As shown in Table 1, TMoW consistently outperforms all baselines across both seen and unseen
domains, particularly showing robust generalization to unseen domains. The results demonstrate the
superiority of our test-time mixture approach, where multi-granular prototypes effectively capture
shareable domain characteristics and enable immediate generalization through world model mixture,
achieving an average improvement of 14.61% in SR and 4.42 reduction (35.31% improvement) in PS
across environments for seen domains setting. Furthermore, test-time prototype refinement allows
our model to effectively process unseen domain data by aligning unseen features with prototypes,
thereby appropriately exploiting partial knowledge from existing models. This approach particu-
larly excels in unseen domains, where we observe an average improvement of 27.21% in SR and a
reduction of 3.45 steps (14.81% improvement) in PS across environments for Unseen domains.
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Can you stack up the boxes that are on the desk? 

Can you clean up the trash on the desk? 

Figure 4: Examples of Real-world environment.

Seen Domains Real-world

Baselines SR (↑) PS (↓)

FLARE (Kim et al., 2025) 57.10% ± 5.99% 7.26 ± 0.56
SayCanPay (Hazra et al., 2024) 52.90% ± 8.13% 7.00 ± 0.37
TMoW 91.46%±2.88% 4.23±0.12

Unseen Domains Real-world

Baselines SR (↑) PS (↓)

FLARE (Kim et al., 2025) 36.04% ± 11.18% 7.87 ± 0.56
SayCanPay (Hazra et al., 2024) 7.80% ± 4.60% 9.71 ± 0.22
TMoW 74.64%±2.99% 4.89±0.18

Table 3: Zero-shot adaptation performance in
Real-world Scenario.

Few-shot expansion. We further evaluate few-shot expansion scenarios, where each target do-
main provides only a few demonstrations at test time. This setup examines how effectively TMoW
expands its knowledge through distilled mixture-based augmentation with minimal supervision.

Table 2 compares performance across different few-shot settings (1 and 5 shots) in VirtualHome, il-
lustrating how the number of available demonstrations affects adaptation quality. As shown, TMoW
surpasses all baselines, achieving on average a 25.66% gain in SR and 4.73 step reduction in PS
in VirtualHome. These results demonstrate that our distilled mixture-based augmentation efficiently
achieves additional performance improvements through knowledge expansion while maintaining the
modularity of the overall framework.

Real-world scenario. We conduct experiments in real-world environments similar to RLBench to
validate the practical applicability of our approach. As shown in Figure 4, we use Franka Research
3 robot arm, and these experiments involve user instruction execution in specific object settings.
In Table 3, TMoW achieves an average improvement of 34.36% in SR compared to the best base-
line and 2.77 reduction (39.57% improvement) in PS for seen domains. For unseen domains, our
method demonstrates even more substantial gains with an average improvement of 38.60% in SR
and 2.98 reduction (37.86% improvement) in PS compared to the best performing baseline, FLARE.
Our TMoW demonstrates superior adaptation capabilities in these real-world scenarios, successfully
handling tasks that require intricate manipulation sequences and environmental understanding. The
results confirm that TMoW effectively transfers from simulation to reality, maintaining robust per-
formance despite the inherent uncertainties and variations present in physical environments.

4.2 ABLATION AND ANALYSIS

Table 4: Ablation study of TMoW

Model SR (↑) PS (↓)
Multi-granular Prototype-based Routing

TMoW-Object 65.25%±4.44% 16.72±1.99

TMoW-Scene 8.74%±0.60% 27.38±0.33

Test-time Prototype Refinement
TMoW-NoRefine 73.30%±1.47% 14.85±0.53

TMoW 80.74%±1.69% 13.12±0.87

(a) Zero-shot adaptation scenario

Model SR (↑) PS (↓)
Distilled Mixture-based Model Augmentation
TMoW-Scratch 59.84%±1.28% 18.16±0.74

TMoW 81.56%±1.69% 13.20±0.48

(b) Few-shot expansion scenario

Ablation study. We validate TMoW’s components
through ablation studies in VirtualHome, Unseen do-
mains settings. For multi-granular prototypes, we com-
pare against TMoW-Object (using only local object fea-
tures for routing) and TMoW-Scene (using only global
scene features for routing) variants. TMoW outperforms
TMoW-Object 15.49% improvement in SR and 3.60 re-
duction in PS, and TMoW-Scene 72.00% in SR and
14.26% in PS. This confirms that the multi-granularity
approach enables efficient knowledge sharing while pre-
serving an overall understanding of domain structure,
thereby contributing to improved performance. To as-
sess test-time refinement, TMoW-NoRefine uses fixed
prototypes without adaptation. Dynamic refinement im-
proves SR by 7.65%, validating its effectiveness for un-
seen scenarios. Finally, we evaluate our distilled mixture
approach against TMoW-Scratch (training from scratch).
Our method achieves 18.39% higher SR than scratch training while using 40% less data, demon-
strating superior efficiency in knowledge distillation from mixture of the existing world models.
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(a) Layer-wise routing score entropy heatmap (b) Routing score entropy changes after refinement

Figure 5: Analysis for multi-granular prototype-based routing and test-time prototype refinement.

Analysis for multi-granular prototype. Figure 5a illustrates the routing score entropy across lay-
ers, revealing distinct mixture patterns of world models. We observe high entropy in early layers,
indicating that multiple world models contribute equally to local object-level representations, max-
imizing knowledge sharing for fine-grained features. Conversely, later layers exhibit lower entropy,
suggesting that global structural and scene-level embeddings become more specialized to specific
world models. This hierarchical transition from shared local features to isolated global represen-
tations demonstrates how our multi-granular approach naturally balances knowledge sharing and
domain specialization across different levels of abstraction.

Analysis for test-time prototype refinement. Figure 5b shows the routing score entropy before
(TMoW-NoRefine) and after (TMoW) prototype refinement, demonstrating increased average en-
tropy across all layers. This entropy increase reveals that refinement corrects the initial misalignment
between prototypes and unseen domains, enabling the router to recognize previously underutilized
knowledge within existing world models. By expanding prototype coverage to better capture un-
seen domain characteristics, the refinement process facilitates more active knowledge sharing across
models, allowing previously underutilized models to contribute to unseen domains. This means the
agent can now leverage a more diverse mixture of world model expertise.

Figure 6: Continuous expansion scenario.

Continuous expansion. Figure 6 presents our
TMoW’s performance in continuous domain ex-
pansion scenarios. As domains are added in new
phase, the framework incorporates new world mod-
els through distilled augmentation, with refinement
facilitating efficient integration. The performance
improves not only for new domains but for ex-
isting ones, indicating positive knowledge transfer,
while maintaining high performance on previously
encountered domains without forgetting. This validates our prototype-based routing’s ability to pre-
serve existing knowledge while enabling cross-domain synergy through expanded coverage.

5 CONCLUSION

We presented the TMoW framework to enable embodied agents to effectively adapt to evolving envi-
ronments at test time. By extending the MoE paradigm with multi-granular prototype-based routing
and distilled mixture-based model augmentation, TMoW allows embodied agents to flexibly recon-
figure world model mixtures at test time and efficiently construct new world models from few-shot
demonstrations without retraining the entire system. Through extensive evaluation on VirtualHome
and ALFWorld, we demonstrated that TMoW achieves strong performance in various adaptation
scenarios, validating its effectiveness and scalability in dynamic embodied settings.

Future work and limitation. TMoW has two main limitations: (1) its performance is inher-
ently bounded by the capabilities of the underlying LLM used for planning, and (2) the world
model approach may face challenges in highly non-stationary environments like multi-agent set-
tings where other agents’ behaviors continuously change the environment dynamics. For future
work, we plan to enhance the safety and interpretability of TMoW’s routing decisions while extend-
ing it to multi-agent systems, enabling more reliable deployment and coordinated decision-making
in safety-critical applications.
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A ENVIRONMENTS

A.1 VIRTUALHOME

We conduct our experiments using VirtualHome (Puig et al., 2018), a Unity-based simulation plat-
form that enables embodied agents to execute complex household tasks through natural language
instructions. The environment provides 20 distinct house configurations, each featuring diverse
room architectures and object arrangements that capture the heterogeneity of real-world domestic
spaces.

Environment structure. VirtualHome represents environmental states as directed graphs, where
nodes correspond to entities (agents, objects, rooms) and edges encode spatial and functional rela-
tionships. Each state observation consists of relational triples (e1, r, e2) encoding relationships such
as spatial containment (e.g., faucet inside bathroom), proximity (e.g., character close plum), adja-
cency (e.g., bedroom adjacent kitchen), and agent-object interactions (e.g., character hold bread-
slice). This graph-based representation naturally captures the compositional structure of household
environments and enables reasoning about object affordances and spatial constraints.

Figure A.1: The example top-view scene of the VirtualHome environment.

Action space. Agents interact with the environment through six primitive action types: walk
(navigation), grab (object manipulation), open (state changes), put (placement), putin (con-
tainer interactions), and switch (device activation). These actions modify the environment graph
according to deterministic transition rules, enabling predictable yet complex multi-step behaviors.
The constrained action space reflects common household interactions while maintaining computa-
tional tractability for learning algorithms.

[System]
You are a home robot agent. You can use 6 skills, (walk [object or room], grab [object],
switch [object], open [object], putin [target object], put [target object]). You should return
only a skill after “Action:”. Room: livingroom, bathroom, kitchen, bedroom.

[User]
Instruction: {instruction}
Observation: {observation}
Action:

Figure A.2: System prompt in VirtualHome

Task specifications. We evaluate on 78 household instructions spanning four task categories that
test different aspects of embodied reasoning. Each instruction defines success criteria through target
graph configurations, requiring agents to transform the initial environment state through appropriate
action sequences. Tasks vary from simple object retrieval to complex multi-room activities involving
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Figure A.3: The available scenes of the ALFWorld environment.

sequential dependencies and state preconditions, providing a comprehensive benchmark for evalu-
ating adaptation capabilities across varying complexity levels.

A.2 ALFWORLD

ALFWorld (Shridhar et al., 2021) is a text-based embodied reasoning environment that translates
the ALFRED benchmark’s visual tasks into natural language interactions. This environment chal-
lenges agents to execute multi-step household tasks through textual observations and instructions,
emphasizing task planning and state reasoning in partially observable settings.

Environment structure. ALFWorld presents environmental states through natural language de-
scriptions that include spatial information, object locations, and agent positioning. After initializa-
tion, agents receive textual observations (e.g., “You are in the middle of a room. Looking quickly
around you, you see a armchair 1, a coffeetable 1...”) alongside the instruction (e.g., “Your task is
to: put a pillow in armchair”).

[System]
You are a home robot agent. You can use 10 skills, (go to [object], take [object] from [object],
put [object] on [object], open [object], close [object], toggle [object], heat [object] with
[object], cool [object] with [object], clean [object] with [object], look). You should return
only a skill after “Action:”. Room: livingroom, bathroom, kitchen, bedroom.

[User]
Instruction: {instruction}
Observation: {observation0}
Action: {action0}
Observation: {observation1}
Action: {action1}
...
Action:

Figure A.4: System prompt in ALFWorld

Action space. Agents interact with the environment through structured text commands.
The action space contains navigation (go to [location]), perceptual query (look,
examine [object]), object manipulation (take [object], put [object]
in/on [receptacle]), and state modification (open/close [container], use
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Figure A.5: The example scenes of RLBench simulator.

[appliance]). Each action triggers deterministic state transitions with corresponding textual
feedback, enabling agents to track environmental changes and plan subsequent steps.

Task specification and dataset construction. This environment has 6 fundamental task templates
that, when instantiated across various object-receptacle-room combinations, yield 1,304 unique sce-
narios. These tasks cover a lot of scenarios from simple object relocation to complex multi-stage
procedures involving tool use. Each task requires agents to infer implicit subgoals, manage partial
observability, and execute precise action sequences to achieve specified goal states. We utilize 6 task
categories (4 seen, 2 unseen) with 4 scene categories (3 seen, 1 unseen) to form 1,304 episodes, and
construct episodic dataset which contains task-trajectory pairs.

A.3 RLBENCH

We evaluate in the RLBench simulator (James et al., 2020) for manipulation scenarios. Built on
the CoppeliaSim simulator, RLBench provides diverse robotic platforms and a rich set of manip-
ulation objects with varying complexity. We adapt this framework to support language-based task
specification, enabling natural language instructions as input for our evaluation benchmark.

Environment structure. RLBench includes tables, shelves, and storage units. Across the scenes
we vary furniture layouts, object types, and initial states to reflect the heterogeneity of the real en-
vironment. Each scene contains 4-6 everyday objects distributed across tables, shelves, and storage
units.

Action space. The robot interacts through 6 primitive actions: open [object],
pick [object], place [object] on [object], close [object], wipe
[object], pour [object]. Each action is executed with collision checking and inverse
kinematics validation in simulation.

[System]
You are a home robot agent. You can use 6 skills, (open [object], pick [object], place [object]
on [object], close [object], wipe [object], pour [object]). If the question is ”Action:” you
should answer with a skill. If the question is ”Next observation:” you should answer with the
next observation. You must answer only with what is requested and nothing else.

[User]
Instruction: {instruction}
Observation: {observation}
Action:

Figure A.6: System prompt in RLBench
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Put plates on same color dishracks Separate cup and straw in bins

Stack red cup on white cup Stack boxes in order of size

Figure A.7: The examples of the Real-world scenarios.

Task specification and dataset construction. Tasks span home manipulations, object reloca-
tion/organization, surface cleaning, and container handling, and specify success as satisfying a target
scene graph (e.g., (yellow plate, is, clean), (yellow plate, on, yellow dishrack)). Tasks embed state
preconditions and sequential dependencies (e.g., pick sponge before wipe), encouraging planning
that couples perception with action. We construct datasets across 4 task categories: Place (e.g.,
place knife on chopboard), Pour (e.g., pour water in cup), Clean (e.g., Clean the plate) (3 seen) and
Putin (e.g., Put carrot in the frying pan) (1 unseen), paired with 6 scene categories (4 seen, 2 unseen),
resulting in a total of 163 episodes for the seen datasets.

A.4 REAL-WORLD ENVIRONMENT

We evaluate in a real-world setup using a Franka Research 3 robot arm for household manipulation
scenarios. Our real-world experiments assess robustness, generalization, and closed-loop adaptabil-
ity under sensing uncertainty and imperfect actuation.

Environment structure. The workspace includes tables, shelves, and storage units. Across scenes
we vary furniture layouts, object types, and initial states to reflect the heterogeneity of real homes.
At episode start, the robot waits at a home pose, then uses RGB-D perception combined with VLM
to extract scene-graph inference (object and relation candidates) to describe targets and constraints
(e.g., container relations, surface placement, open/close capability).

Action space. The robot interacts through nine primitive actions: open [object], pick
[object], place on [object], close [object], wipe [object], pour
[object], sweep [object], flip [object], push [object]. Each action is
executed with collision checking and inverse kinematics validation.

Task specification and Dataset construction. Tasks span canonical home manipulations, object
relocation/organization, surface cleaning, and container handling, and specify success as satisfying
a target scene graph (e.g., (yellow plate, is, clean), (yellow plate, on, yellow dishrack)). Tasks
embed state preconditions and sequential dependencies (e.g., pick sponge before wipe), encouraging
planning that couples perception with action. We construct 8 scenes (4 seen, 4 unseen) reflecting
heterogeneous household setups, and define 3–5 tasks per scene for a total of 29 episodes. Each
scene contains 8–12 everyday objects distributed across tables, shelves, and storage units.

B IMPLEMENTATION DETAILS

In this section, we provide the implementation details of our proposed framework TMoW and each
baseline. Our framework is implemented using Python v3.12 and trained on a system of an Intel(R)
Core (TM) i9-10980XE processor and two NVIDIA RTX A6000 GPUs.
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[System]
You are a home robot agent. You can use 9 skills, (open [object], pick [object], place on
[object], close [object], wipe [object], pour [object], sweep [object], flip [object], push [ob-
ject]). If the question is ”Action:” you should answer with a skill. If the question is ”Next
observation:” you should answer with the next observation. You must answer only with what
is requested and nothing else.

[User]
Instruction: {instruction}
Observation: {observation}
Action:

Figure A.8: System prompt in Real-world Environment

B.1 BASELINES

ZSP. We use the zero-shot policy (ZSP) as a non-adaptation reference to assess the improvements
achieved by TMoW. A single pretrained LLM(Llama-3.2-3B-Instruct) receives the observation from
the environment, which is injected into the prompt as described in Figure A.2 and A.4. The model
generates the next action step by step without any fine-tuning or additional supervision. Our imple-
mentation follows the open-source 1 with only minimal I/O adjustments to match our environment
API.

LLM+FT. This baseline represents adaptation via fine-tuning on limited domain-specific data.
It allows us to compare the efficiency and effectiveness of TMoW against conventional parameter
adaptation. For the few-shot adaptation scenario, we further train the already fine-tuned model with
the few-shot data from the target domain.

LLM-Planner. We evaluate an embodied planner that leverages in-context learning for high-level
reasoning. We aim to demonstrate the effectiveness of TMoW over in-context learning through
this baseline. Given the current observation and instruction, relevant demonstration snippets are
concatenated with the planner prompt, then the pretrained LLM proposes the next action. For data
retrieval, we use a DPR-based sentence embedding model that collects relevant data from the same
dataset employed in the fine-tuning of other baselines (LLM+FT, SayCanPay). For the few-shot
adaptation scenario, we augment the dataset with the target domain examples. Our implementation
follows the open-source 2.

SayCanPay. We include a Reinforcement Learning-based planner that integrates LLM reasoning
with heuristic cost minimization. By comparing against this approach, we evaluate the effective-
ness of TMoW. This baseline uses three models: (1) pretrained LLM(Llama-3.2-3B-Instruct) for
the Say model, (2) environment-provided optimal affordances as the Can model, and a fine-tuned
LLM(Llama-3.2-1B-Instruct) for the Pay model. The hyperparameters of SayCanPay are listed in
Table A.1. We follow the implementation of the open-source 3.

FLARE. This state-of-the-art baseline extends conventional in-context learning with an
environment-adaptive replanning module that revises plans based on observed scene states. We
demonstrate the superiority of TMoW in cross-domain problems by comparing with the newest
method. The retriever, conditioned on the observation and instruction, collects relevant dataset ex-
amples and builds the planner prompt. If the agent fails, the model substitutes targets via semantic
similarity over observed objects when names mismatch. For the few-shot adaptation scenario, target-

1https://github.com/huangwl18/language-planner
2https://github.com/OSU-NLP-Group/LLM-Planner
3https://github.com/RishiHazra/saycanpay
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domain samples are additionally included in the training data. We follow the implementation of the
open-source 4.

Table A.1: Hyperparameter settings and configurations of baselines

Hyperparameter Value

Trainable model (LLM+FT, and Pay 5) Llama-3.2-1B
Reasoning model for Simulation (ZSP, LLM-Planner, FLARE and Say 6) Llama-3.2-3B
Reasoning model for Real-world (FLARE and Say 6) Llama-3.2-8B
Batch size 4
Gradient steps 200
Learning rate scheduler cosine
Initial learning rate 5× 10−5

Learning rate (for few-shot learning) 1× 10−6

Temperature (both of Llama-3.2-1B and Llama-3.2-3B) 1.0

B.2 TMOW (OURS)

Our framework, Test-time Mixture of World Models (TMoW), builds upon the parameter-efficient
MoE architecture (Li et al., 2024). We employ Llama-3.2-1B as our base model with LoRA for
parameter-efficient fine-tuning.

Algorithms. Detailed procedures of TMoW are described in Algorithms 1 through 3. Algorithm 1
describes the construction of the mixture of world models, which ranges from training each world
model to extracting multi-granular prototypes. The second (Algorithm 2) contains details on test-
time prototype refinement, focusing on how it works while interacting with the environment. The
last algorithm (Algorithm 3) provides details of distilled model augmentation, describing the actual
construction and training process of the augmented world model.

Detailed implementation of multi-granular prototype-based router. The multi-granular
prototype-based router adopts an MPNN (Gilmer et al., 2017) structure, specifically utilizing GCN
models. A key consideration in our design is the oversmoothing phenomenon inherent to MPNNs,
where node representations become indistinguishable with increasing depth. To address this, we
strategically limit MPNN layers while using standard MLPs for the remaining layers. Given that our
base model (Llama-3.2-1B) contains 16 layers, we implement a hybrid architecture where the 0th,
4th, 8th, and 12th layers employ GCN to capture graph structure at multiple granularities, while all
remaining layers use standard MLPs to preserve representational diversity.

Each layer of MPNN aggregates information from neighboring nodes through three functions:
message(MSG), aggregate(AGG), and update(UPD). These functions recurrently compute the hid-
den states for the observation graph G(o) = (V ,E,R) and the instruction i. Specifically, the hidden
state of the lth MPNN layer is computed by

H(l) = f (l)(G(o), i)

= UPD(l)
(

AGG(l)
(

MSG(l)(H(l−1)),A,R
)) (A.1)

where the initial H(0) is the same as V . The three functions are computed by

M̃ = MSG(l)(H(l−1)) = H(l−1)W
(l)
M

Ã = AGG(l)(M̃ ,A,R) = D̃− 1
2 ẼD̃− 1

2M̃

H(l) = UPD(l)(Ã) = σ(ÃW
(l)
U )

(A.2)

where D̃ is a diagonal matrix such that D̃jj =
∑

k Ẽjk, Ẽ is the context-aware edge matrix, and σ

is a sigmoid function. W (l)
M and W

(l)
U are learnable weight matrices.

4https://github.com/snumprlab/flare
5Pay model in SayCanPay
6Say model in SayCanPay
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Algorithm 1 Mixture of World Models Construction

Require: Base model M , demonstrations {Dj}Nj=1, learning rate η1 and η2, gradient steps T1 and
T2

Ensure: Mixture of world models M ⊕ {mj}Nj=1, prototypes {p(l)
j }Nj=1 for each layer l

1: for each domain j ∈ {1, ..., N} do
2: // Adapter training
3: Initialize the adapter mj

4: for step := 1 to T1 do
5: Sample mini-batch B from demonstration Dj

6: Train adapter mj on mini-batch data B:
7: mj ← mj − η1∇mj

[
E(·,τ⃗)∈BLTF(M ⊕mj , τ⃗)

]
8: end for
9: // Prototype extraction

10: for each layer l ∈ {1, · · · , L} do
11: Sample mini-batch B from demonstration Dj

12: Extract prototype using MPNN: p(l)
j := E(i,τ⃗)∈BE(o,·,·)∈τ⃗ [f

(l)(G(o), i)]
13: end for
14: end for
15: // Mixture of world models construction
16: for step := 1 to T2 do
17: Sample mini-batch B from a combination of the demonstrations ∪Nj=1Dj

18: Train mixture of world models M ⊕ {mj}Nj=1 on mini-batch data B:
19: mj ← mj − η2∇mj

[
E(·,τ⃗)∈BLTF(M ⊕ {mj}Nj=1, τ⃗)

]
∀j ∈ {1, · · · , N}

20: end for
21: return Mixture of world models M ⊕ {mj}Nj=1, prototypes {p(l)

j }Nj=1 for each layer l

Detailed implementation of context-aware edge matrix. In equation A.2, we adjust the amount
of the aggregation based on the instruction and context. The context-aware edge matrix Ẽ is calcu-
lated as

Ẽ = (A+ I)⊙R⊙ f
(l)
adj(H

(l−1), i) (A.3)
where ⊙ represents the Hadamard product and I is the identity matrix.

To incorporate the instruction into prototypes, we introduce an adjustment function fadj that modu-
lates neighbor information aggregation based on these inputs:

f
(l)
adj(H

(l−1), i) = fgate

(
(QHQT

i )(KHKT
i )

T /
√
d
)

(A.4)

Here, fgate is a gate function (e.g., ReLU) and d is the embedding dimension. The adjacency
function employs a cross-attention mechanism that captures the interaction between observations
and context. Specifically, we project the hidden states and context into query and key spaces by

QH = H(l−1)W
(l)
QH

,Qi = Φ(i)W
(l)
Qi

; KH = H(l−1)W
(l)
KH

,Ki = Φ(i)W
(l)
Ki

(A.5)

where W
(l)
QH

, W (l)
Qi

, W (l)
KH

, and W
(l)
Ki

are learnable weight matrices, and Φ denotes embedding
functions for instructions, e.g., from language models.

Router pretraining. We pretrain the router using contrastive learning with a compound loss func-
tion. For input data X = {G1,G2, . . . ,GN}, we define an instance-level contrastive loss that learns
augmentation-invariant representations:

L1(X) = − 1

N

N∑
n=1

log
exp(sim(Ψ1(Gn),Ψ2(Gn))/τ)∑N

m=1 exp(sim(Ψ1(Gm),Ψ2(Gn))/τ)
(A.6)

Additionally, we incorporate a domain-aware contrastive loss that encourages domain clustering:

L2(X) = − 1

N

N∑
n=1

log

∑N
m=1 1d[m]=d[n] exp(sim(Ψ1(Gm),Ψ2(Gn))/τ)∑N

m=1 exp(sim(Ψ1(Gm),Ψ2(Gn))/τ)
(A.7)
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Algorithm 2 Test-time Prototype Refinement

Require: Test environment Env : (O,A)→ O, instruction i
1: Take an initial observation o from the environment
2: repeat
3: // Step 1: Prototype-based routing
4: for each layer l ∈ {1, · · · , L} do
5: Extract domain embedding: E(l) = f (l)(G(o), i)
6: Compute routing scores: w(l)

j = sim(E(l),p(l)
j ) for all j

7: Sparsify and normalize: (w̄(l)
1 , · · · , w̄(l)

N ) = softmax(topK((w
(l)
1 , · · · , w(l)

N )/τ))
8: end for
9: // Step 2: Mixture of world model execution

10: y(0) := (i, o)
11: for each layer l ∈ {1, · · · , L} do
12: y(l) := M (l)

(
y(l−1)

)
+
∑N

j=1 w̄
(l)
j m

(l)
j

(
y(l−1)

)
13: end for
14: Predicted action a := y(L)

15: Take next observation o← Env(o, a)
16: // Step 3: Test-time prototype refinement
17: for each layer l ∈ {1, · · · , L} do
18: for j ∈ {1, 2, · · · , N} do
19: rj,k := sim(p

(l)
j ,p

(l)
k ) ∀k ∈ {1, · · · , N}

20: (r̄j,1, · · · , r̄j,N ) := softmax((rj,1, · · · , rj,N )/τr)

21: Compute refinement term: ∆p
(l)
j :=

∑N
k=1 r

(l)
j,kp

(l)
k

22: Update prototypes: p(l)
j ← (1− α sim(E(l),p(l)

j ))p
(l)
j + α sim(E(l),p(l)

j )∆p
(l)
j

23: end for
24: end for
25: until episode done

Algorithm 3 Distilled Model Augmentation

Require: Few-shot demonstrations D′, learning rate η, gradient steps T
Ensure: Distilled mixture of world models M ⊕{mj}N+1

j=1 , prototypes {p(l)
j }

N+1
j=1 for each layer l

1: if few-shot demonstrations D′ available for unseen domain then
2: Construct combined graph and take instruction: G′, i′ from observations in D′

3: for each layer l ∈ {1, · · · , L} do
4: Forward through MPNN to get routing scores: (w̄(l)

1 , · · · , w̄(l)
N )

5: Initialize new adapter: m′(l) :=
∑N

j=1 w̄
(l)
j m

(l)
j

6: Compute new prototype: p′(l) := f (l)(G′, i′)
7: end for
8: for step := 1 to T do
9: Fine-tune m′ on D′:

10: m′ ← m′ − η∇m′
[
E(·,τ⃗)∈D′LTF(M ⊕m′, τ⃗)

]
11: end for
12: mN+1 := m′; p

(l)
N+1 := p′(l) ∀l ∈ {1, · · · , L}

13: Add to model mixture: {mj}N+1
j=1 and layer-wise prototype set: {p(l)

j }
N+1
j=1

14: end if
15: return Mixture of world models M ⊕ {mj}N+1

j=1 , prototypes {p(l)
j }

N+1
j=1 for each layer l

The final training loss LCL combines two contrastive losses:

LCL(X) =
1

λ+ 1
L1(X) +

λ

λ+ 1
L2(X) (A.8)
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where Ψ1,Ψ2 are augmentation functions for creating different views, sim(·, ·) is the similarity
metric (e.g., cosine similarity), d[m] denotes the domain label of graph Gm, τ is the temperature
parameter for contrastive learning, and λ is the balancing coefficient between instance and domain
objectives.

Hyperparameters. The hyperparameters of TMoW are listed in Table A.2.

Table A.2: Hyperparameter settings and configurations of TMoW training

Hyperparameter Value

Common

Base model Llama-3.2-1B
Learning rate scheduler cosine
Warmup steps 200
Temperature 1.0

World models

Batch size 16
Rank of LoRA 32
Gradient steps 2000
Initial learning rate 1× 10−5

TMoW

Batch size 1
Gradient steps 10000
Initial learning rate 1× 10−4

Learning rate (for few-shot learning) 1× 10−7

C ADDITIONAL ANALYSIS

C.1 EXTENSION RESULTS FOR FEW-SHOT EXPANSION SCENARIO

Table A.3: Few-shot expansion performance in VirtualHome and ALFWorld.

Unseen domains, VirtualHome 1-Shot 5-Shot Average

Baselines SR (↑) PS (↓) SR (↑) PS (↓) SR (↑) PS (↓)

LLM+FT 50.46%±0.44% 19.51±0.05 54.36%±7.18% 18.55±0.04 52.41%±3.81% 19.03±0.04
LLM-Planner (Song et al., 2023) 40.97%±6.02% 22.07±0.19 43.61%±0.92% 21.06±0.17 43.30%±3.33% 21.45±0.15
FLARE (Kim et al., 2025) 42.17%±0.37% 22.19±0.19 46.64%±7.02% 20.67±0.12 42.29%±3.47% 21.56±0.18
SayCanPay (Hazra et al., 2024) 54.98%±2.09% 17.77±0.04 58.88%±10.63% 16.92±0.22 56.93%±6.36% 17.35±0.13
TMoW 81.56%±1.69% 13.20±0.48 83.61%±1.33% 12.04±0.64 82.59%±1.49% 12.62±0.56

Unseen domains, ALFWorld 1-Shot 5-Shot Average

Baselines SR (↑) PS (↓) SR (↑) PS (↓) SR (↑) PS (↓)

LLM+FT 43.12%±2.00% 40.18±0.32 48.86%±1.06% 35.14±2.24 45.99%±1.53% 37.66±1.28
LLM-Planner (Song et al., 2023) 8.91%±1.51% 47.43±0.64 7.39%±0.22% 46.79±0.00 8.18%±0.87% 47.11±0.32
FLARE (Kim et al., 2025) 12.28%±0.23% 43.67±0.88 11.46%±0.54% 44.40±0.79 11.87%±0.39% 44.04±0.84
SayCanPay (Hazra et al., 2024) 46.08%±1.33% 39.00±0.33 49.34%±1.18% 37.55±0.24 47.71%±1.92% 38.28±0.29
TMoW 71.28%±0.05% 34.23±15.56 71.88%±0.01% 25.73±14.40 71.58%±0.03% 29.98±14.98

We evaluate few-shot expansion scenarios, where each target domain provides only a few demon-
strations at test time. This setup examines how effectively TMoW expands its knowledge through
distilled mixture-based augmentation with minimal supervision.

Table A.3 compares performance across different few-shot settings (1 and 5 shots) in VirtualHome
and ALFWorld, illustrating how the number of available demonstrations affects adaptation quality.
As shown, TMoW surpasses all baselines, achieving on average a 25.66% gain in SR and 4.73
step reduction in PS in VirtualHome, and a 23.87% gain in SR and 8.30 step reduction in PS in
ALFWorld, compared to SayCanPay.
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Figure A.9: The comparison of the routing score entropy distribution between success and failed
case.

Figure A.10: The success rate per refinement rate α in test-time prototype refinement.

These results demonstrate that our distilled mixture-based augmentation efficiently achieves addi-
tional performance improvements through knowledge expansion while maintaining the modularity
of the overall framework.

C.2 CORRELATION WITH ROUTING SCORE ENTROPY AND PERFORMANCE

Our analysis uncovers an insight that the routing score entropy distributions directly impact model
performance. We observe that successful episodes demonstrate higher routing entropy than failed
ones.

Figure A.9 compares the distribution of the routing score entropy between Success and Fail cases
on unseen domains. Success cases exhibit higher entropy values (mean = 0.23, blue dashed line)
compared to failed cases (mean = 0.20, red dashed line), demonstrating that distributed routing pat-
terns correlate with task success. This indicates that leveraging diverse world models through higher
entropy routing enables the framework to capture multiple domain characteristics simultaneously,
leading to more robust adaptation and improved performance in complex, unseen domains.

C.3 ANALYSIS FOR REFINEMENT RATE α

Figure A.10 illustrates the impact of the refinement rate α on success rate. When α is too small,
insufficient refinement occurs, leading to degraded performance compared to the baseline. This
suggests that with low α values, refinement acts as noise rather than meaningful adaptation. Due
to the test-time refinement nature where updates occur during inference, insufficient learning rates
require too many steps to converge, harming performance.

However, once α reaches a sufficient threshold (α ≥ 0.5), the model consistently achieves perfor-
mance above the baseline (dotted line) and can rapidly adapt within fewer steps. This demonstrates
that while an appropriately sized refinement rate is crucial for enabling efficient test-time adaptation,
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our framework robustly improves performance once this threshold is met, validating the effective-
ness of our approach across a range of hyperparameter settings.

C.4 COMPUTATION OVERHEAD

Table A.4: Average latency comparison across baselines.

Baselines Latency (ms)

ZSP 115.43 ± 24.91

LLM+FT 115.87 ± 24.88

LLM-Planner 740.46 ± 40.42

FLARE 917.44 ± 49.16

SayCanPay 2470.30 ± 106.06

TMoW 700.12 ± 88.41

As shown in Table A.4, ZSP and LLM+FT exhibit the lowest latency, followed by our TMoW
approach which achieves the next best performance. While our method uses Llama-3.2-1B in ex-
periments, the baselines such as LLM-Planner, FLARE, SayCanPay, employ larger Llama-3.2-3B
models for reasoning without training. Moreover, in-context learning methods like LLM-Planner
and FLARE suffer from increased latency due to lengthy prompt processing. SayCanPay shows
significantly higher latency as it requires inference across multiple models. In contrast, our TMoW
leverages adapter-based MoE architecture, enabling efficient test-time adaptation while maintain-
ing competitive inference speed through lightweight parameter updates and selective world model
routing.
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