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ABSTRACT

Test-time adaptation (TTA) addresses domain shift issues in real-world applications.
TTA adapts the model considering real-world constraints: (1) TTA does not have
access to the training data or the labels of the test data and (2) TTA has limited
computational resources for adaptation since it adapts model while performing
inference. Due to the constraints, it has been established that model updates based
on model-trusting data whose predictions closely aligned with one-hot vectors are
effective. Hence, we propose a Prototypical Influence Function (PIF) regularizer
utilizing the influence function to assess the influence of adapting a test data point
on the loss for model-trusting data. The influence function is impractical for
TTA due to computational complexity and the unavailability of model-trusting
data. However, by introducing reasonable approximations, we can feasibly use
the PIF for TTA. Our experimental results demonstrate consistent performance
enhancement when the PIF is applied into the existing TTA methods on various
benchmark datasets.

1 INTRODUCTION

Deep learning models have made significant advancements under the assumption that training and
test data are sampled from the same distribution (Krizhevsky et al., 2017). However, in the real
world, this assumption is easily violated. For example, there are weather changes such as rain or
snow, as well as natural corruptions caused by spots on camera sensors. Conventional deep learning
models are vulnerable to such distribution shifts and experience degradation in the presence of natural
corruptions (Hendrycks & Dietterich, 2019). Therefore, numerous attempts have been made to
robustly address unknown distribution shifts, including domain adaptation (DA) (Csurka, 2017),
domain generalization (DG) (Muandet et al., 2013), unsupervised domain adaptation (UDA) (Ganin
& Lempitsky, 2015) and source-free domain adaptation (SFDA) (Liang et al., 2020).

The tasks mentioned earlier require access to training (source) data or a separate process to adapt
the model to the test (target) data. However, in real-world applications, retrieving source data during
inference or allocating considerable time for adaptation is infeasible. These real-world constraints
lead to the emergence of the field on test-time adaptation (TTA) (Wang et al., 2021). TTA conducts
model adaptation while simultaneously performing inference on test data. It assumes the training
data to be inaccessible and solely relies on the pre-trained model with test data that is streamed
online. As TTA also lacks access to labels for test data, existing methods often employ objectives
such as entropy minimization (Wang et al., 2021) or cross-entropy with pseudo-labels (Goyal et al.,
2022). Both of these objectives aim to guide the model’s self-supervision, enforcing its predictions.
A potential drawback of these approaches is that the objectives may lead the model to collapse in the
initial phase of adaptation, when the model has not yet stabilized.

In order to mitigate the performance degradation caused by model collapse, various filtering methods
have proposed such as entropy filtering (Niu et al., 2022) or confidence filtering (Sohn et al., 2020).
These approaches have experimentally demonstrated that model updates based on reliable samples
effectively boost the performance, which implies the importance of the sample selection in label-
absent tasks. Therefore, it is crucial to minimize the loss for model-trusting data, which refer to
samples whose probabilistic outputs obtained from the model closely resemble one-hot vectors, in
order to improve model performance in TTA.
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Figure 1: t-SNE visualization of feature embed-
ding of test data and weight prototypes.

We propose a novel regularizer called the pro-
totypical influence function (PIF), derived from
the influence function (IF), introduced by Koh
& Liang (2017). The IF quantifies how much a
data point affects the model parameter without
a leave-one-out retraining process. In our work,
we reformulate IF tailored to TTA to quantify
how much a data point affects the loss of model-
trusting data without the adaptation process. The
PIF regularizes the model to enhance the positive
impact of test data on the model-trusting data,
specifically aimed at reducing the loss of model-
trusting data. However, there are computationally
intensive terms involved in the IF, making its direct usage practically infeasible. Moreover, obtaining
model-trusting data is impossible due to the unavailability of access to the entire test dataset.

To address the first challenge, we employ two approximations to calculate the influence function
in a computationally efficient manner. We first obtain an analytical expression for PIF, which can
be computed along with a forward pass. Moreover, for the second challenge, we approximate the
features of model-trusting data as the weights of the model’s last layer. As the last layer of the model
is responsible for mapping features to their corresponding classes, model-trusting data align well
with the last layer weights that map them to their pseudo-label classes (Tian et al., 2021). Hence, last
layer weights effectively represent the class prototypes of model-trusting data in the feature space.

To confirm whether the last layer weights serve as a suitable approximation for the prototypes of
model-trusting data, we visualized test samples and the last layer weights in the feature embedding
space of the pre-trained model using t-SNE (Van der Maaten & Hinton, 2008). Figure 1 illustrates
CIFAR-10-C (Hendrycks & Dietterich, 2019) data with Gaussian noise, where the red circles represent
the last layer weights. Colored circles represent test samples whose pseudo-labels match their ground
truth labels, while circles with gray edges represent test samples whose pseudo-labels do not match
their ground truth labels. Due to the denser clusters of colored circles are constructed around the
weights, Figure 1 empirically demonstrates the validity of the weights as the prototypes.

We examined the robustness and effectiveness of the PIF regularizer over public TTA benchmark
datasets, including CIFAR-10-C, and ImageNet-C (Hendrycks & Dietterich, 2019). Additionally, we
conducted experiments on a large-scale dataset, ImageNet-3DCC (Kar et al., 2022). PIF consistently
improves the performance of existing methods across all datasets. We also show that the PIF loss is
robust to the value of the hyperparameter. Moreover, we perform comparative experiments against
various design choices to analyze the performance of the PIF loss. Our contributions are summarized
as follows:

• We introduce the PIF regularizer, which aims to regulate the model by amplifying the
positive impact of test data on the loss of model-trusting data.

• We formulate the feasible PIF regularizer which satisfies the limited access and low-resource
constraints of TTA.

• We demonstrate the effectiveness of PIF on various benchmark datasets, showing consistent
performance improvements while maintaining computational efficiency.

2 RELATED WORK

Test-Time Adaptation (TTA) TTA is a task that performs inference while adapting to an online test
data stream, without access to the source data. It shares a similar paradigm with source-free domain
adaptation (SFDA) (Liang et al., 2020), in which that source data is inaccessible. While SFDA
performs adaptation before actual inference, TTA requires on-the-fly adaptation during inference time.
To meet the tight computation constraints, NORM (Schneider et al., 2020) updates only the batch
normalization statistics on mini-batch samples during test time. Furthermore, true labels of the test
data are absent in the TTA context, so augmentation methods or unsupervised losses are employed for
the TTA task. TTT (Sun et al., 2020), MEMO (Zhang et al., 2022), Test-time Augmentation (Ashukha
et al., 2020), and DUA (Mirza et al., 2022) require augmented images of the test data. There are
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two main types of unsupervised losses in TTA: the entropy minimization loss and the cross-entropy
loss with pseudo-labels. TENT (Wang et al., 2021) and EATA (Niu et al., 2022) optimize entropy
minimization loss while adapting batch normalization statistics during test time. PL (Lee et al., 2013)
generates pseudo-labels based on model predictions and uses cross-entropy loss to adapt the batch
normalization layer parameters to the test data. Also, consistency regularization techniques are used
by cross-entropy loss (Chen et al., 2022). Our proposed PIF loss is generic enough to be integrated
with different TTA methods.

Influence Function (IF) The influence function, introduced by Koh & Liang (2017), estimates
how much the model changes when we increase the importance of a training sample. Furthermore,
their study also explored the impact of up-weighting a particular training sample on validation loss.
Influence function is applied in a variety of tasks, including model debugging, identifying dataset
anomalies, and crafting training-set adversarial attacks. In the context of semi-supervised learning,
IF is utilized to assign weights to unlabeled data (Ren et al., 2020). IF is also applied in data
augmentation (Lee et al., 2020) for quantifying the influence of augmented data. The application
of IF extends to tasks such as identifying mislabeled data (Kong et al., 2021) and partial label
learning (Gong et al., 2022). Several studies have focused on understanding and analyzing the
behavior of IF (Bae et al., 2022; Saunshi et al., 2022). Additionally, efforts have been made to scale
up the calculation of IF (Schioppa et al., 2022). In previous works, the IF was used as a tool to
understand the relationship between training data, model, and test data, but there were no attempts to
use IF values as an objective function. To the best of our knowledge, we propose the first method
applying the IF to TTA. We utilize the IF to quantify the relationship between the test data and
model-trusting data. Then, the proposed PIF regularizer aims to maximize the IF values.

3 PROPOSED METHOD

In the following sections, we propose Prototypical Influence Function (PIF) regularizer for test-time
adaptation. We first formalize the problem of TTA (Section 3.1). We quantify the influence of test
data on the model-trusting data (Section 3.2). Subsequently, we reformulate the influence function
to align with the constraints of TTA. (Section 3.3). Finally, we introduce the PIF regularizer, which
enhances the influence of the test data on the loss of model-trusting data (Section 3.4).

3.1 PROBLEM DEFINITION

The training data is denoted as Dtr = {(xs
i , y

s
i )}

Ntrain
i=1 , where xs

i represents the input training
samples and ysi represents their corresponding labels. The distribution of the training data is denoted
as P (x) (i.e., xs

i ∼ P (x)). The training data consists of c classes, where ysi takes values from
the set Y = {1, 2, . . . , c}. On the other hand, the test data is represented as Dte = {xt

j}
Ntest
j=1 and

xt
j ∼ Q(x). Since test data is corrupted, P (x) ̸= Q(x) and there is no label for test data.

Let’s denote the feature extractor as fϕ(·) and the classifier as gw(·). For the input test data xt,
the feature of the test data can be represented as fϕ(x

t) = ht, and the logit of the test data can
be represented as gw(ht) = zt. The prediction of the test data is the softmax of the logit (i.e.,
σ(zt) = ŷt). The set of whole network parameters is represented as θ which contains the parameters
of feature extractor and the parameters of classifier (i.e., θ = ϕ ∪w). The classifier consists only of
the last fully-connected layer. Then the parameters of classifier gw(·) consists of the bias and weights,
namely w = {b,w1,w2, · · · ,wc} where b denotes the bias.

Lastly, Model trusting data refers to data points with low entropy or high maximum softmax probabil-
ities since TTA is an unsupervised task. Let’s denote model-trusting data as M = {xm

k }Mk=1. The set
of model-trusting data is a subset of test data (i.e., M ⊆ Dte). It is crucial to minimize the loss of
model-trusting data in TTA.

Following the prior works (Wang et al., 2021; Niu et al., 2022; Goyal et al., 2022), we update only
the parameters of the batch normalization (BN) layer of the feature extractor during adaptation.
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3.2 INFLUENCE OF TEST DATA ON THE MODEL-TRUSTING DATA

Influence of test data on the model parameters To understand the impact of adapting the test
data to the model, we can consider a change in the model parameters after adapting to test data. By
utilizing influence functions, we can assess the impact of an individual test sample on the change in the
model parameters without the need for computationally expensive leave-one-out training. We denote
the loss of sample xi by L(xi;θ). Our optimization objective is based on empirical risk minimization
(ERM). Specifically, the empirical risk over Dtr is defined as L(Dtr;θ) =

1
Ntrain

∑Ntrain

i=1 L(xs
i ; θ).

Then the optimal parameters of a pre-trained model on the train data can be defined as θ̂
def
=

argminθ∈Θ L(Dtr;θ). If test data point xt added by some infinitesimally small ϵ, the new parameter

is given as θ̂ϵ,xt

def
= argminθ∈Θ L(Dtr;θ) + ϵL(xt;θ). We can use the following closed-form

expression to estimate the change in the model parameters when adapting to xt by ϵ. The influence
of adding xt on the parameters is given by:

Iadd.params(x
t)

def
=

dθ̂ϵ,xt

dϵ

∣∣∣∣∣
ϵ=0

= −H−1

θ̂
∇θL(xt; θ̂). (1)

where Hθ̂

def
= ∇2

θL(Dtr; θ̂) is the Hessian of the model at parameters θ̂. Detailed proof of Equation 1
is provided in the Appendix.

Influence of test data on the loss of model-trusting data We are interested in understanding the
influence of test data on the loss of model-trusting data. This can be measured by the change in the
loss of model-trusting data when adapting to the test data. By utilizing the chain rule and Equation 1,
we can approximate the influence of adapting test data xt on the loss at xm ∈ M as follows:

Iadd.loss(xt,xm)
def
=

dL(xm; θ̂ϵ,xt)

dϵ

∣∣∣∣∣
ϵ=0

= ∇θL(xm; θ̂)⊺
dθ̂ϵ,xt

dϵ

∣∣∣∣∣
ϵ=0

(2)

(3)

= −∇θL(xm; θ̂)⊺H−1

θ̂
∇θL(xt; θ̂). (4)

Equation 4 represents a gradient of L(xm; θ̂ϵ,xt) with respect to ϵ at nearby ϵ = 0. We can linearly
approximate the change in the loss of model-trusting data xm, after adapting to xt. The loss change
can be demonstrated as follows:

L(xm; θ̂ϵ,xt)− L(xm; θ̂) ≈ ϵ× Iadd.loss(xt,xm). (5)

We then estimate the influence of adapting to xt on the whole loss of model-trusting data.

L(M; θ̂ϵ,xt)− L(M; θ̂) ≈ ϵ′ ×
M∑
k=1

Iadd.loss(xt,xm
k ). (6)

Henceforth, we denote by Iadd.loss(xt) =
∑M

k=1 Iadd.loss(xt,xm
k ) the influence of adapting to xt

on the loss of model-trusting data.

To ensure that the test data xt has a positive impact on the loss of the model-trusting data, the loss
change should be less than or equal to zero. Since ϵ′ is positive, Iadd.loss(xt) should be negative.

3.3 REFORMULATION OF INFLUENCE FUNCTION FOR TTA

In section 3.2, we quantify the influence of test data on the loss of model-trusting data using the
influence function. However, directly calculating Iadd.loss(xt) in TTA is not feasible. TTA prioritizes
computational efficiency, and the computations required to calculate Iadd.loss(xt), such as Hessian
inverse calculations and gradients over the entire set of parameters, are computationally expensive for
TTA. Furthermore, TTA lacks access to the entire test set and have no label of test data, making it
impossible to directly construct model-trusting data. Therefore, to efficiently compute Iadd.loss(xt)
in TTA, we propose the following two approximations.

4



Under review as a conference paper at ICLR 2024

Approximation for influence function We employ two approximation strategies, parameter restric-
tion and random projections (Schioppa et al., 2022) to overcome the computational bottleneck and
enable efficient implementation of the influence function. Parameter restriction limits the computation
to a smaller subset of parameters, usually by selecting only the last layer. Random projections, on the
other hand, approximate the Hessian matrix to the identity matrix and reduce influence function to
dot products of gradients.

As a result, we obtain the dot product between the last layer gradient of the test data and the model-
trusting data which is more practical computation at test time. The inverse Hessian serves the purpose
of weighting between two gradients. However, we approximate it with an identity matrix due to the
critical efficiency considerations in TTA scenario. To reduce the error arising from this issue and
enhance stability, we normalize the gradients before dot product operation. Then Equation 4 becomes
cosine similarity between two gradients (cos_sim(·, ·)). This aspect will be further elaborated upon
in the Section 4. Consequently, Iadd.loss(xt,xm

k ) is approximated as follows:

Iadd.loss(xt,xm
k ) ≈ −cos_sim(∇wL(fϕ(xm

k );w),∇wL(fϕ(xt);w)). (7)

Approximation for class prototype Since we need gradients for the last layer to calculate Equation
7, we need to know the value of fϕ(xm

k ), which is the feature of the model-trusting data. However,
since we don’t have acces to entire test data and the label of test data, we have to approximate
feature of the model-trusting data. Model-trusting data exhibits predictions that are close to one-hot
vector, and the last fully-connected layer serves to mapping features to each class (Snell et al., 2017).
Consequently, model-trusting data aligns well with the weight prototypes corresponding to each
pseudo-label. Therefore, we replace M = {xm

k }Mk=1 with {w1,w2, · · · ,wc}. Then the Iadd.loss(xt)
becomes as follows:

Iadd.loss(xt) =

M∑
k=1

Iadd.loss(xt,xm
k ) ≈

c∑
i=1

q(xt)(i)× Iadd.loss(xt,wi). (8)

where q(xt) determines how much weighting is applied to each weight prototype in order to calculate
their influence and (i) means i-th output of the vector. There are three choices for q(xt): "Hard
weighting", "Soft weighting", and "Uniform weighting". Hard weighting involves calculating influ-
ence only for the weight prototype corresponding to pseudo-label of xt (i.e., ỹt = argmaxi(ŷ

t(i)).
In contrast, soft weighting utilizes prediction of xt (i.e., ŷt) for q(xt), and uniform weighting assigns
equal weights to all weight prototypes. We choose hard weighting for q(xt). We will delve into the
ablation study for this strategy in Section 4. Finally, Iadd.loss(xt) becomes as follows:

Iadd.loss(xt) ≈ Iadd.loss(xt,wỹt) ≈ −cos_sim(∇wL(wỹt ;w),∇wL(fϕ(xt);w)). (9)

It is worth noting that , because the last layer is fixed during adaptation, we can compute and store
∇wL(w;w) only once before adaptation, which significantly reduces the computational cost.

3.4 PROTOTYPICAL INFLUENCE FUNCTION

In Section 3.3, we reformulate the influence function to compute it efficiently in the TTA scenario.
Building upon this, we propose the PIF (Prototype Influence Function) regularizer that utilizes the
reformulated influence function to increase positive impact of xt on the model-trusting data. As
mentioned in Section 3.2, Iadd.loss(xt) should be negative. The final PIF regularizer for test data xt

can be expressed as follows:

LPIF(x
t) = −cos_sim(∇wL(wỹt ;w),∇wL(fϕ(xt);w)). (10)

Finally, the model updates the parameters of the BN layers by following objectives

Ltotal = LTTA + αLPIF. (11)

Here, LTTA refers to any TTA loss function, and α is a hyper-parameter that determines the weight
of the PIF regularizer. We empirically discovered the effectiveness of employing a decay technique
for the hyper-parameter α. Specifically, we set α as α = γ × (1 + 10 ∗ iter

maxiter
)−β according to

previous study by Yang et al. (2022), where the decay factor β regulates the rate of decay and γ is
default value of α.
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Figure 2: Overview of Prototypical Influence Function for TTA. First, we compute and store the
gradients of the last layer for the weight prototypes. Next, we conduct inference and determine
the pseudo-label for the test data. Finally, we calculate the PIF that increases the cosine similarity
between the gradient of the weight prototype corresponding to the pseudo-label and the last layer
gradient of the test data.

In our study, we derive the PIF loss for two common loss functions used in TTA, which are entropy
minimization loss and cross-entropy loss. The advantage of these two loss functions is that the
gradient of the last layer can be computed efficiently through forward pass alone. Additionally, the
PIF approach can be extended to any loss function for which the gradient of the last layer can be
computed efficiently. Since the parameters of the last layer include the bias and weights, the gradient
of the last layer can be decomposed into gradients for the bias and the weight parameters.

∇wL(fϕ(xt);w) =

[
∂L(fϕ(xt);w)

∂b
,
∂L(fϕ(xt);w)

∂w1
, · · · , ∂L(fϕ(x

t);w)

∂wc

]
. (12)

PIF for entropy minimization loss When it comes to the entropy minimization loss for test data xt,
it can be defined as LEM (f(xt);w) = −

∑
ŷt log ŷt. In this case, the gradient of xt with respect

to the last layer can be computed as follows:

∂LEM (f(xt);w)

∂b
=

(
−zt

S
− C

)
,

∂LEM (f(xt);w)

∂wi
= ht ·

(
−zt(i)

S
− C

)
, (13)

where C = zt · exp(zt) and S =
∑c

i=1 exp(z
t)(i).

PIF for cross-entropy loss The pseudo label of xt is ỹt. Let’s represent the one-hot represen-
tation of ỹt as ỹt. Then the cross-entropy loss for test data xt can be expressed as LCE(x

t) =
−
∑

ỹt log ŷt. In this case, the gradient of xt with respect to the last layer can be computed as
follows:

∂LCE(f(x
t);w)

∂b
= ŷt − ỹt,

∂LCE(f(x
t);w)

∂wi
= ht · (ŷt − ỹt)(i). (14)

When calculating the last layer gradient with respect to the weight prototypes, we can use wi as a
feature instead of ht, and apply the same method to obtain it.

Overall Procedure of PIF Before conducting the adaptation, we first store the last layer gradients
of the weight prototypes. When a batch of test data comes, we compute the statistics of BN layer
and perform inference. Then, we update the parameters of BN layer using Equation 11. The detailed
pseudo-code is summarized in Algorithm 1 and overview of PIF is illustrated in Figure 2.
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Algorithm 1 Prototypical Influence Function for Test-Time Adaptation
Result: Test-time adapted model
Input: Pre-trained model, test data Dte = {xt

j}
Ntest
j=1

Calculate and save last layer gradient of weight prototype {∇wL(w1;w), · · · ∇wL(wc;w)}.
for a batch X = {xt

b}Bb=1 in Dte do
Update batch norm statistics using X
Perform inference by calculating {ŷt

b}Bb=1
Calculate LPIF(X ) using Equation 10
Update parameters of BN layer using Equation 11

end

4 EXPERIMENTS

4.1 SETUP

Datasets and Architectures We conduct experiments on two common TTA benchmark datasets:
CIFAR-10-C and ImageNet-C. Each dataset has 15 types of corruptions and 5 severity levels. Addi-
tionally, we execute experiments with a larger-scale dataset called ImageNet 3D Common Corruptions
(ImageNet-3DCC), introduced by Kar et al. (2022), which incorporates the scene’s geometry into
the transformations, resulting in more realistic corruptions. ImageNet-3DCC consists of 12 distinct
types of corruptions, each with five severity levels. For all datasets, we conduct experiments at level
5, which represents the most severe level of corruption. We use Wide-ResNet-28-10 (Zagoruyko &
Komodakis, 2016) for CIFAR-10-C data and ResNet-50 with BN layer (He et al., 2016) for both
ImageNet-C, ImageNet-3DCC data. We use pretrained models that were trained sufficiently on each
clean dataset, namely CIFAR-10 (Krizhevsky et al., 2009) and ImageNet (Russakovsky et al., 2015).

Baseline Methods In our experiments, we evaluate the performance of the PIF regularizer using
the following baseline methods.

• Source evaluates directly with the pretrained model without adapting to the test data.

• NORM (Schneider et al., 2020) updates the BN statistics on the mini-batch samples during
test time.

• TENT (Wang et al., 2021) updates the statistics and parameters of BN layer by minimizing
the entropy minimization loss.
EATA (Niu et al., 2022) employs the Fisher regularizer to safeguard crucial parameter
stability and conducts instance selection and re-weighting as part of entropy minimization
loss.
SAR (Niu et al., 2023) removes partial noisy samples with large gradients and use reliable
entropy minimization methods.

• PL (Lee et al., 2013) makes a one-hot pseudo-label by prediction of the model and uses
cross-entropy loss to adapt BN parameters to test data.

Implementation Details For the CIFAR-10-C, we employ the pretrained model weights derived
from the official implementations of TENT, adhering to the RobustBench protocol (Croce et al., 2020).
We set the batch size to 128 and follow the implementations used in TENT, utilizing an NVIDIA
GeForce RTX 3090 Ti GPU. For the ImageNet-C and ImageNet-3DCC dataset, we reference the
base code from SAR (Niu et al., 2023) and EATA (Niu et al., 2022), following to the implementation
details provided in each paper. We set the batch size to 64 and employ an NVIDIA A40 GPU. We
report the average performance based on three different random seeds for all experiments.

PIF regularizer incorporates two hyper-parameters: γ and β. The parameter β is responsible for
modulating the decay rate of α, while γ represents the default value of α. Specifically, we set β = 0
for the CIFAR-10-C dataset and β = 2 for the ImageNet-C and ImageNet-3DCC datasets. Detailed
values for γ are provided in the Appendix.
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Table 1: Classification Error (%) for each corruption in CIFAR-10-C at the highest severity (Level
5). We use WRN-28-10. Smaller error is shown in bold.

Method Gauss. Shot Impul. Defoc. Glass Motion Zoom Snow Frost Fog Brit. Contr. Elastic Pixel JPEG AVG ↓

Source 72.3 65.7 72.9 46.9 54.3 34.8 42.0 25.1 41.3 26.0 9.3 46.7 26.6 58.5 30.3 43.5

Norm 28.5 26.3 36.1 12.9 35.2 13.9 12.2 17.5 17.8 15.2 8.4 13.3 23.6 19.9 27.7 20.6

TENT 24.8 22.4 32.0 12.1 31.8 13.4 11.0 16.1 16.4 13.8 8.2 11.6 22.0 17.1 24.3 18.5

+PIF(EM) 22.5±0.1 19.9±0.1 28.7±0.3 11.2±0.1 29.2±0.4 12.3±0.2 10.4±0.1 14.3±0.3 14.8±0.1 12.4±0.3 7.8±0.1 10.4±0.3 20.8±0.2 15.3±0.1 21.3±0.2 16.8±0.1 (−1.7)

EATA 24.6 21.9 31.7 12.1 31.0 13.1 10.8 15.6 16.3 13.3 8.1 11.2 21.6 16.6 24.0 18.1

+PIF(EM) 22.1±0.1 19.4±0.1 28.4±0.3 10.9±0.1 28.8±0.1 12.0±0.1 10.2±0.0 14.0±0.3 14.5±0.1 12.1±0.1 7.8±0.1 10.0±0.2 20.3±0.1 14.9±0.1 21.0±0.3 16.4±0.0 (−1.7)

PL 26.6 25.3 34.2 12.7 33.3 14.1 12.1 16.9 17.5 14.8 8.5 12.2 23.2 18.8 26.1 19.8

+PIF(CE) 22.8±0.2 20.1±0.3 29.3±0.1 11.2±0.1 29.5±0.4 12.4±0.2 10.5±0.1 14.3±0.3 14.9±0.2 12.3±0.3 7.7±0.1 10.4±0.3 20.9±0.1 15.6±0.1 21.8±0.3 16.9±0.1 (−2.9)

Table 2: Classification Error (%) for each corruption in ImageNet-C at the highest severity (Level
5). We use RN-50(BN). Smaller error is shown in bold.

Method Gauss. Shot Impul. Defoc. Glass Motion Zoom Snow Frost Fog Brit. Contr. Elastic Pixel JPEG AVG ↓

Source 97.8 97.1 98.2 82.1 90.2 85.2 77.5 83.1 76.7 75.6 41.1 94.6 83.1 79.4 68.3 82.0

Norm 84.8 84.2 84.2 85.0 84.6 73.7 61.1 65.7 67.0 52.0 34.8 83.1 55.9 51.0 60.2 68.5

TENT 71.4 69.4 70.0 72.0 72.9 58.7 50.8 52.8 59.1 42.4 32.6 73.9 45.3 41.5 47.8 57.4

+PIF(EM) 69.4±0.4 68.1±0.4 67.6±0.1 69.9±0.2 70.6±0.2 55.3±0.1 49.3±0.1 50.3±0.1 57.4±0.3 41.3±0.1 32.6±0.2 68.1±1.5 43.6±0.1 40.2±0.0 46.2±0.1 55.3±0.1 (−2.1)

EATA 65.2 63.0 64.3 66.5 66.8 53.2 47.2 48.4 54.3 40.0 31.9 55.5 42.1 39.5 44.9 52.2

+PIF(EM) 64.5±0.2 62.2±0.2 63.2±0.4 65.8±0.8 65.8±0.1 51.4±0.2 46.7±0.1 47.1±0.1 53.4±0.2 39.4±0.1 32.1±0.1 53.8±0.4 41.4±0.1 39.1±0.2 44.4±0.1 51.3±0.1 (−0.9)

SAR 69.7 69.6 69.0 71.5 71.5 58.1 50.7 52.9 57.9 42.4 32.7 63.2 45.5 41.6 47.7 56.3

+PIF(EM) 69.2±0.2 68.9±0.5 68.1±0.2 70.9±0.1 70.9±0.4 57.5±0.1 50.4±0.2 52.4±0.1 57.5±0.1 42.2±0.2 32.6±0.0 61.2±0.7 45.1±0.0 41.4±0.1 47.4±0.1 55.7±0.1 (−0.6)

PL 74.2 72.5 73.1 74.8 75.5 62.2 52.8 55.7 60.7 44.2 33.1 75.2 47.7 43.3 50.1 59.7

+PIF(CE) 71.3±0.5 70.1±0.8 69.3±0.1 71.1±0.5 71.7±0.3 56.9±0.4 50.1±0.1 51.4±0.2 57.6±0.2 42.0±0.1 32.9±0.1 66.6±3.4 44.4±0.1 40.9±0.1 46.8±0.3 56.2±0.3 (−3.5)

Table 3: Classification Error (%) for each corruption in ImageNet-3DCC at the highest severity
(Level 5). We use RN-50(BN). Smaller error is shown in bold.

Method Near_focus Far_focus Fog_3d Flash Color_quant. Low_light XY_motion. Z_motion. ISO_noise Bit_error H265_ABR H265_CR AVG ↓

Source 99.9 99.9 99.9 100.0 99.9 99.9 99.9 99.9 99.9 100.0 99.9 99.9 99.9

Norm 45.4 55.0 75.1 80.9 71.8 64.1 79.1 67.4 76.9 91.8 80.8 76.9 72.1

TENT 40.1 49.6 68.5 75.6 62.4 50.6 70.5 57.2 62.1 91.6 75.7 70.3 64.5

+PIF(EM) 39.4±0.1 48.9±0.1 68.2±0.3 75.0±0.0 61.3±0.1 49.1±0.0 69.0±0.0 55.9±0.0 60.6±0.2 92.2±0.1 75.7±0.0 69.9±0.2 63.8±0.0 (−0.7)

EATA 38.5 47.7 62.6 71.3 59.2 47.4 65.1 53.0 57.3 89.6 71.7 66.5 60.8

+PIF(EM) 38.3±0.2 47.3±0.0 61.7±0.3 70.3±0.1 58.5±0.0 46.7±0.1 64.0±0.1 52.3±0.2 56.5±0.1 89.9±0.3 71.3±0.1 66.2±0.1 60.3±0.0 (−0.5)

SAR 40.4 50.0 65.9 73.9 62.0 50.4 69.1 56.9 61.2 89.9 73.9 68.9 63.5

+PIF(EM) 40.2±0.1 49.8±0.1 65.4±0.1 73.6±0.0 61.6±0.1 50.1±0.1 68.7±0.1 56.5±0.2 60.7±0.1 90.3±0.5 73.7±0.1 68.6±0.1 63.2±0.0 (−0.3)

PL 41.3 51.0 69.8 77.2 64.3 53.2 72.5 59.4 64.8 91.0 75.9 71.1 65.9

+PIF(CE) 40.0±0.1 49.5±0.1 69.2±0.2 75.6±0.2 62.3±0.1 50.6±0.1 70.8±0.2 57.4±0.1 62.4±0.3 91.2±0.1 75.2±0.2 70.1±0.0 64.5±0.0 (−1.4)

4.2 EXPERIMENTAL RESULTS

We assess the efficacy of the proposed PIF loss by evaluating the classification error after incorporating
the PIF regularizer into the baseline methods. The results obtained from three benchmark datasets are
shown in Tables 1, 2 and 3 with performance improvements highlighted in red.

Results on CIFAR-10-C and ImageNet-C Table 1 displays the CIFAR-10-C dataset results, while
Table 2 showcases the results for the ImageNet-C dataset. Incorporating the PIF regularizer into the
baseline methods consistently leads to a reduction in classification errors across various corruption
types for both datasets when compared to the baseline approaches. Remarkably, when compared to
the PL, the utilization of the PIF regularizer results in a significant performance improvement of 2.9%
for the CIFAR-10-C dataset and 3.5% for the ImageNet-C dataset.

Results on ImageNet-3DCC Table 3 shows the results for the ImageNet-3DCC dataset. Similar
to the smaller datasets, the PIF loss consistently enhance performance in terms of overall average
performance, even though this dataset is highly realistic and challenging to adapt to. It demonstrates
that incorporating the PIF loss consistently aids in better adaptation without impeding the original
learning process.

4.3 ABLATION STUDY
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Figure 3: Average classification Error (%)
on CIFAR-10-C

Effects of IF approximation strategies We
present the performance comparison between cosine
similarity and dot product as an approximation for
computing the influence function in Figure 3. The
results clearly demonstrate the superiority of cosine
similarity. By using cosine similarity as an approx-
imation for the influence function, the scale of gradi-
ents is ignored, which can enhance learning stability
and reduce errors caused by random projection, ap-
proximating the Hessian matrix to the identity matrix.

Table 4: Average classification Error
(%) for each weighting strategy. Smaller
error is shown in bold.

Dataset Loss hard soft uniform

CIFAR-10-C TENT+PIF(EM) 16.76 16.83 34.85
PL+PIF(CE) 16.92 18.00 17.59

ImageNet-C TENT+PIF(EM) 55.33 57.37 57.38
PL+PIF(CE) 56.20 59.64 59.65

ImageNet-3DCC Tent+PIF(EM) 63.77 64.51 64.51
PL+PIF(CE) 64.51 65.97 65.95

Effects of weighting strategies In Equation 8, q(xt)
determines the extent of weighting applied to each weight
prototype. There are three options: hard weighting, soft
weighting, and uniform weighting. Table 4 presents the
outcomes of these weighting strategies. The experimental
results reveal a significant performance deterioration in
PIFunif when combined with TENT on the CIFAR-10-C
dataset, compared to the other variants. This decline can
be attributed to the lower reliability of the IF for classes
with high predicted probabilities. Additionally, PIFsoft exhibits lower performance and higher
computational costs compared to PIFhard because PIFsoft utilizes the IF for all classes, unlike PIFhard.
Given that PIFhard consistently demonstrates strong performance across all cases, we have chosen the
hard weighting approach.
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1000

Figure 4: Sensitivity of the average clas-
sification error on CIFAR-10-C with re-
spect to the hyperparameter γ.

Effects of hyper-parameters TTA, the online adapta-
tion to test data distribution, necessitates careful consid-
eration of hyper-parameter sensitivity, as it is a critical
factor related to the applicability of the model. Numer-
ous or sensitive hyper-parameters may require inefficient
additional tuning, which violates the online property of
TTA. The PIF regularizer involves two hyperparameter:
γ and β. Key hyper-parameter is γ which represents the
default value of α. Figure 4 showcases the average er-
rors as the hyper-parameters γ vary while adapting to the
CIFAR-10-C dataset. It illustrates the performance en-
hancements achieved by incorporating PIF compared to
when it is not used. Additionally, the figure highlights the
sustained robust performance of the hyperparameter be-
yond a certain threshold. In essence, these findings suggest
the possibility of applying various TTA methods with min-
imal tuning, underscoring the simplicity and effectiveness
of this approach.

5 CONCLUSION

In this study, we introduce a novel method called the Prototypical Influence Function (PIF) to enhance
the performance of test-time adaptation (TTA) scenarios. We aim to adapt the model to test data
without increasing the loss of the model-trusting data, ensuring that the model generalizes well to
unseen data. To achieve this, we quantify the impact of test data on the loss of model-trusting data
by utilizing influence function. We reformulated the influence function to address computational
bottlenecks by approximating the Hessian as an identity matrix and computing gradients only for
the last layer. Additionally, due to our limited access to the entire test dataset, we approximate the
model-trusting data using the weight prototype obtained from the last layer of the model. Our PIF
method optimizes the model by maximizing the positive influence of the test data on the weight
prototype. The resulting PIF regularizer is added to the existing loss during TTA. The PIF regularizer
is applicable to any loss function for which the last layer gradient can be computed efficiently. We
experimentally show the effectiveness and robustness of the PIF regularizer.
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A PROOFS OF INFLUENCE OF TEST DATA ON THE MODEL

This derivation is based on (Koh & Liang, 2017). Remember that the estimated parameter θ̂ minimizes
the empirical risk.

θ̂
def
= argmin

θ∈Θ
L(Dtr;θ). (15)

Additionally, we make the assumption that L(Dtr;θ) is twice-differentiable and strongly convex
with respect to θ. In other words, the Hessian matrix Hθ̂, defined as ∇2

θL(Dtr; θ̂) in Equation 16,
exists and is positive definite.

This ensures the existence of the inverse of Hθ̂, denoted as H−1

θ̂
, which will be utilized in the

subsequent derivation.
Hθ̂

def
= ∇2

θL(Dtr; θ̂). (16)

The perturbed parameters θ̂ϵ,xt can be written as

θ̂ϵ,xt
def
= argmin

θ∈Θ
L(Dtr;θ) + ϵL(xt;θ) (17)

Let’s define the parameter change as ∆ϵ = θ̂ϵ,xt − θ̂. It’s worth noting that since θ̂ does not depend
on ϵ, the quantity we aim to calculate can be expressed in terms of it:

dθ̂ϵ,xt

dϵ
=

d∆ϵ

dϵ
(18)

Given that θ̂ϵ,xt minimizes Equation 17, let’s analyze its first-order optimality conditions:

0 = ∇L(Dtr; θ̂ϵ,xt) + ϵ∇L(xt; θ̂ϵ,xt) (19)

Subsequently, as θ̂ϵ,xt → θ̂ when ϵ → 0, we can conduct a Taylor expansion of the right-hand side:

0 ≈
[
∇L(Dtr; θ̂) + ϵL(xt; θ̂)

]
+

[
∇2L(Dtr; θ̂) + ϵ∇2L(xt; θ̂)

]
∆ϵ (20)

where we have dropped o(∥∆ϵ∥) terms.

By solving for ∆ϵ, we obtain:

∆ϵ ≈ −
[
∇2L(Dtr; θ̂) + ϵ∇2L(xt; θ̂)

]−1 [
∇L(Dtr; θ̂) + ϵ∇L(xt; θ̂)

]
(21)

Since θ̂ minimizes L(Dtr;θ), ∇L(Dtr; θ̂) = 0. Dropping o(ϵ) terms, we have

∆ϵ ≈ −∇2L(Dtr; θ̂)
−1∇L(xt; θ̂)× ϵ (22)

By combining Equation 16 and 18, we can deduce that:

dθ̂ϵ,xt

dϵ

∣∣∣∣∣
ϵ=0

= −H−1

θ̂
∇θL(xt; θ̂)

def
= Iadd.params(x

t) (23)
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B IMPLEMENTATION DETAILS

The hyperparameter γ which is responsible for the default value of α is presented in Table 5 for each
dataset and baseline method. Code will be included in the final version of our git repo.

Table 5: Hyperparameter γ

Method CIFAR-10-C ImageNet-C ImageNet-3DCC
TENT+PIF(EM) 500 150 90
EATA+PIF(EM) 200 55 30
SAR+PIF(EM) × 2900 2500
PL+PIF(CE) 500 200 90
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