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Abstract—This article presents a family of Stochastic Carto-
graphic Occupancy Prediction Engines (SCOPEs) that enable
mobile robots to predict the future states of complex dynamic
environments. They do this by accounting for the motion of the
robot itself, the motion of dynamic objects, and the geometry of
static objects in the scene, and they generate a range of possible
future states of the environment. These prediction engines are
software-optimized for real-time performance for navigation in
crowded dynamic scenes, achieving up to 89 times faster inference
speed and 8 times less memory usage than other state-of-the-art
engines. Three simulated and real-world datasets collected by
different robot models are used to demonstrate that these proposed
prediction algorithms are able to achieve more accurate and
robust stochastic prediction performance than other algorithms.
Furthermore, a series of simulation and hardware navigation
experiments demonstrate that the proposed predictive uncertainty-
aware navigation framework with these stochastic prediction
engines is able to improve the safe navigation performance of
current state-of-the-art model- and learning-based control policies.

Index Terms—Deep Learning in Robotics and Automation,
Reactive and Sensor-Based Planning, Learning and Adaptive
Systems, Environment Prediction.

I. INTRODUCTION

UTONOMOUS mobile robots are beginning to enter

people’s lives and are trying to help us provide different
last mile delivery services, such as moving goods in warehouses
or hospitals and assisting grocery shoppers [1]-[3]. To realize
this vision, mobile robots are required to safely and efficiently
navigate through complex and dynamic environments filled
not only with static obstacles (e.g., tables, chairs, and walls)
but also with many moving people and/or other mobile robots.
The first prerequisite for robots to navigate and perform tasks
is to use their sensors to perceive the surrounding environment.
This work focuses on the next step, which is to accurately and
reliably predict how the surrounding environment will change
based on these sensor data, as shown in Fig. E} This will
allow a robot to proactively act based on its predictions and
the associated uncertainty to avoid potential future collisions,
a key part of improving autonomous robot navigation. Note
that since this general perception-prediction-control navigation
framework is a complex and resource-intensive system, it is
very important to make these algorithms hardware-friendly (e.g.,
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Fig. 1. A simple illustration of the occupancy grid map prediction problem. In
a complex dynamic environment with many pedestrians, robots, tables, chairs
and walls, colored arrows indicate the velocity of each agent.

using smaller computational power, memory usage, and storage
usage) and run in real-time, especially for mobile robots with
limited resources. A well-performing predictor is useless for
practical robotics applications if it consumes a lot of memory
and/or cannot run in real-time on a resource-limited robot.

In this article, we propose a family of deep neural network
(DNN)-based Stochastic Cartographic Occupancy Prediction
Engines (i.e., SCOPEﬂ SCOPE++, and SO-SCOPE) for
resource-constrained mobile robots to provide stochastic future
state predictions, as shown in Fig. [2] and enable uncertainty-
aware navigation in crowded dynamic scenes, as shown
in Fig. [3] Specifically, this article presents six contributions:

1) We design an algorithmic pipeline called SCOPE++ that
can use a short history of robot odometry and lidar
measurements to predict a distribution of potential future
robot/environment states. SCOPE++ includes modules to
compensate for the ego-motion of the robot, to segment
static/dynamic objects in the scene, to predict future scenes
using a ConvLSTM network, and to sample other future
scenes using a variational autoencoder (VAE).

2) We analyze the running time and memory usage of

In our previous work [4] we used the acronym SOGMP (Stochastic
Occupancy Grid Map Predictor) instead of SCOPE.
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Fig. 2. System architectures of the SCOPE++ predictor, SCOPE predictor, and its software-accelerated SO-SCOPE predictor (note that SCOPE omits the
Static Objects block compared to SCOPE++). The basic process of the SCOPE++ predictor is: 1) based on a history of robot states, the robot transfers the
lidar measurement history to the predicted coordinate frame of the robot to compensate for the ego-motion, 2) these compensated lidar measurements are used
to generate a local environment map to account for static objects, and a set of OGMs to account for dynamic objects, and 3) the local map of static objects and
the predicted OGM of dynamic objects are fed into an variational autoencoder to predict the future OGM. To accelerate the SCOPE++ predictor, we first
follow the SCOPE network architecture and replace the VAE network with a single convolutional layer, then use knowledge distillation technology to train the
SO-SCOPE network to obtain the prediction information, and finally, we model and quantify the prediction uncertainty of the SCOPE++ to obtain uncertainty

statistics and use them to generate uncertainty estimates of SO-SCOPE.

each module of SCOPE++ to identify computational
bottlenecks. Based on this, we compress the VAE by
performing an in-depth statistical analysis of its output
and by using knowledge distillation techniques. The re-
sulting software-optimized SCOPE (SO-SCOPE) achieves
slightly better performance while consuming less memory,
performing faster inference, and running in real-time
with other resource-intensive algorithms on resource-
constrained mobile robot hardware.

3) We validate the ability of our SCOPE predictors (i.e.,
SCOPE++, SCOPE, and SO-SCOPE) to predict OGMs
using three OGM datasets (each of which comes from
a different robot model) and provide a comprehensive
benchmark of prediction performance and resource usage
using six state-of-the-art algorithms. We find that the
SCOPE family achieves smaller absolute errors, higher
structural similarity, higher tracking accuracy, and lower
computational resource requirements than other state-of-
the-art methods (i.e., ConvLSTM [J5]], DeepTracking [6],
PhyDNet [7]], SAAConvLSTM [8]], TAAConvLSTM |[8]],
and LOPR [9]]). We also perform a detailed analysis of the
correctness, diversity, and consistency of the uncertainty
estimates from the SCOPE family.

4) We propose a costmap-based predictive uncertainty-aware
navigation framework to incorporate OGM prediction
and its uncertainty information into current existing
navigation control policies to improve their safe navigation
performance in crowded dynamic scenes.

5) We validate the navigation performance in simulated
3D environments with varying crowd densities and real-
world experiments. We find that the predictive uncertainty-
aware navigation framework combined with our proposed

SCOPE family can improve the navigation performance
and safety of extant control policies relative to state-of-
the-art solutions, including a model-based controller [10],
a supervised learning-based approach [11]], and two deep
reinforcement learning (DRL)-based approaches [[12], [13].
6) We open source the OGM prediction code with the OGM
dataset [14] (https://github.com/TempleRAIL/scope) and
its predictive uncertainty-aware navigation framework
(https://github.com/TempleRAIL/scope_nav).

Note that the full version of the paper and more details can
be found in [15].

II. QUALITATIVE RESULTS
A. OGM Prediction Results

Figure [4] and the attached Multimedia illustrate the future
OGM predictions generated by our proposed predictors and the
baselines. We observe three interesting phenomena. First, the
image-based baselines, especially the PhyDNet, generate blurry
future predictions after 5-time steps, with only blurred shapes
of static objects (i.e., walls) and missing dynamic objects (i.e.,
pedestrians). We believe this is because these six baselines
are deterministic models that use less expressive network
architectures, only treat time series OGMs as images/video,
and cannot capture and utilize the kinematics and dynamics of
the robot itself, dynamic objects, and static objects. Second,
the SCOPE++ with a local environment map has a sharper and
more accurate surrounding scene geometry (i.e., right walls)
than the SCOPE without it. This difference indicates that the
local environment map for static objects is beneficial and plays
a key role in predicting surrounding scene geometry. Third,
our proposed software-optimized SO-SCOPE can achieve clear
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Fig. 3. System architectures of the SCOPE-based and SO-SCOPE-based predictive uncertainty-aware navigation planners. The blue font emphasizes the
difference between the SCOPE-based navigation framework and the SO-SCOPE-based navigation framework. The basic process of our proposed navigation
framework is as follows: first, the lidar data is also fed into our SCOPE or SO-SCOPE predictor to generate predicted OGM samples or lookup statistics from
the prediction uncertainty statistics lookup table. Then, we can easily generate the prediction mean map and uncertainty map from these samples or the statistics.
Finally, we create the prediction costmap layer and the uncertainty costmap layer, combine them into the master costmap, and obtain our SCOPE-based or

SO-SCOPE-based predictive uncertainty-aware planners.

and sharp OGM predictions similar to its “teacher” SCOPE,
which demonstrates the effectiveness of applying knowledge
distillation techniques to optimize our SCOPE/SCOPE++.

B. Uncertainty-Aware Navigation Results

From the attached Multimedia and Figs. [5a] and [5b] we can
see how our robot deployed with DWA/SCOPE/PU can actively
avoid collisions with walking students crossing the hallway,
safely avoid static students standing, and reach predefined
goals by following predictive uncertainty-aware nominal paths,
traveling a total length of 76.10m and an average speed of
0.42m/s. It demonstrates the real-world effectiveness of our
proposed SCOPE predictor and DWA/SCOPE/PU planner. In
addition, from the attached Multimedia and Figs. [5cJand [5d] we
can see that even with three learning-based blocks, our robot
deployed with DRL-VO/SO-SCOPE/PU is still able to quickly
and actively avoid collisions with walking students crossing
the hallway and reach predefined goals by following predictive
uncertainty-ware nominal paths, traveling a total length of
86.41m and an average speed of 0.47m/s. It demonstrates
our software-optimized SO-SCOPE predictor is hardware
friendly and our software-optimized predictive uncertainty-
aware navigation framework can be combined with different
high computational load learning-based algorithms.
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(a) Robot deployed with DWA/SCOPE/PU reactions (time t). (b) Robot deployed with DWA/SCOPE/PU reactions ( time ¢ + 3).
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Fig. 5. Robot deployed with different uncertainty-aware control policies reactions to moving pedestrians in the indoor hallway with high crowd density at
different times. (a-b) DWA/SCOPE/PU. (c-d) DRL-VO/SCOPE/PU
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