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ABSTRACT

Recent advances in Referring Audio-Visual Segmentation (Ref-AVS) have sig-
nificantly progressed, with the development of multimodal fusion methods and
Multimodal Large Language Models (MLLM). However, their modality-specific
performance is underexplored, and the effectiveness of audio perception remains
unclear. We find that current methods often fail to identify the correct sound-
ing object with audio expressions (e.g., loudest sounding object), especially at
the cocktail-party (i.e., mixed audio source). In addition, MLLM methods tend
to memorize through visual-text patterns due to their weaker audio understand-
ing capabilities. To this end, we first propose MISA: Musical-audio Instructed
Segmentation Assistant, with an integration of specialized musical-audio encoder
MERT, and a musical-specific dataset for alignment to enhance audio tokens’ rep-
resentation. To mitigate the lack of variation of mixed-source signals, we in-
troduce MUSEUM, a musical-audio augmentation pipeline consisting of three
stages: MUsical SourcE, AUgment, and Mix, to respectively perform source sep-
aration, sampling from extra musical datasets, and audio augmentation. Our pro-
posed augmentation enriches the mixture of audio signals in the existing training
dataset, which facilitates the model learning with diverse samples. Moreover,
we refine the existing benchmark as C-Ref-AVSBench that categorizes expres-
sions into Audio-Centric (audio cues), AV-Grounded (audio and visual cues), and
Visual-Centric (visual cues), in order to perform modality-specific evaluation. Our
approach achieves state-of-the-art performance on both Ref-AVSBench and C-
Ref-AVSBench, particularly with the Audio-Centric expressions.

1 INTRODUCTION

Audio and visual information are essential in our daily lives. One of humans’ abilities is to locate
and focus on an interesting-sounding source within a cocktail-party scene (i.e., mixed audio source),
e.g., the one talking in a foreign language. In a musical environment, most duet performers perform
in dense and overlapping sound (You et al., 2025), and thus humans’ selective attention can help
distinguish the sound source by different sound characteristics, e.g., “loudest sound instrument”.
This phenomenon creates an opportunity to model the ability into machine intelligence, enabling
machines to understand the environment through sight and sound.

A relevant topic is Referring Audio-Visual Segmentation (Ref-AVS) (Wang et al., 2024b), which
aims to segment the target object in an audio-visual scene, given natural language expressions. The
expressions involve multiple scenarios, including Audio-Centric (audio cues), AV-Grounded (audio
& visual cues), and Visual-Centric (visual cues), allowing model to decide which modality should be
leveraged and fused (examples provided in Fig. 1). While the pioneering works (Wang et al., 2024b;
2025a; Radman & Laaksonen, 2025; Liu et al., 2025) focus on developing multimodal transformer
fusion modules with a segmentation model (Cheng et al., 2022; Kirillov et al., 2023; Ravi et al.,
2024), recent works leverage Multimodal Large Language Model (MLLM) for improvement (Du
et al., 2025; Ying et al., 2025; Zhou et al., 2025; Zhong et al., 2025; Luo et al., 2025). Although these
methods have made significant progress, the performance across each modality-specific scenario
needs to be further studied, and the effectiveness of the audio signal remains unclear.

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

The object emitting the 
lowest sound.

The object making the 
shortest sound duration.

The object making the 
fastest rhythm.

The object wearing black 
clothes.

The object making a sound 
by being played by the man.

Audio-Centric

Volume
AV-Grounded Visual-Centric

Rhythm Temporal

EEMC (Wang
et al., 2024b)

Sa2VA-1B 
(Yuan et al., 

2025) 
finetuned

Ours (MISA + 
MUSEUM)

Groundtruth

Figure 1: Samples and performance on each scenario. Expressions either occur audio cues or
visual cues, or both involve (audio & visual). While most methods can perform well in Visual-
Centric scenarios, EEMC (Wang et al., 2024b) and finetuned Sa2VA-1B (Yuan et al., 2025) fail to
segment the sounding object with Audio-Centric expressions. In addition, even finetuned Sa2VA-1B
only uses visual-text input, it is able to segment sounding object within the AV-Grounded scenario,
suggesting the need to evaluate the audio perception capabilities through modality-specific scenar-
ios (e.g., use Audio-Centric subset for performance assessment). Our method, MISA + MUSEUM,
which integrates audio modality into MLLM-based segmentation model with the augmentation strat-
egy to enrich the diversity of audio training samples, achieves better performance of segmenting the
sounding objects across all scenarios.

For instance, the first row of Fig. 1 shows the performance by each scenario using the state-of-the-art
(SOTA) method, EEMC (Wang et al., 2024b). This method fails to segment the sounding object,
indicating that the audio perception is weaker. In addition, we finetune the SOTA of MLLM-based
segmentation model, Sa2VA-1B (Yuan et al., 2025), for such tasks without audio guidance. We find
that, even such model does not take the audio modality into its computation (i.e., using visual-text
input only), with solely leveraging the text in the expression and the input image, the substantial
improvement can already be made (see the fourth column in Fig. 1 in AV-Grounded, compared to
EEMC). While this model brings a strong baseline, it performs worse in Audio-Centric scenarios
within a cocktail-party scene, where the audio signal is needed to disambiguate various expressions.

Based on the observations of the aforementioned methods (i.e., EEMC and Sa2VA-1B), we propose
MISA: Musical-audio Instructed Segmentation Assistant, which integrates and aligns audio modal-
ity into a MLLM-based segmentation model. It adopts Sa2VA-1B (Yuan et al., 2025), followed by
integrating a musical-audio encoder MERT (Li et al., 2023b) and using musical-audio datasets (Kim
et al., 2019; Liu et al., 2023b) for alignment, to build a musical-audio-aware MLLM-based segmen-
tation model. While this helps encode audio representation, substantial variation of audio signals is
crucial to eliminate the potential modality bias (i.e., the model would prefer to utilize the visual or
text information). Hence, we introduce MUSEUM, a musical-audio augmentation pipeline consist-
ing of MUsical SourcE, AUgment, and Mix stages. Specifically, given a video composed of multi-
ple sounding objects with their ground truth segmentation masks, we perform augmentations upon
the audio sources of these objects and their the corresponding keywords/expressions. For example,
given a video with playing violin and cello, and its expression keyword “loudest”, we increase the
volume of the violin’s audio source while decreasing the cello’s to become weaker than the violin’s,
in which the resultant augmented sample has the corresponding ground truth segmentation mask
upon the violin and the expression of “The loudest sounding object.”.

As a result, our strategies produce training samples (each is composed of an input video, the expres-
sion, and the ground truth segmentation mask) with considerable variation of audio signals, which
facilitates the model learning to be aware of Audio-Centric scenarios (see Fig. 2). Moreover, evalu-
ating modality-specific scenarios’ performance (i.e., Audio-Centric, AV-Grounded, Visual-Centric)
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LLM Curation

The entity producing the 
shortest sound duration.

The entity producing the 
swiftest rhythm.

Conventional approach

MUSEUM

Our approach

Multimodal 
/  MLLMs

EEMC, Crab, …

MISA
Musical-audio 

Instructed 
Segmentation 

Assistant

The loudest 
sounding object. The cello.

The loudest 
sounding object.

The lowest 
sounding object.

Training

Testing

Figure 2: Comparisons with conventional approaches. Conventional approach curates the dataset
by human labeler or LLMs, generating various natural language expressions for a sample of video
with audio and its ground truth segmentation mask (for the sounding object targeted by the expres-
sion). While it helps to create numerous samples with different expressions, as the audio signal is
fixed within the video, the model would lean towards learning to leverage more with text and visual
modalities which typically have more variation than the audio one, thus leading to weaker audio
signal learning. We propose MUSEUM to augment audio signals, generate substantial variation of
mixture audio sources to guide the learning process of our model, MISA, to be aware of the differ-
ences of audio signals. Our approach hence better segments the sounding object with Audio-Centric
expressions (e.g., our model successfully segments the “saxaphone” with expression: “The entity
producing the swiftest rhythm.”).

is crucial to understand model’s capabilities that leverage model-specific information from the input
video and its textual content in the expression. While the original Ref-AVSBench testing set lacks
modality-specific information about the expression, we improve the benchmark, denoted as C-Ref-
AVSBench, by labeling modality-specific information on expressions (e.g., given an expression,
“The loudest sounding object”, it is labeled as Audio-Centric since the “sounding” keyword exists).

In summary, our main contributions are as follows: (1) We propose MISA, a MLLM-based seg-
mentation model that empowers with musical-audio awareness capabilities; (2) We introduce MU-
SEUM, a musical-audio augmentation pipeline to enrich the audio signals and facilitate the audio
differentiating capabilities; (3) We refine the benchmark as C-Ref-AVSBench to evaluate modality-
specific scenarios; (4) Our method achieves SOTA performance on Ref-AVSBench and C-Ref-
AVSBench, improves significantly with Audio-Centric expressions (see Fig. 1). We will release
the dataset, code, and models to the public for reproducibility.

2 RELATED WORKS

Referring Audio-Visual Segmentation. Ref-AVS is the intersection of Referring Video Object
Segmentation (RVOS) (Ding et al., 2025) and Audio Visual Segmentation (AVS) (Zhou et al., 2023;
2022), where it aims to produce a binary mask by the guidance of text and audio. EEMC (Wang
et al., 2024b) is first proposed by implementing a multimodal transformer for audio-visual-text fu-
sion, followed by Mask2Former (Cheng et al., 2022) to produce segmentation results. Building
upon this, several works (Wang et al., 2025a; Radman & Laaksonen, 2025; Liu et al., 2025) enhance
the segmentation capabilities by integrating SAM (Kirillov et al., 2023) and SAM 2 (Ravi et al.,
2024). Recent studies have utilized Multimodal Large Language Model (MLLM) with a segmen-
tation model (Lai et al., 2024; Yan et al., 2024; Yuan et al., 2025). Crab (Du et al., 2025) unifies
multitask audio-visual understanding and segmentation within a MLLM (Chen et al., 2023), while
OISA (Ying et al., 2025) proposes a MLLM segmentation model upon omnimodal expressions.
Omni-R1 (Zhong et al., 2025), TGS-Agent (Zhou et al., 2025), and AURORA (Luo et al., 2025) fur-
ther propose to train MLLM as a reasoning model by utilizing Chain of Thought (Wei et al., 2022).
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Despite their stronger visual-text understanding, the limited mixture of audio sources and weaker
audio representation hinder the performance in the Audio-Centric scenarios. Hence, we introduce
a learning framework for enhancing the musical-audio awareness and achieving better audio-based
disambiguation ability, with the help of our proposed augmentation strategy to enrich data variation.

Multimodal Large Language Models. MLLM is predominant in multimodal learning. While most
existing MLLMS are basically Vision Language Models (Liu et al., 2023a; Chen et al., 2024) (i.e.
only taking visual and textual modalities as input), they can be used as the bases for learning to
include the additional audio modality (Cheng et al., 2024; Xu et al., 2025; Chowdhury et al., 2025).
For processing the input audio signals into tokens, audio encoders such as BEATs (Chen et al.,
2023), Whisper (Radford et al., 2023), MERT (Li et al., 2023b) are utilized respectively for general
audio, speech, and music, while they usually require large-scale audio-text dataset for pretraining
and alignment (Kim et al., 2019; Chen et al., 2021). In our proposed framework, we also adopt
MLLM as our base model and attempt to integrate the additional audio modality. As our scenario
is mainly on musical cocktail-party scenes, we leverage musical-specific components (e.g. MERT)
into our model to have a better musical-audio awareness.

Audio Augmentation and Mixing. Data augmentation is a common and effective technique to help
model training and improve its generalizability, which requires manipulating the existing dataset to
enrich the diversity of training samples (Wang et al., 2025b). Several audio augmentation methods,
e.g., loudness modification and time stretch (Uhlich et al., 2017; Prétet et al., 2019) have been
studied for automatic speech recognition (Park et al., 2019; Ko et al., 2015). Recently, remixing
approaches which attempt to mix-up two audio signals also become popular for speech and sound-
related tasks (Kim et al., 2021; Meng et al., 2021) or audio/music source separation (Jeon et al., 2024;
Rouard et al., 2022; Défossez et al., 2021). Inspired by them, we propose an audio augmentation
pipeline to enrich audio signal diversity. However, distinct from these approaches that primarily
aim for signal invariance, our pipeline focuses on enhancing audio differentiating capabilities by
simulating diverse mixture sources within the same visual context. This strategy is specifically
designed to mitigate the modality bias (i.e., the model would prefer to utilize the visual or text
information) prevalent in the Ref-AVS task.

3 PROPOSED METHOD

3.1 MISA: MUSICAL-AUDIO INSTRUCTED SEGMENTATION ASSISTANT

We introduce MISA, a Musical-audio Instructed Segmentation Assistant, with the highlights of
the usage of audio encoder MERT, alignment using multiple datasets, and a training strategy with
rejection supervision, to form a model having the better musical-audio awareness. Fig. 3 illustrates
the training procedure of our proposed MISA model.

Model Architecture. We start from a MLLM-based segmentation framework, which includes a
MLLM for multimodal understanding and a segmentation model for mask generation. We adopt
Sa2VA-1B (Yuan et al., 2025) as our visual-language backbone, which consists of 1) a Visual En-
coder with InternViT-300M-448px (Chen et al., 2024), followed by a two-layer MLP Vision Projec-
tor, 2) a LLM backbone with Qwen2.5-0.5B-Instruct (Qwen et al., 2025), a two-layer MLP Prompt
Projector for projecting the [SEG] token, which is a special token for segmentation prompting, and
3) a SAM 2 model (Ravi et al., 2024) as a segmentation mask generation module. Next, we integrate
the audio branch into the model by leveraging MERT (Li et al., 2023b) as the MLLM audio branch’s
encoder (i.e. a specialized audio encoder pretrained on a musical-audio dataset and musical-acoustic
objective), followed by a two-layer MLP Audio Projector, to learn and capture the dense acoustic
representation.

Given video frames with audio input and expression, the visual branch first processes K frames indi-
vidually, obtaining vision tokens as denoted as V = {v1, v2, . . . , vK}, where vk ∈ RLv×d represents
Lv vision tokens in k-th frame with d dimensions; the audio branch processes audio clip, obtaining
audio tokens as denoted as a, where a ∈ RLa×d represents La audio tokens with d dimensions; ex-
pressions are embedded as x, where x ∈ RLx×d represents Lt text tokens with d dimensions. Next,
we organize vision, audio, and text tokens into X = {xv, v1, v2, . . . , vN , xv, xa, a, xa, x} to form a
sequence input for MLLM, where xv, xa ∈ R1×d represent special tokens for the vision tokens and
audio tokens. This MLLM will be trained to generate [SEG] token xs, where xs ∈ R1×d, and use
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(a) Musical-audio Text Alignment
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Ref-AVS
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Proj.

No segmentation results available.

[SEG]

Vision Special Token

Vision Token

Audio Special Token

Audio Token

Text Token

Segmentation Token

Figure 3: MISA. (a) Musical-audio Text Alignment: We train the Audio Projector and Text Tok-
enizer in this stage, while other parameters are frozen. (b) Musical-audio Instruction Tuning: We
finetune the Audio Projector, Text Tokenizer, Prompt Projector, SAM 2 Decoder, while other pa-
rameters are frozen. In addition, Multimodal-LLM is fine-tuned via LoRA (Hu et al., 2021).

as a prompt to guide the segmentation module in producing mask M = {m1,m2, . . . ,mK}, where
mk ∈ RHeight×Width.

Training Paradigm and Objectives. Our training paradigm includes a musical-audio text align-
ment stage and a musical-audio instruction tuning stage. Injecting a new modality into MLLM
requires pretraining with a modality-specific dataset, so we use AudioCaps (Kim et al., 2019) and
MusicQA (Liu et al., 2023b) to build the general and domain-specific representation alignment.
During this stage, we employ an autoregressive cross-entropy loss, Ltxt, to train the model on au-
dio captioning tasks. The objective of Ltxt is to align the acoustic representations from the audio
encoder MERT with the MLLM’s text embedding space. By training the model to ”describe the au-
dio,” we ensure that the audio tokens are semantically meaningful to the MLLM prior to fine-tuning
for segmentation.

Next, we perform musical-audio instruction tuning for the Ref-AVS task. We optimize the model
by the combination of autoregressive cross-entropy loss Ltxt and segmentation loss Lseg composed
with binary cross-entropy loss and dice loss. In practice, the object described by an expression may
be unavailable (e.g., the query targets a ”sounding object,” but no object is sounding within the visual
scene). Unlike prior works, which typically enforce the segmentation model to produce a zero mask
given unavailable references, we choose to bypass segmentation in these cases to avoid hindering
the model’s ability to distinguish valid signals. Instead, the model is trained to output a text-based
rejection response (i.e., ”No segmentation results available.”) if the reference is unavailable. This
Rejection Supervision training objective is modified as follows:

Linstruction =

{
Ltxt + Lseg, if M /∈ ∅,
Ltxt, otherwise.

(1)

3.2 MUSEUM: MUSICAL-AUDIO AUGMENTATION

This section introduces MUSEUM, a musical-audio augmentation pipeline which consists of
MUsical SourcE, AUgment, and Mix stages. The objective is to augment multiple audio signals
within the dataset D, creating various audio-differentiate samples given visual frames, ground truth
segmentation mask, audio signal, and expression keyword c (e.g., “loudest”, used to decide the aug-
mentation method), which generate variation of cocktail-party scenes. These augmented samples
form an additional dataset D̃ for model training. Fig. 4 demonstrates the overall pipeline.

MUsical SourcE. We first obtain the audio signals by the guidance of the video and its
ground truth segmentation masks. Given a video sample with multiple objects/masks, and d =
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Template

MUsical SourcE AUgment Mix

(a) Separation 
vocal / non-vocal separation 

using ht-demucs

(a) Volume Scaling 
(Loudest / Lowest)

(b) Rhythm Stretching 
(Fastest / Slowest)

(c) Temporal Masking
(Longest / Shortest / First / Last)

(d) Sounding / Muted

1. Loudest sound object.
2. Lowest sound object.
…

1. Fastest rhythm object.
2. Slowest rhythm object.
…

1. Longest sound object.
2. Shortest sound object.
3. First object sounding.
4. Last object sounding.
…

1. Sounding object.
2. Muted instrument.
…

Ref-AVS MUSEUM

The loudest 
sounding object.

(b) Sampling
Solo performant sampling from 

MUSIC21

Figure 4: MUSEUM. Given the Ref-AVS dataset D, we augment the samples to form an aug-
mented dataset D̃. We sample d = {d(v), d(m), d(s)} ∈ D, corresponding to the sample of visual
frames, ground truth segmentation masks, and audio signal. We first extract target s(tgt) and ref-
erence s(ref) signals by one of the operations (i.e., Separation or Sampling) given d, in which we
can obtain the scene information to decide the operation. Next, we augment the two signals to
s̃(tgt) and s̃(ref) by using one of the augmentations (i.e., Volume Scaling, Rhythm Stretching, Tem-
poral Masking, Sounding/Muted) given random sampled expression keyword c (e.g., “loudest”);
Finally, we mix two signals into s̃ and sample an expression e (e.g., “The loudest sounding object.”)
given predefined expressions template and c. Then these outputs form a final augmented sample
d̃ = {d(v), d(m), s̃, e}, corresponding to the augmented sample of visual frames, ground truth seg-
mentation masks, augmented mixture audio, and corresponding expressions.

{d(v), d(m), d(s)} ∈ D denoted as the sample of visual frames, ground truth segmentation masks,
and audio signal, we random sample an expression keyword c, assign the ground truth segmentation
masks’ category as target object c(tgt) and another category within video as reference object c(ref).
We choose one of the operations to obtain the target and reference signal, denoted as s(tgt) and
s(ref):

(a) Separation: In the vocal and non-vocal scenes, we augment the existing audio source by
separating it into vocal and non-vocal signals, denoted as s(voc) and s(nov), by leverage ht-
demucs (Rouard et al., 2022) denoted as fsep, which is a hybrid spectrogram transformer
model for music source separation, with advantages in the separation of vocal and non-
vocal. We then assign signals according to c(tgt) and c(ref) as follows:

s(voc), s(nov) = fsep(d
(s)), (2)

s(tgt), s(ref) =

{
s(voc), s(nov), if c(tgt) corresponds to s(voc),

s(nov), s(voc), if c(tgt) corresponds to s(nov).
(3)

(b) Sampling: While separating mixture audio source of multiple instruments is non-trivial,
we sample audio signals from an extra dataset, MUSIC21 (Zhao et al., 2019) denoted as
DM , which is an audio-visual source separation dataset consisting various solo performant
videos, given the category condition c(tgt), c(ref), to enhance the audio variation.

s(tgt) ∼ DM |c(tgt), s(ref) ∼ DM |c(ref). (4)

AUgment. In this stage, we perform audio augmentation for the individual signals from the previ-
ous stage. The objective is to simulate a variant of acoustic properties given a sampled expression
keyword c, within complex cocktail-party scenes. The augmentation methodologies include Vol-
ume Scaling, Rhythm Stretching, Temporal Masking, and Sounding/Muted. These methods are
combined to form the augmentation function Faug . The augmented target and reference signal are
computed as:

6
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s̃(tgt), s̃(ref) = Faug(s
(tgt), s(ref), c). (5)

(a) Volume Scaling: Adjusting the amplitude of an audio signal to simulate variations in loud-
ness. Given an audio signal s(t), volume scaling applies a multiplicative factor α ∈ R+:
s̃(t) = α · s(t).

(b) Rhythm Stretching: Modifying the rhythm of an audio signal by using short-time Fourier
transform (STFT), phase vocoder, and inverse STFT, which are implemented with li-
brosa (McFee et al., 2025), to manipulate the signal along the time axis in the time-
frequency domain. The is achieved by scaling audio duration by a stretch factor γ ∈ R+:
s̃(t) = s(γ · t).

(c) Temporal Masking: Masking portions of the audio signal along the time axis, specified
by a time region in T = [t0, t0 + ∆t], where t0 ∼ U(0, T − ∆t) refers to a randomly
chosen start index; ∆t refers to mask length (duration); T refers to length of audio signal:
s̃(t) = 1[t /∈ T ] · s(t).

(d) Sounding/Muted: A special cases of Temporal Masking, where we simulate single sound
source within multiple audible objects in the scene. If T = ∅, the entire signal is preserved
as s̃(t) = s(t); If T = [0, T ], the entire signal is dropped as s̃(t) = 0.

Mix. Lastly, we add the augmented target and reference signals to form a new mixture audio sig-
nal s̃. We then sample an expression e from predefined expression template given the expression
keyword c, producing a new augmented sample d̃ = {d(v), d(m), s̃, e}, d̃ ∈ D̃, corresponding to the
augmented sample of visual frames, ground truth segmentation masks, augmented mixture audio,
and expression.

4 C-REF-AVSBENCH

We propose C-Ref-AVSBench, refined from the Ref-AVSBench (Wang et al., 2024b) Seen subset.
Originally, Ref-AVSBench lacks interpretation of the modality-specific performance. To delve into
the performance understanding, we separate the expressions into three types: Audio-Centric, AV-
Grounded, and Visual-Centric. Audio-Centric and AV-Grounded are related to audio cues, while
Visual-Centric is unrelated to audio cues. We label it using keyword extraction. When the expres-
sions include keywords such as “sound” and “audio”, we refer to this as audio cues; otherwise,
we assign them as Visual-Centric. Next, we categorize the samples with audio cues by identify-
ing whether expressions include explicit, spatial, or semantic queries (e.g., “singing”, “left to”, or
“piano”). We assign these expressions to AV-Grounded; otherwise, assign as Audio-Centric.

These labels help assess the model’s modality-specific capabilities, evaluate audio-awareness by
not being biased by the explicit text (e.g., “The loudest sounding object” will be labeled as Audio-
Centric to help assess audio-awareness, while “The sounding object louder than piano” will be
labeled as AV-Grounded to avoid the biased information from the semantic keyword “piano”.). In
addition, we add extra subcategories for Audio-Centric: Volume, Temporal, and Rhythm, with the
keywords such as “loudest”, “fastest”, “longest”, guiding us in evaluating specific scenarios.

Furthermore, we find that several videos occur in both the training and testing sets. Although they
are sampled from different timestamps, it might misinterpret the modality-specific performance, as
it merely memorizes visual scenes with a fixed expression. We remove these videos that exist within
the training and testing sets by identifying the shared video ID given by the dataset. We provide the
examples of the removed video and statistics of C-Ref-AVSBench in Appendix A.2.

5 EXPERIMENTAL RESULTS

5.1 EXPERIMENTAL SETTINGS

Datasets. We evaluate our methods on the Ref-AVSBench (Wang et al., 2024b). It consists of a
training set (2,908 videos), a validation set (276 videos), and a testing set (818 videos). The testing
set is divided into three subsets: Seen (292 videos) with trained categories, Unseen (269 videos)
with 13 novel categories, and Null, which refers to nothing to segment. For the details and ablation
studies, we evaluate through C-Ref-AVSBench.
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Table 1: Results on Ref-AVSBench. Mix is the average of Seen and Unseen. ∗ denotes different
implementations from the original Segmentation Arch.; † denotes the usage of frozen SAM 2 as a
standalone agent. Gray row is the visual-text SOTA. Blue row is our best model.

Method MLLM Arch. Seg. Arch. Seen Unseen Mix (S+U) Null
J F J&F J F J&F J F J&F S

Audio-based methods
AVSBench (Zhou et al., 2022) - - 23.2 51.1 37.2 32.4 54.7 43.5 27.8 52.9 40.3 20.8
AVSegFormer (Gao et al., 2024) - - 33.5 47.0 40.2 36.1 50.1 43.1 34.8 48.6 41.7 17.1
GAVS (Wang et al., 2024a) - - 28.9 49.8 39.4 29.8 49.7 39.8 29.4 49.8 39.6 19.0
Visual-based methods
ReferFormer (Wu et al., 2022) - - 31.3 50.1 40.7 30.4 48.8 39.6 30.9 49.5 40.2 17.6
R2VOS (Li et al., 2023a) - - 25.0 41.0 33.0 27.9 49.8 38.9 26.5 45.4 35.9 18.3
Multimodal-based methods
EEMC (Wang et al., 2024b) - M2F 34.2 51.3 42.8 49.5 64.8 57.0 41.9 58.1 50.0 0.7
SAM2-LOVE (Wang et al., 2025a) - SAM 2 43.5 51.9 47.7 66.5 72.3 69.4 55.0 62.1 58.5 23.0
TSAM (Radman & Laaksonen, 2025) - SAM-B 43.4 56.8 50.1 54.6 66.4 60.5 49.0 61.6 55.3 1.7
AuralSAM2 (Liu et al., 2025) - SAM 2 56.2 61.2 58.7 68.7 74.4 71.5 62.4 67.8 65.1 6.5
MLLM-based methods
Crab (Du et al., 2025) LLaMA2-7B-Chat SAM∗ 40.5 58.0 49.3 45.6 63.0 54.3 43.1 60.5 46.2 -
OISA-1B (Ying et al., 2025) InternVL2.5-1B M2F∗ 51.7 58.7 55.2 58.3 65.1 61.7 54.5 61.4 58.0 9.8
Omni-R1 (Zhong et al., 2025) Qwen2.5-Omni-7B SAM 2† 43.0 51.4 47.2 63.1 69.3 66.2 53.1 60.4 56.7 -
TGS-Agent (Zhou et al., 2025) LLaMA2-7B-Chat SAM 2† 49.5 60.4 54.9 73.2 80.6 76.9 61.3 70.5 65.9 3.5
AURORA (Luo et al., 2025) VideoLLaMA2-7B SAM 63.2 72.8 68.0 69.7 76.4 73.0 66.5 74.6 70.1 -
Sa2VA-1B (Yuan et al., 2025) InternVL2.5-1B SAM 2 41.8 56.6 49.2 63.6 76.8 70.2 52.7 66.7 59.7 -
Sa2VA-1B (finetuned) InternVL2.5-1B SAM 2 75.3 85.4 80.3 81.1 87.9 84.5 78.2 86.6 82.4 7.9
Ours
MISA InternVL2.5-1B SAM 2 76.4 86.5 81.4 80.7 88.4 84.6 78.6 87.5 83.0 7.0
MISA + MUSEUM InternVL2.5-1B SAM 2 77.0 87.0 82.0 81.3 88.2 84.7 79.1 87.6 83.4 1.3

Table 2: Results on C-Ref-AVSBench. Gray row is the visual-text SOTA.

Method Audio-Centric AV-Grounded Visual-Centric Overall
J F J&F J F J&F J F J&F J F J&F

SOTA methods
EEMC (Wang et al., 2024b) 45.7 67.2 56.5 43.1 63.1 53.1 35.7 54.7 45.2 42.5 62.9 52.7
Crab (Du et al., 2025) 39.9 61.3 50.6 22.5 43.4 32.9 21.5 40.7 31.1 28.0 48.7 38.4
Sa2VA-1B (Yuan et al., 2025) 36.0 55.8 45.9 44.8 60.7 52.7 63.9 75.6 69.8 45.5 61.9 53.7
Sa2VA-1B (finetuned) 70.9 84.2 77.6 79.3 88.4 83.9 79.8 88.3 84.0 76.6 87.0 81.8
Ours
MISA 76.2 87.2 81.7 79.3 89.3 84.3 78.2 87.5 82.9 78.1 88.3 83.2
MISA + MUSEUM 81.6 91.2 86.4 79.3 89.3 84.3 78.6 88.1 83.4 79.9 89.7 84.8

Evaluation Metrics. Following the evaluation protocol from (Wang et al., 2024b; Zhou et al., 2022),
we adopt the Jacard Index (J ), the F-score (F), and their average (J&F) as primary evaluation
metrics. A metric S is employed for the Null set, which is the ratio between predicted mask area
and the background area; lower is better in this case.

Implementation Details. We first perform musical-audio text alignment for two epochs using a
1e-4 learning rate and a batch size of 4 per GPU. Next, we finetune with Ref-AVS and MUSEUM
for three epochs with a learning rate of 4e-4 and a batch size of 1. LoRA (Hu et al., 2021) rank is set
to 128 and a scaling factor of 256. AdamW optimizer and bfloat16 precision are applied for model
training. All experiments are conducted on 8 NVIDIA RTX A5000 GPUs.

5.2 MAIN RESULTS

In the following, we evaluate our methods by comparing it with previous SOTA methods. We
present our methodologies as MISA and MISA + MUSEUM, representing the usage without and
with MUSEUM. In addition to the existing SOTA, we add visual-text models as references: Sa2VA-
1B (Yuan et al., 2025), and a finetuned version denoted as Sa2VA-1B (finetuned).
Ref-AVSBench. Table 1 shows the overall results on Ref-AVSBench. Our MISA achieves better
performance than SOTAs in terms of a similar or smaller MLLM backbone and segmentation ar-
chitecture (e.g., comparing to a larger MLLM backbone AURORA (Luo et al., 2025), our model
achieves better results.). Moreover, using MUSEUM with MISA further improves the overall per-
formance. Our methods also gain improvements against Sa2VA-1B (Yuan et al., 2025), which is the
highest result of the existing SOTA. Nevertheless, the remarkably high performance of the visual-
text SOTA implies that the original benchmark allows for visual-text shortcut learning without lever-
aging audio modality. This observation necessitates our refined C-Ref-AVSBench evaluation (Ta-
ble 2), which explicitly isolates modality-specific scenarios, especially the Audio-Centric scenario,
to assess true cross-modal reasoning capabilities.
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Table 3: Ablation study of augmentation within MU-
SEUM. Results are reported using J&F .

Augmentation Audio-Centric Overall V. T. R.V. T. R. S. M.
81.7 83.2 73.7 79.1 68.8

✓ 81.7 83.4 79.3 76.8 72.1
✓ 84.5 83.8 78.2 84.9 86.1

✓ 82.4 83.3 72.3 78.8 70.8
✓ 84.5 83.8 78.9 84.6 74.1

Ours
✓ ✓ ✓ ✓ ✓ 86.4 84.8 83.9 83.9 90.2

Table 4: Ablation study of audio en-
coder with J&F .

Audio Encoder Audio-Centric Overall

BEATs 83.2 83.1

Whisper 81.6 83.0

Ours

MERT 86.4 84.8

Table 5: Ablation study of rejection supervision.

Rejection Supervision
C-Ref-AVSBench Ref-AVSBench

Audio-Centric Overall Null

J&F S
Without 82.3 83.8 1.3
With (Ours) 86.4 84.8 1.3

Table 6: Ablation study of alignment
datasets with J&F .

AudioCaps MusicQA Audio-Centric Overall
77.8 80.9

✓ 83.6 82.1
✓ 82.8 81.6

Ours
✓ ✓ 86.4 84.8

EEMC 
(Wang
et al., 

2024b)

MISA + 
MUSEUM

MISA

The object with the longest duration of sound.
The object with the shortest duration of sound.

(a) Ukulele & Woman

The object making the fastest rhythm.
The object rhythm is slower over the time.

(b) Handpan & Violin

Figure 5: Qualitative results across different expressions within audio-visual pairs. Both exam-
ples show the results with Audio-Centric expression from EEMC, MISA, and MISA + MUSEUM.
We combine the segmentation results of different expressions and our method produces the high
quality and precision segmentation compared to EEMC.

C-Ref-AVSBench. Table 2 shows the results on C-Ref-AVSBench across different expression
groups. While the Sa2VA-1B (Yuan et al., 2025) has a strong performance in the Visual-Centric
scenario and solely finetuning on Ref-AVS brings high baseline result, adopting our methodologies,
MISA and MUSEUM, significantly improves the result in the Audio-Centric scenario, showcasing
the benefits brought by our proposed methods.

5.3 ABLATION STUDIES AND QUALITATIVE RESULTS

Augmentation within MUSEUM. We study the augmentation methods in MUSEUM by using one
augmentation at a time. In Table 3, most strategies improve the performance of Audio-Centric
individually, and using all the proposed augmentations improves the overall performance.
Studies within MISA. Domain-specific design is crucial for the Ref-AVS task. Table 4 show that
using a specialized encoder MERT (Li et al., 2023b) achieves better results against the general en-
coder BEATs (Chen et al., 2023) and Whisper (Radford et al., 2023); Table 6 shows that utilizing
AudioCaps (Kim et al., 2019) and MusicQA (Liu et al., 2023b) for alignment helps boost the overall
performance against using either one, suggesting the need for large-scale and domain-specific pre-
training. In addition, using rejection supervision also shows an improvement (see Table 5), as the
performance might be harmed if the segmentation module is trained with a background mask.
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Qualitative Results. Fig. 5 shows two segmentation examples. While EEMC fails to segment cor-
rect sounding object with different expressions, MISA + MUSEUM segments the correct sounding
objects with high quality given Audio-Centric expressions. Note that, due to a lack of audio-signal
learning, MISA fails to segment sounding object within specific-scenario, as shown in the second
row of Fig. 5(b), suggesting the need for extra augmented dataset for learning from MUSEUM.

6 CONCLUSIONS

We propose MISA, a Musical-audio Instructed Segmentation Assistant model by integrating and
aligning audio modality into MLLM, which guides the segmentation model to segment object via
learning through audio. To improve the audio awareness capabilities, we introduce MUSEUM, a
musical-audio augmentation pipeline to augment audio through separating and sampling sources,
manipulating and mixing to form a new mixture audio, which enriches the audio samples. We also
refine the Ref-AVSBench as C-Ref-AVSBench that categorizes expressions into Audio-Centric,
AV-Grounded, and Visual-Centric, to perform modality-specific evaluation. Our method achieves
state-of-the-art performance on both benchmarks, particularly with the Audio-Centric expressions.
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Table 7: Function of Augmentation Eq. 5. We organize keywords into multiple types, using the
same augmentation method. Target Signal s(tgt), Reference Signal s(ref), and c are the inputs.
Given c, each input uses its parameters with the corresponding method. We specify the parameters
to produce 10-second audio signal as follows: α+

min = 1.25;α+
max = 1.5;α−

min = 0.3;α−
max =

0.5; γ+
min = 1.25; γ+

max = 1.5; γ−
min = 0.3; γ−

max = 0.5;∆t ∼ U(1, 5) · sampling rate.

Type Keywords (c) Method Target Signal (s(tgt)) Reference Signal (s(ref))
Volume Loudest s̃(t) = α · s(t). α ∼ U(α+

min, α
+
max) α ∼ U(α−

min, α
−
max)

Volume Lowest s̃(t) = α · s(t). α ∼ U(α−
min, α

−
max) α ∼ U(α+

min, α
+
max)

Rhythm Fastest s̃(t) = s(γ · t). γ ∼ U(γ+
min, γ

+
max) γ ∼ U(γ−

min, γ
−
max)

Rhythm Slowest s̃(t) = s(γ · t). γ ∼ U(γ−
min, γ

−
max) γ ∼ U(γ+

min, γ
+
max)

Temporal First s̃(t) = 1[t /∈ T ] · s(t). T = ∅ T = [0,∆t]
Temporal Last s̃(t) = 1[t /∈ T ] · s(t). T = ∅ T = [T −∆t, T ]
Temporal Longest s̃(t) = 1[t /∈ T ] · s(t). T = ∅ T = [t0, t0 +∆t]
Temporal Shortest s̃(t) = 1[t /∈ T ] · s(t). T = [t0, t0 +∆t] T = ∅
Sounding Sounding s̃(t) = 1[t /∈ T ] · s(t). T = ∅ T = [0, T ]
Muted Muted s̃(t) = 1[t /∈ T ] · s(t). T = [0, T ] T = ∅

loudest

The loudest 
sounding 

object.

sounding

The sounding 
object.

(a) Separation -> Volume Scaling -> Mix

(b) Sampling -> Sounding -> Mix

~ C

~ C

MUSIC21

vocal

non-vocal

louder

lower

cello

violin

sounding

muted

Figure 6: Examples of the MUSEUM workflow. (a) Given a video of a man and a guitar, mask
refers to the man, it separates the vocal and non-vocal sound to individual signal from original
source, assign vocal as target and non-vocal as reference given mask’s category; given sampled
keyword “loudest”, it performs volume scaling by scaling up the amplitude of the target signal,
scaling down the amplitude of the reference signal. (b) Given a video of a violin and a cello, mask
refers to the cello; it samples the violin and cello sources from MUSIC21 (Zhao et al., 2019), assigns
cello as target and violin as reference; given sampled keyword “sounding”, retain the target signal,
mask the reference signal. Both examples operate by mixing two augmented signals to a mixture
signal, producing new visual-mask-audio-text samples with sampled expressions.

A APPENDIX

A.1 DETAILS OF MUSEUM.

We provide the details of MUSEUM, particularly the composition of the augmentation stage Faug

shown in Table 7; examples of the sample augmentation workflow in Fig. 6; the MUSEUM Aug-
mentation Algorithm 1; and examples of the expressions template E, which we used for MUSEUM
augmented signal expression construction, shown in Table 8
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Algorithm 1: MUSEUM Augmentation Pipeline.

Input: Input dataset D, num. of samples Ñ , expressions template E, keywords C
Output: Augmented dataset D̃
sample Dsep, Dsamp ∼ D;
D̃ ← ∅, j ← 0;
while j < Ñ do

sample keyword c ∼ C;
sample d = {d(v), d(m), d(s)} ∼ D;
assign c(tgt), c(ref) given d(m);
if d ∈ Dsep then

assign s(tgt), s(ref) according to Eq. 2 and Eq. 3;
end
else if d ∈ Dsamp then

assign s(tgt), s(ref) according to Eq. 4;
end
else

skip current step;
end
assign s̃(tgt), s̃(ref) according to Eq. 5 and Table 7;
s̃← s̃tgt + s̃ref ;
sample expression e ∼ E|c;
d̃← {d(v), d(m), s̃, e};
D̃ ← D̃ ∪ {d̃};
j ← j + 1;

end

The main objective is to synthesize an augmented dataset D̃ given D for model training. Using this
methodology, we can augment each sample d drawn from D with a different combination of acous-
tic properties (e.g., louder violin sound and lower cello sound), simulating various mixture sources.
This is achieved by identifying the target c(tgt) and reference c(ref), which can processed from orig-
inal dataset (Dsep, Dsamp ∼ D, Dsep corresponds to vocal/non-vocal subset while Dsamp corre-
sponds to multiple music instruments subset), extracting the target and reference signal s(tgt), s(ref),
augmenting each signal to s̃(tgt), s̃(ref), and mixing both to s̃ (demonstrated in Algorithm 1). To
align with the sampled keyword c ∼ C (denotes the predefined keywords set), we carefully manip-
ulate the audio signals for target s(tgt) and reference s(ref) with a different predefined parameter,
shown in Table 7. By considering various scenarios, we obtain sources from either vocal/non-vocal
Dsep or multiple instruments Dsamp audio-visual scenes, which we can identify by the metadata
from the dataset, and use as a condition for stage execution within the musical source stage. Fig. 6
showed two examples of an augmentation workflow, one utilized a separation path and another
utilized a sampling path, demonstrating the workflow of signal extraction, augmentation given a
keyword, and mixing to form an augmented sample.

A.2 DETAILS OF C-REF-AVSBENCH.

Table 9 shows both Ref-AVSBench’s and C-Ref-AVSBench’s statistics. Approximately 60% of
videos in Ref-AVSBench are part of the Ref-AVS training set. Removing these helps us to evaluate
performance in fair conditions, compared to the visual-text baseline. Fig. 7 shows an example. The
video exists in both training and testing sets, with different timestamps. They share similar visual
scenes, exhibit identical expressions and answers across the training and testing sets, making them
overoptimistic in evaluating certain cases.

Table 10 lists examples of each label. While the expressions do not contain any acoustic keyword
like “sound” or “sing”, the expressions are labeled as Visual-Centric; While the expressions exist
both acoustic keywords and the semantic/explicit (e.g., “boy”, “piano”, “standing”), spatial (e.g.,

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Table 8: Expressions Template E. We listed 2 examples per keyword.

Keyword Expressions

Loudest The object making the loudest sound.
The object with the highest volume.

Lowest The object making the lowest sound.
The object with the lowest volume.

Fastest The object making the fastest rhythm.
The object with the fastest tempo.

Slowest The object making the slowest rhythm.
The object with the slowest tempo.

First The first object making the sound.
The first object emitting the sound.

Last The last object making the sound.
The last object emitting the sound.

Longest The object with the longest sound duration.
The object making the longest sound duration.

Shortest The object with the shortest sound duration.
The object making the shortest sound duration.

Sounding The object making the sound.
The sounding object.

Muted The instrument is muted.
The instrument didn’t make any sound.

Table 9: Statistics of C-Ref-AVSBench.

Dataset Uniq. Video Overall Audio-Centric AV-Grounded Visual-Centric Volume Temporal Rhythm
Ref-AVSBench Seen 273 2288 630 1115 543 90 113 64
C-Ref-AVSBench 115 918 308 432 178 31 62 20

“left of the”) queries, the expressions are labeled as AV-Grounded; Otherwise, the expressions are
labeled as Audio-Centric as these expressions containing only acoustic keywords. As the example of
Audio-Centric showed in the Table 10, it can further splitted samples to specific acoustic expression
type, denoted as Volume (e.g., “loudest sound”), Rhythm (e.g., “faster rhythm”), and Temporal (e.g.,
“shortest sound duration”, “making sound at all times”) for specific evaluation. These expressions
also guide us in constructing the MUSEUM expressions template as in Table 8 for consistency with
Ref-AVS.

A.3 MORE ABLATION STUDIES.

Ablation study of samples construction. We compare MUSEUM with heuristic methods. Since
our method MUSEUM is a type of resample and dataset extension method, we experiment with
two heuristic method: oversample the Audio-Centric as its limitation of sample scale in the origi-
nal training set; and joint training with an external dataset, MUSIC-AVQA (Li et al., 2022), which
included cases as similar as our Audio-Centric type, with a different objective (pure language gen-
eration without segmentation). As shown in Table 11, these two methods suffer a performance drop,
particularly due to overfitting in the over-sampling cases, and domain gap from other datasets. Our
method augments the existing dataset to maintain domain difference and increase variation instead
of training with multiple copies. In addition, we also study the sample scale setup of MUSEUM.
Controlling the scale approximately the same as the original training set could achieve a better result,
as shown in Table 12.
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The object making the fastest rhythm. -> Pipa The entity producing the swiftest rhythm. -> Pipa

The object making the slowest rhythm. -> Guitar The object making slower rhythm than the pipa. -> Guitar

Training set Testing set

Figure 7: Example of video exists in both training and testing set. The video ID is
Pe1LuVFTczE.

Table 10: Examples of each expressions type. We listed 5 examples per type.

Type Expressions

Audio-Centric

The object making the loudest sound.
The object making a sound with a faster rhythm.
The object making the shortest sound duration.
The object that keeps making sound at all times.
The source of the sound.

AV-Grounded

The boy playing ukulele and singing.
The object making a sound by being played by the woman.
The object making a sound by being played by the man keeping standing.
The object making louder sound than the piano.
The violin on the left of the sounding piano.

Visual-Centric

The object being held by the woman.
The object being played by the individual on the right.
The yellow guitar.
The boy behind the guitar
The object play an instrument standing in the middle.

Ablation study of hyperparameter. We show the hyperparameter studies in the Table 13. The
improvement within the model and the parameters achieved by switching SAM (Kirillov et al., 2023)
to SAM 2 (Ravi et al., 2024) suggests the stronger segmentation capabilities brought by SAM 2, even
without pretrained knowledge from the integration of MLLM; Using a larger LoRA (Hu et al., 2021)
rank also helps improve overall performance. While these tweaks help achieve a better foundation
performance for all scenarios, using our proposed method, particularly integrating with the domain-
specific audio encoder MERT (Li et al., 2023b) and our augmentation dataset MUSEUM, improves
the performance within the Audio-Centric scenario. In addition, using MERT as an audio encoder
and/or an augmented dataset MUSEUM could also benefit from a relatively weaker setup (the first
three rows), with the considerable improvement through the Audio-Centric group, suggesting the
significant effectiveness of our methodologies.

A.4 MORE QUALITATIVE RESULTS.

Fig. 8 shows an audio-visual scene with all types of expressions for the two audible objects, with
each segmentation methodology’s results and metrics. Our method, MISA + MUSEUM, could
handle well within all scenarios, compared to EEMC and visual-text SOTA: Sa2VA-1B (finetuned),
particularly for the Audio-Centric expressions. Throughout our definition of expressions, we could
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Table 11: Ablation study of data samples. Re-
sults report with J&F .

Method Audio-Centric Overall V. T. R.
- 81.7 83.2 73.7 79.1 68.8
w/. Oversample 79.8 82.2 73.5 78.2 64.7
w/. MUSIC-AVQA 77.0 80.7 60.7 71.5 62.1
MUSEUM (Ours) 86.4 84.8 83.9 83.9 90.2

Table 12: Ablation study of samples size. Re-
sults report with J&F .

Ref-AVS : MUSEUM Audio-Centric Overall V. T. R.

1 : 0.1 82.6 82.9 79.0 82.5 66.8

1 : 0.5 83.0 83.4 74.8 83.0 83.9

1 : 1 (Ours) 86.4 84.8 83.9 83.9 90.2

Table 13: Ablation study of hyperparameter. Blue row is our best model.

Audio Enc. LoRA Seg. Arch. Pretrained Weights MUSEUM
Ref-AVSBench C-Ref-AVSBench

Seen Overall Audio-Centric
J F J&F J F J&F J F J&F

MERT 8 SAM InternVL2.5-VL-1B & SAM ✓ 69.8 81.5 75.7 70.1 82.9 76.5 70.1 83.7 76.9
MERT 8 SAM InternVL2.5-VL-1B & SAM 66.4 78.9 72.6 67.5 80.3 73.9 67.2 80.4 73.8
BEATs 8 SAM InternVL2.5-VL-1B & SAM ✓ 63.8 77.6 70.7 65.7 79.4 72.6 68.1 82.9 75.5
BEATs 8 SAM InternVL2.5-VL-1B & SAM 47.9 64.0 55.9 53.0 68.0 60.5 57.9 73.6 65.8
BEATs 8 SAM 2 InternVL2.5-VL-1B & SAM 2 71.2 82.4 76.8 70.8 82.9 76.8 67.3 82.1 74.7
BEATs 8 SAM 2 Sa2VA-1B 70.3 81.9 76.1 71.0 83.0 77.0 68.3 81.2 74.7
BEATs 128 SAM 2 Sa2VA-1B 75.6 86.0 80.8 76.7 87.6 82.2 73.2 85.8 79.5
MERT 128 SAM 2 Sa2VA-1B 76.4 86.5 81.4 78.1 88.3 83.2 76.2 87.2 81.7
MERT 128 SAM 2 Sa2VA-1B ✓ 77.0 87.0 82.0 79.9 89.7 84.8 81.6 91.2 86.4

EEMC (Wang
et al., 2024b)

76.0%

The object making the 
shortest sound duration.

The object making the longest 
sound duration.

Ukulele
Girl

AV-Grounded Visual-CentricAudio-Centric

Sa2VA-1B 
(Yuan et al., 

2025) finetuned
90.8%

MISA + 
MUSEUM
97.2%

The object making a sound by being 
played by the girl.

The object making a sound by 
speaking and playing the ukulele.

The object held by the girl.

The object wearing glasses.

Figure 8: Qualitative results across expressions group. We compare our methods with SOTAs,
and include the average J&F of the samples for each model.

easily identify the weakness within each scenario. At the same time, it also suggests the need for
precise evaluation and a complete benchmark for some instances.
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