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ABSTRACT

Few-shot learning aims to recognize new classes with few annotated instances
within each category. Recently, metric-based meta-learning approaches have
shown the superior performance in tackling few-shot learning problems. Despite
their success, existing metric-based few-shot approaches often fail to push the
fine-grained sub-categories apart in the embedding space given no fine-grained
labels. This may result in poor generalization to fine-grained sub-categories, and
thus affects model interpretation. To alleviate this problem, we introduce con-
trastive loss into few-shot classification for learning latent fine-grained structure
in the embedding space. Furthermore, to overcome the drawbacks of random im-
age transformation used in current contrastive learning in producing noisy and
inaccurate image pairs (i.e., views), we develop a learning-to-learn algorithm to
automatically generate different views of the same image. Extensive experiments
on standard few-shot learning benchmarks and few-shot fine-grained image clas-
sification demonstrate the superiority of our method.

1 INTRODUCTION

Few-shot learning has been widely studied to recognize unseen classes with limited samples for each
novel class (Li et al., 2006; Finn et al., 2017; Lee et al., 2019; Tseng et al., 2020). Recently, metric-
based meta-learning methods have attracted extensive attention in image classification due to their
superior performance and simplicity (Vinyals et al., 2016; Snell et al., 2017; Sung et al., 2018). For
making inference, these methods compare the similarity between the feature embedding of query
images and that of a few labeled images of each class. This therefore requires learning a flexible
encoder, which can map the data points with similar semantics in the input space to locate closely
in the embedding space. Meanwhile, those data with different semantic meanings in the input space
should disperse in the embedding space. Accordingly, a new sample from the novel class can be
recognized directly through a simple distance metric within the learned embedding space. Indeed,
the performance of recognizing novel classes in metric-based meta-learning extremely relies on the
learned embedding space.

Despite the success of recognizing novel classes, existing metric-based few-shot approaches often
fail to push the fine-grained sub-categories apart in the embedding space given no fine-grained la-
bels in training. For illustration, we merge nine different sub-categories of dogs in the miniImageNet
dataset into a coarse-grained class as a new label “dog” to train the Prototypical Network(PN) (Snell
et al., 2017) without changing other classes. As shown in Figure 1(a), we visualize the features of
the input data of three fine-grained sub-categories of “dog” using t-SNE. It is clearly revealed that
features of fine-grained classes learned by the Prototypical Network cannot be separated without fur-
ther label information. This means that these methods often do not generalize well to fine-grained
sub-categories. Since labeling the fine-grained sub-categories requires strong expertise, the general-
ization ability to unseen fine-grained sub-categories is of critical importance.

In this paper, we try to alleviate this problem by seeking self-supervised learning to learn the fine-
grained structure without given corresponding label information. As a powerful self-supervised
representation learning paradigm, Contrastive Learning (van den Oord et al., 2018; Chen et al.,
2020; He et al., 2020) has outperformed over even supervised learning in many situations. The key
insight of contrastive learning is to contrast semantically similar (positive) with dissimilar (negative)
pairs of data points. Nice theoretical results for contrastive learning has been given in Saunshi et al.
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Figure 1: We merge nine fine-grained sub-categories of dog into one class as a new coarse-grained
label “dog” for training. (a) and (b): T-SNE visualization of feature vectors extracted from three out
of nine fine-grained classes of dogs in miniImageNet using Prototypical Network and our proposed
method, respectively. (c): Evaluation results on the fine-grained Stanford Dogs dataset (Khosla
et al., 2011).

(2019), by hypothesizing that semantically similar points are often sampled from the same latent
class. Hence, contrastive learning has the potential to bring closer the representations of the same
latent class and separate those of different latent class. Therefore, we introduce a contrastive loss
into few-shot classification and learn latent fine-grained structures in the embedding space, which
helps to cluster samples with similar representations to form similar sub-categories.

A critical issue in contrastive learning is generating a pair of semantically similar representa-
tions(views) of the same image for contrasting with those dissimilar ones in the embedding space.
However, due to the limited number of training images, random image transformation may gener-
ated poor positive pairs with more substantial noises and less concept-relevant information when
directly applied to few-shot learning. This may therefore make contrastive learning fail to learn
fine-grained structure. To effectively improve fine-grained structure learning in the few shot learning
setting, we propose auto-view contrastive learning(AVCL) for metric-based meta-learning. Specifi-
cally we replace random image transformation of contrastive learning with spatial transformer net-
work(STN) (Jaderberg et al., 2015), a learned module that allows flexible spatial manipulation of
images, and develop a learning-to-learn algorithm to adaptively generate different views of the same
image. In detail, the parameters of STN are optimized through the contribution of the contrastive
loss to few-shot image recognition.

To verify that our proposed approach can improve the generalization ability of unseen fine-grained
sub-categories without corresponding fine-grained label information, we follow the experiment set-
ting of the coarse-grained class “dog” for training and further test the learned model on Stanford
Dogs, a fine-grain dataset containing 120 fine-grained dog classes (Khosla et al., 2011). As shown
in Figure 1(b,c), our proposed method can learn a better embedding space and significantly improve
the test accuracy on the Stanford Dogs dataset. For instance, our method obtains an improvement of
10.40% on the 5-way 5-shot task over the Prototypical Network.

We summarize the main contributions as follows:

• We firstly introduce contrastive loss into few-shot classification for learning the fine-
grained structure given no corresponding label information. This can make models learn
better embedding space and improve the generalization capability of learned models to
unseen fine-grained sub-categories.

• We propose a learning-to-learn auto-view learning approach for contrastive learning to
tackle the few-shot learning problems, which can keep classification-relevant informa-
tion of input data intact in views to learn fine-grained structures effectively. Extensive
experiments on standard few-shot learning benchmarks demonstrate the superiority of our
method. In particular, compared to contrastive learning with random views, our AVCL
method obtains 2.21% and 2.73% performance gains on miniIMageNet under the 5-way
1-shot and 5-way 5-shot settings, respectively.

• Since different sub-categories are distinguished by subtle and local differences, fine-grained
image recognition is more difficult than standard few-shot image recognition. Extensive
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experiments on fine-grained image recognition is conducted to testify the effectiveness and
advantages of our method.

2 RELATED WORKS

Few-shot image recognition Few-shot image recognition was first proposed by (Li et al., 2006),
with the aim to solve the problem of classifying novel categories with few labeled images per class.
Nowadays, two types of meta-learning methods are the mainstream methods to address this prob-
lem. One is gradient-based method that empower the model with ability to rapidly fine-tune to novel
classes with limited labeled images (Finn et al., 2017; Ravi & Larochelle, 2017; Rusu et al., 2019;
Bertinetto et al., 2019; Lee et al., 2019). The other is metric-based method, which makes predictions
based on a similar metric in a learned feature space between images with and without labels. Com-
mon similar metric used in this method includes cosine similarity (Vinyals et al., 2016), Euclidean
similarity (Snell et al., 2017), relation module (Sung et al., 2018), and graph neural network (Sator-
ras & Estrach, 2018).

In our work, we primarily consider improving the performance of metric-based meta-learning meth-
ods, especially Prototypical Network (Snell et al., 2017). Recently, there are many methods proposed
to improve the ability of metric-based meta-learning by constraining the structure of the feature
space. Li et al. (2020a) introduce an extra margin loss that leverages external content information,
e.g., pre-trained word embeddings, to generate adaptive margin between classes. This leads the
feature space to have better semantic structure. Contrastively, our work does not import external in-
formation and utilizes semantic information extracted purely from images themselves. Works most
relevant to ours are Sundermeyer et al. (2018); Gidaris et al. (2019) which utilize self-supervised
tasks to improve few-shot learning. However, their self-supervised pretext tasks are fixed at the
training stage. Our proposed framework can progressively change the view of contrastive learning
under a learn-to-learn paradigm.

Contrastive Learning Contrastive learning is one of the most popular methods for unsupervised
visual representation learning. View transformations and contrastive loss are two key parts of con-
trastive learning. This framework attains representations by optimizing contrastive loss that max-
imize agreement between transformed views of the same image and minimize agreement between
transformed views of different images. Contrastive learning was first proposed by (Hadsell et al.,
2006). Recently, Wu et al. (2018) consider instance discrimination and use noise contrastive loss to
learn representations. Contrastive multiview Coding (Tian et al., 2019) utilizes contrastive learning
to attain representations on multi-view setting. SimCLR (Chen et al., 2020) summarizes a standard
framework of contrastive learning and shows the effect of different random view transformations.
However, the performance of SimCLR relies on large batch size. Momentum Contrast (MoCo) (He
et al., 2020) is proposed to alleviate this problem by constructing a queue to preserve immediate pre-
ceding samples. In our work, due to the relatively small batch size of metric-based meta-learning, we
adopt MoCo in our model. Tian et al. (2020) also point out the importance of view transformation
for contrastive learning, and propose to learn view transformation via information bottleneck princi-
ple under unsupervised and semi-supervised settings. Our work employs a learn-to-learn framework
to automatically learn the view for better performance for few-shot classification.

3 PROPOSED METHOD

3.1 PROBLEM SETTING

A few-shot classification task is characterized as N-way, K-shot only if the model adapt to classify
new data after seeing K examples from each of the N classes. Meta-learning algorithms imitate
this setting in each iteration by randomly sampling N classes and their corresponding images from
a base dataset DB to construct a pseudo few-shot task or episode T . Specifically, the input of
each episode T can be divided into two sets: (1) Observable support set DS = {(xi,yi)}N×Ki=1 ,
formed by randomly selecting K samples from each of the N classes and (2) Unseen query set
DQ = {(xj ,yj)}Mj=1, containing other M samples from the same N categories. Given DS , the
pseudo task is employed by making predictions of DQ. Then the labels of query set are used to
compute classification loss to guide the update of the model.
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3.2 MODEL DESCRIPTION

Figure 2 illustrates the framework of our proposed method. Two complementary classification tasks
are employed simultaneously to learn the main encoder Fθ(·), which is the key component that
maps the input into a feature space. One path is metric-based meta-learning, which utilizes explicit
label information to regularize the feature space. Another path is contrastive prediction task, which
is a self-supervised instance-level classification task. This task is designed to identify latent fine-
grained structure in the feature space by aggregating the representations of the same latent class and
separating those of different latent classes at the same time.

In an episode T, sampled images in DS and DQ are used in the two paths. In the metric-based
meta-learning path, the main encoder Fθ(·) first maps all images into the feature space, and then all
support features in the same classCi aggregate into one vector hi. Typically, this is accomplished by
averaging all support features, i.e. hi = 1

K

∑
(x,y)∈DS

1[y=i]Fθ(x). It is followed by computing the
similarities between query features and aggregated features in each class. The final classification loss
Lmeta is defined as average cross entropy between true labels and predictions based on similarities.
This can be formulated as:

Lmeta(DS ,DQ, θ) = −
1

M

∑
(x,y)∈DQ

log
esim(Fθ(x),hy))∑N
i=1 e

sim(Fθ(x),hi)
, (1)

where sim denotes a similarity metric.

The core idea of the contrastive path is the process of producing two views from one image which lie
in the same latent space, i.e. containing similar semantic contents. This process is accomplished by
two differentiable auto-view modules Gγ1(·) and Gγ2(·) parameterized by γ1 and γ2, respectively.
Each of them is a spatial transformer network(STN) (Jaderberg et al., 2015) that allows flexible
semantics-invariant spatial manipulation of images, including cropping, one dimensional scaling,
As for translation, image deformation and proportional shrinkage, see appendix B for more details
of STN. They are applied to each image xi, producing two views x(1)

i and x
(2)
i . These views are then

mapped into feature space by the main encoder Fθ(·) and momentum encoder Fω(·), respectively.
As mentioned in He et al. (2020), the momentum encoder’s parameter ω is a moving average of
θ, which makes two encoders behave similar. Given Fθ(x

(1)
i ), the contrastive loss aims to identify

Fω(x
(2)
i ) in thousands of features {Fω(x(2))

k }k 6=i, and can be formulated as:

Lcon(DS ,DQ, ω, θ, γ) = −
∑

x∈DS∪DQ

log
esim(Fθ(x

(1)),Fω(x
(2)))∑r

j=1 e
sim(Fθ(x(1)),Fω(x

(2)
j )))

, (2)

where r denotes the number of negative samples, and γ = [γ1, γ2] denotes the parameters of auto-
view modules. By minimizing Lcon w.r.t θ, we force the main encoder Fθ(·) to map views of one
image which are semantically similar into closer points in the feature space, thus constructs a better
fine-grained semantic structure.

3.3 LEARNING STRATEGY

The optimization of our model during each iteration contains two stages. We denote θt, ωt, γt as
parameters and Dt

S , Dt
Q as support set and query set during iteration t, respectively. We first update

two encoders based on the meta loss Lmeta and contrastive loss Lcon:

θt+1 = θt − α∇θt(Lmeta(Dt
S ,D

t
Q, θ

t) + βLcon(Dt
S ,D

t
Q, ω

t, θt, γt)), (3)

ωt+1 = εωt + (1− ε)θt+1, (4)

where β denotes the regularization hyperparameter weighting two losses, α denotes the learning rate
of θ, and ε denotes momentum coefficient that controls the chasing speed of the momentum encoder
Fω(·). Note that the value of θt+1 relies on γt via the contrastive loss Lcon. This fact is crucial for
the update of γt in the next stage.

The updating criterion for the auto-view modulesGγ1(·) andGγ2(·) is to improve the positive effect
of contrastive loss for meta-learning. Keeping this in mind, we use the updated encoder Fθt+1(·) to
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Figure 2: A brief flow diagram of our model at training stage. Our framework consists of two
main tasks. The red arrow is metric-based meta-learning, while blue arrow depicts instance-level
contrastive learning. At meta-test stage, only the main encoder Fθ(·) is held for evaluation under
few-shot setting.

Table 1: Details of datasets used in experiments

Dataset Images Classes Train-val-test Resolution(after resize)
miniImageNet 60000 100 64-16-20 80×80
CUB-200-2011 11788 200 100-50-50 80×80

Cars 16185 196 98-49-49 80×80
Places 73000 365 183-91-91 80×80
Plantae 47242 200 100-50-50 80×80

compute meta loss again on the same task, and cast the loss as evaluation of update quality in the
first stage. Then the loss is used to guide the update of the auto-view modules via gradient descent:

γt+1 = γt − η∇γtLmeta(Dt
S ,D

t
Q, θ

t+1), (5)

where η is the learning rate of the auto-view modules. We mention again that θt+1 can be cast as
a function of γt. Thus the loss depends on γt through the computation graph of θt+1 in first stage.
The update of γt adjusts produced views towards better update of encoder Fθ(·) in the first stage.
This indicates that learned views further pushes positive effect of contrastive loss for meta-learning.

4 EXPERIMENTAL RESULTS

In this section, we conduct experiments to demonstrate the effectiveness of our method. Our pro-
posed method is evaluated on standard few-shot learning benchmarks and few-shot fine-grained
image recognition. We also conduct ablative study about the auto-view module in our learning
framework.

4.1 EXPERIMENTAL SETUP

We conduct 5-way 5-shot and 5-way 1-shot classification for all datasets. The metric-based meta-
learning method adopted in our model is Prototypical Network, one of the state-of-the-art metric-
based meta-learning methods for few-shot learning.

Datasets We follow the general few-shot image recognition settings and evaluate our method on
two benchmarks: miniImageNet (Vinyals et al., 2016) and CUB-200-2011 (Welinder et al., 2010).
miniImageNet is selected from the well-known ImageNet(Russakovsky et al., 2015) dataset. CUB-
200-2011 was originally proposed for fine-grained bird classification. To further validate that the
feature space benefits from a better fine-grained semantic structure, we evaluate our approach on
three datasets with fine-grained categorization: Cars(Krause et al., 2013), Places(Zhou et al., 2018)
and Plantae(Horn et al., 2018). We follow the dataset split in (Tseng et al., 2020). We list image
number, class number, splits and images resolution of all datasets in Table 1.
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Table 2: Comparative results for 5-way classification on miniImageNet. Average accuracies on
the meta-test set with 95 confidence interval are reported. † denotes methods using external text
information. ‡ denotes result reported in (Gidaris et al., 2019).

Model backbone 1-shot 5-shot
MAML (Finn et al., 2017) Conv4 48.70 ± 1.84 63.11 ± 0.92

Matching Network (Vinyals et al., 2016) Conv4 43.56 ± 0.84 55.31 ± 0.73
Relation Networks (Sung et al., 2018) Conv4 50.44 ± 0.82 65.32 ± 0.70

IDeMe-Net (Chen et al., 2019b) ResNet18 59.14 ± 0.86 74.63 ± 0.74
LwoF (Gidaris & Komodakis, 2018) WRN-28-10 60.06 ± 0.14 76.39 ± 0.11

wDAE-GNN (Gidaris & Komodakis, 2019) WRN-28-10 61.07 ± 0.15 76.75 ± 0.11
PPA (Qiao et al., 2018) WRN-28-10 59.60 ± 0.41 73.74 ± 0.19

Prototypical Network(PN)‡ (Snell et al., 2017) WRN-28-10 55.85 ± 0.48 68.72 ± 0.36
PN+TRAML† (Li et al., 2020a) ResNet12 60.31 ± 0.48 77.94 ± 0.57
PN+rot+jigsaw (Su et al., 2020) Resnet18 - 76.6

SEN PN (Kampffmeyer & Jenssen, 2020) WRN-16-6 - 72.3
PN+rotation (Gidaris et al., 2019) WRN-28-10 58.28 ± 0.49 72.13 ± 0.38

PN + AVCL(ours) WRN-28-10 61.75 ± 0.43 77.19 ± 0.51

Auto-view transformation architectures We use 4-layer convolutional nets with 64 channels as
localisation networks in STN modules that receive images of size 80× 80 and output 4-dimensional
vectors. The vectors are used as parameters of two diagonal affine transformations which apply
to images and produce two views. When implementing without auto-view module, we replace the
module with a random cropping function.

Feature extractor architectures In all our experiments, the main encoder and momentum encoder
share the same architecture. Following prior work (Gidaris & Komodakis, 2019; Gidaris et al.,
2019), we use a 2-layer Wide Residual Network(WRN-28-10) that outputs 640-dimensional feature
vectors after global pooling given images(or views) of size 80 × 80. This feature space is directly
used for metric-based meta-learning, but will be further mapped by a 2-layer mlp project head to a
128-dimentional hidden space for contrastive learning.

Training details At training, each minibatch contains 4 tasks, and classes for each task are randomly
selected from training set. The query set contains 4 samples during meta-training and 16 samples
during meta-testing. All samples from query set and support set are used for computing contrastive
loss. All learnable components of our model are trained for 60 epochs by SGD optimizer with
Nesterov momentum 0.9 and weight decay 0.0005. The learning rate for STN was set to 0.00001, the
same magnitude as in the original paper. The learning rate for other parts of model was initially set to
0.1, and then changed to 0.01 and 0.001 at epochs 20 and 40, respectively. Moreover, regularization
hyperparameter β was set to 2.0. We use a queue containing 63000 negative samples for contrastive
learning. Momentum coefficient ε for updating momentum encoder was set to 0.999, following (He
et al., 2020).

4.2 EVALUATION ON BENCHMARKS

Below we report comparative results on two benchmarks for FSL: MiniImageNet and CUB in Table
2 and 3. In Table 2 we divide methods into two groups and compare them with our proposed method,
respectively. The first group contains recent comparative few-shot learning methods. The second
group contains baseline method(Prototypical Network) and other methods that aim at improving
it. Analysis from the results, we can find that: (1)Our method consistently improves the baseline
method (prototypical Network). For instance, our model boosts performance of Prototypical Net-
work on miniImageNet by 5.90% and 8.47% under the 1-shot and 5-shot settings, respectively. This
verifies that our method can indeed improve model performance by refining fine-grained seman-
tic structure of the feature space . (2)Our model outperforms recent comparable few-shot learn-
ing methods and also outperforms other approaches that aim at improving Prototypical Network.
Moreover, we achieve competitive performance with the method using external text information
(PN+TRAML). This further gives evidence of the superiority of our learned feature space for FSL.
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Table 3: Comparative results for 5-way classification on CUB. Average accuracies on the meta-test
set with 95 confidence interval are reported.

Model backbone 1-shot 5-shot
AFHN (Li et al., 2020b) ResNet18 70.53 ± 1.01 83.95 ± 0.63
FEAT (Ye et al., 2018) ResNet 12 68.87 ± 0.22 82.90 ± 0.15

MAML (Chen et al., 2019a) ResNet34 67.28 ± 1.08 83.47 ± 0.59
cosine classifier (Chen et al., 2019a) ResNet34 68.00 ± 0.83 84.50 ± 0.51

Relationnet (Chen et al., 2019a) ResNet34 66.20 ± 0.99 82.30 ± 0.58
DEML (Ye et al., 2018) ResNet50 66.95 ± 1.06 77.11 ± 0.78
PN (Snell et al., 2017) WRN-28-10 66.08 ± 0.54 78.79 ± 0.23

PN+AVCL(ours) WRN-28-10 71.21 ± 0.43 85.08 ± 0.36

Table 4: Results for 5-way few-shot classification on three fine-grained datasets: Cars, Places and
Plantae. Average accuracies on the meta-test set are reported.

Model
Cars Places Plantea

1-shot 5-shot 1-shot 5-shot 1-shot 5-shot
PN 62.11 75.83 62.19 76.67 53.59 67.98

PN+AVCL 76.93 87.04 64.50 78.96 59.80 75.37

4.3 FEW-SHOT FINE-GRAINED IMAGE RECOGNITION

Fine-grained categories are distinguished by subtle and local semantic differences, which makes
few-shot fine-grained classification more difficult. We experimentally show that such difficulty can
be largely addressed by our method. Table 4 presents 5-way mean accuracy on three datasets with
fine-grained categories: Cars, Places and Plantae. It can be observed that our method improved
performance of Prototypical Network by a large margin under both 5-shot and 1-shot settings. For
instance, our method obtains 14.83% and 11.21% gains under 1-shot and 5-shot settings on Cars,
respectively. This verifies that metric-based meta-learning benefits from better fine-grained semantic
structure learnt by our method.

4.4 EVALUATION OF AUTO-VIEW LEARNING

In Fig. 3 we show four distinct types of views produced by our auto-view module. Aside from
local-to-local and global-to-local views which can also be accomplished by random cropping, our
auto-view module additionally allows one dimension scaling, Translation transformation, image
deformation and proportional shrinkage. This flexibility can enrich semantics-invariant transforma-
tions applied to the images, forcing the encoder to extract essential content of the image. This allows
the samples in the feature space to be distributed according to their semantics. Thus images from
the same novel category can be mapped to close points in the feature space, which greatly improves
generalization capability.

We quantitatively evaluate the effect of our auto-view module on five datasets in Table 5. PN+CL
denotes models that replace auto-view modules with random cropping functions, which is the same
as in (Chen et al., 2020; He et al., 2020). The results show that our auto-view module can indeed
improve the quality of views, thus reach a better performance. Compared to random views, our
AVCL method obtains 2.21% and 2.73% performance gains under the 5-way 1-shot and 5-shot set-
tings on miniIMageNet, respectively. We additionally show training and test errors during training
on miniImageNet in Figure 4. It can be observed that the curves of training error are similar, while
the curves of test errors are different. While contrastive regularization helps the model generalize
better, our auto-view module further improves it. This strongly supports our motivation that encod-
ing fine-grained semantic contents can help metric-based meta-learning generalize better to novel
classes in FSL.
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Table 5: Quantitative evaluation of auto-view module. PN+CL denotes model with traditional
random-view contrastive learning.

Model miniImageNet CUB Cars Places Plantae

1-shot PN+CL 59.54 70.45 71.91 63.15 54.19
PN+AVCL 61.75 71.21 76.93 64.50 59.80

5-shot PN+CL 74.46 82.67 84.38 79.43 72.43
PN+AVCL 77.19 85.08 87.04 78.96 75.37

Original

View1

View2

(a) (b) (c) (d)

Figure 3: Four types of views learned by our method: (a) Local-to-local, (b) Global-to-local, (c)
One-dimension Scaling, and (d) Proportional zooming.

Figure 4: Training errors (left) and test errors (right) on miniImageNet. The auto-view module
significantly decreases test errors, while keeping not overfit to the training set.

5 CONCLUSION

In this paper, we propose auto-view contrastive learning to improve few-shot image recognition. In
particular, we design a learning-to-learn algorithm to adaptively learn the views. We carry out two
paths of tasks, one is label-guided metric-based meta-learning, another is instance-level classifica-
tion for exploring fine-grained semantic structure of feature space. Extensive experiments on bench-
marks demonstrate that our method effectively boosts performance of metric-based meta-learning.
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A LEARNING PROCEDURE

The pseudo code of our learning procedure is shown in Algorithm1,

Algorithm 1 Auto-View Contrastive Learning(AVCL) for metric-based meta-learning

1: Require: Base dataset DB , learning rate α and η, weight hyperparameter β, momentum coef-
ficient ε, and maximum iteration number tmax

2: Random initialization for θ0, ω0, γ0

3: for t = 0 to tmax do
4: /* Sample tasks */

Randomly sample N classes from DB .
Randomly sample K images from each class in DB to form Dt

S
Randomly sample other M images from the same N classes in DB to form Dt

Q
5: /* First forward pass */

Using θt and ωt to compute Lmeta and Lcon through Eq. (1) and Eq. (2)
6: /* Optimize main encoder Fθ(·), project head gθ(·) and momentum encoder Fω(·) */

Update (θt, ωt) to (θt+1, ωt+1) through Eq. (3) and Eq.(4), and retain computational graph.
7: /* Second forward pass */

Using θt+1 to compute Lmeta through Eq. (1)
8: /* Optimize spatial transformation module Gγ1(·) and Gγ2(·) */

Update (γt1, γ
t
2) to (γt+1

1 , γt+1
2 ) through Eq. (5)

9: end for

11



Under review as a conference paper at ICLR 2021

Table 6: Effects of the β value in AVCL on model performances.

5-way Acc.
1-shot 5-shot

β = 0.5 58.84 ± 0.39% 74.21 ± 0.55%
β = 1.0 59.45 ± 0.36% 75.64 ± 0.71%
β = 2.0 61.75 ± 0.43% 77.19 ± 0.51%
β = 5.0 58.73 ± 0.50% 74.37 ± 0.77%

B SPATIAL TRANSFORMER NETWORKS

In spatial transformer networks, the input source image xs is first fed into a localisation net Gγ(·)
and outputs six affine transformation parameters. This parameters form a 2×3 matrix which defines
a affine transformation mapping each pixel coordinates (uti, v

t
i) in the output xt to a source coor-

dinates (usi , v
s
i ) in the input. In our setting, we contrain the matrix to be diagonal so as to avoid

skewing which could possibly change the semantics of images:(
usi
vsi

)
= τλ(u

s
t , v

s
t ) =

[
λ11 0 λ13
0 λ22 λ23

]utivti
1


Finally, the values of each pixels in xt is determined by bilinear interpolation at their corresponding
coordinates in the source images, called differentiable image sampling.

C MOMENTUM CONTRAST

Different from the standard framework in SimCLR (Chen et al., 2020) ,momentum contrast frame-
work introduces a queue q preserving negative samples and a momentum encoder Fω(·), to alleviate
the problem of need for very large batch size for contrastive learning. In each iteration, immediate
preceding features in the queue encoded by Fω(·) could be reused as negative samples to compute
the contrastive loss. At the end of each iteration, features of current mini-batch is enqueued to the
queue, and earliest features in the queue are removed. The update of the encoder Fω(·) is intractable
by back-propagation. To maintain consistency, MoCo updates ω as a moving average of the main
encoder’s parameter θ, as shown in eq. (4).

D EFFECT OF REGULARIZATION HYPERPARAMETER

We perform ablation study w.r.t. the regularization hyperparameter β which controls the magnitude
of contrastive loss. Table 6 shows the accuracies of 5-way few-shot learning on miniImageNet. We
can observe that when β is small, the contrastive loss cannot thoroughly explore the semantics inside
data, thus cannot boost the performance much. When the value of β is s too large, the accuracy also
decreases. This implies that supervised information is somewhat ignored, which is still important.
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