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Abstract

How can learning systems exploit the temporal smoothness of real-world training1

data? We tested the learning of neural networks equipped with two architectural2

features inspired by the temporal properties of neural circuits. First, because brain3

dynamics are correlated over time, we implemented a leaky memory mechanism in4

the hidden representations of neural networks. Second, because cortical circuits can5

rapidly shift their internal state, “resetting” their local memory, we implemented a6

gating mechanism that could reset the leaky memory. How do these architectural7

features affect learning efficiency and how do they affect the representations that are8

learned by neural networks? We found that networks equipped with leaky memory9

and gating could exploit the temporal smoothness in training data, surpassing the10

performance of conventional feedforward networks. Moreover, networks with11

multi-scale leaky memory and gating could learn internal representations that “un-12

mixed” data sources which vary on fast and slow timescales across training samples.13

Altogether, we showed that brain-inspired architectural mechanisms enabled neural14

networks to learn more efficiently from temporally smooth data, and to generate15

internal representations that separate timescales in the training signal.16

1 Introduction17

Events in the world are correlated in time: the information that we receive at one moment is usually18

similar to the information that we receive at the next. For example, when having a conversation with19

someone, we see multiple samples of the same face from different angles over the course of several20

seconds (Figure 1.A). What characteristics may enable a learning system to exploit this temporal21

smoothness?22

Neural circuits have temporal characteristics which may allow them to take advantage of the temporal23

properties of information for more efficient and meaningful representation learning. Cortical dynamics24

exhibit autocorrelation on the scale of milliseconds to many seconds (Murray et al., 2014; Honey et al.,25

2012; Bright et al., 2020). Such autocorrelation is observed even in the absence of external stimuli,26

suggesting that correlation in consecutive internal states is unavoidable (Murray et al., 2014; Raut27

et al., 2020). One possible benefit of such autocorrelation is that it may enable learning systems to28

combine information from consecutive training samples. But cortical states are not always correlated:29

neural circuits can identify event boundaries in the information and shift their state accordingly.30

This shift appears to be associated with “resetting” of context representations (DuBrow et al., 2017;31

Chien and Honey, 2020; Baldassano et al., 2018). This “memory resetting” mechanism may enable32

neural circuits to flexibly adapt its learning, only combining information over time for related training33

samples.34

We hypothesized that a combination of these two brain-inspired mechanisms – leaky memory and35

memory gating – could enable neural networks to flexibly learn from different amounts of temporal36
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smoothness in the training data. First, we tested whether these two brain-inspired mechanisms37

would enable a neural network to learn more efficiently from temporally smooth training data.38

Second, we studied the nature of the internal representations learned by networks equipped with these39

brain-inspired mechanisms.40

2 Brain-inspired mechanisms for learning from smooth data41

Leaky memory: We added leaky memory to the internal representations (hidden units) by linearly42

mixing them across consecutive time points. Hidden unit activations were updated according to43

following function:44

H(n) = αH(n− 1) + (1− α)ReLU(WIHI(n)) (1)

where H(n) is the state of the hidden units for trial n, I(n) is the state of the input units for trial n, α45

is a leak parameter, WIH are the connections from the input layer to the hidden layer, and ReLU is a46

rectified linear activation. We set α = 0.5 for modeling leaky memory in these experiments.47

Memory Gating: In order to reduce the interference between unrelated information in the leaky48

memory, we employed a gating mechanism to reset the memory. Memory was reset (setting α = 0 in49

Eq(1)) at the transitions between categories in classification tasks (Figure 1.E) and at the transitions50

between dissimilar features in reconstruction tasks (Figure 2.B).51

3 Learning efficiency in brain-inspired architectures52

We first explored how these brain-inspired mechanisms affected the speed and accuracy of category53

learning, for training data with varying levels of smoothness.54

3.1 Methods55

We tested MNIST, Fashion-MNIST, and further synthetic datasets containing low category overlap56

(LeCun et al., 2010; Xiao et al., 2017). We trained models using backpropagation with mean squared57

error (MSE) primarily for the ease of comparison with later reconstruction error measures in this58

manuscript. To test incremental learning, we employed stochastic gradient descent (SGD), updating59

weights for each training sample. We applied ReLU to hidden units and Softmax or Sigmoid to the60

output units. For initialization and optimization methods see Appendix A.1.61

Hyperparameters. For MNIST and Fashion-MNIST, we used a 3-layer fully connected network62

with (784, 392, 10) dimensions and a learning rate of 0.01. We used the same learning rate across63

all conditions so that the smoothness would be the only variable manipulated across conditions. For64

hyperparameters in synthetic dataset see Appendix A.1.65

Manipulating smoothness in training data. We manipulated smoothness in the training data by66

varying the number of consecutive samples drawn from the same category. To sample with minimum67

smoothness, we sampled exactly one exemplar from each category (Figure 1.B). This condition is68

called “minimum smoothness” because all consecutive items were from different categories, and69

there were not more examples from a category until all other categories were sampled. We increased70

smoothness by increasing the number of consecutive samples drawn from each category (e.g. 371

repetitions and 5 repetitions in Figure 1.B). Finally, we also used the standard random sampling72

method, in which items were sampled at random, without replacement, from the training set. The73

training set was identical across all conditions, as was the order in which samples were drawn from74

within a category (Figure 1.B).75

3.2 Results76

Learners with leaky memory learned more efficiency from temporally smooth data (Figure 1.D, E).77

Conversely, in memoryless learners, smoothness slowed learning (Figure 1.C). Moreover, adding a78

gating mechanism to the leaky memory units further increased their learning efficiency. In learners79

with leaky memory and gating, all levels of smoothness significantly outperformed memoryless80

learners (Figure 1.E). These findings generalized across MNIST, Fashion-MNIST, and synthesized81

datasets (see Appendix A.1).82
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3.3 Discussion83

In contrast to memoryless learners, learners with leaky memory could exploit the shared information84

across samples for more efficient category learning. Importantly, the resetting mechanism prevented85

the mixing of hidden representations from samples of different categories; this allowed the leaky86

memory systems to benefit most from the smoothness, while not suffering from between-category87

interference. Across all levels of smoothness in training data, networks with leaky memory and88

resetting surpassed the performance of feedforward networks, resulting in more efficient learning89

(Figure 1.E). This is notable because the leaky memory is easy to implement, and autocorrelated90

states are ubiquitous in brain dynamics (Honey et al., 2012; Murray et al., 2014).91

4 Representations learned by brain-inspired architectures92

In the real world, we may need to learn from data with multiple levels of smoothness. For instance,93

while having a conversation, features around a person’s mouth may change quickly, while their face94

outline changes more slowly (Figure 2.A). Moreover, there are no labels to support the learning of95

representations in this setting. We hypothesized that neural networks equipped with multi-scale (i.e.96

fast and slow) leaky memory and gating could learn to effectively represent structures that vary on97

multiple scales.98

4.1 Methods99

Dataset. We synthesized a simplified training dataset which contained three levels of temporal100

structure. The input to the model at each time point contained 3 subcomponents (top row, middle row,101

bottom row),which varied at fast, medium and slow timescales, respectively (see Appendix A.2)).102

Architectures. We used the same brain-inspired mechanisms for unsupervised learning models:103

leaky memory and gating. To evaluate the effectiveness of the added mechanisms, we compared 4104

types of autoencoders (AE): i) Feedforward AE (Figure 2.C); ii) AE with leaky memory in internal105

representations (Figure 2.D); iii) AE with multi-scale leaky memory in internal representations (Figure106

2.E), inspired by the presence of multiple time-scales within a single neural circuit (Bernacchia et al.,107

2011; Ulanovsky et al., 2004); iv) AE with multi-scale leaky memory in internal representations and108

feature-boundary gating (Figure 2.F).109

Hyperparameters. To vary the timescale of leaky memory, we varied the time constants across the110

nodes in the hidden layer. Thus, the variable α in Eq.(1) was set to 0, 0.3, and 0.6 for “no-memory”,111

“short-memory”, and “long-memory” nodes, respectively (Figure 2.G). Also, see Appendix A.2.112

Un-mixing Measures. We measured the system’s ability to “un-mix” the time-scale of input, i.e. to113

learn representations that selectively track distinct sources used to generate each training sample. In114

other words, we tested whether no-memory, short-memory and long-memory nodes would track the115

fast-, medium-, and slow-changing data features, respectively. To this end we measured the Pearson116

correlation between each hidden unit (no-memory, short-memory, or long-memory) and all of the117

data features (fast, medium and slowly changing). We then quantified the “timescale-matching” –118

e.g. whether the long-memory node was correlated with the slowly-varying data feature (Figure 2.H)119

– and the “timescale-selectivity” – e.g. whether the long-memory node was more correlated with120

slowly-varying features than the other features (Figure 2.I).121

4.2 Results122

Multi-scale networks with leaky memory and gating most effectively un-mixed fast and slow data123

sources: their individual hidden state units were most strongly correlated with their corresponding124

data features (Figure 2.H, e.g. long-memory nodes correlated most strongly with slowly-varying125

data), and most selective (Figure 2.I, e.g. the long-memory node was more correlated with the slow126

features than with the other features).127

4.3 Discussion128

The autoencoder model with multi-scale leaky memory and feature-boundary gating was most129

successful in learning internal representations which tracked distinct timescales of the input. Slowly130

(or quickly) varying features were extracted by slowly (or quickly) varying subsets of the network,131
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Figure 1: Efficiency of category learning from temporally smooth data. A) Various levels of
smoothness in real-world information. B) Manipulating smoothness levels in training data. C),
D), and E) show test accuracy in feedforward network, network with leaky memory in internal
representations, and network with leaky memory and gating, respectively. (Curves are averaged of 5
runs with different initialization and are further smoothed using 100-iteration moving average).

analogous to a matched filter (see also Mozer (1992)). Thus, by adding leaky memory and memory-132

gating to a simple feedforward AE model, we equip it with an ability to separate different levels of133

structure in the environment.134

5 Conclusion135

We investigated how brain-inspired mechanisms – leaky memory and memory-gating – affected the136

efficiency of learning and the type of representations that were learned. We focused on settings in137

which the training data exhibited varying levels of temporal smoothness. We found that learners138

with leaky memory in internal representations and gating mechanisms were able to flexibly adapt139

to the smoothness in the data, so that they could benefit from repeating structure while not mixing140

unrelated information. Moreover, neural networks with multi-scale memory and feature-sensitive141

gating learned representations that un-mixed features varying on different timescales.142

Features that change on different timescales may correspond to different levels of structure in the143

world (Wiskott and Sejnowski, 2002). Thus, the “un-mixed” representations learned by brain-inspired144

architectures may provide a more “meaningful” description of the input data, reflecting underlying145

data sources that operate on fast and slow timescales (Mitchell, 2020; Mahto et al., 2020). Moreover,146

because intrinsic brain dynamics vary on multiple scales (Stephens et al., 2013; Murray et al.,147

2014; Honey et al., 2012; Raut et al., 2020), slowly-varying brain circuits may be biased to extract148

slowly-varying structure from the world (Honey et al., 2017).149

Leaky memory networks produced more efficient learning and more interpretable representations,150

even though the networks were trained with a learning rule that did not employ any temporal151
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Figure 2: Representations learned from temporally smooth data. A) Multiple levels of smooth-
ness in the world. B) Multiple levels of smoothness in synthesized data. C, D, E, F) Different tested
AE models. G) Architectural details used for timescale-matching and timescale-selectivity analyses
in part H and I. H) “Timescale-matching” of models, as measured by the squared Pearson correlation
of internal representations (hidden units) with corresponding output units. I) “Timescale-selectivity”
of models, measured by computing the difference between the squared Pearson correlations for
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information. Architectures with leaky memory and gating can thus exploit temporal structure in a152

way that is computationally simpler and more biologically plausible than backpropagation through153

time (Sutskever, 2013; Lillicrap and Santoro, 2019). The leaky-memory-plus-gating system worked154

well even for autoencoders, for which there are simple activation-based learning rules that do not155

require the propagation of partial derivatives (Lee et al., 2015).156

Future work should test how leaky memory affects the learned representational space. For example,157

human internal representations of natural sensory input sequences appear to be smooth in time,158

in contrast to the representations of most feedforward nets (Hénaff et al., 2019); training neural159

networks with smooth data and leaky memory could potentially capture this effect. In ongoing work,160

we are testing whether these results generalize to larger architectures and datasets; we expect the161

results to have some generality, because we used simple architectures and made few domain-specific162

assumptions.163

In sum, we tested brain-inspired architectures in learning representations from data with various164

amounts of temporal autocorrelation and found that such architectures enabled networks to learn more165

quickly from smooth data and to generate internal representations that separate distinct timescales of166

the data.167
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Broader Impact168

This section is not applicable to the current work.169
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A Appendix231

A.1 Further details about testing the learning efficiency in brain-inspired architectures232

Loss functions233

For the results reported in Figure 1, we used an MSE loss function, mainly for the ease of comparison234

with reconstruction error measures in this manuscript. Additionally, it has been shown MSE loss235

provides comparable performance to commonly utilized classification models with cross-entropy236

(CE) loss function (Illing et al., 2019).237

However, we also tested memoryless classifier models with cross-entropy loss and found the same238

pattern: smoothness in training data slowed learning, and the condition with minimum smoothness239

showed highest learning speed (Figure A.1.1).240
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Figure A.1.1: Left: test accuracy for a memoryless classifier trained using CE loss on MNIST dataset.
Right: test error (CE loss) for a memoryless classifier trained using CE loss on MNIST dataset.
Hyperparameters were identical to the ones explained in section 3.1.

Initialization and Optimization Methods241

We tested the model both with and without RMSprop optimization, along with Xavier initialization242

method (Tieleman and Hinton, 2012; Glorot and Bengio, 2010). When RMSprop was implemented,243

beta-1 and beta-2 were set to 0.9 and 0.99, respectively (Ruder, 2016).244

Synthesized dataset with low category overlap245

We synthesized a dataset with low category overlap consisting of 4 categories, each with 300 training246

items. Each item was a 1-by-16 vector. Different examples of a category were created by adding247

uniform noise to the template of the category (Figure A.1.2).248

Example from ctg 1 Example from ctg 4Example from ctg 2 Example from ctg 3

Figure A.1.2: Sample items from each of 4 categories in the synthetic dataset.

Category learning in neural networks with memory and gating for synthetic dataset249

Figure A.1.3 shows effects of smoothness on neural network models equipped with leaky memory250

and gating for the synthetic dataset. Similar to the pattern observed in Figure 1.D, here we can251

see that in the network with leaky memory, higher levels of smoothness show better performance.252

Moreover, adding a gating mechanism enhanced learning such that all levels of smoothness surpassed253

minimum smoothness (1 repetition), as was observed in Figure 1.E (Figure A.1.3).254
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Figure A.1.3: The results of learning efficiency were generalized to synthetic dataset with low
category overlap. Left: Test error (MSE loss) at the end of first training epoch with SGD on synthetic
dataset, for network with leaky memory in internal representation. Right: The same as left, but for
networks with leaky memory in internal representations and gating. Error bars show the mean and
standard deviation of bootstrapping 10,000 times on 100 values achieved from 100 runs with different
weight initialization.

How our approach differs from averaging in mini-batch training and momentum optimization255

What we are doing here is different from mini-batch training and momentum optimization. In those256

methods, the smoothness is in the gradients (mini-batch training) and weight-updates (momentum),257

whereas here we are studying smoothness in the activation patterns.258

Effects of smooth data on mini-batch training259

We explored how smooth data affects learning when weights are being updated using mini-batch260

training. We used MNIST dataset and trained it with batches of size 16. Network dimension and261

other hyperparameters were identical to those used in incremental SGD. Our results showed that262

smoothness does not influence mini-batch training similar to SGD. Early in the training, minimum263

smoothness showed highest learning speed and higher levels of smoothness showed lower learning264

speed (Figure A.1.4). Whereas later in the training, another pattern was observed: the condition with265

the smoothness level equal to the batch size (e.g. 16 repetitions for batch of 16) showed highest266

learning efficiency compared to both lower levels of smoothness (e.g. 10 repetitions) and higher267

levels of smoothness (e.g. 24 repetitions) (Figure A.1.4).268

One way to think about the observed results could be that in mini-batching, smoothness can happen269

at 2 levels: smoothness within a batch and smoothness across batches. It seems that early in the270

training, the condition with “minimum within-batch smoothness” has the highest learning speed.271

Minimum within-batch smoothness refers to the condition that has no smoothness inside a training272

batch. However, later in the training, the condition with minimum across-batch smoothness has the273

best learning speed. Minimum within-batch smoothness refers to the condition that has no smoothness274

inside a training batch, and minimum across-batch smoothness refers to the condition where each275

batch consists of items from only one category (e.g. 16 repetitions for batch of 16). This condition276

can be thought of as having minimum smoothness at the batch level.277

Future work needs to further investigate how smooth data interact with mini-batch training.278

A.2 Further details about testing the representations learned by brain-inspired279

architectures280

Synthesizing simplified dataset with multiple levels of smoothness281

We created training items with 3 features. Each feature consisted of 2 elements, forming a 3-by-2282

item (Figure A.2.1). To form a training sequence with multiple levels of smoothness, we ordered283
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the end of first epoch.

training items such that different features varied at different scales: top row changed every item,284

representing a feature changing at a fast timescale; middle row changed every 3 items, representing a285

feature changing at a medium timescale; bottom row changed every 5 items, representing a feature286

changing at a slow timescale. Each element in each feature was the sum of an average feature-value287

plus random noise from a uniform distribution. The average feature-value was the same for all levels,288

therefore the only difference between levels of smoothness was the rate of change in the features. For289

creating the dataset, and designing and analyzing the models we used Numpy (Harris et al., 2020).290

itr 1 itr 2 itr 3 itr 4 itr 5 itr 6 itr 7 itr 8 itr 9

Top row is fast-changing feature
Middle row is medium-changing feature
Bottom row is slow-changing feature

Figure A.2.1: First 9 training items. Each item is the input and the desired output at each iteration.
Top, middle, and bottom row change every 1, 3, and 5 items, which results in 3 levels of smoothness.

Learning algorithm, optimization, and initialization291

We used backpropagation with MSE loss, with RMSprop optimization method, and Xavier initial-292

ization (Tieleman and Hinton, 2012; Glorot and Bengio, 2010). We applied ReLU and Sigmoid as293

activation functions for hidden and output units, respectively.In RMSprop, the beta-1 and beta-2 were294

set to 0.9 and 0.99.295

Hyperparameters296

All 4 tested networks were 3-layer, fully connected autoencoders with (6, 3, 6) dimension. The297

learning rate was 0.01. For leaky memory in internal representations alpha in Eq.(1) was set to 0.5298

(Figure 2).299

Test error in unsupervised learning models300

Before evaluating models’ ability to “un-mix” timescales of the input, we first confirmed that all of301

the autoencoder (AE) models could learn to reconstruct the input. The two most efficient architectures302

were the multi-scale leaky AE with gating and the memoryless AE (Figure A.2.2).303
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Figure A.2.2: Comparing reconstruction test error (MSE loss) during training for learning individual
items across 4 different AE models. All the curves in this plot have been averaged over 20 runs with
different initializations.
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