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Abstract

This paper explores emotion-aware speech-to-
text translation (ST) using generative error
correction (GER) by large language models
(LLMs). Despite recent advancements in ST,
the impact of the emotional content has been
overlooked. First, we enhance the transla-
tion of emotional speech by adopting the GER
paradigm: Finetuned an LLM to generate the
translation based on the decoded N-best hy-
potheses. Moreover, we combine the emo-
tion and sentiment labels into the LLM fine-
tuning process to enable the model to con-
sider the emotion content. In addition, we
project the ST model’s latent representation
into the LLM embedding space to further im-
prove emotion recognition and translation. Ex-
periments on an English-Chinese dataset show
the effectiveness of the combination of GER,
emotion and sentiment labels, and the projec-
tor for emotion-aware ST. We will release our
codes to the public.

1 Introduction

Speech-to-text translation (ST) is a task where the
model takes speech in one language as input and
translates it into text in another language. ST
performance has greatly improved over the recent
years with significant efforts on datasets (Di Gangi
et al., 2019; Wang et al., 2021; Jia et al., 2022;
Chen et al., 2021; Ye et al., 2023; et al., 2023a)
and models (Barrault et al., 2023; et al., 2023b;
Radford et al., 2022). However, an essential as-
pect often overlooked in speech translation is the
emotion of speech.

Human speech naturally includes emotions. In
real-life conversations, a listener often uses cues
from the speaker’s voice tone to grasp what is be-
ing said. Therefore, emotion can significantly in-
fluence the results of translating speech. As the
instance shown in Figure 1, the phrase “I can’t be-
lieve this" can convey a range of emotions, from

“| can't believe this” e 2B
(Surprise) L (No way)
Emotion-aware (BB

“l can’t believe this”
(Sadness)

Figure 1: The expectation for an emotion-aware ST
model, which can generate appropriate translation
based on the emotion of the input speech.

ST Model

(How could this happen)

surprise and shock to awe and excitement, which
can alter its translation in another language.

Emotion has been studied in machine transla-
tion (or text-to-text translation) studies (Troiano
et al., 2020) and other tasks in natural language
processing, such as sentiment analysis and rec-
ognizing emotions in conversations (Fu et al.,
2023). However, there has been little effort focus-
ing on emotion in ST. Seamless Expressive (Bar-
rault et al., 2023) examines the preservation of
emotional states in speech-to-speech translation,
without addressing the influence of emotions on
the semantic aspects of translation. Some datasets
(Liang et al., 2021; Chen et al., 2024) are con-
structed for emotion-aware ST, but further commu-
nity effort investigating the methodology for this
task is required.

Meanwhile, recent advancements in large lan-
guage models (LLMs) leads to growing interest
in leveraging their capabilities in modalities be-
yond text including speech. Training end-to-end
ST models often face challenges due to insuffi-
cient speech-text parallel data. However, LLMs
are trained on vast amounts of textual data and ob-
tain powerful textual generation abilities, which
can enhance the ST performance. This has been
proven by recent studies that use LLMs as de-
coders for ST systems (Wu et al., 2023) or as Gen-
erative Error Correction (GER) models to improve
ST qualities (Hu et al., 2024).

Speech-text parallel data is scarce, and it is
even scarcer when it includes emotion annotations.



Therefore, leveraging external models like LLMs
to help the system understand the correlation be-
tween emotion and language can be greatly ben-
eficial. However, to the best of our knowledge,
there have not been studies on utilizing LL.Ms for
emotion-aware ST.

Therefore, this study pioneers the exploration
of the effectiveness of emotion-aware ST by: (a)
adopting the LLM GER paradigm, (b) adding emo-
tion and sentiment labels into the GER finetuning
process, (c) injecting acoustic representation from
the ST model into GER finetuning with a projec-
tor.

2 Method

2.1 Generation Error Correction

As illustrated in Figure 2, the GER framework
consists of two main components: a pre-trained
ST model that produces /NV-best hypotheses, and a
fine-tuned LLLM that re-generates the final transla-
tion.

2.1.1 N-best Hypotheses Generation

To supply inputs for the GER model, we use a pre-
trained ST model to decode /N-best hypotheses via
beam search. Specifically, given an input speech .S
in the source language, decoding with beam size
M yields Ty = {T1,Ts,....,Tn} (N < M). In
practice, we set N = M. These hypotheses serve
as preliminary predictions and part of the LLM’ s
input.

2.1.2 GER Finetuning

Inspired by (Hu et al., 2024), we fine-tune an LLM
to generate the final translation from N-best hy-
potheses. Formally,

T = Mgst(Tn, I) (1)

where [ is an instruction prompt (examples shown
in Appendix A). The model learns a mapping
Mpggr from Ty to the true translation 7%. Fol-
lowing a sequence-to-sequence approach, we use
T™* as supervision and optimize via cross-entropy:

L
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where ¢ is the [-th token, L is the sequence length,
and 6 denotes learnable parameters. Considering
the large model size of LLMs, we adopt Llama
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Figure 2: Overview architecture of our proposed
model.

Adapter (Zhang et al., 2023), which inserts learn-
able prompts into the top L of H Transformer lay-
ers (Vaswani, 2017) to capture high-level seman-
tics.

2.2 Integration of the Emotion and
Sentiment Labels

We incorporate emotion and sentiment labels into
the GER fine-tuning process to investigate how
emotional content influences translation outcomes.
We propose using the GER model to directly pre-
dict these labels, which can be considered as a type
of multitask learning for the GER model. Based
on the hypotheses, the model first generates emo-
tion and sentiment labels and then the translation,
as illustrated in Fig 2. In this case, the paradigm
and training loss can be defined as:

Opr = Mgst(Tn, 1) 3)

L

Lop =Y —logPy(of|o} 1, ..
=1

01;Tn, 1) (4)

where Op 7 is the concatenated sequence of £ and
T, and o; is the [-th token of the ground truth of
Ogr.

2.3 Injection of Acoustic Representation

Relying solely on textual N-best hypotheses can
lose key acoustic cues for emotion prediction. To
address this, we inject the ST encoder’ s acous-
tic representation into the GER model so that it
can leverage both acoustic and textual information.
Specifically, we use the projector in Fig 2 to map



the encoder’s last-layer output Enc(S) into acous-
tic embeddings (with the same dimension as the
GER model’s embeddings):

A = Projector (Enc(S)) (5)

We then concatenate 4 with textual embeddings
(formed by the N-best hypotheses T and instruc-
tion I):

X = [A; Embed(Ty, I)] (6)

The GER model processes X in a unified manner,
enabling it to process both acoustic and textual in-
puts for emotion prediction and final translation.
During training, projector and adapter parameters
are jointly updated.

We explore using the following two architec-
tures for the projector to obtain A:

Q-Former Q-Former (Li et al., 2023) is a mod-
ule designed to convert variable-length encoder
outputs into a fixed-length representation. A set
of learnable queries attends to Enc(.S), producing
a compact embedding:

Q® = InitQueries (7
QY = TL/(Q"™ Y, Enc(S)) (8)
A= Linear(Q(LQ)) (©))

where [ = 1,..., L, and TL; denotes [-th Trans-
former layers.

1-D Convolution Downsampling Alternatively,
we adopt a network with a 1-D convolutional layer
followed by two fully-connected layers. Mathe-
matically,

A = Linear(FCq(FC1(ConvlD(Enc(S5)))))
(10)

3 Experiments

3.1 Dataset

In this study, we use the BMELD dataset (Liang
et al., 2021), an emotion-aware English-Chinese
ST dataset. It is based on the multimodal emo-
tion dialogue dataset MELD (Poria et al., 2018).
The Chinese translations are obtained from avail-
able subtitles and then manually post-edited ac-
cording to the dialogue history by native Chinese
speakers, who are post-graduate students major-
ing in English. As in MELD, the utterances are
labeled with 7 different emotions and 3 different
sentiments. We added both types of labels into the
LLM instructions in our experiments. The dataset
statistics are in Appendix B.

3.2 Settings

For the ST model, we use the state-of-the-art
SeamlessM4T-Large (Barrault et al., 2023), a
Transformer-based model that supports speech-to-
text translation for up to 100 languages. For the
GER model, we adopt the popular Llama-2-7B
(Touvron et al., 2023). For the adapter, we fol-
low the default settings of Llama Adapter (Zhang
et al., 2023). For the projector, we use 2 learnable
queries and a 2-layer architecture for Q-Former,
and a downsample rate of 5 for 1-D convolution
downsampling. More hyperparameter details are
in Appendix C.

Besides integrating emotion and sentiment la-
bels as GER outputs for multitask learning, we
also conducted experiments where ground-truth la-
bels were added into GER inputs to represent the
performance upper bound.

3.3 Results

The results are presented in Table 1.! We evalu-
ate the quality of translations based on two eval-
uation metrics including SacreBLEU (Post, 2018)
and BLEURT (Sellam et al., 2020). We also report
the accuracy of emotion and sentiment prediction.
Results clearly demonstrate that GER outper-
forms SeamlessM4T by a notable margin, validat-
ing the effectiveness of leveraging LLM capabil-
ities for emotional translation refinement. Addi-
tionally, incorporating emotion and sentiment la-
bels further enhances this improvement. Using
emotion and sentiment labels as inputs to the GER
model provides a performance upper bound that
significantly outperforms GER without emotion
and sentiment labels, which confirms that adding
emotional information is beneficial for ST. How-
ever, predicting these labels with the GER model
only results in marginal performance gains.
Introducing the projector to inject acoustic rep-
resentations from the encoder leads to a perfor-
mance closer to the upper bound. When com-
paring different projectors, 1-D convolution down-
sampling is slightly more effective than Q-Former
considering all the metrics. In addition, 1-D con-
volution downsampling also shows a modest im-
provement in emotion recognition accuracy for
both emotion and sentiment labels, highlighting a
positive correlation between accurate ST and emo-
tion recognition. Nevertheless, it remains unclear
'Results on the SeamlessM4T-Medium model and the

MELD-ST dataset (Chen et al., 2024) are in Appendix D and
E, respectively.



GER E/S Labels Projector | BLEU BLEURT | Acc. (E) Acc. (S)

SeamlessM4T - - 11.87 43.34 - -
v - - 15.547 51.577 - -

Ours v GER Outputs - 15.617 51.817 49.79 53.06
v GEROutputs Q-former | 15917  51.86f 48.90 53.44

v GEROutputs ConviD | 15.97'* 52.071 5017 53.52

Ours (Upper-bound) v/ GER Inputs - 16287 52,50 - -

Table 1: ST results on the BMELD dataset. The ST model is SeamlessM4T-large and GER model is Llama-2-7B. t
and | indicate that the results are significantly better than “SeamlessM4T” and “Ours with GER only” at p < 0.05,

respectively.
E/S Labels BLEU BLEURT Acc. (E) Acc. (S) Source Don’t worry Phoebe, you’re gonna meet someone. If I can meet a
50 51.85 great guy, So can you.
- . . - - Reference Neu#Neu# JF 2, JEH, IREIBH| TR .
E Only 16.24" 51.96 50.90 - SeamlessMAT i, IRFCHE WS|4 A, FrizE WL
T (Don’t worry, if I can meet a good person, you can too)
S Only 16.01 52.09 - 54.33 GER RAKEI TN, ARSI —AF B A
T (I will find a good man and you will find a good man.)
Both 15.97 207 | 5017 5352 +#ESLabels  NeutNeuh L, WIRFEAEHEI KT, i),
(Do not worry, if I can find a good man, you can too.)
i . . . . +ConvlD Neu#Neu# JIfH.Lo, WERIAEHLD]—NFB A, frdiredks).
Table 2: Ablation studies on emotion (E) and sentiment (oo 1 G o)y P e, TG
(S) labels. The model architecture iS the same as the Source Those contracts absolutely had to go out today!
. N A . . Reference Ang#Neg# G LM 4R k& HF+!
one with Conv1D as the projector in Table 1. 7 indi- SeamlessMAT 4L [ 4 Kb Ak T
. . . PP (These contracts end today)
cates that the result is significantly better than “without GER A 4 TR T
” (These contracts end today.)
E/S labels” at p< 0.05. + E/S Labels Neu#Neu# 3 26 £5 [ & K ELEHR T .
(These contracts end today.)
+ ConvlD Ang#Neg# X B84 [ 4 Kl BE45w 1!

how much portion of ST improvement comes from
enhanced emotion recognition.

To disentangle the contributions of emotion in-
formation and projector-based acoustic injection,
we conduct some ablation studies focusing on
emotion and sentiment labels, as shown in Ta-
ble 2. When emotion and sentiment labels are
omitted, introducing the projector alone yields rel-
atively poor performance, indicating that the pro-
jector alone does not substantially elevate ST qual-
ity. However, once emotion and sentiment labels
are included, the synergy between acoustic fea-
tures and emotional content becomes evident, re-
sulting in considerable improvements.

Additionally, we examine the effect of using
only emotion labels and only sentiment labels.
The results show that using a single type of label
can yield comparable, if not slightly better, perfor-
mance than using both types. This suggests that
either emotion or sentiment labels alone may cap-
ture sufficient information for emotion-aware ST.

3.4 Case Study

Table 3 presents example translations comparing
different system configurations. In the first ex-
ample, the baseline SeamlessM4T model mistrans-
lates the phrase “great guy” as “good person,” los-
ing the intended nuance of “good male partner.”
Incorporating the GER method addresses this mis-
interpretation but omits some details and logic in
the resulting sentence. The translation becomes

(These contracts end today!)

Table 3: Translation examples of different methods.
The combination of emotion labels, sentiment labels,
and translations is presented with the separator “#”.

more contextually accurate when emotion and sen-
timent labels are further integrated.

The second example highlights how emotional
cues enhance punctuation, which can convey emo-
tion. The original utterance is delivered with an
angry tone, making an exclamation mark an appro-
priate ending. Without emotional and sentiment la-
bels, or if they are mispredicted, the model fails to
generate the correct punctuation. However, when
the approach with a projector correctly predicts the
underlying emotion, the model accurately appends
the exclamation mark.

4 Conclusion

In this paper, we pioneered the investigation of
emotion-aware ST using LLMs. We proposed
adopting the GER method, integrating emotion
and sentiment labels, and injecting acoustic infor-
mation from the speech into the GER finetuning
process. The experimental results showed its ef-
fectiveness. Future works include verifying the ef-
fectiveness of our method with other LLMs as the
GER model, and increasing the diversity of the N-
best list to enable more diverse translations for dif-
ferent emotions.



5 Limitation

First, the LLM used in the experiments is Llama-
2-7B, which, while powerful, may not capture the
full potential of larger or more advanced models.
The limited model size may constrain the quality
of translations and the handling of complex lin-
guistic nuances, particularly when related to emo-
tion and sentiment. Second, our experiments are
only conducted on three language pairs (en-zh, en-
ja, en-de), and hence the generalizability of our
findings to other languages remains to be vali-
dated.

6 Ethical Considerations

This study exclusively uses publicly available
datasets (BMELD and MELD-ST) for emotion-
aware speech-to-text translation, ensuring compli-
ance with ethical and privacy standards. Our work
does not involve any private or sensitive data col-
lection. In addition, we confirm that the dataset
and models used in our study were obtained and
utilized in full compliance with their respective li-
censes and intended use guidelines.
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A Instruction Prompts

The following is the instruction prompt used for
GER fine-tuning in our experiments. It includes
three variations: without emotion and sentiment
labels, with labels as GER outputs, and with labels
as GER inputs. The output is highlighted in blue.

GER

Below is the best-hypotheses transcribed from
speech translation system. Please try to revise it
using the words which are only included into other-
hypothesis, and write the response for the true tran-
scription.

### Best-hypothesis:
HRARFAT 2SRRI SR

### Other-hypothesis:

P MR AT AR GRS R WE2. B AR 2
ANERRY S5, TBAR N2 A% H B 5 e
AR FAT 2GR RS2,

### Response:
LT B A HLIE IR

GER + E/S Labels as Outputs

You will be shown the best-hypotheses transcribed
from speech translation system. Please try to predict
the emotion and the sentiment of the speech, and try
to revise the best-hypothesis using the words which
are included in other-hypothesis. Please write the
response in the following format:

Emotion

Sentiment

True transcription.

### Best-hypothesis:
AR FAT 2GR E) SR 2.

### Other-hypothesis:

P MR AT ARG AR SR WE2. B AR 24
ABARI . I 2K 44 E O 2.
AR I A GEARE) A2,

### Response:
neutral
neutral

LT B A LA




GER + E/S Labels as Inputs

Below is the best-hypotheses transcribed from
speech translation system, as well as the emotion
and the sentiment of the speech. Please try to re-
vise the best-hypothesis using the words which are
included in other-hypothesis while considering the
emotion and sentiment, and write the response for
the true transcription.

#i## Best-hypothesis:
IR H AT ARG AR SRS

### Other-hypothesis:

I DME R AT AN GRS R 08?2, BT AR A 2,
AEARE ST IARA 2R %0 C 50
AR 2B S 2.

### Emotion:
neutral

### Sentiment:
neutral

### Response:
AR

\. J

B Dataset Statistics

In addition to the BMELD dataset used in the
main paper, we also conducted experiments on the
MELD-ST dataset (Chen et al., 2024), which is
constructed in a similar manner but without post-
editing, containing both English-Japanese and
English-German language pairs. Table 4 presents
the dataset statistics for the three language pairs
used in our experiments: one from BMELD and
two from MELD-ST. It includes the number of
samples in the training, validation, and test sets,
along with the distribution of emotion and sen-
timent labels. Both datasets are derived from
MELD dataset but differ in data partitioning and
translation sources, resulting in slight variations in
dataset size.

C Experimental Setup and
Hyperparameters

The Q-former layers uses the same hyperparam-
eters as the vanilla Transformer layer. The 1-D
convolution downsampling network uses a hidden
dimension of 2, 048. For the adapters, the number
of tunable Transformer layers L is set to H — 1,
which means all layers except the first one are tun-
able with inserted prompts. The prompt length U
is set to 10. As a result, the total number of train-
able parameters is 12.3M when using Q-Former
and 17M when using 1-D convolution downsam-

pling.

We conducted our experiments on a single
A100 80G GPU, with each experiment being a sin-
gle run. We train for 2 epochs with the AdamW
optimizer (Loshchilov and Hutter, 2019), with the
learning rate initialized at 1e~2 and then linearly
decreased to 1e~° during training. The batch size
is set to 4, with accumulation iterations set to 8
(i.e., the real batch size is 32).

As for evaluation, we used SacreBLEU with its
own tokenizer: “zh” for Chinese, “ja-mecab” for
Japanese, and “13a” for German. We used the
BLEURT-20 model for BLEURT.

D Results with SeamlessM4T Medium

Table 5 presents results using the same settings
as Table 1, except that SeamlessM4T-Large is
replaced with SeamlessM4T-Medium. The re-
sults indicate that the impact of introducing the
projector is less significant compared to using
SeamlessM4T-Large.  This is likely because
SeamlessM4T-Large has a higher-dimensional en-
coder output, providing more information for the
projector to utilize. Additionally, the performance
upper bound (using emotion and sentiment labels
as GER inputs) shows an unexpected low BLEU
score while maintaining a high BLEURT score,
indicating that BLEURT may be a more reliable
evaluation metric than traditional BLEU.

E Results on MELD-ST

We also conducted experiments on MELD-ST us-
ing the same settings as for BMELD. Tables 6 and
7 present the results for the en-ja and en-de lan-
guage pairs, respectively. However, the results
show less consistent improvements compared to
BMELD, with a noticeable gap between the two
evaluation metrics. The primary reason is likely
the lower quality of training data, as translations
in MELD-ST training sets were not manually veri-
fied. Other possible factors include the weaker per-
formance of Llama-2-7B on Japanese and German
compared to Chinese. Additionally, the relatively
smaller cultural gap between English and German
may reduce the impact of incorporating emotion
and sentiment labels, as direct translation already
performs well.



Dataset Split Total | Neu. Joy. Sad. Fea. Ang. Sur.  Dis. Neu. Pos.  Neg.

Train | 9,987 | 4,709 1,743 682 268 1,109 1,205 271 | 4,709 2334 2944
BMELD Valid | 1,084 460 162 109 40 146 146 21 460 231 393
(en-zh) Test 2,601 | 1,251 400 208 50 345 279 68 | 1,251 518 832

Train | 8,069 | 3,836 1,284 603 209 982 917 238 | 3,836 1,715 2,518
MELD-ST  Valid | 1,008 482 176 84 31 116 97 22 482 229 297
(en-ja) Test 1,008 479 186 73 25 85 121 39 479 253 276

Train | 9,314 | 4402 1,571 656 232 1,096 1,096 261 | 4,402 2,084 2,828
MELD-ST  Valid | 1,164 550 202 99 31 127 130 25 550 271 343
(en-de) Test 1,164 550 218 92 32 102 131 39 550 288 326

Table 4: Statistics for the datasets we used (BMELD, MELD-ST). There are 7 types of emotion labels: Neutral
(Neu.), Joy (Joy.), Sadness (Sad.), Fear (Fea.), Anger (Ang.), Surprise (Sur.), Disgust (Dis.); and 3 types of senti-
ment labels: Neutral (Neu.), Positive (Pos.), Negative (Neg.)

GER E/S Labels Projector | BLEU BLEURT | Acc. (E) Acc. (S)

SeamlessM4T - - - 11.50 41.52 - -
v - - 12.80° 49.97° - -

Ours v GER Outputs - 13.671* 50.251 50.25 52.21
v GEROutputs Q-former | 13.71% 503011 50.40 53.02

v GEROutputs ConviD | 13.74%  50.12f 49.63 51.98

Ours (Upper-bound) v GER Inputs - 13.087 50.47™] - -

Table 5: ST results on the BMELD dataset. The ST model is SeamlessM4T-medium and GER model is Llama-
2-7B. t and { indicate that the results are significantly better than “SeamlessM4T” and “Ours with GER only” at
p < 0.05, respectively.

GER E/S Labels Projector | BLEU BLEURT | Acc. (E) Acc. (S)

SeamlessM4T - 2.20 27.57
- - 3.027 26.40 - -
Ours GER Outputs - 3.491 25.69 51.09 54.56

GER Outputs ~ ConvID 2.921 25.59 50.00 53.87
GER Inputs - 3.587F 2625 - -

v
v
v GER Outputs ~ Q-former 3.161 24.96 50.10 53.47
v
v

Ours (Upper-bound)

Table 6: ST results on the MELD-ST dataset for the en-ja language pair. The ST model is SeamlessM4T-large and
GER model is Llama-2-7B. { and } indicate that the results are significantly better than “SeamlessM4T” and “Ours
with GER only” at p < 0.05, respectively.

GER E/S Labels Projector | BLEU BLEURT | Acc. (E) Acc. (S)

SeamlessM4T - - - 11.74 52.68 - -
v - - 10.96 54.047 - -

Ours v GER Outputs - 11.07 53.53" 51.55 54.38
v GEROutputs Q-former | 11.14 54,011 51.89 57.13

v GEROutputs ConvIiD | 11.19 53.421 50.95 54.55

Ours (Upper-bound) v/ GER Inputs - 11.28 54.297 - -

Table 7: ST results on the MELD-ST dataset for the en-de language pair. The ST model is SeamlessM4T-large and
GER model is Llama-2-7B. T indicates that the results are significantly better than “SeamlessM4T” at p < 0.05.
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