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Abstract
Contextualized embeddings based on large001
language models (LLMs) are available for var-002
ious languages, but their coverage is often lim-003
ited for lower resourced languages. Train-004
ing LLMs for such languages is often diffi-005
cult due to insufficient data and high compu-006
tational cost. Especially for very low resource007
languages, static word embeddings thus still008
offer a viable alternative. There is, however,009
a notable lack of comprehensive repositories010
with such embeddings for diverse languages.011
To address this, we present LowREm, a cen-012
tralized repository of static embeddings for 87013
low-resource languages. We also propose a014
novel method to enhance GloVe-based embed-015
dings by integrating multilingual graph knowl-016
edge, utilizing another source of knowledge,017
which is beneficial especially for low-resource018
languages. We demonstrate the superior per-019
formance of our enhanced embeddings as com-020
pared to contextualized embeddings extracted021
from XLM-R on sentiment analysis. Our code022
and data are publicly available under URL.023

1 Introduction024

Word embedding methods have revolutionized025

Natural Language Processing (NLP) by capturing026

semantic relationships between words using co-027

occurrence statistics in large text corpora (Mikolov028

et al., 2013a; Pennington et al., 2014; Bojanowski029

et al., 2017). This data-driven approach has signif-030

icantly improved various NLP tasks (Lample et al.,031

2017; Xie et al., 2018; Almeida and Xexéo, 2019).032

While contextual embeddings like BERT (De-033

vlin et al., 2019), RoBERTa (Liu et al., 2019),034

and GPT (Radford et al., 2019) nowadays pro-035

vide better performance than static embeddings in036

many tasks, their training is computationally ex-037

pensive (Strubell et al., 2019) and ineffective for038

data-scarce languages due to their data hunger and039

the curse of multilinguality (Conneau et al., 2020).040

Also, static word embeddings remain crucial for041

tasks such as explaining word vector spaces (Vulić 042

et al., 2020), bias detection and removal (Gonen 043

and Goldberg, 2019; Manzini et al., 2019), and in- 044

formation retrieval (Yan et al., 2018). Existing re- 045

sources for multingual embedding data bases (Fer- 046

reira et al., 2016; Grave et al., 2018) often suf- 047

fer from limited scope and outdated data, poten- 048

tially worsening their ability to capture the dy- 049

namic nature of language and adequately support 050

low-resource languages. We want to fill this gap 051

by providing LowREm, a large database of static 052

word embeddings for 87 low-resource languages. 053

As for large language models (LLMs), the train- 054

ing of word embeddings suffers from the lack of 055

high-quality data in low-resource languages (to a 056

smaller degree). Including other types of data 057

for improving word representations is thus benefi- 058

cial especially for low-resource languages. Knowl- 059

edge graphs provide such an alternative to tex- 060

tual knowledge, with rich semantic and multilin- 061

gual sources of information, including synonyms, 062

antonyms, morphological forms, definitions, eti- 063

mological relations, translations, and more (Miller, 064

1995; Speer et al., 2017; Navigli and Ponzetto, 065

2012). Such structured and cross-lingual informa- 066

tion can be used to improve the quality of classical 067

word representations (Faruqui et al., 2014; Sakke- 068

tou and Ampazis, 2020), which are only trained on 069

co-occurence statistics. 070

To that end, we propose a new simple yet effec- 071

tive method for including graph information into 072

word embeddings based on Mikolov et al. (2013b). 073

We learn a projection matrix from static embed- 074

dings to a combined space, effectively overcoming 075

the limitations of retrofitting, which only enhances 076

a limited vocabulary. 077

In summary, our contributions in this work are 078

two-fold: First, we present LowREm, a cen- 079

tralized resource of static word embeddings for 080

low-resource languages, specifically focusing on 081

word embeddings trained with GloVe (Penning- 082
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ton et al., 2014). Second, we propose an effec-083

tive method to improve embeddings by incorpo-084

rating more knowledge in the form of multilingual085

knowledge graphs, which is especially important086

for low-resource languages, where resources are087

usually very scarce.088

2 Related Work089

We briefly describe the most prominent graph090

knowledge sources, word embeddings, and ex-091

isting methods for improving embeddings with092

graphs.093

Graph knowledge sources. Among most used094

knowledge graphs for natural language are Word-095

Net (Miller, 1995) and BabelNet (Navigli and096

Ponzetto, 2012). Wordnet is a lexical database097

that organizes English words into sets of synonyms098

called synsets, providing short definitions and us-099

age examples. BabelNet is a multilingual ency-100

clopedic dictionary and semantic network, which101

integrates lexicographic and encyclopedic knowl-102

edge from WordNet, Wikipedia, etc., focused on103

named entities. In our work, we use Concept-104

Net (Speer et al., 2017), a multilingual, domain-105

general knowledge graph that connects words and106

phrases from various natural languages with la-107

beled, weighted edges representing relationships108

between terms. Unlike other knowledge graphs,109

ConceptNet is not a monolingual collection of110

named entities but focuses on commonly used111

words and phrases across multiple languages.112

Word embeddings. Word2Vec (Mikolov et al.,113

2013a) uses shallow neural networks to produce114

word vectors. It comes in two types: Continu-115

ous Bag of Words (CBOW) and Skip-gram. GloVe116

(Global Vectors for Word Representation) (Pen-117

nington et al., 2014) word embeddings are created118

by aggregating global word-word co-occurrence119

statistics from a corpus. The resulting vec-120

tors capture both local and global semantic rela-121

tionships, providing robust word representations122

that outperform many alternatives in various NLP123

tasks. FastText (Bojanowski et al., 2017) ex-124

tends Word2Vec by representing words as bags125

of character n-grams, capturing subword informa-126

tion and handling out-of-vocabulary words more127

effectively. Numberbatch, part of the Concept-128

Net project (Speer et al., 2017), is a set of word129

embeddings that integrates knowledge from Con-130

ceptNet with distributional semantics from GloVe131

and Word2Vec. Numberbatch uses a retrofitting 132

approach (Faruqui et al., 2014) to enhance em- 133

beddings with structured semantic knowledge. 134

Retrofitting often results in a limited vocabulary 135

for underrepresented languages (Speer and Lowry- 136

Duda, 2017). 137

Improving Embeddings with Knowledge 138

Graphs. There are various methods to improve 139

word embeddings by incorporating external 140

knowledge graphs or semantic networks (Dieudo- 141

nat et al., 2020). Retrofitting (Faruqui et al., 142

2014) is a post-processing technique that adjusts 143

pre-trained word embeddings using information 144

from knowledge graphs or semantic lexicons. The 145

key idea is to infer new vectors that are close 146

to their original embeddings while also being 147

close to their neighbors in the graph or lexicon. 148

Expanded retrofitting (Speer et al., 2017), used for 149

ConceptNet Numberbatch, optimizes over a larger 150

vocabulary including terms from the knowledge 151

graph not present in the original embeddings, 152

but it still does not retrofit all the words in the 153

original embedding space. Other existing methods 154

that integrate contextualized embeddings with 155

knowledge graph embeddings often use attention 156

mechanisms, as demonstrated by works such as 157

Peters et al. (2019) and Zhang et al.(2019). These 158

methods specifically enhance BERT embeddings 159

by incorporating external knowledge bases. 160

3 Method 161

We propose a method for merging GloVe embed- 162

dings with graph-based embeddings derived from 163

ConceptNet knowledge, while preserving the vo- 164

cabulary size of GloVe, following two steps: First, 165

we use Singular Value Decomposition (SVD) 166

on concatenated word embeddings from GloVe 167

and PPMI-based graph embeddings to generate a 168

shared embedding space. We do so for the part of 169

the vocabulary that is shared between GloVe and 170

the knowledge graph. Second, we learn a linear 171

transformation from GloVe into this joined space 172

to obtain embeddings for all words in the original 173

GloVe vocabulary. 174

3.1 GloVe Embeddings 175

We trained GloVe embeddings using the origi- 176

nal C code1. The model was trained by stochas- 177

tically sampling nonzero elements from the co- 178

occurrence matrix 𝑋, over 100 iterations, to pro- 179

1All embeddings are open-sourced on HuggingFace.
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duce 300-dimensional vectors. We used a context180

window of ten words to the left and ten words to181

the right. Words with fewer than 5 co-occurrences182

were excluded for languages with over 1 million183

tokens in the training data, and the threshold was184

set to 2 for languages with smaller datasets. We185

used data from CC1002 (Wenzek et al., 2020; Con-186

neau et al., 2020) for training the static word em-187

beddings. We set 𝑥𝑚𝑎𝑥 = 100, 𝛼 = 3
4 , and use188

AdaGrad optimization (Duchi et al., 2011) with an189

initial learning rate of 0.05.190

3.2 Graph Embeddings191

To build ConceptNet-based word embeddings, we192

follow the method used for constructing Concept-193

Net Numberbatch embeddings (Speer et al., 2017).194

We represent the ConceptNet graph as a sparse,195

symmetric term-term matrix, where each cell is the196

sum of the occurences of all edges connecting the197

two terms. Unlike the original method, we do not198

discard terms connected to fewer than three edges,199

as we deal with low-resource langauges.200

We calculate embeddings from this matrix201

by applying pointwise mutual information (PMI)202

with context distributional smoothing set to 0.75,203

clipping negative values to yield positive PMI204

(PPMI), which follows practical recommendations205

by (Levy et al., 2015). We then reduce the dimen-206

sionality to 300 dimensions using truncated SVD207

and combine terms and contexts symmetrically to208

form a single matrix of word embeddings, called209

ConceptNet-PPMI. This matrix captures the over-210

all graph structure of ConceptNet.211

We computed ConceptNet-PPMI embeddings212

for the entire ConceptNet data, covering 304 lan-213

guages, which we call PPMI (All). Additionally,214

we constructed separate graph embedding spaces,215

PPMI (Single), for each specific language, using216

only the portion of ConceptNet data for that lan-217

guage. This approach was adopted because the218

initial co-occurence matrices for individual lan-219

guages are less sparse while still being multilingual220

in nature.221

3.3 Singular Value Decomposition (SVD)222

We first concatenate GloVe and ConceptNet-PPMI223

vectors for all words that are in the shared vocabu-224

lary, resulting in 600 dimensional vectors3. After-225

wards, we reduce the dimensionality and remove226

2https://huggingface.co/datasets/cc100
3ConceptNet-PPMI embeddings were normalized to be in

the range of the Glove embeddings

some of the variance coming from redundant fea- 227

tures. The matrix 𝑀 representing merged GloVe 228

and ConceptNet-PPMI can be approximated with 229

a truncated SVD: 230

𝑀 ≈ 𝑈Σ𝑉 𝑇 231

where Σ is truncated to a 𝑘′ × 𝑘′ diagonal ma- 232

trix of the 𝑘′ largest singular values, and 𝑈 and 𝑉 233

are correspondingly truncated to have only these 234

𝑘′ columns. 𝑈 can then be used as a matrix map- 235

ping the original vocabulary to a smaller set of fea- 236

tures4. 237

3.4 Linear Transformation 238

To obtain embeddings for the entire vocabulary 239

from the original GloVe embedding space (i.e. not 240

only the common words), we find a linear pro- 241

jection matrix between the spaces and project the 242

GloVe embeddings onto the merged embedding 243

space, similar to Mikolov et al. (2013c), using a 244

gradient descent optimization on a linear regres- 245

sion model. 246

4 Experiments 247

In this section, we describe the chosen languages, 248

tasks for measuring the effectiveness of the pro- 249

posed method, and conducted experiments. 250

4.1 Languages 251

We train GloVe word embeddings for 87 languages 252

from CC100 (Wenzek et al., 2020) categorized as 253

low-resource from class 3 to 0 based on the classifi- 254

cation by Joshi et al. (2020). Additionally, we gen- 255

erated graph embeddings for 72 languages present 256

in both CC100 and ConceptNet. We applied our 257

merging method to enhance the quality of the origi- 258

nal embeddings for these languages. Details on the 259

languages are specified in Table 2 of the Appendix. 260

4.2 Embedding Evaluation 261

For evaluating the embeddings, we perform an ex- 262

trinsic evaluation using a downstream NLP task - 263

sentiment analysis (SA). Obtaining intrinsic eval- 264

uation datasets for most underresourced languages 265

is challenging. We use a self-gathered collection 266

of datasets for diverse languages. Details on data 267

sources and distribution for SA datasets are avail- 268

able in Table 3 of the Appendix. For the imbal- 269

anced datasets (Swahili, Nepali, Uyghur, Latvian, 270

4We dismiss the weighting of 𝑈 by the singular values
from Σ, which was noted to work better for semantic tasks
(Levy et al., 2015)
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Slovak, Slovenian, Uzbek, Bulgarian, Yoruba,271

Bengali, Hebrew, Telugu), we used random under-272

sampling to balance the data distribution.273

4.3 Experimental Setup274

For evaluation, we use a Support Vector Machine275

(SVM, Boser et al. (1992)) to predict sentiment.276

Our experiments involved training the SVM classi-277

fier using GloVe embeddings, GloVe+PPMI (Sin-278

gle) and GloVe+PPMI (All) to represent sentences279

while fitting the data to the model. Sentence em-280

beddings were obtained by summing up embed-281

dings for individual words extracted from the cor-282

responding dictionaries, and the SVM was trained283

on top of these representations. We fixed the reg-284

ularization parameter 𝐶 to 1.0 and used the RBF285

kernel to reduce the influence of the hyperparam-286

eters on the resulting scores. We use macro F1287

score to measure performance. As baseline, we use288

XLM-R (Conneau et al., 2020) for obtaining sen-289

tence embeddings by summing up the last hidden290

states of the model and consequently train an SVM291

classifier on these representations.292

Lang XLM-R G G+P (Single) G+P (All)

am 0.616 0.881 0.86 0.88
su 0.674 0.798 0.822 0.812
sw 0.473 0.68 0.701 0.714
si 0.631 0.848 0.85 0.857
ka 0.495 0.861 0.87 0.861
ne 0.542 0.643 0.674 0.688
ug 0.386 0.746 0.811 0.811
yo 0.52 0.721 0.709 0.738
ur 0.526 0.676 0.746 0.745
mk 0.351 0.716 0.711 0.7
mr 0.809 0.903 0.905 0.902
bn 0.551 0.875 0.881 0.878
te 0.603 0.806 0.808 0.817
uz 0.64 0.808 0.806 0.806
az 0.6 0.744 0.746 0.745
bg 0.568 0.786 0.801 0.805
sl 0.582 0.749 0.779 0.788
lv 0.606 0.783 0.787 0.787
sk 0.657 0.756 0.806 0.805
ro 0.622 0.805 0.85 0.847
he 0.672 0.788 0.824 0.822
cy 0.588 0.77 0.789 0.801
da 0.77 0.863 0.908 0.903

Table 1: Macro Average F1 Scores for SA per
language, for XLM-R, GloVe (G), GloVe + PPMI
(G+P), Single and All. Maximum per row in bold.

4.4 Results293

We evaluate the performance of the proposed294

GloVe+PPMI embeddings on sentiment analysis295

(SA) tasks for 23 low-resource languages. Table296

1 presents macro average F1 scores for SA. The 297

GloVe+PPMI (Single) and GloVe+PPMI (All) 298

embeddings consistently outperform the original 299

GloVe embeddings across most languages. We ob- 300

served fine improvements even for the languages 301

with a small number of common vocabulary be- 302

tween GloVe and PPMI, such as Uygur, Sundanese 303

and others (more details on vocabulary overlap in 304

Section C of the Appendix). 305

Our method especially also outperforms XLM- 306

R-base embeddings, highlighting the potential 307

of static embeddings enhanced with multilingual 308

graph knowledge in low-resource settings. 309

Overall, the results indicate that integrating 310

graph-based knowledge into GloVe embeddings 311

through PPMI largely improves the performance of 312

the embeddings on SA tasks. The consistent im- 313

provement in F1 scores across various languages 314

suggests that the additional semantic and multilin- 315

gual relationships captured by the graph-based ap- 316

proach provide valuable context that the original 317

GloVe embeddings lack. This is particularly bene- 318

ficial for low-resource languages where the amount 319

of available training data is limited. 320

5 Conclusion 321

In this work, we addressed a need for baseline word 322

embeddings in low-resource languages by creating 323

a centralized resource of pre-trained static embed- 324

dings for 87 diverse languages. Our novel method 325

integrates GloVe embeddings with graph-based 326

knowledge from ConceptNet using Singular Value 327

Decomposition (SVD) and a linear transformation 328

to merge the embedding spaces. This approach en- 329

hances the original embeddings, as demonstrated 330

by superior performance on SA tasks across vari- 331

ous languages compared to both GloVe and con- 332

textualized embeddings extracted from XLM-R. 333

Our contributions include not only the proposed 334

method but also the provision of LowREm, an 335

extensive repository of GloVe word embeddings, 336

accessible for a wide range of low-resource lan- 337

guages. This resource is aimed to support and 338

advance NLP applications and research in under- 339

represented languages, ensuring that the benefits 340

of modern NLP techniques extend to all linguistic 341

communities. 342

Limitations 343

While our contribution lies in providing baseline 344

models across a wide range of languages, there are 345

4



several limitations to consider. First, we acknowl-346

edge that our evaluation was focused on extrinsic347

task of sentiment analysis, and we did not exten-348

sively evaluate both GloVe and enhanced GloVe349

embeddings on intrinsic tasks due to a lack of350

corresponding datasets. Future work could in-351

volve the evaluation of our method on existing352

intrinsic evaluation datasets and the creation of353

such resources for low-resource languages, allow-354

ing for a more comprehensive assessment of the355

quality and performance of the embeddings. Sec-356

ondly, the quantity and quality of training data re-357

main important factors influencing the effective-358

ness of word embeddings. Despite efforts to lever-359

age large-scale corpora such as CC100 and Con-360

ceptNet, there are still limitations in the availabil-361

ity and diversity of training data, particularly for362

low-resource languages. Furthermore, while our363

method of merging GloVe embeddings with graph-364

based embeddings has shown promising results,365

there is potential for further refinement and explo-366

ration of alternative merging and projection tech-367

niques. Future research could investigate advanced368

fusion and projection methods, potentially leading369

to more enhanced representations for low-resource370

languages.371

Acknowledgments372

References373

Felipe Almeida and Geraldo Xexéo. 2019. Word em-374
beddings: A survey. ArXiv, abs/1901.09069.375

Adam Amram, Anat Ben David, and Reut Tsarfaty.376
2018. Representations and architectures in neu-377
ral sentiment analysis for morphologically rich lan-378
guages: A case study from Modern Hebrew. In379
Proceedings of the 27th International Conference on380
Computational Linguistics, pages 2242–2252, Santa381
Fe, New Mexico, USA. Association for Computa-382
tional Linguistics.383

Piotr Bojanowski, Edouard Grave, Armand Joulin, and384
Tomas Mikolov. 2017. Enriching word vectors with385
subword information. Transactions of the Associa-386
tion for Computational Linguistics, 5:135–146.387

Bernhard E Boser, Isabelle M Guyon, and Vladimir N388
Vapnik. 1992. A training algorithm for optimal mar-389
gin classifiers. In Proceedings of the fifth annual390
workshop on Computational learning theory, pages391
144–152.392

Jože Bučar, Martin Žnidaršič, and Janez Povh. 2018.393
Annotated news corpora and a lexicon for sentiment394
analysis in slovene. Language Resources and Eval-395
uation, 52(3):895–919.396

Alexis Conneau, Kartikay Khandelwal, Naman Goyal, 397
Vishrav Chaudhary, Guillaume Wenzek, Francisco 398
Guzmán, Edouard Grave, Myle Ott, Luke Zettle- 399
moyer, and Veselin Stoyanov. 2020. Unsupervised 400
cross-lingual representation learning at scale. In 401
Proceedings of the 58th Annual Meeting of the Asso- 402
ciation for Computational Linguistics, pages 8440– 403
8451, Online. Association for Computational Lin- 404
guistics. 405

Piyumal Demotte, Lahiru Senevirathe, Binod 406
Karunanayake, Udyogi Munasinghe, and Surangika 407
Ranathunga. 2020. Sentiment analysis of sinhala 408
news comments using sentence-state lstm networks. 409
pages 283–288. 410

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and 411
Kristina Toutanova. 2019. BERT: Pre-training of 412
deep bidirectional transformers for language under- 413
standing. In Proceedings of the 2019 Conference 414
of the North American Chapter of the Association 415
for Computational Linguistics: Human Language 416
Technologies, Volume 1 (Long and Short Papers), 417
pages 4171–4186, Minneapolis, Minnesota. Associ- 418
ation for Computational Linguistics. 419

Lea Dieudonat, Kelvin Han, Phyllicia Leavitt, and Es- 420
teban Marquer. 2020. Exploring the combination of 421
contextual word embeddings and knowledge graph 422
embeddings. ArXiv, abs/2004.08371. 423

John Duchi, Elad Hazan, and Yoram Singer. 2011. 424
Adaptive subgradient methods for online learning 425
and stochastic optimization. Journal of machine 426
learning research, 12(7). 427

Luis Espinosa-Anke, Geraint Palmer, Padraig Corco- 428
ran, Maxim Filimonov, Irena Spasić, and Dawn 429
Knight. 2021. English–welsh cross-lingual embed- 430
dings. Applied Sciences, 11(14):6541. 431

Manaal Faruqui, Jesse Dodge, Sujay K Jauhar, Chris 432
Dyer, Eduard Hovy, and Noah A Smith. 2014. 433
Retrofitting word vectors to semantic lexicons. arXiv 434
preprint arXiv:1411.4166. 435

Daniel C. Ferreira, André F. T. Martins, and Mariana 436
S. C. Almeida. 2016. Jointly learning to embed 437
and predict with multiple languages. In Proceed- 438
ings of the 54th Annual Meeting of the Association 439
for Computational Linguistics (Volume 1: Long Pa- 440
pers), pages 2019–2028, Berlin, Germany. Associa- 441
tion for Computational Linguistics. 442

Hila Gonen and Yoav Goldberg. 2019. Lipstick on a 443
pig: Debiasing methods cover up systematic gender 444
biases in word embeddings but do not remove them. 445
In Proceedings of the 2019 Conference of the North 446
American Chapter of the Association for Computa- 447
tional Linguistics: Human Language Technologies, 448
Volume 1 (Long and Short Papers), pages 609–614, 449
Minneapolis, Minnesota. Association for Computa- 450
tional Linguistics. 451

Edouard Grave, Piotr Bojanowski, Prakhar Gupta, Ar- 452
mand Joulin, and Tomas Mikolov. 2018. Learning 453

5

https://api.semanticscholar.org/CorpusID:59316955
https://api.semanticscholar.org/CorpusID:59316955
https://api.semanticscholar.org/CorpusID:59316955
https://aclanthology.org/C18-1190
https://aclanthology.org/C18-1190
https://aclanthology.org/C18-1190
https://aclanthology.org/C18-1190
https://aclanthology.org/C18-1190
https://doi.org/10.1162/tacl_a_00051
https://doi.org/10.1162/tacl_a_00051
https://doi.org/10.1162/tacl_a_00051
https://doi.org/10.18653/v1/2020.acl-main.747
https://doi.org/10.18653/v1/2020.acl-main.747
https://doi.org/10.18653/v1/2020.acl-main.747
https://doi.org/10.1109/MERCon50084.2020.9185327
https://doi.org/10.1109/MERCon50084.2020.9185327
https://doi.org/10.1109/MERCon50084.2020.9185327
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://api.semanticscholar.org/CorpusID:215814244
https://api.semanticscholar.org/CorpusID:215814244
https://api.semanticscholar.org/CorpusID:215814244
https://api.semanticscholar.org/CorpusID:215814244
https://api.semanticscholar.org/CorpusID:215814244
https://doi.org/10.18653/v1/P16-1190
https://doi.org/10.18653/v1/P16-1190
https://doi.org/10.18653/v1/P16-1190
https://doi.org/10.18653/v1/N19-1061
https://doi.org/10.18653/v1/N19-1061
https://doi.org/10.18653/v1/N19-1061
https://doi.org/10.18653/v1/N19-1061
https://doi.org/10.18653/v1/N19-1061
https://aclanthology.org/L18-1550
https://aclanthology.org/L18-1550


word vectors for 157 languages. In Proceedings of454
the Eleventh International Conference on Language455
Resources and Evaluation (LREC 2018), Miyazaki,456
Japan. European Language Resources Association457
(ELRA).458

Tim Isbister, Fredrik Carlsson, and Magnus Sahlgren.459
2021. Should we stop training more monolingual460
models, and simply use machine translation instead?461
In Proceedings of the 23rd Nordic Conference on462
Computational Linguistics (NoDaLiDa), pages 385–463
390, Reykjavik, Iceland (Online). Linköping Univer-464
sity Electronic Press, Sweden.465

Pratik Joshi, Sebastin Santy, Amar Budhiraja, Kalika466
Bali, and Monojit Choudhury. 2020. The state and467
fate of linguistic diversity and inclusion in the NLP468
world. In Proceedings of the 58th Annual Meeting of469
the Association for Computational Linguistics, pages470
6282–6293, Online. Association for Computational471
Linguistics.472

Dame Jovanoski, Veno Pachovski, and Preslav Nakov.473
2015. Sentiment analysis in Twitter for Macedo-474
nian. In Proceedings of the International Confer-475
ence Recent Advances in Natural Language Process-476
ing, pages 249–257, Hissar, Bulgaria. INCOMA Ltd.477
Shoumen, BULGARIA.478

Muhammad Yaseen Khan, Shah Muhammad Emadud-479
din, and Khurum Nazir Junejo. 2017. Harnessing480
english sentiment lexicons for polarity detection in481
urdu tweets: A baseline approach. In 2017 IEEE482
11th International Conference on Semantic Comput-483
ing (ICSC), pages 242–249. IEEE.484

Muhammad Yaseen Khan and Muhammad Suffian485
Nizami. 2020. Urdu sentiment corpus (v1.0):486
Linguistic exploration and visualization of labeled487
datasetfor urdu sentiment analysis. In 2020 IEEE488
2nd International Conference On Information Sci-489
ence Communication Technology (ICISCT). IEEE.490

Elmurod Kuriyozov, Sanatbek Matlatipov, Miguel A.491
Alonso, and Carlos Gómez-Rodríguez. 2019. Con-492
struction and evaluation of sentiment datasets for493
low-resource languages: The case of uzbek. In494
Human Language Technology. Challenges for Com-495
puter Science and Linguistics - 9th Language and496
Technology Conference, LTC 2019, Poznan, Poland,497
May 17-19, 2019, Revised Selected Papers, volume498
13212 of Lecture Notes in Computer Science, pages499
232–243. Springer.500

Guillaume Lample, Ludovic Denoyer, and501
Marc’Aurelio Ranzato. 2017. Unsupervised502
machine translation using monolingual corpora503
only. CoRR, abs/1711.00043.504

Omer Levy, Yoav Goldberg, and Ido Dagan. 2015. Im-505
proving distributional similarity with lessons learned506
from word embeddings. Transactions of the Associ-507
ation for Computational Linguistics, 3:211–225.508

Siyu Li, Kui Zhao, Jin Yang, Xinyun Jiang, Zhengji509
Li, and Zicheng Ma. 2022. Senti-exlm: Uyghur510

enhanced sentiment analysis model based on xlm. 511
Electronics Letters, 58(13):517–519. 512

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man- 513
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis, 514
Luke Zettlemoyer, and Veselin Stoyanov. 2019. 515
Roberta: A robustly optimized bert pretraining ap- 516
proach. ArXiv, abs/1907.11692. 517

LocalDoc. 2024. Sentiment analysis dataset for Azer- 518
baijani. 519

Andrew L. Maas, Raymond E. Daly, Peter T. Pham, 520
Dan Huang, Andrew Y. Ng, and Christopher Potts. 521
2011. Learning word vectors for sentiment analy- 522
sis. In Proceedings of the 49th Annual Meeting of 523
the Association for Computational Linguistics: Hu- 524
man Language Technologies, pages 142–150, Port- 525
land, Oregon, USA. Association for Computational 526
Linguistics. 527

Thomas Manzini, Lim Yao Chong, Alan W Black, and 528
Yulia Tsvetkov. 2019. Black is to criminal as Cau- 529
casian is to police: Detecting and removing multi- 530
class bias in word embeddings. In Proceedings of the 531
2019 Conference of the North American Chapter of 532
the Association for Computational Linguistics: Hu- 533
man Language Technologies, Volume 1 (Long and 534
Short Papers), pages 615–621, Minneapolis, Min- 535
nesota. Association for Computational Linguistics. 536

Mounika Marreddy, Subba Reddy Oota, Lak- 537
shmi Sireesha Vakada, Venkata Charan Chinni, 538
and R. Mamidi. 2022a. Multi-task text classification 539
using graph convolutional networks for large-scale 540
low resource language. 2022 International Joint 541
Conference on Neural Networks (IJCNN), pages 542
1–8. 543

Mounika Marreddy, Subba Reddy Oota, Lak- 544
shmi Sireesha Vakada, Venkata Charan Chinni, 545
and Radhika Mamidi. 2022b. Am i a resource-poor 546
language? data sets, embeddings, models and anal- 547
ysis for four different nlp tasks in telugu language. 548
ACM Transactions on Asian and Low-Resource 549
Language Information Processing, 22(1):1–34. 550

Antonio Martínez-García, Toni Badia, and Jeremy 551
Barnes. 2021. Evaluating morphological typology 552
in zero-shot cross-lingual transfer. In Proceedings of 553
the 59th Annual Meeting of the Association for Com- 554
putational Linguistics and the 11th International 555
Joint Conference on Natural Language Processing 556
(Volume 1: Long Papers), pages 3136–3153, Online. 557
Association for Computational Linguistics. 558

Tomas Mikolov, Kai Chen, Gregory S. Corrado, and 559
Jeffrey Dean. 2013a. Efficient estimation of word 560
representations in vector space. In International 561
Conference on Learning Representations. 562

Tomas Mikolov, Quoc V. Le, and Ilya Sutskever. 2013b. 563
Exploiting similarities among languages for machine 564
translation. ArXiv, abs/1309.4168. 565

6

https://aclanthology.org/L18-1550
https://aclanthology.org/2021.nodalida-main.42
https://aclanthology.org/2021.nodalida-main.42
https://aclanthology.org/2021.nodalida-main.42
https://doi.org/10.18653/v1/2020.acl-main.560
https://doi.org/10.18653/v1/2020.acl-main.560
https://doi.org/10.18653/v1/2020.acl-main.560
https://doi.org/10.18653/v1/2020.acl-main.560
https://doi.org/10.18653/v1/2020.acl-main.560
https://aclanthology.org/R15-1034
https://aclanthology.org/R15-1034
https://aclanthology.org/R15-1034
https://doi.org/10.1007/978-3-031-05328-3_15
https://doi.org/10.1007/978-3-031-05328-3_15
https://doi.org/10.1007/978-3-031-05328-3_15
https://doi.org/10.1007/978-3-031-05328-3_15
https://doi.org/10.1007/978-3-031-05328-3_15
http://arxiv.org/abs/1711.00043
http://arxiv.org/abs/1711.00043
http://arxiv.org/abs/1711.00043
http://arxiv.org/abs/1711.00043
http://arxiv.org/abs/1711.00043
https://doi.org/10.1162/tacl_a_00134
https://doi.org/10.1162/tacl_a_00134
https://doi.org/10.1162/tacl_a_00134
https://doi.org/10.1162/tacl_a_00134
https://doi.org/10.1162/tacl_a_00134
https://api.semanticscholar.org/CorpusID:198953378
https://api.semanticscholar.org/CorpusID:198953378
https://api.semanticscholar.org/CorpusID:198953378
https://huggingface.co/LocalDoc
https://huggingface.co/LocalDoc
https://huggingface.co/LocalDoc
http://www.aclweb.org/anthology/P11-1015
http://www.aclweb.org/anthology/P11-1015
http://www.aclweb.org/anthology/P11-1015
https://doi.org/10.18653/v1/N19-1062
https://doi.org/10.18653/v1/N19-1062
https://doi.org/10.18653/v1/N19-1062
https://doi.org/10.18653/v1/N19-1062
https://doi.org/10.18653/v1/N19-1062
https://api.semanticscholar.org/CorpusID:248506037
https://api.semanticscholar.org/CorpusID:248506037
https://api.semanticscholar.org/CorpusID:248506037
https://api.semanticscholar.org/CorpusID:248506037
https://api.semanticscholar.org/CorpusID:248506037
https://doi.org/10.18653/v1/2021.acl-long.244
https://doi.org/10.18653/v1/2021.acl-long.244
https://doi.org/10.18653/v1/2021.acl-long.244
https://api.semanticscholar.org/CorpusID:5959482
https://api.semanticscholar.org/CorpusID:5959482
https://api.semanticscholar.org/CorpusID:5959482
https://api.semanticscholar.org/CorpusID:1966640
https://api.semanticscholar.org/CorpusID:1966640
https://api.semanticscholar.org/CorpusID:1966640


Tomas Mikolov, Quoc V. Le, and Ilya Sutskever. 2013c.566
Exploiting similarities among languages for machine567
translation. ArXiv, abs/1309.4168.568

George A Miller. 1995. Wordnet: a lexical database for569
english. Communications of the ACM, 38(11):39–570
41.571

Shamsuddeen Muhammad, Idris Abdulmumin, Abinew572
Ayele, Nedjma Ousidhoum, David Adelani, Seid573
Yimam, Ibrahim Ahmad, Meriem Beloucif, Saif574
Mohammad, Sebastian Ruder, Oumaima Hour-575
rane, Alipio Jorge, Pavel Brazdil, Felermino Ali,576
Davis David, Salomey Osei, Bello Shehu-Bello,577
Falalu Lawan, Tajuddeen Gwadabe, Samuel Ru-578
tunda, Tadesse Belay, Wendimu Messelle, Hailu579
Balcha, Sisay Chala, Hagos Gebremichael, Bernard580
Opoku, and Stephen Arthur. 2023a. AfriSenti: A581
Twitter sentiment analysis benchmark for African582
languages. In Proceedings of the 2023 Conference583
on Empirical Methods in Natural Language Process-584
ing, pages 13968–13981, Singapore. Association for585
Computational Linguistics.586

Shamsuddeen Hassan Muhammad, Idris Abdulmu-587
min, Seid Muhie Yimam, David Ifeoluwa Ade-588
lani, Ibrahim Said Ahmad, Nedjma Ousidhoum,589
Abinew Ali Ayele, Saif Mohammad, Meriem Be-590
loucif, and Sebastian Ruder. 2023b. SemEval-591
2023 task 12: Sentiment analysis for African lan-592
guages (AfriSenti-SemEval). In Proceedings of the593
17th International Workshop on Semantic Evalu-594
ation (SemEval-2023), pages 2319–2337, Toronto,595
Canada. Association for Computational Linguistics.596

Roberto Navigli and Simone Paolo Ponzetto. 2012. Ba-597
belnet: The automatic construction, evaluation and598
application of a wide-coverage multilingual seman-599
tic network. Artificial intelligence, 193:217–250.600

Samuel Pecar, Marian Simko, and Maria Bielikova.601
2019. Improving sentiment classification in Slo-602
vak language. In Proceedings of the 7th Workshop603
on Balto-Slavic Natural Language Processing, pages604
114–119, Florence, Italy. Association for Computa-605
tional Linguistics.606

Jeffrey Pennington, Richard Socher, and Christopher D607
Manning. 2014. Glove: Global vectors for word rep-608
resentation. In Proceedings of the 2014 conference609
on empirical methods in natural language process-610
ing (EMNLP), pages 1532–1543.611

Matthew E. Peters, Mark Neumann, Robert Logan, Roy612
Schwartz, Vidur Joshi, Sameer Singh, and Noah A.613
Smith. 2019. Knowledge enhanced contextual word614
representations. In Proceedings of the 2019 Con-615
ference on Empirical Methods in Natural Language616
Processing and the 9th International Joint Con-617
ference on Natural Language Processing (EMNLP-618
IJCNLP), pages 43–54, Hong Kong, China. Associ-619
ation for Computational Linguistics.620

Aabha Pingle, Aditya Vyawahare, Isha Joshi, Rahul621
Tangsali, and Raviraj Joshi. 2023. L3cube-622
mahasent-md: A multi-domain marathi sentiment623

analysis dataset and transformer models. In Pa- 624
cific Asia Conference on Language, Information and 625
Computation. 626

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, 627
Dario Amodei, Ilya Sutskever, et al. 2019. Language 628
models are unsupervised multitask learners. OpenAI 629
blog, 1(8):9. 630

Flora Sakketou and Nicholas Ampazis. 2020. A con- 631
strained optimization algorithm for learning glove 632
embeddings with semantic lexicons. Knowledge- 633
Based Systems, 195:105628. 634

Salim Sazzed. 2020. Cross-lingual sentiment clas- 635
sification in low-resource Bengali language. In 636
Proceedings of the Sixth Workshop on Noisy User- 637
generated Text (W-NUT 2020), pages 50–60, Online. 638
Association for Computational Linguistics. 639

Oyesh Mann Singh, Sandesh Timilsina, Bal Krishna 640
Bal, and Anupam Joshi. 2020. Aspect based abu- 641
sive sentiment detection in nepali social media texts. 642
2020 IEEE/ACM International Conference on Ad- 643
vances in Social Networks Analysis and Mining 644
(ASONAM), pages 301–308. 645

Robyn Speer, Joshua Chin, and Catherine Havasi. 2017. 646
Conceptnet 5.5: An open multilingual graph of gen- 647
eral knowledge. In Proceedings of the AAAI confer- 648
ence on artificial intelligence, volume 31. 649

Robyn Speer and Joanna Lowry-Duda. 2017. Concept- 650
Net at SemEval-2017 task 2: Extending word em- 651
beddings with multilingual relational knowledge. In 652
Proceedings of the 11th International Workshop on 653
Semantic Evaluation (SemEval-2017), pages 85–89, 654
Vancouver, Canada. Association for Computational 655
Linguistics. 656

Uga Spro ‘gis and Matı̄ss Rikters. 2020. What Can We 657
Learn From Almost a Decade of Food Tweets. In In 658
Proceedings of the 9th Conference Human Language 659
Technologies - The Baltic Perspective (Baltic HLT 660
2020), Kaunas, Lithuania. 661

Nicolas Stefanovitch, Jakub Piskorski, and Sopho 662
Kharazi. 2022. Resources and experiments on senti- 663
ment classification for Georgian. In Proceedings of 664
the Thirteenth Language Resources and Evaluation 665
Conference, pages 1613–1621, Marseille, France. 666
European Language Resources Association. 667

Emma Strubell, Ananya Ganesh, and Andrew McCal- 668
lum. 2019. Energy and policy considerations for 669
deep learning in NLP. In Proceedings of the 57th An- 670
nual Meeting of the Association for Computational 671
Linguistics, pages 3645–3650, Florence, Italy. Asso- 672
ciation for Computational Linguistics. 673

Anca Tache, Gaman Mihaela, and Radu Tudor Ionescu. 674
2021. Clustering word embeddings with self- 675
organizing maps. application on LaRoSeDa - a large 676
Romanian sentiment data set. In Proceedings of the 677

7

https://api.semanticscholar.org/CorpusID:1966640
https://api.semanticscholar.org/CorpusID:1966640
https://api.semanticscholar.org/CorpusID:1966640
https://doi.org/10.18653/v1/2023.emnlp-main.862
https://doi.org/10.18653/v1/2023.emnlp-main.862
https://doi.org/10.18653/v1/2023.emnlp-main.862
https://doi.org/10.18653/v1/2023.emnlp-main.862
https://doi.org/10.18653/v1/2023.emnlp-main.862
https://doi.org/10.18653/v1/2023.semeval-1.315
https://doi.org/10.18653/v1/2023.semeval-1.315
https://doi.org/10.18653/v1/2023.semeval-1.315
https://doi.org/10.18653/v1/2023.semeval-1.315
https://doi.org/10.18653/v1/2023.semeval-1.315
https://doi.org/10.18653/v1/W19-3716
https://doi.org/10.18653/v1/W19-3716
https://doi.org/10.18653/v1/W19-3716
https://doi.org/10.18653/v1/D19-1005
https://doi.org/10.18653/v1/D19-1005
https://doi.org/10.18653/v1/D19-1005
https://api.semanticscholar.org/CorpusID:259252409
https://api.semanticscholar.org/CorpusID:259252409
https://api.semanticscholar.org/CorpusID:259252409
https://api.semanticscholar.org/CorpusID:259252409
https://api.semanticscholar.org/CorpusID:259252409
https://doi.org/10.18653/v1/2020.wnut-1.8
https://doi.org/10.18653/v1/2020.wnut-1.8
https://doi.org/10.18653/v1/2020.wnut-1.8
https://api.semanticscholar.org/CorpusID:231949601
https://api.semanticscholar.org/CorpusID:231949601
https://api.semanticscholar.org/CorpusID:231949601
https://doi.org/10.18653/v1/S17-2008
https://doi.org/10.18653/v1/S17-2008
https://doi.org/10.18653/v1/S17-2008
https://doi.org/10.18653/v1/S17-2008
https://doi.org/10.18653/v1/S17-2008
https://aclanthology.org/2022.lrec-1.173
https://aclanthology.org/2022.lrec-1.173
https://aclanthology.org/2022.lrec-1.173
https://doi.org/10.18653/v1/P19-1355
https://doi.org/10.18653/v1/P19-1355
https://doi.org/10.18653/v1/P19-1355
https://www.aclweb.org/anthology/2021.eacl-main.81
https://www.aclweb.org/anthology/2021.eacl-main.81
https://www.aclweb.org/anthology/2021.eacl-main.81
https://www.aclweb.org/anthology/2021.eacl-main.81
https://www.aclweb.org/anthology/2021.eacl-main.81


16th Conference of the European Chapter of the As-678
sociation for Computational Linguistics: Main Vol-679
ume, pages 949–956, Online. Association for Com-680
putational Linguistics.681

Tarikwa Tesfa, Befikadu Belete, Samuel Abera, Sud-682
hir Kumar Mohapatra, and Tapan Kumar Das. 2024.683
Aspect-based sentiment analysis on amharic text for684
evaluating ethio-telecom services. In 2024 Second685
International Conference on Emerging Trends in In-686
formation Technology and Engineering (ICETITE),687
pages 1–6.688

Ivan Vulić, Sebastian Ruder, and Anders Søgaard.689
2020. Are all good word vector spaces isomorphic?690
In Proceedings of the 2020 Conference on Empirical691
Methods in Natural Language Processing (EMNLP),692
pages 3178–3192, Online. Association for Computa-693
tional Linguistics.694

Guillaume Wenzek, Marie-Anne Lachaux, Alexis Con-695
neau, Vishrav Chaudhary, Francisco Guzmán, Ar-696
mand Joulin, and Edouard Grave. 2020. CCNet:697
Extracting high quality monolingual datasets from698
web crawl data. In Proceedings of the Twelfth Lan-699
guage Resources and Evaluation Conference, pages700
4003–4012, Marseille, France. European Language701
Resources Association.702

Genta Indra Winata, Alham Fikri Aji, Samuel Cahyaw-703
ijaya, Rahmad Mahendra, Fajri Koto, Ade Ro-704
madhony, Kemal Kurniawan, David Moeljadi, Ra-705
dityo Eko Prasojo, Pascale Fung, Timothy Bald-706
win, Jey Han Lau, Rico Sennrich, and Sebastian707
Ruder. 2023. NusaX: Multilingual parallel senti-708
ment dataset for 10 Indonesian local languages. In709
Proceedings of the 17th Conference of the European710
Chapter of the Association for Computational Lin-711
guistics, pages 815–834, Dubrovnik, Croatia. Asso-712
ciation for Computational Linguistics.713

Jiateng Xie, Zhilin Yang, Graham Neubig, Noah A.714
Smith, and Jaime Carbonell. 2018. Neural cross-715
lingual named entity recognition with minimal re-716
sources. In Proceedings of the 2018 Conference on717
Empirical Methods in Natural Language Processing,718
pages 369–379, Brussels, Belgium. Association for719
Computational Linguistics.720

Fengqi Yan, Qiaoqing Fan, and Mingming Lu. 2018.721
Improving semantic similarity retrieval with word722
embeddings. Concurrency and Computation: Prac-723
tice and Experience, 30(23):e4489.724

Zhengyan Zhang, Xu Han, Zhiyuan Liu, Xin Jiang,725
Maosong Sun, and Qun Liu. 2019. ERNIE: En-726
hanced language representation with informative en-727
tities. In Proceedings of the 57th Annual Meeting of728
the Association for Computational Linguistics, pages729
1441–1451, Florence, Italy. Association for Compu-730
tational Linguistics.731

8

https://doi.org/10.1109/ic-ETITE58242.2024.10493748
https://doi.org/10.1109/ic-ETITE58242.2024.10493748
https://doi.org/10.1109/ic-ETITE58242.2024.10493748
https://doi.org/10.18653/v1/2020.emnlp-main.257
https://aclanthology.org/2020.lrec-1.494
https://aclanthology.org/2020.lrec-1.494
https://aclanthology.org/2020.lrec-1.494
https://aclanthology.org/2020.lrec-1.494
https://aclanthology.org/2020.lrec-1.494
https://doi.org/10.18653/v1/2023.eacl-main.57
https://doi.org/10.18653/v1/2023.eacl-main.57
https://doi.org/10.18653/v1/2023.eacl-main.57
https://doi.org/10.18653/v1/D18-1034
https://doi.org/10.18653/v1/D18-1034
https://doi.org/10.18653/v1/D18-1034
https://doi.org/10.18653/v1/D18-1034
https://doi.org/10.18653/v1/D18-1034
https://doi.org/10.18653/v1/P19-1139
https://doi.org/10.18653/v1/P19-1139
https://doi.org/10.18653/v1/P19-1139
https://doi.org/10.18653/v1/P19-1139
https://doi.org/10.18653/v1/P19-1139


Appendix 732

A Language Details

ISO code Language Size Class ConceptNet ISO code Language Size Class ConceptNet
ss Swati 86K 1 sc Sardinian 143K 1
yo Yoruba 1.1M 2 gn Guarani 1.5M 1
qu Quechua 1.5M 1 ns Northern Sotho 1.8M 1
li Limburgish 2.2M 1 ln Lingala 2.3M 1

wo Wolof 3.6M 2 zu Zulu 4.3M 2
rm Romansh 4.8M 1 ig Igbo 6.6M 1
lg Ganda 7.3M 1 as Assamese 7.6M 1
tn Tswana 8.0M 2 ht Haitian 9.1M 2
om Oromo 11M 1 su Sundanese 15M 1
bs Bosnian 18M 3 br Breton 21M 1
gd Scottish Gaelic 22M 1 xh Xhosa 25M 2
mg Malagasy 29M 1 jv Javanese 37M 1
fy Frisian 38M 0 sa Sanskrit 44M 2
my Burmese 46M 1 ug Uyghur 46M 1
yi Yiddish 51M 1 or Oriya 56M 1
ha Hausa 61M 2 la Lao 63M 2
sd Sindhi 67M 1 ta_rom Tamil Romanized 68M 3
so Somali 78M 1 te_rom Telugu Romanized 79M 1
ku Kurdish 90M 0 pu/pa Punjabi 90M 2
ps Pashto 107M 1 ga Irish 108M 2
am Amharic 133M 2 ur_rom Urdu Romanized 141M 3
km Khmer 153M 1 uz Uzbek 155M 3

bn_rom Bengali Romanized 164M 3 ky Kyrgyz 173M 3
my_zaw Burmese (Zawgyi) 178M 1 cy Welsh 179M 1

gu Gujarati 242M 1 eo Esperanto 250M 1
af Afrikaans 305M 3 sw Swahili 332M 2
mr Marathi 334M 2 kn Kannada 360M 1
ne Nepali 393M 1 mn Mongolian 397M 1
si Sinhala 452M 0 te Telugu 536M 1
la Latin 609M 3 be Belarussian 692M 3
tl Tagalog 701M 3 mk Macedonian 706M 1
gl Galician 708M 3 hy Armenian 776M 1
is Icelandic 779M 2 ml Malayalam 831M 1
bn Bengali 860M 3 ur Urdu 884M 3
kk Kazakh 889M 3 ka Georgian 1.1G 3
az Azerbaijani 1.3G 1 sq Albanian 1.3G 1
ta Tamil 1.3G 3 et Estonian 1.7G 3
lv Latvian 2.1G 3 ms Malay 2.1G 3
sl Slovenian 2.8G 3 lt Lithuanian 3.4G 3
he Hebrew 6.1G 3 sk Slovak 6.1G 3
el Greek 7.4G 3 th Thai 8.7G 3
bg Bulgarian 9.3G 3 da Danish 12G 3
uk Ukrainian 14G 3 ro Romanian 16G 3
id Indonesian 36G 3

Table 2: Details of the reproduced CC-100 corpus available on HuggingFace, including languages with their ISO
codes, data set sizes, low-resource classifications, and language availability in the ConceptNet knowledge graph.
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B SA Data Details

Language ISO code Source #pos #neg #train #val #test

Sundanese su Winata et al., 2023 378 383 381 76 304
Amharic am Tesfa et al., 2024 487 526 709 152 152
Swahili sw Muhammad et al., 2023a; Muhammad et al., 2023b 908 319 738 185 304
Georgian ka Stefanovitch et al., 2022 765 765 1080 120 330
Nepali ne Singh et al., 2020 680 1019 1189 255 255
Uyghur ug Li et al., 2022 2450 353 1962 311 530
Latvian lv Spro ‘gis and Rikters, 2020 1796 1380 2408 268 500
Slovak sk Pecar et al., 2019 4393 731 3560 522 1042
Sinhala si Demotte et al., 2020 2487 2516 3502 750 751
Slovenian sl Bučar et al., 2018 1665 3337 3501 750 751
Uzbek uz Kuriyozov et al., 2019 3042 1634 3273 701 702
Bulgarian bg Martínez-García et al., 2021 6652 1271 5412 838 1673
Yoruba yo Muhammad et al., 2023a; Muhammad et al., 2023b 6344 3296 5414 1327 2899
Urdu ur Maas et al., 2011; Khan et al., 2017; Khan and Nizami, 2020 5562 5417 7356 1812 1812
Macedonian mk Jovanoski et al., 2015 3041 5184 6557 729 939
Danish da Isbister et al., 2021 5000 5000 7000 1500 1500
Marathi mr Pingle et al., 2023 5000 5000 8000 1000 1000
Bengali bn Sazzed, 2020 8500 3307 8264 1771 1772
Hebrew he Amram et al., 2018 8497 3911 8932 993 2483
Romanian ro Tache et al., 2021 7500 7500 10800 1200 3000
Telugu te Marreddy et al., 2022b; Marreddy et al., 2022a 9488 6746 11386 1634 3214
Welsh cy Espinosa-Anke et al., 2021 12500 12500 17500 3750 3750
Azerbaijani az LocalDoc, 2024 14000 14000 19600 4200 4200

Table 3: Sentiment Analysis Data Details

10



C Vocabulary Details 733

Language SA Vocabulary Coverage (%) Common Vocabulary

am 78 1,105
su 78 1,236
sw 88 6,425
si 89 943
ka 97 17,869
ne 78 2,650
ug 88 764
yo 22 558
ur 63 4,662
mk 83 21,692
mr 84 3,211
bn 67 3,962
te 86 12,563
uz 71 3,229
az 60 7,215
bg 84 92,436
sl 92 45,153
lv 87 17,450
sk 85 14,694
ro 90 25,704
he 90 16,032
cy 52 7,774
da 75 38,095

Table 4: Percentage of Glove and Glove+PPMI Vocabulary Coverage of SA data, Common Vocabulary Between
GloVe and PPMI Embedding Spaces.
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