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Abstract—We study the problem of representation learning
for multiple types of entities in a co-ordered network where
order relations exist among entities of the same type, and
association relations exist across entities of different types. The
key challenge in learning co-ordered network embedding is to
preserve order relations among entities of the same type while
leveraging on the general consistency in order relations between
different entity types. In this paper, we propose an embedding
model, CO2Vec, that addresses this challenge using mutually
reinforced order dependencies. Specifically, CO2Vec explores in-
direct order dependencies as supplementary evidence to enhance
order representation learning across different types of entities.
We conduct extensive experiments on both synthetic and real
world datasets to demonstrate the robustness and effectiveness
of CO2Vec against several strong baselines in link prediction
task. We also design a comprehensive evaluation framework to
study the performance of CO2Vec under different settings. In
particular, our results show the robustness of CO2Vec with the
removal of order relations from the original networks.

I. INTRODUCTION

Motivation. Knowledge representations that effectively cap-

ture knowledge semantics have been used in search, recom-

mendation and question-answering applications. Order relation

represents an important class of knowledge that has been

studied in recent representation learning research [2], [6],

[26], [28]. While past research focuses on order relations in

single-type networks [2], [6], [26], [28], this paper studies the

representation learning for an important class of knowledge

structures known as co-ordered networks. A co-ordered

network consists of two or more types of entities, where order

relations exist between entities of the same type, and association

relations exist between entities of different types. Co-ordered

networks exist in many applications. For example, Figure 1

illustrates a simple co-ordered network related to massive

open online courses (MOOC), where courses and concepts

are depicted by rectangles and circles respectively. As shown,

“Machine Learning” → “Probability and Computing” denotes

a course order relation as the latter is a prerequisite of the

former. Similarly, “SVM” → “Probability” denotes a concept

order relation as the latter concept should be learned before the

former. Meanwhile, “Machine Learning”- - -“SVM” denotes a

course-concept association. While many co-ordered networks

exist in the real world (e.g., co-ordering between jobs and skills

in career progression, co-ordering between historical events and

characters by time, etc.), the representations of entities in the

co-ordered networks have not yet been studied and compared.
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Fig. 1: Co-Ordered Network Example.

In this paper, we aim to develop effective embedding schemes

for co-ordered networks to preserve the order semantics existing

among entities of each entity type so as to support downstream

predictive applications, such as order-aware entity search and

recommendation. Despite it being a kind of network, co-

ordered network has both order and association semantics

that cannot be effectively modeled using traditional network

embedding techniques [8]–[11], [21], [23], [24] which focus

on modeling structural proximity. While knowledge graph

embedding models [3], [7], [18], [22], [25], [29] can deal

with general relations among entities, their effectiveness in

modeling order relations in co-ordered networks also has not

been validated.

In recent years, several order embeddings schemes have

been proposed for single-type order network, i.e., those consist

of single-type ordered entities. For instance, Vendrov et al.

proposed to learn embeddings of entities in a single-type order

networks using vector order embeddings (VOE) representing

each entity as a point in the embedding space [26]. VOE and

other follow-up order embedding models [2], [28], however,

are not designed for co-ordered networks which involve two or

more types of ordered entities connected by some association

relations. In this work, we tackle the co-ordered network
embedding problem defined as follows.

Co-Ordered Network Embedding Problem. Given a network
consists of two (or more) types of entities, a set of order
relations for each type of entities, and a set of association
relations between different types of entities, the co-ordered
network embedding problem (or simply co-order embedding)
is to learn low-dimensional representations for all the entities
such that their order semantics are preserved.

Two major research challenges arise in this co-order em-

bedding problem. The first research challenge is due to the

sparsity of order relations in co-ordered networks. For

instance, the co-ordered network used in research on course

prerequisite analytics [13], [15] consists of 654 course entities
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Fig. 2: Overview of the Proposed Model.

and 407 concept entities but there exist only 850+ and 990+

order relations among course entities and concept entities,

respectively. The very sparse order relations imply insufficient

order relations to learn the entity embeddings. Moreover, those

entity pairs that do not form order relations could either be

negatively ordered or unknown in their ordering [4], [16],

[17], [29]. These observations motivate us to explore auxiliary

information to aid the learning of co-order embedding.

The second challenge lies in the order consistency between

order relations of different entity types. Order consistency in

co-ordered networks refers to the correlation of order relations

between different types of entities through associations. If the

order relations in different types of entities are very much

aligned (correlated) with each other, i.e., there is a strong

order consistency between them, they may be able to provide

additional supports via associations between these different

types of entities, which are particularly useful for co-ordered

representation learning. Effective co-order embedding schemes

thus have to learn the representations of entities of different

types together so as to incorporate such correlations. The issue

of order consistency leads to our exploration of the mutual

reinforcement property. Formal definition of order consistency

is provided in Section III.

Overview of Our Proposed Approach. To address the above

challenges, we propose a co-order embedding framework as

shown in Figure 2. In this framework, given a co-ordered

network with two or more entity types, we perform: (1) relation

extraction, (2) embedding learning, and (3) relation ranking.

In relation extraction, we extract both first and second
order dependencies from the co-ordered network. First order

dependency vi → vj refers to a direct order relation. Second

order dependency refers to a chain that connects an entity vi
to another entity vj of the same type via associations with an

ordered pair of entities of different type. The co-order embed-
ding learning essentially takes positive and negative samples

from extracted first order and second order dependencies to

jointly learn order embeddings for two types of entities. In

relation ranking, the learned co-order embedding can be used

to perform several downstream tasks such as order relation

completion or link prediction tasks. The former seeks to find

all entities that a given query entity depends on. The latter

seeks to determine if an order relation exists between two

entities of the same type.

Contributions. The contributions of this paper are summarized

below:

● We identify mutual reinforcement properties between differ-

ent types of entities and formulate second order dependencies,

which provide auxiliary information to learn high quality

order embeddings in the co-ordered networks.

● We propose a generic co-order embedding model, CO2Vec,

which incorporates the first and second order dependencies

to leverage on the mutual reinforcement between the order

networks of different entity types.

● We conduct extensive experiments on four synthetic and

two real world datasets to demonstrate the robustness and

effectiveness of CO2Vec model compared against several

strong baseline embedding models. Our experiment results

show the superiority of CO2Vec in learning high quality

order representations in link prediction tasks. Furthermore,

we demonstrate two useful applications driven by co-order

embeddings. Lastly, we demonstrates the robustness of

CO2Vec when order relation sparsity issue is presented.

II. RELATED WORK

Prerequisite Relation Learning. Prerequisite relation is a

kind of order relation which exists among courses and concepts.

There are several works studying prerequisite relation learning

among courses and concepts but they did not address the

representation learning issues [1], [5], [12], [13], [15], [19],

[20]. For example, Some of these works focused on predicting

prerequisite relations among concepts associated with university

courses [13], [15]. Liu et al. learned the prerequisite relations

among concepts using some observed course level prerequisite

relations and the mapping from courses to concepts.

Pan et al. proposed to automatically identify all course

concepts from online MOOCs video clips before their pre-

requisite relations are predicted [19], [20]. Liang et al. applied

active learning to address limited training data for concept

prerequisite prediction [12]. None of these existing works

explores representation learning for co-order relations.

Knowledge Graph Embedding. Lately, several embedding

models have been proposed to learn representations of entities

and relations in a knowledge graph [3], [7], [14], [17], [18], [25],

[29], [30]. Translation-based models, e.g., TransE [3], TransH

[14], embed entities and relations by imposing a geometrical

structural bias such that the head entity representation would

be close to the tail entity representation once the head is

translated by the corresponding relation vector. Such translation-

based models focus largely on turning the symbolic relations

in knowledge graphs into different translation vectors. Order

relation on the other hand has special ranking semantics which

is not found in ordinary symbol relations. The knowledge graph

embedding models therefore may not learn order embedding

well.

Order Embedding Learning. Order embeddings for single-

type entities have been effectively applied to word hypernym

classification, image-caption ranking and textual entailment [2],

[26]–[28]. Vendrov et al. proposed to learn vector order embed-

dings (VOE) of non-negative coordinates from observed order

relations [26]. Due to its limitation inherited from deterministic
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vector order embeddings, recent works incorporate uncertainty

in order representation to enrich expressiveness and to perform

prediction with uncertainty, such as probabilistic extensions

of order embeddings [2], [28] and box lattice representation

of order embeddings [27]. Athiwaratkun et al. introduced

density order embedding (DOE) to model hierarchical data via

encapsulation of probability densities [2]. Our work represents

an important extension of order embedding to co-ordered

networks.

III. PRELIMINARIES

In this section, we define a few key terms before presenting

our proposed embedding model in Section IV

Co-Ordered Network. A co-ordered network G=(V ,E) con-

sists of two or more types of entities {V1, V2,⋯, VM} with

associations between entities of different types, and order

relations among entities.

To keep the discussion simple, we consider two types of

entities henceforth. We denote one entity type by A and another

by B. We use VA ∈ V and VB ∈ V to denote the set of type-

A and type-B entities, respectively. EAA (and EBB) denotes

the set of order relations among entities from VA (and VB ,

respectively). Lastly, EAB denotes the associations between

type-A and type-B entities. The definitions and ideas presented

can be easily extended to accommodate more types of entities.

Example. Consider the earlier example of course-concept

co-ordered network in Figure 1. Vcourse={vProb and Comp,
vMach Learning} and Vconcept={vProbability, vProb Theory,
vExp Family, vSVM} denote the course entity set and concept

entity set, respectively; EAA (red links) and EAA (blue links)

denote the set of course order relations and concept order

relations, respectively; and lastly EAB (dashed black links)

denotes the associations between course and concept entities.

Order-Preserving Representation. Let a type-m entity set

Vm have the order relation → such that for all vi, vj , vk ∈ Vm,

the following non-trivial properties hold: (1) if vi → vj and

vi ≠ vj , then vj /→ vi (antisymmetry), and (2) if vi → vj and

vj → vk, then vi → vk (transitivity). If the representations of

all type-m entities satisfy both antisymmetry and transitivity

properties, the entity representations are order-preserving.

Co-Ordered Relations. Co-ordered relations involve order

relations (→) for different types of entities such that order
consistency between associated entities of different types is

observed. That is, given type-A entity set VA and type-B entity

set VB (VA ≠ VB), if vA,i → vA,j where vA,i, vA,j ∈ VA, there

exists vB,p → vB,q where vB,p, vB,q ∈ VB , such that vA,i is

associated with vB,p, and vA,j is associated with vB,q .

Order Consistency. The order consistency involves in two set

of new relations to be found in a co-ordered network. One is

the supporting chains to infer potential type-A entity ordered

pairs via associations with other ordered pairs of entities of

type-B, and the other is the supporting chains to infer potential

type-B entity ordered pairs via associations with other ordered

pairs of entities of type-A. To quantitatively measure the order

consistency, we define the as follows:

βA =
∣E′

AA∣
∣VA∣ × (∣VA∣ − 1)

, (1)

where E′
AA is the number of chains that bridge type-A pairs

via associations with an ordered pair of entities of type-B, and

the denominator is the maximum number of entity pairs in type-

A dependency network. βA ∈ R is essentially the co-ordered

density for type-A dependency network. Likewise, βB ∈ R is

the co-ordered density for type-B dependency network. The

combination of βA∗βB altogether suggests the degree of order

consistency in a co-ordered network. The larger the value, the

higher degree of order consistency.

IV. THE PROPOSED MODEL

Given a co-ordered network G=(V ,E), our goal to learn

low-dimensional representations of both types of entities such

that the entity representations are order-preserving with respect

to the observed order relations for both type-A and type-B

entities. In this section, we develop a new order embedding

model, called CO2Vec, that incorporates both first order and

second order dependencies in co-ordered networks.

A. First Order Dependency

To learn good order-preserving representations, Vendrov et

al. defined a relaxed geometric relation between two entities in

the embedding space V⃗m ∈ R∣D∣ based on the conjunction of

total order on each dimension of the embedding space, where

D refers to the set of embedding dimensions [26]. This idea

is realised by a loss function which penalizes order violations

in a given set of order relations vm,i → vm,j :

δ(vm,i, vm,j) =
∣D∣

∑
d=1

∣∣max(0, v⃗m,i,d − v⃗m,j,d)∣∣ (2)

where v⃗, a vector, is the order embedding of an entity v.

v⃗m,i,d denotes the d-th component of the i-th entity of type m.

δ(vm,i, vm,j) = 0 if v⃗m,i → v⃗m,j according to the conjunction

of total orders; and δ(vm,i, vm,j) > 0 if there is an order

violation in some dimension d ∈D.

To preserve order relations in embedding learning for each

type of entities, a general practice is to collect a set of positive

order relations and a set of negative order relations as the first

order dependencies. To form negative samples E−
mm for type-

m entities, for each positive order relation (vm,i, vm,j) ∈ E+
mm

we generate a negative sample of either (vm,i, vm,k) ∉ E+
mm

or (vm,k, vm,j) ∉ E+
mm where vm,k’s are randomly selected

from Vm. Given a set of observed order relations E+
mm and a

set of negative sample relations E−
mm for all m ∈ {A,B}, the

objective function to learn the order embeddings for type-A

and type-B entities, respectively, is defined as a max-margin

loss O1
m that encourages positive order relations to have zero
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penalty, and negative order relations to have penalty greater

than a margin α:

O1
m = ∑

(vm,i,vm,j)∈E+
mm

δ(vm,i, vm,j)+

∑
(vm,k,vm,j)∈E−

mm

max{0, α − δ(vm,k, vm,j)}
(3)

where m ∈ {A,B} is the entity type.

B. Second Order Dependency

Motivation. Due to the existence of co-ordered relations in co-

ordered networks, we explore the idea of mutual reinforcement
to enhance co-order embeddings learning. Mutual reinforcement
refers to the inference of order relations for one type of entities

using the observed order relations among entities of the other

type, given that these two types of order relations are expected

to be order consistent. We formally model and integrate order

violations using identified mutual reinforcement properties and

propose CO2Vec.

Formulation. For illustration, suppose we have no knowledge

of the order relation between the two courses in Figure 1.

Nonetheless, knowing that concept “Exponential Family” de-

pends on concept “Probability” supports a potential dependency

from “Machine Learning” to “Probability and Computing”.

Here (“Exponential Family”, “Probability”) is referred to an

inferred concept pairs due to the explicit association between

“Machine Learning” and “Exponential Family”, coupled with

the explicit association between “Probability and Computing”

and “Probability”. Hence, the tuple (“Machine Learning”,

“Exponential Family”, “Probability”, “Probability and Com-

puting”) is a qualified instance of co-ordered relation because

of the second order dependency formed directly via explicitly-

associated concept pairs.

Let E+
ABBA={(vA,i, vB,p, vB,q, vA,j)} be the set of in-

stances of co-ordered relations that satisfy the second order

dependency, where (vA,i, vB,p) ∈ EAB and (vA,j , vB,q) ∈
EAB . Let φ(vA,i, vA,j) be the number of co-ordered relation

instances that satisfy the second order dependency in support of

the type-A entity pair (vA,i, vA,j). We can control the quality of

the set of co-ordered relation instances by specifying a support

threshold η as follows:

E+
ABBA = {(vA,i, vB,p, vB,q, vA,j)∣φ(vA,i, vA,j) ≥ η}. (4)

We generate negative samples by randomly replacing one of

the two values vA,i and vA,j with vA,k such that the entity pair

either (vA,i,vA,k) or (vA,j ,vA,k) is not qualified as an instance

of the first order or second order dependency:

E−
ABBA = {(vA,i, vB,p, vB,q, vA,j)∣

(vA,i, vA,j) ∉ E+
AA ∨ (vB,p, vB,q) ∉ E+

BB}.
(5)

Given positive and negative instances of the second order

dependency, we formulate their order violations as a max-

margin loss O2
m, for all m ∈ {A,B}, that encourages positive

Fig. 3: An illustration of synthetic co-ordered network.

co-ordered relations to have zero penalty, and negative co-

ordered relations to have penalty greater than a margin α:

O2
A = ∑

(vA,i,⋅,⋅,vA,j)∈E+
ABBA

φ(vA,i, vA,j) × δ(vA,i, vA,j)+

∑
(vA,k,⋅,⋅,vA,j)∈E−

ABBA

φ(vA,k, vA,j) ×max{0, α − δ(vA,k, vA,j)}

(6)

where φ(vA,i, vA,j) denotes the number of instances satisfying

the second order dependency in support of the type-A pair

(vA,i, vA,j). φ(vA,i, vA,j) is used to amplify the importance

of type-A pair (vA,i, vA,j). Likewise, we explore the second

order dependency in support of the type-B pairs (vB,i, vB,j)

to derive the order loss among type-B entities, denoted as O2
B .

Unified Learning Objective. CO2Vec uses both first and sec-

ond order dependencies with the following objective function.

LMR = ΣmO1
m +ΣmO2

m + λ ∥Ω∥ (7)

where ΣmO2
m is the overall order violations in light of the

second order dependency across each entity type-m, and Ω
is the embeddings for all types of entities with regularization

parameterized by λ on Ω to prevent overfitting. λ is set to

10−5 as default in the experiments. We optimize LMR, which

forces order embeddings of positively ordered pairs, via either

first order or second order dependencies, to be close to zero

violation, while forcing negatively ordered pairs to be greater

than a margin violation. The order embeddings can be jointly

learned with alternating optimization scheme among all loss

terms. That is, each loss term, O1
m or O2

m for each entity

type-m is alternatively optimized until all are converged.

V. MODEL VALIDATION ON SYNTHETIC DATASETS

To validate our ideas, we first conduct experiments on

synthetic datasets to quantitatively study the quality of co-

order embeddings in link prediction tasks. We also study

the usefulness of mutual reinforcement and the impact of

dependency range, i.e., number of hops connecting an ordered

entity pair in a co-ordered network.

A. Ground-Truth Network Generation

Consider a synthetic co-ordered network G=(V ,E) where

(1) V consists of two sets of entities: VA and VB ; and (2) E
contains three types of relations: type-A order relations EAA,

type-B order relations EBB , and cross-entity associations EAB .

We use directed acyclic graphs (DAGs) as building blocks

to generate synthetic co-ordered networks because DAGs,
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consisting of directed links without cycles, well capture the

dependency (or ordering) relations in the targeted co-ordered

networks. Specifically, each synthetic co-ordered network

consists of two associated DAGs. Each DAG consists of

directed links that denote the dependency relations Emm for

m ∈ {A,B}. The undirected links connecting the two DAGs

are the association relations EAB . The number of directed links

of the DAG is controlled by fan-out F . The longest dependency

range of the DAG is controlled by network depth L. Larger L
results in dependency relations of longer ranges, ranging from

one hop to L-1 hops. We generate a DAG by layers, each of

which consists of n=5 nodes. Therefore, the total number of

nodes in a DAG of network depth L (i.e., the DAG has 5 layers)

is ∣Vm∣=5×L for m ∈ {A,B}. The total number of directed links

in a DAG is ∣Emm∣=5×F × (L − 1) for m ∈ {A,B}. Figure

3 provides an illustration of synthetic co-ordered networks.

We generate four synthetic co-ordered networks controlled by

fixing F = 3 1 and varying the dependency range parameter L:

DAG(F3,L10), DAG(F3,L20), DAG(F3,L40) and DAG(F3,L80).

The statistics of these synthetic co-ordered networks are

summarized in Table I.

Step 1: Co-Ordered Relation Generation. We first generate

order relations for type-A and type-B entities. For the purpose

of studying the impact of co-ordered properties, we create the

co-ordered network with equal number of type-A and type-B

entities with 1-1 matching. The type-A network topology is

created as a DAG with fan-out size F and varied network

depth L. These order relations are mirrored type-B entities

for simplicity to create order consistency in the co-ordered

network.

Step 2: Association Relation Generation. The associations

between type-A and type-B entities are generated to finalize

order consistency between two types of entities. For each

type-A entity, we create an association relation to at least one

type-B entity which are either the matching type-B entities

or its other entities. The same is done for each type-B entity.

The sub-network density of the co-ordered network is defined

1We leave the study of varied fan-out sizes as a future work.

TABLE I: Data statistics: sub-network density ρ and order

consistency β (10−3).

Dataset Relations #type-A/B nodes ρ β

DAG(F3,L10)
A, Depends on, A 50 / 50 46

βA=46.1
A, Associates, B 50 / 50 1.3

βB=46.1
B, Depends on, B 50 / 50 46

DAG(F3,L20)
A, Depends on, A 100 / 100 24

βA=23.5
A, Associates, B 100 / 100 2.5

βB=23.5
B, Depends on, B 100 / 100 24

DAG(F3,L40)
A, Depends on, A 200 / 200 12

βA=12.3
A, Associates, B 200 / 200 5

βB=12.3
B, Depends on, B 200 / 200 12

DAG(F3,L80)
A, Depends on, A 400 / 400 7

βA=7.3
A, Associates, B 400 / 400 10

βB=7.3
B, Depends on, B 400 / 400 7

UNIV
Course, Depends on, Course 654 / 654 2.0

βA=60.0
Course, Associates, Concept 596 / 320 6.5

βB=3.5
Concept, Depends on, Concept 407 / 407 6.1

MOOC
Video , Depends on, Video 997 / 997 1

βA=4.2
Video, Associates, Concept 997 / 380 142.7

βB=211.4
Concept, Depends on, Concept 442 / 442 9

TABLE II: Quantitative results on synthetic datasets (∣D∣=16).

Best (second best) of each column are in bold (underlined).

Link Prediction Task

Data Model
Type-A Type-B

nMRR@G NDCG nMRR@G NDCG

DAG

RotatE 0.012 0.556 0.012 0.556

(F3,L10)

ComplEx 0.043 0.581 0.017 0.565
TransE 0.004 0.519 0.004 0.519
GCN 0.034 0.581 0.011 0.561
VOE 0.997 0.992 0.99 0.99
CO2Vec 0.984 0.989 0.981 0.985

DAG

RotatE 0.003 0.451 0.003 0.451

(F3,L20)

ComplEx 0.004 0.457 0.005 0.458
TransE 0.001 0.414 0.001 0.414
GCN 0.002 0.447 0.007 0.468
VOE 0.961 0.985 0.972 0.987
CO2Vec 0.959 0.984 0.965 0.986

DAG

RotatE 0.0 0.373 0.0 0.373

(F3,L40)

ComplEx 0.001 0.381 0.001 0.383
TransE 0.0 0.353 0.0 0.353
GCN 0.002 0.4 0.001 0.387
VOE 0.966 0.986 0.971 0.985
CO2Vec 0.998 0.995 0.994 0.992

DAG

RotatE 0.0001 0.336 0.0001 0.336

(F3,L80)

ComplEx 0.0003 0.337 0.0004 0.341
TransE 0.0 0.312 0.0 0.316
GCN 0.0002 0.336 0.001 0.346
VOE 0.997 0.98 0.9896 0.983
CO2Vec 0.998 0.99 1.0 0.994

as ρm,n =
∣Emn∣

∣Vm∣×∣Vn∣
, where m,n ∈ {A,B}. Namely, the three

sub-network densities include type-A network (ρA,A), type-B

network (ρB,B), and association network (ρA,B). The order

consistency of type-m dependency network is defined as

βm =
∣E′

mm∣

∣Vm∣×(∣Vm∣−1)
for m ∈ {A,B}, where E′

mm is the total

number of second order dependencies discovered through order

pairs of another type. βm measures the average number of

second order dependencies per entity pair of type-m (βm). The

correlations includes type-A (βA) and type-B order consistency

(βB), respectively. The higher the association density (ρm,n)

and order densities (βA, βB) are, the more instances of co-

ordered relation (in terms of second order dependency) can be

leveraged to improve co-order embeddings, namely, the order

relations in type-A and type-B networks can be exploited to

complement each other.

B. Methods for Comparison

We conduct experiments to evaluate CO2Vec and other

baseline models in link prediction task. We consider three types

of representation learning methods as baselines: knowledge

graph embedding methods, network embedding methods, and

order embedding methods, including:

● TransE [3]: a strong generic translation-based knowledge

graph embedding method for entities and relations of multiple

types.

● RotatE [22]: the state-of-the-art knowledge graph embedding

method, where antisymmetric relations are captured in

complex vectors.

● ComplEx [25]: a strong complex embeddings method, where

antisymmetric relations are captured in complex vectors.

● GCN [11]: a strong network embedding method via first-

order approximation of spectral graph convolutions.
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● VOE [26]: a modified vector-based order embedding base-

line, which employs the first order dependency to jointly

learn order embeddings for multiple types of entities in

heterogeneous networks.

C. Link Prediction

To verify the effectiveness of obtained entity embeddings,

our evaluation goal is to measure how accurate our model can

find the true order relations from a set of entity pairs in given

co-ordered network G. Specifically, given a pair of entities,

vm,i and vm,j , this task aims to quantify the likelihood of

vm,i → vm,j .

Training and Testing Configuration. Given a co-ordered

network G, we first apply order embedding models to learn

embeddings for each entity in G. Then, we perform link

prediction for a set of entity pairs using a scoring function

to determine the likelihood that vm,i → vm,j . The testing

set of entity pairs comprises of balanced numbers of unseen

ordered entity pairs P + = {(vm,i, vm,j)∣vm,i → vm,j} for

all m ∈ {A,B}, and unseen non-ordered entity pairs P − =
{(vm,i, vm,j)∣¬vm,i → vm,j}. The ranking function used to

rank P = P +∪P − is model-specific, i,e., different for each type

of embedding models. For knowledge graph embedding models,

e.g., TransE, the closeness between a candidate tail entity and

the head entity is defined as the Euclidean distance between

the tail entity representation and the head entity representation

after the corresponding relation-specific translation. Similarly,

the closeness in RotatE is also defined by the distance between

a candidate tail entity and the head entity after translation

operation. The closeness in ComplEx is defined by translation

alike scoring function except the operation is performed on

both complex entity and relation representations. For order

embedding models, VOE and CO2Vec, the distance from one

entity to another is defined by the order violations between two

entity representations given in Eq. (2). A special case occurs

when many pairs of entities have zero violations, we then

use Euclidean distance as a secondary indicator to distinguish

the order quality for pairs with zero violations to break ties.

Among the pairs with zero violations, the greater Euclidean

distance of a pair is, the higher rank the pair is since smaller

Euclidean distance of a pair of entities inherently suggests

there is barely ordering difference between them. The margin

α in Eq. (2) and the support threshold η are set to 1 for all

synthetic datasets. We set 16 as the default dimensionality

for all methods. As shown in Figure 4, the model-specific

loss decreases as entity representation dimensionality increases

across all methods, suggests that our loss function does not

improve much further beyond dimension of 16. Due to space

limitation, we show only the first three synthetic datasets.

Evaluation Metrics. An ideal model is expected not only to

give higher scores to ordered entity pairs P + over negative

ones P −, but also give higher scores to long-range ordered

entity pairs over short-range ones. We define the ground truth

ranking T = {pij ∣pij = (vm,i, vm,j) ∈ P} as the list of entity

pairs ranked by their dependency range len(vm,i, vm,j) in

descending order. Note that the dependency length for non-

ordered entity pairs without dependency pij ∈ P − is set to 0 to

position at the bottom of the list. Let M = {pij ∣pij ∈ P} denote

the ranked list of entity pairs returned by model M . Let r(pij) ∈
Z+ denote the rank of a ground truth entity pij by model

M . Let the group of entity pairs G={pij ∣len(vm,i, vm,j) = l̂}
denote the set of entity pairs with the longest dependency

range l̂. We particular use the group G as an indicator group

for a sanity check since ideally the entity pairs in G should

be ranked at the top of the list. To measure ranking qualities

capturing the dependency range, we report the order-compliant

quality in two metrics:(1) Normalized Mean Reciprocal Rank

(nMRR@G), and (2) Normalized DCG (NDCG). nMRR@G

is formally defined as follow:

nMRR@G = 1
IMRRG

∑pij∈G
1

r(pij)
(8)

where IMRRG is the ideal MRR on G when the entity pairs

with the longest dependency range in G are perfectly ranked

ahead of other pair of entities with shorter dependency range.

The greater nMRR@G values the better the ranking quality.

nMRR@G equals to 1 if a model perfectly returns the indicator

group ahead of at the top of the list.
NDCG is a standard metric to take relevance quality into

account. The relevance quality in our context is equivalent to

the dependency range. Specifically, the Discounted Cumulative

Gain (DCG) is formally defined as:

DCG = ∑pij∈P
2len(vm,i,vm,j)

log(r(pij)+1)
(9)

for all pij ∈ P ranked at r(pij) by a specific model. To make

DCG comparable among different models, we normalize DCG

to [0,1] by the ideal Discounted Cumulative Gain (IDCG) over

the ground truth ranking as follows:

IDCG = ∑pij∈T
2len(vm,i,vm,j)

log(rT (pij+1)
(10)

for all pij ∈ T ranked at rT (pij) by ground truth. NDCG =
DCG
IDCG

equals to 1 if a model returns the ground truth ranking.
Results. Table II summarizes our results on the link prediction

task. Firstly, the order embedding models, VOE and CO2Vec,

demonstrate robust and remarkable capabilities to predict

transitive links of longer dependency range atop across synthetic

datasets. For instance, The performance gap increases as high as

68.4%/68.2% between CO2Vec (0.99/0.994 NDCG) and TransE

(0.312/0.316 NDCG) in DAG(F3,F80) for type-A and type-B

link predictions, respectively. This indicates the effectiveness

of the order-compliant learning objectives. Secondly, CO2Vec

demonstrates remarkable capabilities in precisely predicting

links with a wide range of dependency lengths. The length

of the set of transitive links in DAG(F3,F80), for instance,

range from 2 up to 80 hops. As shown in DAG(F3,F40) and

DAG(F3,F80), CO2Vec robustly remains effective compared

to VOE. Structural complexity, on the contrary, has been

reported to drastically deteriorate the performance of GCN and

knowledge graph embedding baselines. Lastly, translation-based

knowledge graph embedding methods (e.g., TransE, RotatE,

ComplEx) alone do not suffice to approximate transitive links

prediction. TransE, despite its simplicity, still outperforms its

recently proposed peers with more complex representations.
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Fig. 4: Convergence of training loss at varying dimensions.

TABLE III: Mutual reinforcement study (∣D∣=16).

Single Removal Setting
DAG

Model
Type-A Type-B

(F3,L40) nMRR@G NDCG nMRR@G NDCG

p=20%
VOE 0.881 0.921 0.989 0.99
CO2Vec 1.0 1.0 1.0 1.0

p=40%
VOE 0.667 0.774 0.992 0.994
CO2Vec 1.0 1.0 1.0 1.0

p=60%
VOE 0.373 0.58 0.994 0.994
CO2Vec 1.0 1.0 1.0 1.0

p=80%
VOE 0.215 0.506 0.998 0.995
CO2Vec 1.0 0.999 1.0 1.0

p=100%
VOE 0.189 0.497 0.998 0.996
CO2Vec 1.0 1.0 1.0 1.0

Double Removal Setting
DAG

Model
Type-A Type-B

(F3,L40) nMRR@G NDCG nMRR@G NDCG

p=10%
VOE 0.986 0.989 0.974 0.976
CO2Vec 1.0 1.0 1.0 1.0

p=20%
VOE 0.918 0.945 0.918 0.937
CO2Vec 0.994 0.995 0.994 0.995

p=30%
VOE 0.848 0.892 0.858 0.897
CO2Vec 0.989 0.993 0.991 0.995

p=40%
VOE 0.612 0.752 0.539 0.703
CO2Vec 0.972 0.979 0.977 0.983

p=50%
VOE 0.304 0.572 0.414 0.638
CO2Vec 0.95 0.964 0.928 0.956

D. Mutual Reinforcement Study

To answer the research question ”How to quantify the benefit
the second order dependency?”, we perform experiments to

measure recovery accuracy by holding out order relations with

and without complementary evidences obtained by the second

order dependency. Specifically, we design two experimental

settings for link prediction task to enable the recovery of

missing links with varied degrees of challenges: (1) single
removal, and (2) double removal. In the single removal setting,

p% relations are held-out from type-A network while type-B

network remains intact. In the double removal setting, p%

relations are held-out from both type-A and type-B networks.

As order embedding models, VOE and CO2Vec, achieve the

best performance in previous two experiments, we take a closer

look at VOE and CO2Vec to study the impact of complementary

evidences.

Results. Table III summarizes our results on link prediction

task under both settings. The main findings under single

removal setting are two-fold. First, CO2Vec is able to close the

performance gap between type-A and type-B link prediction

completely by utilizing the second order dependency. The

performances of type-B link prediction accomplished by

CO2Vec and VOE are close to perfect given full knowledge

of the type-B dependency network. Increasing p% held-out
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Fig. 5: Comparison of order embeddings obtained from TransE

and CO2Vec models on synthetic network DAG(F3,L40).

An example query entity is depicted in red along with its

search entities in varying yellow. The lighter color the search

entity, the longer the dependency range (i.e., number of hops)

from query entity to the search entity in the dependency

network. In CO2Vec embedding space, search entities are

orderly positioned according to their dependency range w.r.t.

the query entity (NDCG=1.0) and thus result in a nice shade

from darker yellow (shorter dependency range from query

entity) to lighter yellow (longer dependency range from query

entity). Varying dependency ranges are contrarily mixed up in

TransE embedding space, demonstrating little ordering among

search entities (NDCG=0.33).

relations on type-A dependency network starts to reveal notable

differences between CO2Vec and VOE. Second, CO2Vec

remains perfect as held-out relations (p%) increase, while

VOE clearly suffers from the inability to manage type-A

knowledge loss. For instance in type-A link prediction task, the

performance gap between VOE and CO2Vec increases from

0.079 to 0.503 in NDCG as p increases from 20% to 100%.

We observe resembling behavior under double removal

setting in Table III. First, CO2Vec is robust to withstand double

knowledge loss from both type-A and type-B dependency

networks. CO2Vec still manages to completely close the

performance gap between type-A and type-B link prediction

by utilizing second order dependency. This indicates that the

second order dependency of both types in CO2Vec mutually

complements each other to achieve better performance despite

double knowledge loss from both networks. Second, CO2Vec

is robust to withstand the increase of knowledge loss (p%).

CO2Vec remains close to perfect as held-out relations (p%)

increase, while VOE clearly suffers from the inability to manage

knowledge loss from both type-A and type-B networks. For

instance, the performance gap between VOE and CO2Vec

increases from 0.011 to 0.392 in NDCG as p increases from

10% to 50%.

VI. EXPERIMENTS ON REAL DATASETS

We conduct experiments on real-world co-ordered networks

to (1) quantitatively study the effectiveness of co-order embed-

ding in downstream tasks, and (2) qualitatively demonstrate

the insights unveiled by co-order embeddings in real data.
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TABLE IV: Quantitative results (nMRR@G) for link prediction

task on real datasets. Best (second best) of each column are

in bold (underlined).

Model
UNIV MOOC

∣D∣ Course Concept ∣D∣ Video Concept
RotatE 16 0.0078 0.0001 32 0.0 0.001
ComplEx 16 0.0052 0.0002 32 0.0 0.0013
TransE 16 0.007 0.0002 32 0.0 0.0047
GCN 16 0.005 0.0001 32 0.0 0.0014
VOE 16 0.0485 0.0004 32 1.0 0.073
CO2Vec 16 0.083 0.0002 32 1.0 0.5622

A. Datasets

UNIV is a course and concept dataset2 from 11 US universities,

consisting of course dependency hierarchy, concept dependency

hierarchy, and associations between courses and concepts.

We extract ‘dependencies’ among courses and ‘dependencies’

among concepts. In addition, we perform concept matching on

course descriptions to establish ‘associations’ between courses

and concepts.

MOOC consists of video dependency hierarchy, concept

dependency hierarchy, and associations between videos and

concepts. Given a course, a latter video clip ‘depends on’

an immediate previous video clip in the same course. We

obtain such dependencies among video clips for five courses,

resulting in five linear chains of video clips with extremely

sparse network density (ρ=1×10−3). We observe that a concept

‘depends on’ 10.6 advanced concepts on average, resulting in

dense concept dependency network (ρ=9×10−3). Each video

on average ‘associates’ with 11.8 concepts. The statistics of

both datasets are summarized in Table I (in Section V-A).

B. Link Prediction

To verify the effectiveness of obtained entity embeddings,

in this experiment, we measure how accurate our model can

find the true order relations of various dependency ranges in

a given co-ordered network G. Specifically, given a pair of

entities, vm,i and vm,j , this task aims to quantify the likelihood

of vm,i → vm,j . Given a co-ordered network G, we first apply

order embedding models to learn embeddings for each entity

in G. We then perform link prediction for a set of entity

pairs using model-specific scoring functions to determine the

likelihood of vm,i → vm,j .

Results. The result for link prediction task is reported in

Table IV. Firstly, we observe significant performance gap

between the order embedding models, VOE and CO2Vec,

and other baselines on course dependency network (UNIV)

and video dependency network (MOOC) which have sparse

dependencies. This suggests that VOE and CO2Vec are

able to learn high-quality order embeddings by leveraging

complementary evidences from other networks, contrary to

other baselines that drastically suffers from the network sparsity.

For instance, we observe the performance gap (0.5575 gap

in nMRR@G) between CO2Vec (nMRR@G=0.5622) and

TransE (nMRR@G=0.0047) for video link prediction in MOOC.

2https://github.com/harrylclc/concept-prerequisite-papers
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Fig. 6: Dependency length study on real datasets: dependency

length distribution (a)(c), and performance comparison (b)(d).

Please refer to Figure 4 for legend description.

Secondly, we observe that CO2Vec performs the best in

predicting dependency relations with a longer dependency

range as shown in Figures 6(c) and 6(d). For instance, while

the video dependency link goes up to 436 hops between two

video clips, CO2Vec and VOE manage to rank pairs of video

clips with longer dependency range ahead of the rest with

shorter dependency ranges (nMRR@G=1).

Dependency Length Study. In this section, we conduct

experiment to study the impact of dependency length on the link

prediction performance. Firstly, Figures 6(a)6(c) summarize

the distribution of dependency length on real datasets at each

dependency length. We observe that co-ordered networks may

consist of two dependency networks with drastically unbalanced

dependency lengths. Take MOOC for instance, the dependency

length in video clip deponent network could exceed 400 hops;

while the dependency length in concept deponent network is

no more than four hops. Secondly, Figure 6(b)6(d) compare the

prediction accuracy obtained for different models in nMRR@G

at varying dependency length l̂. Namely, we compare prediction

accuracy for different indicator groups G at corresponding

target length l̂. The color of each model follows the legend

in Figure 4. As shown, VOE (lighblue) and CO2Vec (blue),

unlike other baselines (ComplEx, TransE, and GCN), generally

achieve better prediction accuracy in nMRR@G for longer-

range dependency relations with adequate order consistency

provided. This suggests that order-compliant methods indeed

are more capable of predicting long-range dependency relations.

The only exception is link prediction for concept pairs on UNIV

where prediction accuracy decreases for longer dependency

relations. This may be due to inadequate order consistency in

concept dependency network on UNIV (βB = 3.5), compared

to the concept dependency network on MOOC (βB = 211.4)

On the contrary, increased dependency length presents greater

challenges to knowledge graph embedding models (ComplEx,

TransE) and network embedding method (GCN) due to their

inability to properly encode order relations amongst entities

into respective embeddings.
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Fig. 7: Prerequisite entity search results by CO2Vec on MOOC.

Example query entities ⋆ depicted in red are chosen at random

for illustration. We obtain high ordering quality of order

embeddings in NDCG, where prerequisite entities of shorter

(longer) dependency range are positioned closer (further away)

to the query. The lighter (darker) color indicates longer (shorter)

dependency range to the query entity.

C. Order-Aware Video Search by Concept

We consider an application scenario of order-aware video
clip search by concepts, namely concept query. Given a concept

(e.g., “Heap Sort”), this application aims to compile a list of

video clips relevant to “Heap Sort” ranking from basic to

advanced levels. To compile the list, we first perform concept
filtering to collect video clips relevant to “Heap Sort” by exact

phrase match. Then, we rank the set of relevant video clips by

one of the following functions.

Baseline: We sort the set of relevant video clips according to

the video clip ID. Note that as the returned video clips are

from five courses, the video clips ordered by video clip ID are

generally arranged at random.

Order Embedding (OE): We order the set of relevant video

clips using order embeddings by CO2Vec. According to the

order embeddings, larger (smaller) order embeddings refer

to more basic (advanced) level. We therefore rank relevant

video clips with larger (smaller) order embeddings placed

atop (bottom) of the list. We generate two search lists using

(1) Baseline and (2) OE as ranking functions, respectively,

for ten concept queries. We recruit three annotators to judge

which search list gives more clear ordering in advance level.

Findings demonstrate moderate agreement (κ = 0.535 on

average) between human versus the automated raters. 0.83

of the search results by OE are deemed better than those by

Baseline according to three annotators on average. Examples

of search lists are summarized in Table VI. Overall, we find

that Baseline in Table VI only gives clear ordering for video

lectures within a single course, while the ordering among

three difference courses (ML1, ML2, DS1) are not clear. OE,

on the other hand, manages to figure out some video clips

in one course are far more advanced than video clips from

other courses. For instance, the video clip ML1-85 in Table

VI contains PCA-related concepts, is far more advanced than

video clips from other courses (ML2-162, ML2-157) and thus

is placed at the fourth position by OE.

TABLE V: Prerequisite entity search results in Figures 7(a)

and 7(b). (l := number of hops to the query entity ⋆).

Prerequisite Video Clips l Prerequisite Concepts l
Cost Function Intuition I ⋆ Logistic Function ⋆
Cost Function 1 Loss Function 1
Model Representation 2 Parameter Vector 2
Unsupervised Learning 3 Machine Learning Algorithm 2
Supervised Learning 4 Optimization Objective 2
Welcome 5 Model Parameters 2
Welcome to Machine Learning 6 Optimization Algorithms 3

Machine Learning 2
Optimization Problem 2
Partial Derivative 3

D. Prerequisite Entity Search

We consider an application scenario of prerequisite entity
search, namely prerequisite query. Given a query entity, this

application aims to return a list of prerequisite entities of the

same type as query to from basic to advanced levels. Table VII

gives examples of recommended prerequisite courses returned

by TransE, VOE, and CO2Vec given the course entity “Software

Engineering” as query. CO2Vec not only recovers the most of

the prerequisite courses, but also presents better ordering, from

the basic to advanced levels, among them, e.g., “Introduction

to Programming I” followed by “Introduction to Programming

II”. This validates the superiority of CO2Vec in learning higher

quality order representations. Figure 7 shows the result of

prerequisite entity search in two types of entity queries on

MOOC datasets by CO2Vec, including prerequisite video clip

and prerequisite concept queries. As shown in Figures 7(a)

and 7(b), both prerequisite video clip and prerequisite concept

queries capture the ordering amongst search entities nicely

from shorter dependency range to longer dependency range

from query entity (NDCG=1.0 and NDCG=0.95). The details

of search results for respective queries in Figures 7(a) and 7(b)

are summarized in Table V. The query is depicted as ⋆. As

shown, the search result (ordered based on their positions to

the query in the order embedding space) is highly correlated

with the dependency range (l).

VII. CONCLUSION

We present a generic order embedding model, CO2Vec, aim-

ing to jointly learn order-preserving representations for entities

in co-ordered networks. A novel second order dependency for

extracting complementary evidences to enhance order repre-

sentations is proposed. We design a comprehensive evaluation

framework to study the quality of CO2Vec representation. Our

experiments show that: (1) CO2Vec captures order semantics of

entities in co-ordered networks very well and outperforms other

strong baselines in link prediction task, and (2) CO2Vec offers

a more robust representation by exploring mutual reinforcement

via associations among different types of entities. Furthermore,

we demonstrate two useful applications driven by co-order

embeddings. For the future work, we plan to integrate entity

semantics aspect in co-order embedding learning. Another

interesting direction is to explore deep learning techniques to

enhance co-order embeddings.
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TABLE VI: Search results of concept query by (1) video ID, and (2) order embeddings. (Query Concept=‘Square Matrix’).

ID Search Results 1 (Baseline) Covered Concepts
ML1-17 Inverse and Transpose Matrix Transpose, Linear Algebra, Training Data, Machine Learning, Learning Method, Square...
ML1-85 Choosing the Number of Principal Components Training Data, PCA Algorithm, Covariance Matrix, Principle Components, Square...
ML2-157 Rewriting the Single Observation Model in Vector Notation Linear Algebra, Square Matrix, Inner Product, Matrix, Gradient Descent, Regression Model...
ML2-162 Discussing the Closed Form Solution O Notation, Square Matrix, Matrix, Features, Big-o Notation
DS1-59 Symbol Table Applications Sparse Vectors Optional Vector Multiplication, Square Matrix, Matrix, Matrix Multiplication, Matrix Vector Multiplication

ID Search Results 2 (OE) Covered Concepts
ML1-17 Inverse and Transpose Matrix Transpose, Linear Algebra, Training Data, Machine Learning, Learning Method, Square...
ML2-162 Discussing the Closed Form Solution O Notation, Square Matrix, Matrix, Features, Big-o Notation
ML2-157 Rewriting the Single Observation Model in Vector Notation Linear Algebra, Square Matrix, Inner Product, Matrix, Gradient Descent...
ML1-85 Choosing the Number of Principal Components Training Data, PCA Algorithm, Covariance Matrix, Principle Components, Square...
DS1-59 Symbol Table Applications Sparse Vectors Optional Vector Multiplication, Square Matrix, Matrix, Matrix Multiplication, Matrix Vector Multiplication

TABLE VII: Search results by prerequisite query on UNIV dataset. Italic blue indicates the true prerequisite search entities.

Query Entity: Software Engineering, Order Relation (→): ‘is prerequisite of’.

Rank TransE VOE CO2Vec

1 Computer Networks Introduction to Programming I Introduction to Programming I
2 Algorithms and Data Structures Discrete Structures in Computer Science Introduction to Programming II
3 Mobile Application Development Introduction to Programming II Discrete Structures in Computer Science
4 Introduction to Programming II Computing Concepts and Competencies Algorithms and Data Structures
5 Operating Systems Computer Networks Computer Networks
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