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Abstract
Cooperation is central to human life, distinguish-
ing humans as ultra-cooperative among mam-
mals. We form stable groups that enhance welfare
through mutual protection, knowledge sharing,
and economic exchanges. As artificial intelli-
gence gains autonomy in shared environments,
ensuring AI agents can engage in cooperative be-
haviors is crucial. Research in AI views this as
an alignment challenge and frames it in terms of
embedding norms and values in AI systems. Such
an approach, while promising, neglects how hu-
mans achieve stable cooperation through norma-
tive infrastructure. This infrastructure establishes
shared norms enforced by agents who recognize
and sanction norm violations. Using multi-agent
reinforcement learning (MARL), we investigate
the impact of normative infrastructure on agents’
learning dynamics and their cooperative abilities
in mixed-motive games. We introduce the con-
cept of an altar, an environmental feature that
encodes actions deemed sanctionable by a group
of agents. Comparing the performance of simple,
independent learning agents in environments with
and without the altar, we assess the potential of
normative infrastructure in facilitating AI agent
alignment to foster stable cooperation.

1. Introduction
The Alignment challenge – how do we get individuals to
choose behaviors that benefit the groups they live in – has
been around as long as humans have. In the context of hu-
mans, this pertains to the question of how we have achieved
such ultra-cooperative societies, far beyond anything we
see in other mammals. In AI research, the alignment chal-
lenge has largely been framed in terms of how we embed
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<anon.email@domain.com>.
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values and norms into AI systems. But this approach is in-
herently limited: it is not possible to articulate all our values
and norms (Hadfield-Menell & Hadfield, 2018); norms and
values are dynamic, constantly adapting to changes in en-
vironments/populations/information; and values and norms
are highly contested. Further, AI developers who embed
values (e.g. RLHF, Constitutional AI (Bai et al., 2022)) lack
the legitimacy to choose these norms.

Most importantly, this is not how humans solve the align-
ment (cooperation) challenge: they do not encode specific
values and norms–in fact, they are highly adaptable to
changes in values and norms. Humans solve the problem
with institutions that articulate and enforce a set of (vari-
able) rules. Humans are normatively competent in the sense
that they possess the cognitive architecture and learned be-
haviors that allow them to process, respond to, and help
constitute normative infrastructure and normative social or-
ders. Norms and values are not data, as approaches such as
RLHF assume; they are the equilibrium outcomes of com-
plex dynamic normative systems. We argue in this paper
that alignment research should shift its focus from how to
embed values in AI agents → how to make AI agents nor-
matively competent. (Perolat et al., 2017) can be seen as
an early contribution on this research agenda, endowing
agents with a punishment (sanctioning) technology which
allowed agents to find solutions to common pool problems.
(Köster et al., 2022) took this a step further by implementing
a hidden classification institution that rewarded agents for
sanctioning behaviors that reduced individual welfare.

(Hadfield & Weingast, 2012) propose a parsimonious ratio-
nal agent model of normative social order, consisting of a
classification institution that provides common knowledge
binary classification of all behaviors as either ”punishable”
or ”not punishable” (possibly through complex application
of general principles to particular cases) and an enforcement
mechanism that incentivizes agents to prefer ”not punish-
able” actions. A stable normative social order is achieved
when most agents are mostly in compliance and avoiding
punishment. (Hadfield & Weingast, 2012) focus in partic-
ular on the case, which describes most of human history
and much of modern life as well, in which punishment
is primarily delivered by ordinary agents (rather than spe-
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cialized enforcers (Hadfield & Weingast, 2013).) Agents
must therefore be incentivized and coordinated to engage
in costly third-party punishment (which could be relatively
mild, such as criticism, or more harsh, such as exclusion
from the group) and to condition such punishment actions
on a shared classification institution. Although shared clas-
sification could be entirely emergent and informal, groups
that converge on a single authoritative (more formal) clas-
sification institution–such as a chief, a group of elders, or
a court–can enjoy the benefits of maintaining cooperation
even in the face of changing environments and populations
(Hadfield, 2017). Inspired from this line of literature, in
this paper, we introduce a classification institution as an
observable feature of the environment, which we call an

”altar” (appealing to the idea that humans developed sacred
places that represented authoritative sources for rules). Us-
ing multi-agent reinforcement learning, we investigate the
implications of such normative infrastructure on the learning
dynamics and alignment capabilities of the agents interact-
ing in mixed motive games. We demonstrate the value of
this approach by showing that agents in our altar environ-
ment outperform agents in a hidden rules environment (and
both outperform agents in an environment without rules)
at achieving cooperation in the Allelopathic Harvest game
which presents the challenge of alignment, coordination and
free-riding for the agents interacting in the environment.

2. Related Work
The problem of cooperation, that is, how to design environ-
ments and algorithms to align learning agents’ behaviour to-
wards higher collective welfare, has seen an increasing focus
in multiagent literature (Du et al., 2023). Drawing from how
human societies have solved the cooperation problem (Boyd
& Richerson, 1992), mechanisms such as third-party pun-
ishment have shown promise as an approach in multiagent
reinforcement learning based artificial agents (Köster et al.,
2022). However, most techniques focus on the emergence
of cooperation by adapting the agents’ reward function to
include individual behavioural incentives that can eventually
assist in the convergence to collective-welfare optimizing
behaviour. These incentives include making agents more
altruistic (McKee et al., 2020), incentives that make agents
mimic each others’ punishment behaviour (Vinitsky et al.,
2023), care about the reputation of the agent in the popu-
lation (McKee et al., 2021), direct punishment (Dasgupta
& Musolesi, 2023), and social-learning mechanisms that
enables agent to learn from experts(Ndousse et al., 2021).

In contrast to this above set of techniques, our method fol-
lows the key insight that human societies did not learn to
be cooperative just through exploration and individual be-
haviour change. Rather, cooperation follows as a second-
order effect once societies learn to coordinate their peer

sanctions through social structures, such as informal norms
and formal institutions (Richerson & Boyd, 2008; Henrich,
2016). Our work focuses on a particular manifestation of
these structures, namely, classification institutions, that an-
nounce right and wrong behaviours around which agents can
voluntarily coordinate their sanctioning behaviour (Hadfield
& Weingast, 2012). More importantly, compared to previous
work in MARL, we shift the focus from individual learning
to learning about social structures. Specifically, our work
uses standard MARL methods to give agents the ability to
recognize features of authoritative classification institutions
(the altars) that represent the norms of a population.

3. Preliminaries
A Markov Game, is a generalization of a Markov Decision
Process (MDP) to a multi-agent setting and is formally
defined as follows. There is a set of states S, and each
agent i has a set of actions Ai. The transition function T :
S×A1×A2×· · ·×AN → ∆(S) determines the probability
distribution over states, where ∆(S) denotes the probability
distribution over states. Each agent i has a reward function
Ri : S × A1 × A2 × · · · × AN → R. Additionally, there
is a discount factor γ ∈ [0, 1). In each state s ∈ S, each
agent i selects an action ai ∈ Ai. The next state s′ is
determined by the transition function T , and each agent i
receives a reward Ri. A Partially Observable Markov
Game (POMG) extends the concept of a Markov Game to
scenarios where agents have limited observations of the state.
In addition to the components defined for a Markov Game,
each agent i in a POMG has a set of observations Oi. The
observation function O : S ×Ai → ∆(Oi) determines the
probability distribution over observations. In a POMG, each
agent i selects an action ai ∈ Ai based on its observation
oi ∈ Oi, rather than the full state s. The next state s′ is
determined by the transition function T , and each agent i
receives a reward Ri. A Markov game with sanctions
allows one of the actions ai ∈ Ai for each agent to be the
use of a zapping beam to sanction another agent. This action
imposes a negative consequence (e.g., a penalty or loss of
reward) on the targeted agent.

Multi-Agent Reinforcement Learning (MARL) involves
multiple agents interacting within a shared environment,
aiming to optimize their individual or collective behaviors.
MARL is often applied to solve Markov games, where the
objective is for each agent to learn a policy that maximizes
its expected cumulative reward. Formally, given a state
s ∈ S, each agent i ∈ N chooses an action ui and obtains
a reward r(s, u) with a private observation oi ∈ Oi, where
u = {ui}Ni=1 is the joint action. The joint policy of the
agents is denoted as πθ = {πi

θ}Ni=1 where πi
θ : S × Ai →

[0, 1] is the policy for agent i. The objective of each agent
is to maximize its total expected return Ri =

∑∞
t=0 γ

trit.
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4. The Altar Approach
In this work, we employ a computational approach to in-
vestigate the implications of the presence of an ”altar”, a
normative institution that encodes the representation of the
norm content, as a feature of an environment in which self-
interested reinforcement learning agents need to coordinate
effectively to maximize social welfare. We describe a mech-
anism through which the altar can benefit a society. Our
argument is based on the dynamics of learning in a group
that lacks a priori knowledge of the important aspects of
their social order. The altar serves as an explicit feature of
the environment, providing a clear classification of what is
approved versus disapproved within the given system.

As a starting point, we consider the setup in (Köster et al.,
2022), where agents can sanction each other to enforce a
rule and the environment employs a hidden classification
rule via reward signals that guide the sanctioning behavior
of agents. We extend this setup to include an explicit altar
feature in the environment that contains the normative in-
formation associated with the reward signals; at the start
of training this association between the information on the
altar and the reward signals for punishment is unknown
to the agents. Our environment is inspired by the Allelo-
pathic Harvest game (Agapiou et al., 2023; Köster et al.,
2020), which poses both the coordination and the free-rider
problem, making it challenging for agents to reach a wel-
fare maximizing outcome. Specifically, in our environment,
called the Altared Allelopathic Harvest, there are berries
of three different colors and sixteen agents can plant and
consume berries. Agents get reward for consuming any
colored berry (+1) but receive higher reward for consuming
their preferred color berry (+2). Planting does not generate
any reward or cost and hence agents have no direct incentive
to plant, leading to a free-rider problem. The agents can
only consume ripened berries and the berry ripening rate is
directly proportional to the fraction of the largest amount of
berry color. Hence, if all three colors are equally distributed,
berries will have the slowest ripening rate and achieving a
monoculture of a single berry color will generate the highest
berry ripening rate, thereby giving a chance to agents to
accumulate more reward. This is a coordination problem.

Agents also have a zapping action that they can use to sanc-
tion other agents. When an agent (called a target agent) is
sanctioned, it receives a penalty of -10. Similar to the hidden
classification rule in (Köster et al., 2022), the sanctioning
agent (called a source agent) incurs a cost of -10. However,
with a hidden classification rule, a desired planting behavior
(berry color) is established at the start of game and planting
this color is considered the correct thing to do. Hence, if the
source agent sanctions a target for planting any color other
than correct one, or failing to plant berries (free-riding), it
receives a reward of +20 (leading to net positive of +10).

Figure 1. Altared version of Allelopathic harvest. Altar is repre-
sented as a 3x3 observation in the center with the color of berry on
it for which a monoculture is desired.

We modify this approach by introducing the altar in the
environment – a visual observation in the center of the map
that displays the approved berry color. Figure 1 provides
an example with an altar that declares red berries to be the
community’s desired monoculture. While unknown to the
agents, the rewards for punishment match this norm content
- that is agents face the task of learning that they should
punish agents who do not plant red berries. Agents become
marked with the color of the berry they have most recently
planted and become grey with some probability after eating
until they plant, thus allowing other agents to identify agents
who have not followed the planting rule on the altar.

We posit that the presence of the altar allows agents to more
quickly understand the normative social order established
in their community. At the start of the training, the agents
will receive normative guidance via reward signals for pun-
ishment as in (Köster et al., 2022), however, as soon as the
agent steps on the ”altar”, it will now have the content of that
altar as a part of its observation space. The prediction is that
the agents will learn to correlate the information on the altar
with the reward they receive for sanctioning correctly and
the cost they incur for sanctioning incorrectly. We expect
the learning to progress in three phases: (i) agents learn to
recognise the norm content on the altar and correlate it with
the sanctioning reward/penalty; (ii) agents learn to correctly
enforce punishment for planting the wrong color berries;
and (iii) agents learn to comply with the norm via third party
enforcement received in the forms of sanctions for planting
wrong colored berries. If learning is successful, free-riding
is limited and a monoculture is achieved.

In this work, we test the hypothesis that by providing the
altar as a piece of normative infrastructure (a constructed
feature in the environment) that serves as an authoritative
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Figure 2. Rewards of training agents. Please note that we have
adjusted the reward curves to only include reward for berry con-
sumption and penalty for getting sanctioned while removing any
effect of reward and cost received due to sanctioning rules

reference for a community’s rules, agents can achieve faster
coordination in a less costly manner than they can when
rules are hidden and third-party enforcement and compli-
ance behaviors are wholly emergent.

5. Experiments
In this section, we provide details about various baseline
conditions and training procedure and conclude with dis-
cussion on empirical results. For the experiments in this
section, out of 16 agents, 8 preferred red berries and other 8
preferred green berries and the altar displayed red colored
berry, making red monoculture the desirable outcome.

5.1. Baseline and Altar Conditions

In our experiments, we tested three distinct environment
conditions to explore the effects of different sanctioning
mechanisms on agent’s enforcement and compliance behav-
ior and their ability to achieve a monoculture:

Free Sanctioning. In this condition, there is no altar or
hidden rule in the environment. Agents can freely zap other
agents, with the target agent receiving a penalty of -10 points.
The source agent, however, does not receive any reward or
penalty for zapping.

Hidden Rule (Red). In this condition, there is no visible
altar in the environment, but there is a ”hidden rule.” If a
source agent zaps another agent that is red, both the source
and target agents receive a penalty of -10 points. If the
source agent zaps an agent of any other color (green, blue,
white), the source agent receives a net reward of +10 points.

Altar (Red). This condition features a 3x3 altar in the
center of the map displaying red berries (see Figure 1).
Agents have an augmented observation space that includes a
memory slot, which starts as empty. When an agent enters a
tile that is part of the altar, their memory slot updates to altar
observation. If a source agent zaps a target agent of the same
color displayed on the altar (red), both the source and target
agents receive a penalty of -10 points. If the source agent

zaps a target of any other color, the source agent receives
a net reward of +10 points, while the target still receives a
penalty of -10 points.

5.2. Training Details

We utilized the Proximal Policy Optimization (PPO) algo-
rithm to train 16 independent learning agents. The training
setup employed a single GPU, with a training batch size
of 32,000, an SGD minibatch size of 16,000, and a rollout
length of 100. Each episode consisted of 2000 steps. The
agent architecture consisted of fully connected layers with
hidden sizes of 64 and 256, using ReLU activations.

5.3. Results

As displayed in Figure 2, we first examine the performance
of the agents towards achieving high welfare, measured as
sum of rewards across agents and averaged over episodes. In
this environment, agent can maximize their welfare by align-
ing their planting and sanctioning behavior so as to achieve
a monoculture of any one berry color. As berry ripening rate
is proportional to the largest fraction of berry color, a mono-
culture would lead to fastest ripening of berries, thereby
allowing agents to accumulate maximum possible reward
over time. Our experiments demonstrate that the agents
learning in the condition with an ”altar” in the environment
achieves highest reward and also consistently tracks higher
reward across training compared to the hidden rules baseline.
We conjecture that the availability of the altar observation
helps the agents to learn to correlate the norm content to the
correct enforcement behavior and help them align their sanc-
tioning behavior in a manner that is beneficial for learning
second order compliance behavior. The altar information
serves as a tool that agents can leverage to enhance their
learning of coordination behavior, reducing the necessary
training time and effectively decreasing the cost of achieving
coordination. Further, it is hard for agents to learn compli-
ance behaviors in the free sanctioning condition without any
signal to learn any meaningful enforcement behavior.

To understand how reward performance is reflected in the
monoculture fraction achieved by each group of agents and
the time taken under different settings, we visualize the berry
map midway of an episode (total length 2000 steps), for each
condition in Figure 5. For the free sanctioning condition, the
agents fail to align over a single berry color and therefore
are unable to increase the fraction of any one berry. Agents
are able to move towards a monoculture and have achieved
over 95% monoculture in both hidden rule condition and
in the Altared environment. However, one can observe that
the agents are more aligned in the Altared environment on
planting red behaviors (see red-colored agents) while in
the hidden rule condition, there are still several free-riding
agents or agents that plant some other berry color.
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(a) Correct sanctions vs Training iterations (b) Incorrect sanctions vs Training iterations (c) Blank zaps vs Training iterations

Figure 3. Sanctioning Behavior of agents across training period

(a) Free Sanctions (b) Hidden Rule (c) Altared

Figure 4. Monoculture and Agents’ status at halfway of an episode for trained agents

Finally, we assess the sanctioning behavior of the agents
and their ability to use the reward signal and classification
institution (altar) to learn to sanction the disapproved ac-
tions correctly. Figure 3 demonstrates that for both hidden
rule and altared environment, the incorrect sanctioning be-
havior decreases over time signifying that agents are able
to avoid wrongly punishing other agents because they want
to avoid second-order punishment from the environment
(wrong sanctioning is costly). The more interesting result is
that in the altared environment, agents show increasing num-
ber of correct sanctions across training. This is important as
there is a chance of agents free-riding and forgetting to plant
berries once the monoculture is achieved. Sanctioning any
free-riding agent is the correct thing to do and agents learn
to enforce this in altared environment while they stop sanc-
tioning in general in the hidden rule environment. Finally,
our setup allows for random zapping in the blank area and
agents do take this action quite frequently as it is not costly.
To discern the ability of agents to learn correct enforcement
behavior, we report these numbers separately in Figure 3(c).
In Appendix A, we provide more results depicting the frac-
tion of monoculture achieved by both the hidden rule and
Altar approaches at various time during training.

6. Concluding Remarks
In this work, we address the alignment challenge by propos-
ing a shift in focus from embedding values in AI agents

to making them normatively competent. To advance this
direction, we introduce the altar, a classification institution
as a feature of a multi-agent environment that aids in solving
coordination problems. Using multi-agent reinforcement
learning, we examine the impact of this infrastructure on
learning dynamics, enforcement, and compliance behaviors.
In a modified Allelopathic Harvest game, we demonstrate su-
perior performance of agents trained with an altar compared
to those without it. While our experiments use a simple
setup to demonstrate the altar’s effectiveness in addressing
the alignment challenge, our objective is to lay the ground-
work for future research in AI alignment and multi-agent co-
operation. First, our setup features an institution with fixed
information, but future research could explore institutions
with norm content that changes across or within episodes,
as well as multiple institutions with conflicting, unreliable,
or converging information. Next, we posit that our approach
will be particularly effective in promoting generalization,
adaptability, and robustness across environments with dif-
ferent normative institutions. Agents that learn to recognize
altar information and correlate enforcement behaviors with
norm content will adapt and train quickly when transferred
to new environments. Finally, this work has significant im-
plications for MARL environment design research. As the
field advances towards designing environments that capture
diverse social and economic phenomena, we suggest that
incorporating normative infrastructures should be a priority
in developing the next generation of MARL environments.

5



275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329

Altared Environments

References
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A. Progress towards achieving monoculture over training
Figure 5 demonstrates the progress of agents coordination behavior and consequent monoculture achieved by the agents
across training period. The top row demonstrates the agents training in Altared environment while the bottom row shows the
agents training in hidden rule setup. As one can observe, agents training in Alterad environment consistetly show higher
monoculture fraction at any given training point which tracks with the higher welfare it gets across the training period.
Further, the agents trained in Altared environment show better alignment with the normative order as most agents have
started stopped planting non-red berries or free-riding by iteration 400 which is not true for the hidden rule setup. This
provides insight into the ability of the altared environment to support cost effective coordination among agents, eventually
resulting in the higher social welfare.

(a) Altar Iteration 50 (b) Altar Iteration 100 (c) Altar Iteration 200 (d) Altar Iteration 400

(e) Hidden Rule Iteration 50 (f) Hidden Rule Iteration 100 (g) Hidden Rule Iteration 200 (h) Hidden Rule Iteration 400

Figure 5. Monoculture and Agents’ status at halfway of an episode for trained agents
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